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Abstract

Laminar hydrocarbon flames, which have adiabatic flame speeds on the order of a meter per sec-
ond, are conventionally described by a leading convective-diffusive zone followed by an energy-
releasing reactive-diffusive region. On the other hand, combustion induced by a strong shock
wave is typically modeled as a convective-reactive balance with negligible diffusion, which may
be called a convective explosion or fast flame. The transition between these two modes of
combustion is an important issue in flame acceleration and transition from deflagration to det-
onation. In this study, we examine the range of pre-mixed combustion modes possible behind
shock waves through numerical solutions of the one-dimensional, steady reactive Navier-Stokes
equations with a detailed chemical reaction mechanism for stoichiometric methane-air mixtures.
Shock Mach numbers ranging between one and the Chapman-Jouguet (CJ) value, a maximum
of about five for typical fuel-air mixtures, are considered. The mixture examined in this study
is stoichiometric methane-air. Two issues are considered in depth; one is the transition from
diffusion-controlled to diffusionless combustion when the combustion wave speed is specified;
the other is the question of the existence of a well-defined adiabatic flame speed behind a strong
shock wave.

1 Introduction

The present study addresses two issues in high-speed combustion of pre-mixed gases. The first
issue is the role of diffusion in detonation propagation, and the second is the existence of a
well-defined adiabatic burning velocity in high-temperature mixtures. Our approach to these
problems is numerical and is based on computing steady combustion wave structure using
realistic thermochemistry, transport, and a detailed chemical kinetic model of methane-air
combustion. A pseudo-time-stepping method with an adaptive spatial grid and finite-difference
approximations to spatial derivatives is used to integrate the conservation equations until a
steady-state, steady-flow solution is reached. We have examined the solution regimes as a
function of the initial conditions, focusing on the effect of initial temperature and flow velocity.

The motivations for the present study come from a desire to understand the role of diffusion
flames and diffusive transport processes in high-speed combustion and detonations. On a funda-
mental level, high-speed combustion waves can arise in a wide variety of combustion situations
due to role of temperature gradients and hot spots in the ignition process, see for example,
the recent discussion of Gu et al. (2003). One application is to high-speed turbulent flame
propagation in tubes with obstacles, see for example, Knystautas et al. (1998). Flame speeds
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can be as high as 1000 m/s before transition to detonation takes place. Another application
is the structure of highly-unstable detonation fronts that have been observed (Pintgen et al.,
2003, Austin, 2003) in fuel-air mixtures with large effective activation energies. Our goal is to
understand the range of mechanisms in high-speed combustion that takes place behind shock
fronts. Our initial study concerns strictly one-dimensional waves, although the ultimate appli-
cation is to multi-dimensional flow that occurs in flame acceleration, transition to detonation,
and detonation propagation.
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Figure 1: Schematic space-time diagram illustrating a combustion wave following an unsteady
shock

In these high-speed combustion situations, there is a leading shock front created by the
rapid volume generation of the following combustion process, see Fig. 1. If we consider the
entire spectrum of combustion events that can occur in a mixture, starting from low-speed
flames and ending with detonations, then the leading shock speed varies from Mach 1 up to the
CJ value, between Mach 4 and 7. Most of the situations we are considering are intrinsically
non-steady, with a lower-speed flame following a higher-speed shock wave, as shown in particle
path A in Fig. 1. As long as the temperature behind the shock front is not too high, then
we expect that the combustion wave behind the shock will have to be initiated externally and
subsequently move relative to the flow at speeds less than 10 m/s, typical of diffusion-controlled
combustion. As the shock speed and post-shock temperature increase, then the possibility
exists that the shock wave sets up an induction time sufficiently short that the combustion
wave propagates at high speed along a reaction locus (thick shaded curve in Fig. 1) that is
determined by the reaction rates and the time history of the shock speed. Particle path B in
Fig. 1 is representative of this situation. These high-speed waves are related to the spontaneous
flame concept of Zel’dovich (1980), and are termed a “fast flame” by Clarke (1989). As the
flame speed increases, simple physical arguments suggest that the role of diffusional transport
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will diminish relative to convection. Eventually, for high enough flame speeds, diffusion will be
negligible. Finally, when the induction time is sufficiently short, the reaction zone will closely
follow the shock with a detonation-like structure, illustrated by particle path C in Fig. 1.
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Figure 2: Pressure-volume plot for a reactant mixture of stoichiometric methane-air at a tem-
perature and pressure of 300 K and 1 atm, respectively. Shock adiabats for Mach numbers
3 and 4 are depicted. Rayleigh lines starting from the post-shock states and ending at the
equilibrium Hugoniots are also depicted for varying burning velocities.

An alternate way to visualize these processes is in the pressure-volume plane shown in
Fig. 2. In this plot, as in the remainder of the paper, we have used a stoichiometric mixture
of methane-air at a temperature of 300 K and pressure of 1 atm to illustrate the situation we
are considering. Upstream of the combustion wave, we suppose that there is a shock wave
propagating with a Mach number M = Ushock/c0 into the stationary reactants, where Ushock is
the shock speed and c0 is the sound speed in the quiescent reactants. The properties behind the
shock wave are computed using realistic thermochemistry and the shock jump conditions with
a frozen composition. Figure 3 shows the computed post-shock temperature as a function of
shock Mach number, and Fig. 4 shows the computed post-shock pressure as a function of shock
Mach number. The locus of post-shock states is labeled as the reactant Hugoniot in Fig. 2.
Two representative post-shock states for M = 3 and M = 4 are shown with the associated
Rayleigh lines connecting the initial and post-shock states.

For two of the post-shock states in Fig. 2, we show Rayleigh lines that are labeled by the
corresponding speed of the combustion wave following the shock. These Rayleigh lines ter-
minate on an equilibrium (product) Hugoniot which is specific to each post-shock state. The
nearly horizontal Rayleigh lines correspond to the diffusion-controlled flame solutions. The
temperature and species profiles of one such solution are depicted in Figs. 5 and 6, respectively.
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Figure 3: Post-shock temperature vs. shock Mach number for stoichiometric methane-air mix-
ture at a pre-shock temperature and pressure of 300 K and 1 atm, respectively. Post-shock
temperature increases with the shock Mach number along the reactant Hugoniot.
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Figure 4: Post-shock pressure vs. shock Mach number for stoichiometric methane-air mixture
at a pre-shock temperature and pressure of 300 K and 1 atm, respectively. Post-shock pressure
increases with the shock Mach number along the reactant Hugoniot.

The steeper Rayleigh lines represent diffusionless solutions. The limiting case of these diffusion-
less solutions is the classical Zel’dovich-von Neumann-Döring (ZND) model (Fickett and Davis,
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1979) of ideal detonation structure. The temperature and species profiles of a detonation case
are depicted in Figs. 7 and 8. This particular case is for a slightly “overdriven”, i.e., M >
MCJ wave with a Mach number of 5.2. The leading shock wave is located at x = 0 in these
simulations, off-scale to the left on the plots. The CJ solution for this mixture corresponds to
a shock Mach number of 5.11 and a combustion wave velocity of 1809 m/s. The equivalent
combustion wave velocity for this case is 300 m/s, which is the velocity of the flow relative to
the shock. By contrast, the adiabatic diffusion flame solutions have combustion wave speeds of
about 6 m/s at comparable thermodynamic conditions.

