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Abstract

The present work investigates the applications of steady and unsteady detonation

waves to air-breathing propulsion systems. The efficiency of ideal detonation-based

propulsion systems is first investigated based on thermodynamics. We reformulate

the Hugoniot analysis of steady combustion waves for a fixed initial stagnation state

to conclude that steady detonation waves are less desirable than deflagrations for

propulsion. However, a thermostatic approach shows that unsteady detonations have

the potential for generating more work than constant-pressure combustion. The sub-

sequent work focuses on specific engine concepts. A flow path analysis of ideal steady

detonation engines is conducted and shows that their performance is limited and

poorer than that of the ideal ramjet or turbojet engines. The limitations associated

with the use of a steady detonation in the combustor are drastic and such engines do

not appear to be practical. This leads us to focus on unsteady detonation engines,

i.e., pulse detonation engines. The unsteady generation of thrust in the simple con-

figuration of a detonation tube is first analyzed using gas dynamics. We develop one

of the first models to quickly and reliably estimate the impulse of a pulse detonation

tube. The impulse is found to scale directly with the mass of explosive in the tube

and the square root of the energy release per unit mass of the mixture. Impulse

values for typical fuel-oxidizer mixtures are found to be on the order of 160 s for

hydrocarbon-oxygen mixtures and 120 s for fuel-air mixtures at standard conditions.

These results are then used as a basis to develop the first complete system-level per-

formance analysis of a supersonic, single-tube, air-breathing pulse detonation engine.

We show that hydrogen- and JP10-fueled pulse detonation engines generate thrust

up to a Mach number of 4, and that the specific impulse decreases quasi-linearly with
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increasing flight Mach number. Finally, we find that the performance of our pulse

detonation engine exceeds that of the ramjet below a Mach number of 1.35.
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Subscripts: general notations (unless specified otherwise in text)

0 freestream

3 stagnant region behind Taylor wave during detonation process

C acoustic cavity (or plenum)

CJ Chapman-Jouguet

dt detonation tube

eq equilibrium

f state of detonation products at the end of blowdown process

fr frozen

i state of reactants before detonation initiation at the end of filling process

is isentropic

r plane upstream of fuel injectors in ramjet

V valve plane

∗ choked flow at throat

o model value during open part of cycle
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Chapter 1

Introduction

1.1 Detonations

A detonation is a supersonic combustion wave which can be described as a shock

wave coupled with a reaction zone. The shock wave compresses and heats the gases,

which react rapidly after an induction period. The energy released by the chemical

reaction triggers a volumetric expansion of the burned gases and drives the shock

wave. Self-sustaining detonation waves are characterized by a strong coupling of the

shock wave and the reaction zone. First, the hydrodynamic discontinuity model of

detonation waves is presented, then the idealized one-dimensional structure of the

wave front is considered before the actual multi-dimensional cellular structure of the

front and its associated instability are discussed. Finally, the flow field associated

with a detonation propagating in a tube is presented.

1.1.1 Chapman-Jouguet theory

The earliest and most elementary theory on detonations is due to Chapman (1899) and

Jouguet (1905). The theory assumes that the detonation wave is steady, planar, and

one-dimensional, and models it as a hydrodynamic discontinuity, across which energy

release occurs. The detonation wave is analyzed using a control volume surrounding

the shock wave followed by the reaction zone, as shown in Fig. 1.1.

The mass, momentum, and energy conservation equations are applied to the con-
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Figure 1.1: Control volume used in the Chapman-Jouguet theory.

trol volume.

ρ1u
′
1 = ρ2u

′
2 (1.1)

P1 + ρ1u
′
1
2

= P2 + ρ2u
′
2
2

(1.2)

h1 + u′1
2
/2 = h2 + u′2

2
/2 (1.3)

States 1 and 2 correspond respectively to the reactants upstream of the wave and the

products downstream of the wave. From these equations, the Hugoniot relationship

can be obtained

h2 − h1 =
1

2
(P2 − P1)(1/ρ1 + 1/ρ2) . (1.4)

The Hugoniot determines the locus of the possible solutions for state 2 from a given

state 1 and a given energy release. In particular, it is instructive to plot the Hugoniot

on a pressure-specific volume diagram. Figure 1.2 displays a schematic of the Hugo-

niot curve with energy release, as well as the shock Hugoniot (no energy release). The

Rayleigh line, which relates the initial to the final state, is given by

P2 − P1 = −(ρ1u
′
1)

2(1/ρ2 − 1/ρ1) . (1.5)

From this equation, it is obvious that region III of Fig. 1.2 does not represent real

solutions and can be eliminated. The solutions located in regions I and II correspond

to supersonic waves (detonations), whereas the solutions located in regions IV and V

correspond to subsonic waves (deflagrations).
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Figure 1.2: Hugoniot curve with energy release and shock Hugoniot.