The temperature profiles for the flame and the detonation are similar in shape but the initial
and final temperatures in the detonation are about 1000 K higher in the detonation than in the
flame case. This reflects the essential difference between flames and detonations; the chemical
reaction in the detonation case is initiated by high-temperature reactions behind the shock
front while the chemical reaction in flames is initiated in the low-temperature pre-heat zone
by diffusion of species and energy forward from the high-temperature products. The species
profiles in the detonation case appear to increase much more rapidly with distance at the end of
the induction period than at the end of the pre-heat zone for the flame case. However, the flame
is actually thinner (δ = 1 mm) than the detonation (∆ = 15 mm) because the flow is much
faster in the detonation case and also radical diffusion is more effective in initiating combustion
as compared to the adiabatic chain branching that occurs in the detonation induction zone.
The spatial extent (0.5 mm) of the region of the rapid transition in species concentration is
comparable in both cases.
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Figure 5: Temperature profile of a one-dimensional, pre-mixed, adiabatic, stoichiometric
methane-air flame with the reactants at a temperature and pressure of 300 K and 1 atm,
respectively.



Paper 03F-29 Fall 2003 Western States Section/Combustion Institute 6

3.5 3.6 3.7 3.8

0

0.1

0.2

x (cm)

m
ol

e 
fr

ac
tio

ns

CH
4
 

O
2
 

OH x 10 CO
2
 

H
2
O 

Figure 6: Species profile of a one-dimensional, pre-mixed, adiabatic, stoichiometric methane-air
flame with the reactants at a temperature and pressure of 300 K and 1 atm, respectively.
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Figure 7: Temperature profile of a ZND model for a Mach 5.2 shock in a stoichiometric methane-
air mixture at a temperature and pressure of 300 K and 1 atm, respectively.
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Figure 8: Species profile of a ZND model for a Mach 5.2 shock in a stoichiometric methane-air
mixture at a temperature and pressure of 300 K and 1 atm, respectively.
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Existence of Adiabatic Burning Velocity

Diffusion is an essential process in low-speed combustion, both laminar and turbulent (Pe-
ters, 2000, Lińań and Williams, 1993). A balance between convection, diffusion, and reaction
determines the structure and speed of a a freely-propagating adiabatic flame. Computing
steady-state, steady-flow flame structure and the associated burning velocity has become a
standard numerical tool for the combustion analyst. For freely-propagating flames, the flow is
considered to be adiabatic and effectively infinite in extent. In actual implementation, a finite
length computational domain is used and the adiabatic burning velocity is computed as an
eigenvalue by anchoring the flame to a location xfix such that the temperature Tfix at that
location remains fixed (Kee et al., 1985). An example is shown in Fig. 5 of the temperature
profile for an adiabatic flame (stoichiometric methane-air, M = 1, i.e., T1 = 300 K and P1 =
1 atm) computed by the algorithm described in Section 4. The associated species profiles are
shown in Fig. 6. As shown, the spatial gradients in temperature and species amount are small
at the upstream boundary x = 0, off scale to the left on these plots. In this case, the values
used for the computation are xfix = 3.5 cm and Tfix = 400 K.

A key assumption made in carrying out adiabatic burning velocity computations is that it
is always possible to find a range of parameters xfix and Tfix for a given reactant mixture such
that the computed burning velocity is relatively independent of these choices. In that situation,
we can speak of “the adiabatic burning velocity” as a single, well-defined quantity. In fact, the
combustion literature contains a large number of papers describing such simulations for many
different fuel-oxidizer mixtures and initial conditions, indicating that this assumption is widely
found or assumed to be valid. In the present study, we are able to obtain meaningful solutions
for adiabatic burning velocity for post-shock states corresponding to shock Mach numbers of
up to M = 5 which is associated with an initial temperature of 1490 K. For values of M > 5,
as discussed in more detail later, we could not obtain solutions for adiabatic flames which had
an obviously unique burning velocity.

A simple explanation of the limitations in obtaining an adiabatic laminar flame speed can
be given in terms of the competition of reaction processes upstream of the flame with those
within the flame. This possibility arises because at sufficiently high reactant temperatures, the
reactant mixture can undergo adiabatic explosion without the diffusion of species and energy
between the hot products and the reactants, which is the mechanism for reaction initiation
in low-temperature reactant mixtures entering the flame zone. This means that at high initial
temperatures, the reaction rates will be high enough that xfix cannot be arbitrarily chosen. For
any reactive mixture, we can define an adiabatic explosion or induction time ti that strongly
decreases as the reactant temperature is increased. When the residence time xfix/va, where va

represents the adiabatic burning velocity, exceeds the induction time, an adiabatic flame solution
will no longer be possible. This is because the reactant mixture will adiabatically explode in the
region upstream of the location xfix where the combustion wave has been anchored, resulting
in an upper bound for xfix. At the same time, there is a lower bound for xfix, which is between
two and three times the flame thickness δ, such that there is no energy and mass loss at the
upstream boundary x = 0. The adiabatic burning velocity and flame thickness determine the
bounds for xfix, and their variation with shock Mach number is depicted in Figs. 9 and 10,
respectively. The flame thickness shown here is based on the maximum slope of the temperature
profile

δ =
Tmax − Tmin

dT/dx|max

(1)
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Figure 9: Adiabatic burning velocity for varying post-shock conditions vs. the corresponding
shock Mach number.

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

Mach number

fla
m

e 
th

ic
kn

es
s 

(c
m

)

Figure 10: Adiabatic flame thickness for varying post-shock conditions vs. the corresponding
shock Mach number.

We will find that the mechanisms discussed here yield an upper bound for the shock Mach
numbers for which we can find solutions to the adiabatic burning velocity problem.
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Transition in Combustion Mechanism with Wave Speed

Detonations are in a combustion regime at the opposite end of the spectrum from laminar
diffusion flames. Detonations nominally propagate with speeds between 1500 and 3000 m/s and
the associated combustion wave speed is between 200 and 500 m/s. All conventional analyses
take as an initial assumption that diffusive processes are irrelevant to the structure and speed
of propagation of detonation waves (Lińań and Williams, 1993, See pp. 100-101 ). The basis
of this assumption is not clearly articulated in the combustion literature. Although the role of
diffusion in detonation has been examined by a number of researchers (Fickett and Davis, 1979,
See p. 192), the conclusions appear to be contradictory (Fickett and Davis, 1979, See p. 199) with
some analyses and numerical simulations indicating that diffusion has a substantial effect on
detonation structure while others do not. Diffusion has been used in some studies (Singh et al.,
2001) as a means of regularizing numerical solutions for propagating detonations, and the role
of diffusion has been the subject of numerous mathematical investigations (Chen and Wagner,
2003, for example) into the formal question of the existence of solutions to the reactive Navier-
Stokes equations. Setting aside mathematical issues of uniqueness and existence, the issue for
physical scientists and engineers is: Can reliable computations of detonation structure be made
without considering diffusion? From a physical point of view, Clarke’s analyses (Clarke, 1983,
1989) of the role of diffusion in high-speed combustion clearly indicates that diffusion cannot
be a significant factor in determining detonation structure when realistic values of transport
coefficients and reaction rates are used in one-dimensional analyses. We will see that this is
supported by the numerical analyses we have carried out but that this conclusion may have to
be reconsidered for multi-dimensional detonations with highly unstable fronts.

The conventional approach (Fickett and Davis, 1979, Chap. 5) is that balance between
convection and reaction, which is the essence of the ZND model, is considered to completely
determine the structure of an ideal detonation wave. Further, the speed is determined not by the
balance in processes but rather by the thermochemistry and the CJ hypothesis - the flow at the
end of the reaction zone is sonic relative to the leading shock wave. In essence, the high-speed
combustion process is a convected adiabatic explosion. Solutions are possible for a wide range
of combustion wave speeds as long as singularities do not appear in the reaction zone, which is
sometimes known as the generalized CJ condition. The CJ solution is singled out because this
case corresponds to what is observed in the laboratory experiments with self-supporting waves,
and can be justified by appealing to the isolating nature of the sonic surface.

A ZND-like combustion wave solution is limited to high temperatures since below some
minimum temperature, the reaction rates are so slow that it is not possible to obtain adiabatic
explosions in any sensible time. The induction time, computed assuming a constant pressure
explosion process, as a function of shock Mach number for our example case, is shown in Fig. 11.
Obviously, for shock Mach numbers less than 3, it is difficult to conceive of adiabatic explosion
processes in ordinary laboratory situations and the induction time exceeds 1 s. In these cases,
the only possibility for obtaining propagating combustion waves is to have continuous initiation
by diffusion of hot products and reactive intermediates from downstream into the unreacted
mixture upstream. So we expect that, behind weak shocks, we will have diffusion-controlled
combustion and behind strong shocks, diffusionless adiabatic explosion waves. Setting aside the
issue of how such combustion waves are set up, we can consider the mode of combustion behind
a shock of given strength as a function of wave speed ranging between the two extremes of 1-10
m/s for laminar flames to the 300 m/s for ZND-like combustion waves. As pointed out earlier,
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Figure 11: Induction time for post-shock states vs. shock Mach number for stoichiometric
methane-air. This is defined here as the time required for the temperature to reach 100 K
above the starting temperature.

these are non-steady solutions since the leading shock and combustion wave necessarily travel
at different velocities except in the special case of the ZND solution with wave speeds equal to
or greater than the CJ velocity.

What types of processes occur in combustion waves that propagate with intermediate ve-
locities? Clarke, Kassoy, and co-workers have done extensive analysis (summarized in Clarke,
1989) on regime intermediate between laminar flames and detonations. Clarke has used asymp-
totic analysis and distinguished limit considerations to show that diffusion becomes negligible
at finite flow speeds that are quite modest in comparison to detonation velocities. Since these
studies are carried out with asymptotic methods, precise bounds on the behavior are not estab-
lished and it is unclear how to apply these results to cases with detailed chemistry. We carry
out computations for our example stoichiometric methane-air mixture using a detailed reaction
mechanism and show exactly how this transition comes about. Our numerical studies confirm
the gradual transition from diffusion-controlled to diffusionless combustion as the combustion
wave speed is increased. We show that in addition to the considerations given by Clarke, it is
essential to consider the effect of post-shock temperature, as discussed previously in connection
with the issue of the existence of laminar flame solutions.

2 Problem Description

The schematic for a combustion wave trailing a shock wave is shown in Fig. 12. In a non-steady
regime, the two waves propagate at different speeds. The stationary reactant mixture is first
shocked and then a combustion wave burns the warm reactants and generates hot products.

The steady combustion wave is computationally modeled as shown in Fig. 13, which also
shows the velocities of the warm shocked reactants and the hot products in a wave-fixed coor-
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Figure 12: Schematic of the physical problem for study of combustion behind shock waves.

dinate system. In our study, these waves are modeled in one spatial dimension.
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Figure 13: Schematic of the computational domain for analysis of the steady combustion wave.

3 Governing Equations

One-dimensional steady, laminar combustion is governed by the reactive Navier-Stokes equa-
tions (Kee et al., 2003). In our study, we have considered the following approximate version of
this model consisting of N+4 equations for an ideal mixture of N chemical species:

dM
dx

= 0, (2)

d
dx

(
p +

M2

ρ

)
= 0, (3)

−MdT

dx︸ ︷︷ ︸
tconv

+
M
ρcp

dp

dx︸ ︷︷ ︸
tpress

− 1
cp

dJq

dx︸ ︷︷ ︸
tcond

− 1
cp

N∑
k=1

Jm
k cpk

dT

dx︸ ︷︷ ︸
tdiff

− 1
cp

N∑
k=1

ω̇khkWk︸ ︷︷ ︸
treac

= 0, (4)

−MdYk

dx︸ ︷︷ ︸
yconv

−dJm
k

dx︸ ︷︷ ︸
ydiff

+ω̇kWk︸ ︷︷ ︸
yreac

= 0, k = 1, . . . , N, (5)
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p = ρ<T
N∑

k=1

Yk

Wk
, (6)

where the N + 4 dependent variables are ρ, p, T , M, and Yk (k = 1, . . . , N,
∑N

k=1 Yk = 1),
which represent density, pressure, temperature, mass flow rate (= ρv), and the N species mass
fractions, respectively. The independent space variable is represented by x. Equations (2-5)
describe the conservation of mass, momentum, energy, and species at steady-state, and are
derived from the steady-state reactive Navier-Stokes equations (Kee et al., 2003) by neglecting
the effects of viscosity. Equation (6) is the ideal gas equation of state. The molecular weight
of species k is represented by Wk, and the universal gas constant is represented by <. Since all
the species are assumed to be ideal gases, the specific heat at constant pressure of species k,
cpk, is a function of temperature alone. The mass-averaged specific heat at constant pressure
for the fluid mixture is given by cp =

∑N
k=1 Ykcpk. The specific enthalpy of species k is given

by hk = h◦
k +

∫ T
T◦ cpk(T̂ )dT̂ , where h◦

k is the standard enthalpy of formation per unit mass of
species k at the standard temperature of T◦ = 298 K. The thermodynamic database of Kee
et al. (1987) and the gas phase kinetics package of Kee et al. (1989) are used to compute cpk,
cp, and hk.

The molar rate of production of species k, ω̇k, is given by the law of mass action with
Arrhenius kinetics

ω̇k =
J∑

j=1

ajT
βj exp

(−Ej

<T

) (
ν ′′

kj − ν ′
kj

) N∏
i=1

(
ρYi

Wi

)ν′
ij

, (7)

where J is the number of elementary reactions in the N species reaction mechanism. The
constant parameters aj , βj , and Ej represent the kinetic rate constants of reaction j, the
temperature dependence exponent of reaction j, and the activation energy of reaction j, re-
spectively. The stoichiometric coefficients of species k on the reactant and product sides of the
elementary reaction j are represented by ν ′

kj and ν ′′
kj , respectively. The subroutines in the gas

phase kinetics package are used to compute ω̇k with all the parameters provided by a detailed
reaction mechanism.