The solution to Eqs. 1.1–1.3 is uniquely determined only with some additional

consideration. For deflagrations, the structure of the combustion wave and turbulent

and diffusive transport processes determine the actual propagation speed. For deto-

nations, gas dynamic considerations are apparently sufficient to determine the prop-

agation speed, independent of the actual structure of the wave. These considerations

were independently made by Jouguet (1905) and Chapman (1899), who proposed

that detonations travel at one particular velocity, which is the minimum velocity for

all the solutions on the detonation branch. Chapman (1899) postulated that at the

solution point, the Hugoniot and the Rayleigh line were tangent. He also established

that these curves were tangent to the isentrope. From these considerations, it is pos-

sible to show that the flow behind the wave is sonic relative to the wave, i.e., M2 = 1.

The point where the Hugoniot, Rayleigh line, and isentrope are all tangent is called

the Chapman-Jouguet (CJ) point. There exist two CJ points on the Hugoniot, the

upper CJ point (CJU) and the lower CJ point (CJL), located respectively on the det-

onation and deflagration branches of the Hugoniot. These points divide the Hugoniot
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into four regions (region III has already been eliminated for real solutions). Region

IV corresponds to weak deflagrations (subsonic flow to subsonic) and encompasses

the laminar flame solutions. Region V corresponds to strong deflagrations (subsonic

flow to supersonic). However, in a constant-area duct, it is not possible to have heat

addition and to proceed past the sonic condition (Anderson, 1990, pp. 77–85). Thus,

region V is not a physically possible region of steady solutions and is ruled out. Re-

gion I corresponds to strong detonations (supersonic flow to subsonic) but these are

observed only in the transient state or if there is an “effective” piston created by the

flow following the wave. They are unstable because rarefaction waves propagating

behind the detonation wave (expansion waves following detonations are due, for ex-

ample, to friction, heat loss, turbulence...) will catch up with the detonation front and

move the solution point towards CJU. Finally, region II, which corresponds to weak

detonations (supersonic flow to supersonic), can be ruled out except in extraordinary

situations by considering the reaction zone structure.

The physically acceptable solutions for steady waves are on branches I and IV

only (Courant and Friedrichs, 1967, Chap. III.E). Region III is impossible due to the

conservation laws. Regions II and V appear to be exotic possibilities (“eigenvalue”

solutions) that occur only in exceptional situations with very special restrictions on

the reaction mechanism, rates, and thermochemistry. For subsonic waves (region IV),

there is no unique solution from a gas dynamic view point and other processes, such

as turbulence and molecular diffusion, have to be considered. For supersonic waves

(region I), there is one special solution, CJU, that is singled out from a thermodynamic

point of view. It is also possible to have steady overdriven detonation waves (with a

velocity higher than UCJ) if there is some type of piston following the wave.

1.1.1.1 Properties of the upper CJ point

The parameters at the CJ point can be determined by equilibrium computations based

on realistic thermochemistry and a mixture of the relevant gas species in reactants and

products using an equilibrium code such as STANJAN (Reynolds, 1986). The main

result of the CJ theory is the calculation of the velocity of the propagating detonation
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wave UCJ . Experimentally measured detonation velocities are typically found to be

within 2% of the calculated CJ velocity (Lewis and von Elbe, 1961, pp. 524–528), as

long as the characteristic dimension of the facility is large compared to the length

scale of the cellular instability of the mixture. Table 1.1 lists the CJ velocity and

pressure for a range of mixtures.

Mixture UCJ(m/s) PCJ (bar)
2H2+O2 2840.4 18.72

2H2+O2+3.76N2 1970.7 15.51
C2H4+3O2 2375.8 33.27

C2H4+3O2+11.28N2 1824.6 18.25
C3H8+5O2 2359.6 36.04

C3H8+5O2+18.8N2 1800.6 18.15
JP10+14O2 2293.6 38.89

JP10+14O2+52.64N2 1783.5 18.4

Table 1.1: CJ detonation velocity and pressure for a range of mixtures at 1 bar and
300 K initial conditions.