The thermal conduction flux is given by Fourier’s law

Jq = −λ
dT

dx
, (8)

where λ is the mass averaged thermal conductivity of the fluid mixture, which depends on
temperature, pressure, and composition of the fluid mixture. The energy flux due to mass
diffusion is given by the fourth term in the energy conservation Eq. (4), while the energy flux
due to the Dufour effect has been neglected.

The mass diffusion flux is given by Fick’s law

Jm
k = −ρDk

Wk

W

dXk

dx
+ ρYkVc, Vc =

N∑
k=1

Dk
Wk

W

dXk

dx
, (9)

where Dk is the mass averaged diffusion coefficient of species k in the fluid mixture, which also
depends on temperature, pressure, and composition of the fluid mixture. The mass averaged
molecular weight of the fluid mixture is given by W = 1/

∑N
k=1(Yk/Wk), and the mole fraction

of species k is given by Xk = YkW/Wk. A correction diffusion velocity, Vc, is added to the mass
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diffusion flux such that
∑N

k=1 Jm
k = 0. Mass diffusion fluxes due to pressure gradients, tem-

perature gradients, and external forces have been neglected. The gas phase transport package
(Kee et al., 1986) is used to compute λ and Dk. Finally, the local flow velocity can be obtained
by v = M

ρ .
The inflow boundary conditions used for computing the steady combustion wave in the

configuration depicted in Fig. 13, is given

M = M1, p = p1, T = T1, Yk = Yk1, k = 1, . . . , N, (10)

where the subscript 1 denotes the constant inflow state. The outflow boundary conditions are
given by

dM

dx

∣∣∣∣
2

= 0,
dp

dx

∣∣∣∣
2

= 0,
dT

dx

∣∣∣∣
2

= 0,
dYk

dx

∣∣∣∣
2

= 0, k = 1, . . . , N. (11)

The values of the individual terms with their signs in the energy conservation Eq. (4) and the
species conservation Eq. (5) will be compared in Section 5. The terms representing convection,
pressure gradient, thermal conduction, thermal diffusion due to mass diffusion, and reaction in
the energy conservation equation have been labeled as tconv, tpress, tcond, tdiff, and treac,
respectively. Similarly, the terms due to convection, mass diffusion, and reaction in the species
conservation equation have been labeled as yconv, ydiff, and yreac, respectively. We have
used these labels in the subsequent plots showing the variation of these terms in space for our
steady-state flame solutions.

4 Numerical Method

In this section, we describe the computational algorithm used to solve Eqs. (2-6) for computing
the steady combustion waves. We have retained the approximate momentum equation in order
to properly describe high Mach number flows, this is the main difference between our equation
formulation and the more standard approach of Kee et al. (1985). In the standard approach
for solving the model equations of low Mach number steady flames, the momentum equation
is reduced to the isobaric flow condition, P = constant. Eqs. (2-3) are integrated along with
enforcing the following algebraic constraints

M = M1, (12)

p +
M2

ρ
= p1 +

M2
1

ρ1
, (13)

respectively. The subscript 1 represents the inflow state of the reactant mixture flowing into
the combustion wave as shown in Fig. 13.

Using spatial discretization and finite difference approximations for the spatial derivatives,
Eqs. (4-5) and the associated boundary conditions can also be reduced to algebraic equations.
Equations (2-6) coupled with the boundary conditions can be reduced to a set of algebraic
equations which can be solved with a damped Newton solver. This methodology is used in the
Kee et al. (1985) code. However, our practical experience is that convergence with the Newton
solver can be difficult without a very good initial guess.
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To avoid these convergence problems, we use a pseudo-time-stepping method to solve the
differential Eqs. (4-5). It usually results in convergence even for poor initial guesses. The
following partial differential equations are integrated till steady-state is achieved

ρ
∂T

∂τ
= fe(ρ, p, T,M, Y1, . . . , YN ), (14)

ρ
∂Yk

∂τ
= fyk(ρ, p, T,M, Y1, . . . , YN ), k = 1, . . . , N, (15)

where τ is the pseudo-time variable, and the functions fe and fyk represent the left hand sides
of Eqs. (4-5). Using spatial discretization and central difference approximation for the spatial
derivatives, Eqs. (14-15) are reduced to ordinary differential equations at each discrete spatial
location. These equations, together with the algebraic Eqs. (12-13) and Eq. (6), are solved
at each discrete spatial location in the interior of the computational domain. The algebraic
equations resulting from the finite difference approximation of the boundary conditions coupled
with the algebraic Eqs. (12-13) and Eq. (6) are solved at the boundaries. The coupled system
of differential-algebraic equations is marched forward in time until the solution reaches steady
state. Due to the existence of a wide range of time scales, the high-order implicit method of
Petzold (1982) is used to carry out the solution. The solution is not time-accurate since only
final steady-state solution is of interest.

The initial guess consists of reactants near the left inflow boundary and the hot equilib-
rium products near the right outflow boundary of the computational domain. The thermody-
namic state and composition of the equilibrium products are found using the numerical code
of Reynolds (1986). The regions between the reactants and products are initialized using a
linear interpolation of the states in the reactants and products. The location of the computed
flame front at steady-state varies with inflow velocity of the reactants. For this reason, the
initial guess for the location of this linear flame front should be appropriately chosen for fast
convergence.

An adaptive gridding procedure similar to that employed by Kee et al. (1985) is used to
resolve the rapid spatial variations in the solution. The model equations are first solved on a
coarse mesh. Additional grid points are then added in regions of high gradients and curvatures.
A new grid point is added between two grid points if the spatial gradient and curvature of
the solution between the two old grid points do not satisfy pre-assigned tolerances. The initial
guess for the new refined mesh is obtained by linear interpolation of the solution from the old
coarser mesh. The model equations are then re-solved on the refined mesh. The refinement
and subsequent re-solving of the model equations on the refined grids is repeated until the
pre-assigned tolerances for the solution gradient and curvature are achieved. Since this grid
refinement procedure results in non-uniform spacing of the grid points, a weighted central
difference approximation is used for the spatial derivatives.

If the inlet mass flow rate, M1, of the reactant mixture is known, then the model equations
can be solved as described above to obtain the flame structure. The computational algorithm
can also be modified to obtain the intrinsic adiabatic flame speed for the reactant mixture at
a certain temperature, pressure, and composition. In this case, M0 is treated as an unknown,
and a temperature at a certain location within the flame structure is fixed as was done by Kee
et al. (1985). This can be accomplished by replacing the discretized form of Eq. (14) for a
certain grid point i by the following equation

T i − Tfix = 0, (16)
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where T i is the temperature at the grid point i, and Tfix is a constant temperature value. A
suitable choice for Tfix = T1+100 is 100 K more than the reactant mixture temperature. There
are certain restrictions for the spatial location xi or the grid point i where the temperature can
be fixed, and those will be discussed later in Section 5. This procedure allows for computation
of M1 as the unknown eigenvalue, which gives the adiabatic flame speed as va = v1 = M1/ρ1.
In our study, both modes of computation of the flame structure are used.

4.1 Validation

We have used the GRI Mech 1.2 mechanism (Frenklach et al., 1995) and the standard databases
for thermochemistry (Kee et al., 1987) and transport coefficients (Kee et al., 1986) in the present
study. Extensive validation was done on laminar flame speed and shock tube induction time as
part of the GRI Mech development process and the results are available on the GRI Mech web
site (Frenklach et al., 1995). We have not repeated these standard validations here but have
examined the issue of laminar flame speed dependence on initial temperature.

There have been a number of experimental studies on the dependence of flame speed on
initial temperature and pressure. Early work is discussed in Gaydon and Wolfhard (1979, pp.
81-86) and data for methane-air mixtures by Dugger and Heimel are given. More recently,
Mishra (2003) has numerically simulated methane-air flames up to an initial temperature of
600 K and compared his results with some data. Experimentally, Elia et al. (2001) have
carried out extensive combustion bomb studies and developed a correlation for the dependence
of burning velocity on pressure (0.75 to 70 atm) and temperature (298 to 550 K). Elia et al.
(2001) have compared their results with earlier experimental studies and have shown that there
are substantial differences between the results of various investigators at higher temperatures,
particularly at elevated pressure.

We have compared our results with those of previous researchers in Fig. 14 for stoichiometric
methane-air mixtures at 1 atm initial pressure and initial temperatures between 300 and 600
K. Our results agree very well with the correlation of Elia et al. (2001) and are higher than
Mishra’s computations and the data of Hill and Hung (1988), Stone et al. (1998), and Garforth
and Rallis (1978). On the other hand, our results are lower than data of Andrews and Bradley
(1972) and the results of Dugger and Heimel as cited by Gaydon and Wolfhard (1979, Fig. 4.9).

No data are available for temperatures above 550 K to validate our predictions for high
temperatures behind shock waves but we can extrapolate the correlation of Elia et al. (2001) to
get a notion of the comparison (see Fig. 15). It is apparent that much larger values of burning
velocity are predicted by our computations than by the extrapolation of the correlation based
on lower-temperature data. Without experimental data, it is not possible to judge the validity
of the present simulations since they are just as reasonable an extrapolation of the data as is
the correlation of Elia et al. (2001).
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Figure 14: Dependence of laminar burning speed on initial temperature for stoichiometric
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5 Analysis and Results

The composition of the stoichiometric methane-air mixture that was used in this study is: XCH4

= 0.095, XO2 = 0.19, XN2 = 0.715. The reaction mechanism GRI Mech 1.2 (Frenklach et al.,
1995) was used; this involves 32 chemical species and 177 elementary reactions. We have carried
out two types of simulations. First, in order to study the transition of a diffusion-controlled
combustion wave or flame to convective explosion, we computed the flame structure for a fixed
initial state varying the inlet mass flow rate. The reactant mixture is taken to be at the post-
shock state of a Mach 5 shock with a pre-shock state of temperature 300 K and pressure 1 atm.
Second, in order to study the existence of laminar flames behind shock waves we have computed
the adiabatic flame speed for an initial state that corresponds to the post-shock conditions in
non-reactive shock waves with shock Mach numbers between 1 and 6. Finally, in order to
examine the dependence of the balance of transport processes within the flame, a separate set
of computations of adiabatic flame speed was carried out for initial pressures between 1 and
100 atm for an initial temperature of 300 K.

5.1 Transition of Diffusion-Controlled Flame to Convective Explosion

Clarke (1983) was the first to describe the change in the dominant balance structure of combus-
tion waves as the speed was increased from “low” to “high”. His study was based on defining a
local Damköhler number and indentifying several distinguished limits depending on the Mach
number of the combustion wave. In our present numerical simulations, we clearly observe the
essential results of his analysis which is that, at combustion wave Mach numbers that are large
compared to the laminar burning value but small compared to one, the role of diffusion is
neglible and flame becomes a convected explosion process.

Figures 16-19 depict the transition from the diffusion-controlled flame to the convective
explosion as the combustion wave speed or the inflow velocity of the reactants is increased.
Figure 16 depicts the variation in space of the magnitudes of the individual terms in Eq. (4)
at an inflow velocity of v1 = 2 m/s. In this case, there is a very small pre-heat zone where
convection and diffusion balance each other and chemical reaction is negligible. This is followed
by a region of thermal explosion where chemical reaction is predominantly balanced by diffusion,
but the effects of convection are not negligible. The thermal explosion region consists of a small
fast reaction region, where intermediate species are produced, followed by a longer slow reaction
region where the recombination reactions occur to form hot products. Note that except for the
pre-heat zone, there is always an interplay of the reaction, convection, and diffusion effects
until equilibrium is reached, and we don’t have a pure reaction-diffusion region where reaction
is balanced only by diffusion. Figure 20 depicts the corresponding plot for the variation in
space of the magnitude of the individual terms in the species balance equation. At such low
speeds, which are below the adiabatic flame speed, there are mass and energy losses and the
temperature and mass gradients are not small at the inflow computational boundary.

For comparison, Figs. 17 and 21 depict the energy balance terms and species balance terms,
respectively, for an adiabatic flame for the same reactant mixture at the same post-shock state.
The adiabatic flame speed is v1 = 5.81 m/s. It can be deduced from Figs. 17 and 21 that
energy and mass loss at the inflow computational boundary is negligible for this wave speed.
This is because all solution gradients become negligible at the inflow boundary and therefore,
convection and diffusion also become negligible there. In other respects, the plots are very
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similar to the previous case of v1 = 2 m/s. There is a pre-heat zone which has a convection-
diffusion balance followed by a region of thermal explosion which has a balance in reaction,
convection, and diffusion.

Figures 18 and 22 depict that as the combustion wave speed or the inflow velocity of the
reactant mixture is increased to v1 = 20 m/s, the effects of diffusion start to diminish. In fact,
the pre-heat zone of convection-diffusion balance vanishes. The predominant balance is between
convection and reaction. Finally, in Figs. 19 and 23, it can be seen that at a combustion wave
speed of v1 = 100 m/s, the balance is between reaction and convection only and the diffusion
effects become negligible. This is the “fast flame” or “convected explosion” solution.