The CJ points have another interesting property related to entropy. The rate of

change of entropy along the Hugoniot is given by

T2

[
ds2

d(1/ρ2)

]
H

=
1

2

(
1

ρ1

− 1

ρ2

)(
− P1 − P2

1/ρ1 − 1/ρ2

+

[
dP2

d(1/ρ2)

]
H

)
, (1.6)

where H is used to emphasize differentiation along the Hugoniot curve (Courant and

Friedrichs, 1967, p. 213). At the CJ point, the Hugoniot, Rayleigh line, and isentrope

are all tangent, and, therefore, ds2/d(1/ρ2)=0. Hence, the CJ points correspond to

extrema of the entropy along the Hugoniot. Differentiating the previous equation at

the CJ points, one obtains

[
d2s2

d(1/ρ2)2

]
H

=
1/ρ1 − 1/ρ2

2T2

[
d2P2

d(1/ρ2)2

]
H

. (1.7)

Because the Hugoniot is convex everywhere, i.e., [d2P2/d(1/ρ2)
2]H > 0, [d2s2/d(1/ρ2)

2]H >

0 at the upper CJ point and the entropy goes through a minimum (Courant and

Friedrichs, 1967, pp. 212–214). Similarly, the lower CJ point corresponds to maxi-

mum entropy. Hence, the upper CJ point is the point of minimum entropy for the
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combustion products along the Hugoniot.

1.1.1.2 Detonation in a perfect gas

For a CJ detonation in a perfect gas, analytic solutions for the CJU point may be ob-

tained assuming different values of the specific heat ratio and the perfect gas constant

in the reactants and products. The heat of combustion qc is introduced by writing

h1 = h0
1 + CpT1 and h2 = h0

2 + CpT2, with qc = h0
1 − h0

2. Using the CJ condition

(M2 = 1) in the conservation equations (Eqs. 1.1–1.3), the so-called two-γ model

(Thompson, 1988, pp. 353–354) can be derived

MCJ =

√
H +

(γ1 + γ2)(γ2 − 1)

2γ1(γ1 − 1)
+

√
H +

(γ2 − γ1)(γ2 + 1)

2γ1(γ1 − 1)
, (1.8)

where the non-dimensional heat of combustion H is given by

H =
(γ2 − 1)(γ2 + 1)qc

2γ1R1T1

. (1.9)

The other CJ properties can be found by substitution into the conservation equations.

UCJ = MCJc1 (1.10)

P2

P1

=
γ1M

2
CJ + 1

γ2 + 1
(1.11)

ρ2

ρ1

=
γ1(γ2 + 1)M2

CJ

γ2(γ1M2
CJ + 1)

(1.12)

T2

T1

=
R1

R2

P2

P1

ρ1

ρ2

(1.13)

u2 = UCJ

(
1− ρ1

ρ2

)
(1.14)

If we further simplify the model and use only a single value of the specific heat

ratio and the perfect gas constant common to reactants and products, we derive the

equations for the one-γ model (Fickett and Davis, 2001, pp. 52–53)

MCJ =
√
H + 1 +

√
H , (1.15)
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where

H =
(γ2 − 1)qc

2γRT1

. (1.16)

The CJ properties are then given by

P2

P1

=
γM2

CJ + 1

γ + 1
, (1.17)

ρ2

ρ1

=
(γ + 1)M2

CJ

1 + γM2
CJ

, (1.18)

T2

T1

=
(1 + γM2

CJ)2

(γ + 1)2M2
CJ

. (1.19)

A further approximation is to assume that the detonation Mach number is much

larger than unity, which corresponds to the “strong detonation” approximate solution

(Fickett and Davis, 2001, p. 54). It is then found that, within this approximation,

the detonation propagation velocity is proportional to the square root of the energy

release, the CJ pressure scales with the product of the initial mixture density and the

energy release, and the CJ temperature is directly proportional to the energy release.

UCJ ≈
√

2(γ2
2 − 1)qc (1.20)

ρ2 ≈ γ2 + 1

γ2

ρ1 (1.21)

P2 ≈ 1

γ2 + 1
ρ1U

2
CJ ≈ 2(γ2 − 1)ρ1qc (1.22)

T2 ≈ 2γ2(γ2 − 1)

γ2 + 1

qc

R
(1.23)

u2 ≈ UCJ

γ2 + 1
(1.24)

1.1.2 ZND model

Zel’dovich (1940a), von Neumann (1942), and Döring (1943) independently arrived at

a theory for the structure of the detonation wave. The ZND theory models the deto-

nation wave as a strong shock wave coupled with a reaction zone. The planar shock

wave brings the gas to the post-shock, or von Neumann, state. Chemical reactions

are initiated at the von Neumann state. The region just after the shock, the induction
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zone, is characterized by the generation of radicals in chain-branching reactions and

is usually thermally neutral. After the induction period, the temperature rises due to

the energy release caused by the reaction, while the pressure and density decrease due

to the expansion of the hot products. This expansion maintains the strength of the

leading shock front. The reaction zone, which encompasses the induction and energy

release zones, terminates at the Chapman-Jouguet plane, where chemical equilibrium

is reached and the flow velocity is sonic relative to the shock wave.