Note that in this transition from low to high-speed waves, the pressure term and the term
representing energy diffusion due to mass diffusion in the energy balance equation remain
negligible throughout. However, for wave speeds of the order of 100 m/s, the pressure is not
constant, as can be seen in Fig. 2, and the approximate form of the momentum equation must
be employed in order to get a self-consistent solution.
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Figure 16: Magnitude of the terms (g-K/cm3-s) in the energy balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 2 m/s.
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Figure 17: Magnitude of the terms (g-K/cm3-s) in the energy balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 5.81 m/s.
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Figure 18: Magnitude of the terms (g-K/cm3-s) in the energy balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 20 m/s.
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Figure 19: Magnitude of the terms (g-K/cm3-s) in the energy balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 100 m/s.
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Figure 20: Magnitude of the terms (g/cm3-s) in the species balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 2 m/s.
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Figure 21: Magnitude of the terms (g/cm3-s) in the species balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 5.81 m/s.
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Figure 22: Magnitude of the terms (g/cm3-s) in the species balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 20 m/s.
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Figure 23: Magnitude of the terms (g/cm3-s) in the species balance equation for a steady-state
stoichiometric methane-air flame. The reactant mixture is at a post-shock state corresponding
to a Mach 5 shock, and the inflow velocity of the reactant mixture is 100 m/s.
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5.2 Existence of Adiabatic Flame Speed

The results of computing the adiabatic flame speed as a function of shock Mach number are
shown in Figs. 9-10 and Table 1. The key to obtaining these results for high post-shock tem-
peratures is to carefully consider the relationship between the inflow conditions and the length
where the temperature reaches a specified value. Figure 24 shows the inflow velocity v1 of the
reactant mixture into the steady combustion wave plotted against the length xT1+100 for the
case of Mach 4, 5, and 6 shocks. The length xT1+100 is defined as the distance from the inflow
computational boundary, in Fig. 13, to the point where the temperature in the combustion wave
is 100 K higher than the reactant temperature. On the same plot we have shown with dashed
lines the adiabatic constant-pressure explosion distance xi = v1ti, where ti is the calculated
adiabatic explosion induction time, shown in Fig. 11. The length xi corresponds to the location
of the diffusionless combustion wave following a shock of a specified strength. By definition,
the induction length increases linearly as the inflow reactant velocity is increased for a fixed
shock Mach number. The slope of these lines is the inverse of the induction time tT1+100, which
is defined as the time when the temperature reaches 100 K above the reactant temperature for
an adiabatic constant-pressure explosion of the reactants

From Fig. 11 we know that tT1+100 for the shocked reactants decreases as the shock Mach
number is increased. Since Fig. 24 is plotted on a log-log scale, the increase in slope of the lines
with shock Mach number is not obvious. For a combustion wave where diffusion plays a role,
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Figure 24: Inflow velocity v1 of the reactant mixture vs. length xT1+100 for steady-state com-
bustion wave (solid lines) and adiabatic constant-pressure explosion (dashed lines) for stoichio-
metric methane-air. The plots are for reactant mixture at post-shock states of Mach 4, 5, and
6 shocks.

initially the inflow reactant velocity increases rapidly as the length xT1+100 is increased. Then
the value of v1 levels off at a certain value va of the inflow reactant velocity and is independent
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of variations in the length xT1+100 for Mach 4 and 5 cases. This plateau value of v1 is equal the
intrinsic adiabatic flame speed va for the reactant mixture at that temperature and pressure. In
Fig. 24, point A lying on the combustion wave plot for the Mach 5 case corresponds to Figs. 16
and 20, where there is a loss of mass and energy at the inflow computational boundary. There
are energy and mass losses at the inflow computational boundary for all inflow velocities below
the asymptotic value va. In Fig. 24, point B lying on the constant wave speed va section of the
plot for the Mach 5 case corresponds to Figs. 17 and 21, where there is negligible loss of mass
and energy at the left computational boundary. Therefore, point B corresponds to an adiabatic
flame.

As the inflow reactant velocity is increased beyond the adiabatic burning velocity va, the
length xT1+100 asymptotes to the adiabatic explosion distance. In Fig. 24, point C on the plot
for the Mach 5 case corresponds to Figs. 18 and 22 and point D corresponds to Figs. 19 and
23. As the length xT1+100 asymptotes to the adiabatic explosion distance, diffusion becomes
negligible and the transport balance is only between convection and reaction. The plot for the
Mach 4 case is similar to the Mach 5 case. However, for the Mach 6 case, there is not a distinct
plateau region and therefore, there is no well-defined adiabatic flame speed. This is because the
adiabatic explosion induction distance is so short that it always falls within the flame structure.

Note that when computing the results for Fig. 24, the computations for v1 > va and v1 < va

are done using the first mode of the numerical algorithm where the inflow reactant velocity or
mass flow rate is fixed. For v1 ∼ va, we use the second mode of the numerical algorithm where
xfix = xT1+100 and Tfix = T1 + 100, and the burning velocity is computed as an eigenvalue.
The second mode is the most common way of computing the adiabatic flame velocity. However,
care should be taken such that xfix lies in the following interval

3δ < xfix < va · tT1+100 − ε, (17)

where δ is the adiabatic flame thickness and ε is an empirically-determined distance which is
roughly one-half of the explosion distance. The upper bound for xfix is obvious from Fig. 24
and the lower bound is roughly three times the flame thickness. The size of the interval in
Eq. (17) strongly decreases as the reactant temperature or the shock Mach number increases.
If xfix is below the lower bound, there will be mass and energy loss at the inflow boundary. If
xfix is above the upper bound, the reactant mixture will explode before it reaches xfix and our
second mode of computation will predict an erroneously high flame speed.

5.3 Effect of Initial Pressure

In order to investigate whether there exists a condition for which a pure reaction-diffusion
balance exists in the latter part of the flame, pre-mixed adiabatic flames were computed for
a stoichiometric methane-air mixture at a temperature of 300 K but with increasing pressure.
It can be seen by comparing Figs. 25 and 26 that the convection effects are reduced in the
downstream region of the flame as the pressure of the reactant mixture is increased. However,
even at a pressure of 100 atm, the convection contribution remains finite. This is even more
apparent in comparing Fig. 27 and 28 for the terms in the species transport equations. This
effect persists even when we do the computations for higher pressures. The computed flame
speeds decrease with increasing initial pressure as shown in Fig. 29 and Table 2. The variation
of flame speed with initial pressure is consistent with the data (Gaydon and Wolfhard, 1979) and
the results of previous studies (Frenklach et al., 1995) using this chemical reaction mechanism.
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Figure 25: Magnitude of the terms (g-K/cm3-s) in the energy balance equation for an adiabatic
stoichiometric methane-air flame. The reactant mixture temperature and pressure are 300 K
and 1 atm, respectively.