The ZND model assumes that the flow is one-dimensional, and models the shock

wave as a discontinuity, neglecting transport effects. The model includes chemi-

cal kinetics with a finite reaction rate. Detailed chemical mechanisms or simplified

mechanisms such as one-step irreversible reactions can be used. The reactive Eu-

ler equations are solved in the shock wave frame to calculate the thermodynamic

properties and chemical species concentrations through the reaction zone.

Dρ

Dt
= −ρ

du

dx
(1.25)

Du

Dt
= −1

ρ

dP

dx
(1.26)

D(h + u2/2)

Dt
=

1

ρ

∂P

∂t
(1.27)

DYi

Dt
= Ωi i = 1...N (1.28)

Looking for a steady solution to these equations corresponding to the steady shock-

reaction zone configuration, we may rewrite the Euler equations in the wave reference

frame as

u′
dρ

dx
= − ρσ̇

1−M2
, (1.29)

u′
dw

dx
=

u′σ̇

1−M2
, (1.30)

u′
dP

dx
= − ρu′2σ̇

1−M2
, (1.31)

u′
dYi

dx
= Ωi i = 1...N , (1.32)
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where u′ = US − u and the thermicity is defined (Fickett and Davis, 2001, p. 77) as

σ̇ =
N∑
i

Ωi

ρc2

(
∂P

∂Yi

)
ρ,c,Yk 6=i

. (1.33)

To avoid a singularity in the solution, the thermicity must vanish as the flow Mach

number M = u′/cfr, where cfr is the frozen speed of sound, approaches one. Hence,

for a wave traveling at the CJ velocity, the equilibrium state is reached at the sonic

plane.
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Figure 1.3: ZND profile for a detonation in a stoichiometric hydrogen-air mixture at
1 atm and 300 K initial conditions. The detailed mechanism of Konnov (1998) is
used. The leading shock front is located at x = 0. Left: pressure and temperature
profiles. Right: species concentration profiles.

The thermodynamic properties and the species concentrations behind the shock

front can be calculated using a numerical solution of the ZND model (Shepherd, 1986).

This solution requires a validated detailed chemical kinetics mechanism and is based

on the CHEMKIN II package (Kee et al., 1989). An example case is shown in Fig. 1.3

for a stoichiometric hydrogen-air mixture using the detailed mechanism of Konnov

(1998). The induction zone starts at the post-shock state and ends with a sharp

increase in radical concentration and temperature, corresponding to the beginning

of the energy release zone. The energy release zone is characterized by a strong

radical concentration, which decays as the major products are formed. The pressure,
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temperature, and species concentrations asymptote to their equilibrium values at

the end of the energy release zone. The induction zone length ∆ is usually defined

as the distance from the leading shock front to the point of maximum heat release

(thermicity). It depends on the mixture composition, initial conditions, chemical

kinetic rate, and is a strong function of the post-shock temperature. The induction

zone length is a length scale that can be used to characterize the thickness of the

detonation front.

1.1.3 Cellular structure of the detonation front

The tight coupling between the leading shock front and the reaction zone in deto-

nation waves results in an intrinsic unstable dynamic behavior. Small variations in

the leading shock strength result in large variations in reaction rates in the flow be-

hind the shock since typical reaction rates are extremely sensitive to the post-shock

temperature. The changes in reaction rates in turn affect the leading shock strength

since the flow through the reaction zone is subsonic. This feedback mechanism is

responsible for the nonlinear instability of the detonation wave front. All experimen-

tally observed detonation waves display this unstable behavior (Fickett and Davis,

2001, Chap. 7). The consequence of this instability is that the detonation front is

not one-dimensional such as idealized in the ZND model (Fig. 1.3), but is actually

three-dimensional and characterized by an oscillatory motion.

Figure 1.4: Pattern left on a sooted foil by a detonation propagating in 2H2-O2-17Ar
at 20 kPa and 295 K initial conditions (from Austin, 2003).

The detonation front instability is characterized by the production of transverse

waves, which propagate in directions normal to the leading shock front (Fickett and
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Figure 1.5: Cellular structure of the detonation front. The triple point tracks form a
cellular pattern, defining the cell width λ.