We conclude that the separation of the flame into distinct convection-diffusion and reaction-
diffusion zones is a useful pedagogical tool but does not occur in practice for the conditions we
have examined.
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Figure 26: Magnitude of the terms (g-K/cm3-s) in the energy balance equation for an adiabatic
stoichiometric methane-air flame. The reactant mixture temperature and pressure are 300 K
and 100 atm, respectively.
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Figure 27: Magnitude of the terms (g/cm3-s) in the species balance equation for an adiabatic
stoichiometric methane-air flame. The reactant mixture temperature and pressure are 300 K
and 1 atm, respectively.
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Figure 28: Magnitude of the terms (g/cm3-s) in the species balance equation for an adiabatic
stoichiometric methane-air flame. The reactant mixture temperature and pressure are 300 K
and 100 atm, respectively.
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Figure 29: Adiabatic flame speed vs. reactant pressure for a reactant mixture of stoichiometric
methane-air at a temperature of 300 K.
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6 Conclusions

There are two key conclusions from our work. First, the role of diffusion appears to be neg-
ligible for one-dimensional combustion waves with speeds over 20 m/s for an initial condition
corresponding to the state behind a Mach 5 shock. This observation is, as expected, in com-
plete agreement with the analysis of Clarke (1989) and quantifies this effect. A combustion
wave speed of 20 m/s corresponds to a Mach number of 0.003 at this state (T1 = 1491 K, c1

= 752 m/s). This indicates that, for all practical purposes, one-dimensional analyses of spon-
taneous flames (Zel’dovich, 1980) created by induction time gradients (Gu et al., 2003) can be
analyzed by neglecting diffusive processes in laboratory situations where the wave speeds are
usually greater than 100-200 m/s. In particular, the role of diffusive transport in the classical
one-dimensional (steady) detonation solution can be definitely ruled out. Second, the notion of
adiabatic flame speed is well-defined only as long as there can be a clear separation in scales
between the induction length and flame pre-heat length. For our examples, this is possible as
long as the leading shock Mach number is less than or equal to 5. Beyond this, the pre-heat and
induction zones merge and it is not possible to have a unique burning speed. The maximum
value of the burning speed behind a Mach 5 shock is predicted to be 5.8 m/s, about 50 times
slower than the fluid velocity relative to the shock wave, 300 m/s. It appears that adiabatic
flames are marginally possible behind strong shock waves with propagation speeds (M = 5.11)
comparable to detonations in stoichiometric methane-air mixtures. Clearly, this will have to be
investigated for a range of compositions before it can be generalized.

Accepting that there is a regime where adiabatic flames may exist behind strong shock
waves, we can make some speculations about the relevance of this to detonation propagation
mechanisms. In a multi-dimensional situation such as observed behind highly unstable detona-
tion waves, the combustion front can be substantially distorted (Pintgen et al., 2003, Austin,
2003) by the spatial non-uniformity and temporal oscillations in the leading shock strength, see
Fig. 30. Although our study shows that diffusion is negligible for steady one-dimensional deto-
nations or one-dimensional high speed combustion waves following shocks, diffusively-controlled
combustion may still play a role in these highly unstable detonation fronts. This is because
the actual situation is multidimensional and unsteady, opening up the possibility that the com-
bustion process may be highly anisotropic with diffusion transverse to the main propagation
direction playing a role in these unstable fronts. It is also known Austin (2003) that the un-
steadiness of the shock fronts in these unstable waves can substantially alter the explosion times,
creating an essentially unsteady situation in which temporally developing diffusion layers may
play a role.

Building on the simple turbulent flame notions of Damköhler (Peters, 2000, see pp. 119-121),
this suggests that the effective combustion front area (Lińań and Williams, 1993, see p. 127-131)
will then have to be of the order of 50, which is the ratio of the bulk gas velocity to the laminar
burning speed, if diffusive processes are to be effective in contributing to the combustion rate.
In low-speed turbulent pre-mixed flames, the ratio of turbulent to laminar burning velocity can
be up to a factor of 15 (Peters, 2000, see Fig. 2.22) at high turbulence intensities. Additional
surface area can be produced by large-scale motions, i.e., the organized structures observed in
shear layers or, in the case of detonations, the motion induced by the quasi-periodic cellular
instability. Therefore, the role of diffusive processes behind multi-dimensional (unsteady) det-
onations cannot be conclusively ruled out on the basis of the present study. Clearly, this idea
is at an early stage and much work needs to be done in both analyzing the experimental data
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and shoring up the theoretical arguments.
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(a) (b)

(c) (d)

Figure 30: PLIF images and derived OH fronts. Previously unpublished images obtained as
part of the study by Pintgen et al (2003). Case a: 0.588 N2, 0.235 H2, 0.118 N2O, 0.059 O2, P
= 11.3 kPa, 51 mm image height. Case b: 0.50 N2, 0.25 H2, 0.25 N2O, P = 30.4 kPa, 30 mm
image height. Case c: 0.588 N2, 0.235 H2, 0.118 N2O, 0.059 O2, P = 30.4 kPa, 30 mm image
height. Case d: 0.50 N2, 0.25 H2, 0.25 N2O, P = 30.4 kPa, 30 mm image height.
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A Tabular Data

M Ushock T1 P1 va δ
(m/s) (K) (atm) (m/s) (µm)

1.0 354 300 1.00 0.411 425
1.5 531 393 2.47 0.481 194
2.0 708 496 4.53 0.591 111
2.5 885 619 7.21 0.787 68.8
3.0 1062 760 10.5 1.120 44.4
3.5 1239 918 14.4 1.630 29.5
4.0 1416 1092 19.0 2.500 20.1
5.0 1770 1489 30.0 5.810 9.90
6.0 2124 1949 43.5 5.40

Table 1: Post-shock conditions T1, P1, adiabatic flame speeds va, and flame thickness δ as
a function of shock Mach number M or shock velocity Ushock for stoichiometric methane-air
mixtures.

P va

(atm) (m/s)
1 0.411

1.75 0.343
4 0.249
7 0.191
10 0.160
15 0.128
20 0.108
30 0.0859
40 0.0739
50 0.0661
60 0.0610
70 0.0572
80 0.0545
90 0.0523
100 0.0505

Table 2: Adiabatic flame speed va as a function of initial pressure P for stoichiometric methane-
air mixtures at an initial temperature of 300 K.
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Mach number induction time (s)
3.25 7.84 × 10−1

3.50 1.45 × 10−1

3.75 3.53 × 10−2

4.00 9.89 × 10−3

4.25 2.93 × 10−3

4.50 8.99 × 10−4

4.75 2.84 × 10−4

5.00 9.28 × 10−5

5.25 3.15 × 10−5

5.50 1.13 × 10−5

5.75 4.35 × 10−6

6.00 1.82 × 10−6

6.25 8.27 × 10−7

6.50 4.07 × 10−7

6.75 2.16 × 10−7

7.00 1.22 × 10−7

Table 3: Adiabatic homogeneous explosion time (constant pressure model) behind shock waves
as a function of shock Mach number for stoichiometric methane-air mixtures at an initial tem-
perature of 300 K. The induction times correspond to the temperature increase of 100 K over
the initial value.
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B Scaling Analysis of Species Equation

The steady state species transport equation (5) can be written in simplified form for a single
mass fraction Y as

v
dY

dx︸ ︷︷ ︸
Conv

−D
d2Y

dx2︸ ︷︷ ︸
Diff

− ω̇W

ρ︸ ︷︷ ︸
Reac

= 0 (18)

where we have labeled the terms according to their roles. The goal of our analysis is to use
simple physically-based estimates of the magnitude of each term in order to determine the
relative size of each contribution to the transport equation. In doing so, we follow ideas of
Clarke (1989) in choosing the reference quantities that enter into the scaling.

The basic scaling quantities are the reference velocity U , which we chose to be the com-
bustion wave velocity, the length scale δ that characterizes the width of the spatial gradient
region, and the chemical reaction time scale tchem. The mass fraction Y is dimensionless and
considered to be of order one in size. In terms of these reference quantities, we can estimate
the size of each term as

v
dY

dx
∼ U/δ ,

D
d2Y

dx2
∼ D/δ2 ,

ω̇W

ρ
∼ 1

tchem
,

and note that each of these has the dimensions of a reciprocal time. The principle of dominant
balance means that for there to be a nontrivial solution, at least two of the three terms must be
of comparable size at each point within the reaction zone. The chemical reaction time scale is
the reciprocal of the normalized reaction rate and is, therefore, a strong function of temperature.
This means that the dominant balance may vary with position within the combustion wave as
the temperature changes during the course of the reaction. Another interpretation is that the
time scales for two of the three processes must be comparable in this equation. A concise
measure of the relative time scale of flow processes (convection and diffusion) as compared to
chemical processes (reaction) is the Damköhler number

Da =
tflow

tchem
. (19)

The Damköhler number is necessarily a strong function of position within a flame since the
temperature varies with position and the reaction time will also.

Low-Speed (Diffusion-Controlled) Combustion Waves

Low-speed diffusion-controlled flames are distinguished by having a sufficiently low temperature
upstream that there is a “pre-heat” zone in which the reaction is negligible. This is followed
by a thin (usually about 1/10 the width of the pre-heat zone) main reaction zone in which
reactants are converted to products and chemical energy is converted to thermal. Within the
pre-heat zone, convection is balanced by diffusion, with products and reactive intermediates
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diffusing upstream from the main reaction region and causing ignition of the cold reactants. By
estimating the thickness of the pre-heat zone and balancing energy and species fluxes upstream
with the generation rate within the main reaction layer, we can develop estimates for the flame
thickness and speed. We present a very simplified version of this below; the details can be found
in any combustion text, for example, Lińań and Williams (1993, pp. 22-32).

Convection-Diffusion Balance

Consider a situation in which the upstream temperature is low enough that the reaction rate
is negligible and only the convection and diffusion terms can contribute to the transport. This
corresponds to the limit of Da → 0, very slow reaction. The approximate species equation will
be

v
dY

dx
− D

d2Y

dx2
≈ 0 (20)

which, if the reaction zone is located at x =0, will have the solution

Y (x) = Y (0) exp(xU/D) x < 0 (21)

for a species which has zero concentration far upstream in the reactant region and a constant
flow velocity v = U . This solution shows that the characteristic thickness of the convection-
diffusion zone is δ = D/U which agrees with a dominant balance between convection and
diffusion, for which we have

U/δ ∼ D/δ2 . (22)

Diffusion-Reaction Balance

At the downstream end of the diffusion zone, the temperature is high, and if the reaction zone
region is thin, then the reaction term must be balanced by diffusion alone. This implies that
the chemical reaction rate is such that the Damköhler number is of order one. Equating our
estimates of the size of these terms and using the previous result for the thickness of the diffusion
zone, we have

U2

D
∼ 1

tchem
(23)

which leads to the standard estimate for adiabatic flame speed of

U ∼
√

D

tchem
. (24)

A similar analysis can be made of the energy equation (Lińań and Williams, 1993), with the
thermal diffusivity κ replacing the species diffusivity. The ratio of the diffusivities, Le = κ/D,
is the Lewis number and determines the relative width of the thermal and species profiles.
A quantitative analysis of the propagation velocity must proceed more carefully, including the
Lewis number and also the reduced activation energy as parameters (Lińań and Williams, 1993).
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High-Speed (Diffusionless) Combustion Waves

High-speed combustion waves are characterized by having a sufficiently high reactant temper-
ature that diffusion is not needed in order to get ignition of the reactants. Unlike low-speed
diffusion-controlled waves, the combustion wave speed is not an eigenvalue of the adiabatic re-
action equations but is determined by the initial conditions. These initial conditions are usually
in the form of a specified temperature and reactant profile. A physical mechanism for producing
temperature gradients is often taken to be an unsteady shock wave generated externally to the
problem.

The key to the scaling analysis of high-speed combustion is to choose a length scale that
is based on the local induction time, i.e., the adiabatic explosion time associated with the
reactant temperature, pressure, and composition. We will proceed by assuming that, in high-
speed combustion the dominant balance is between convection and reaction, justifying this
choice a posteriori. We will then show how to estimate the size of the diffusion term and how
the relative contributions of diffusion and reaction depend on the combustion wave speed. To
do this precisely requires a more subtle treatment (Clarke, 1989) and the treatment here is
heuristic.

Convection-Reaction Balance

In high-speed combustion, the length scale is the induction length δ = Uti, where ti is the
adiabatic explosion time. The adiabatic explosion time is the characteristic chemical reaction
time for this case, as can be seen by equating the estimates for the convection and reaction
terms.

U

δ
∼ 1

tchem
or δ ∼ Utchem (25)

With this choice of the length scale, convection and reaction will automatically be in balance.

Magnitude of Diffusion Contribution in High-Speed Waves

Using the length scale based on the induction time, the ratio of the diffusion term to the reaction
term can be computed to be

Diff
Reac

∼ D

U2tchem
. (26)

This can be further simplified by using the Clarke (1989) estimate for reaction rate. Clarke sug-
gests modeling the reaction time as being proportional to the collision time with a multiplicative
factor R(T, ρ, Y ) accounting for the temperature, density, and composition dependence of the
reaction rate. Approximating the collision time using the diffusivity and sound speed (Vincenti
and Kruger, 1965, p. 19), we get

1
tchem

=
c2

D
R(T, ρ, Y ) (27)

where c is the frozen sound speed. Using this representation, we find that

Diff
Reac

∼ C2

U2
R(T, ρ, Y ) =

1
Ma2

R(T, ρ, Y ) (28)



Paper 03F-29 Fall 2003 Western States Section/Combustion Institute 38

where Ma = U/c is the Mach number of the combustion wave. We conclude that, all other
factors being the same, the diffusion term will scale as 1/Ma2 times the reaction term in high-
speed combustion waves. This is verified by examining the results for the shock Mach 5 case
shown in Figs. 17-19; the ratio of diffusion-to-reaction terms decreases from 0.6 at the adiabatic
combustion wave speed of 5.8 m/s to 0.10 at 20 m/s, and to less than .005 at 100 m/s, see
Fig. 31. For the CJ detonation case, the relative contribution of diffusion to the energy equation
is less than 0.0005.

We conclude that the scaling results of Clarke are verified in our numerical simulations
and that the role of diffusion in high-speed (combustion wave speeds greater than 20 m/s)
one-dimensional flames and detonations is negligible.
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Figure 31: Ratio of diffusive transport terms to reaction term in energy equation for combustion
waves with speeds between 2 and 100 m/s, initial conditions correspond to post-shock values
for M = 5 shock.