Davis, 2001, Chap. 7). The periodic collision of these transverse waves generates re-

gions of high pressure and temperature, which accelerate the local lead shock relative

to the weaker neighboring parts of the front. After the transverse wave collision,

the lead shock decays until the next collision occurs. This mechanism explains the

oscillatory motion of the detonation front. The triple points at the junction of the

transverse waves and the leading shock front propagate along the shock front as the

detonation moves forward. The cellular pattern observed on sooted foils after a det-

onation has propagated over them (Fig. 1.4) is a record of the trajectories of the

triple points (Urtiew and Oppenheim, 1966). The width of the cells λ observed on

the sooted foils is a measure of the transverse wave spacing and is a characteristic

length scale of the mixture. Figure 1.5 is a schematic of the cellular structure in two

dimensions. The portions of the leading shock front at the beginning of the cell are

stronger than those at the end of the cell due to the recent transverse wave collision.

The reaction zone is, therefore, shorter because the chemical processes are faster due

to the higher temperature behind the shock. This idealized cellular structure is ex-



12

perimentally observed in detonations in regular mixtures in a narrow channel facility

(Austin, 2003), as shown in Fig. 1.6.

Figure 1.6: Shadowgraph of detonation front in 2H2-O2-12Ar mixture at 20 kPa initial
mixture and 295 K initial temperature (from Austin, 2003).

The cell width λ is representative of the sensitivity of the mixture to detonation.

Mixtures with small cell widths are more sensitive to detonation than mixtures with

larger cell widths. Some efforts (Gavrikov et al., 2000) have focused on trying to

predict the cell width, but there is still no appropriate theory for cell width predic-

tion. It has been suggested that the cell width is proportional to the other detonation

characteristic length scale, the induction zone length ∆ (Shchelkin and Troshin, 1965,

Westbrook and Urtiew, 1982), with a constant of proportionality A: λ = A∆. How-

ever, Shepherd (1986) showed that the constant A varies strongly with equivalence

ratio, between 10 and 50 for common fuel-air mixtures at stoichiometric conditions,

and between 2 and 100 for off-stoichiometric mixtures. The cell width λ has been pro-

posed to be the most fundamental parameter characterizing the dynamic properties

of detonations (Lee, 1984). For fixed mixture composition and initial conditions, the

critical values of the relevant physical parameters that determine detonation failure

or propagation are called the dynamic parameters of detonations (Lee, 1984). They

include the critical tube diameter for diffraction of a detonation from a tube into an
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unconfined space, the minimum energy for direct initiation of detonation, and the

minimum tube diameter for stable detonation propagation in a tube. The critical

conditions can be estimated by empirical correlations based on the cell width (Lee,

1984).

1.1.4 Flow field behind a detonation wave in a tube

A detonation wave propagating from the closed end of a tube is followed by an

expansion wave in order to satisfy the boundary conditions at the closed end of the

tube. This self-similar expansion wave, called the Taylor wave, brings the flow to rest

and decreases the pressure at the closed end of the tube (Zel’dovich, 1940a, Taylor,

1950). The Taylor wave is followed by a stagnant region extending from its rear to

the closed end of the tube. Figure 1.7 is a space-time diagram of the flow behind the

detonation wave and shows the different regions mentioned.

Figure 1.7: Space-time diagram of the flow field behind a propagating detonation
wave in a closed tube. State 1 is the initial reactant state, state 2 is the CJ state,
while state 3 is the state of the products behind the Taylor wave.

The properties within the Taylor wave can be determined by assuming a similarity

solution for the flow and using the method of characteristics (Zel’dovich, 1940a, Tay-

lor, 1950). Modeling the detonation wave as a discontinuity, we consider the network
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of characteristics within the Taylor wave. There are two sets of characteristics, C+

and C−, defined by

C+ dx

dt
= u + c , (1.34)

C− dx

dt
= u− c . (1.35)

The most general characteristic equations for one-dimensional, constant-area, inviscid

and unreactive flow with no body forces are (Thompson, 1988, pp. 375–377)

dP + ρcdu = 0 on C+ , (1.36)

dP − ρcdu = 0 on C− . (1.37)

Integrating these equations defines the Riemann invariants

J± = u±
∫ P

P0

dP

ρc
= 0 on C± , (1.38)

where P0 corresponds to a reference state of zero flow velocity. This is the most

general form of the Riemann invariant. In our case, the Riemann invariant J− is

conserved along a C− characteristic going through the Taylor wave.

J− = u−
∫ P

P0

dP

ρc
= u−

∫ ρ

ρ0

c
dρ

ρ
(1.39)

For a real dissociating gas, it is valid for either frozen or equilibrium flow, but not for

finite rate kinetics. Equation 1.39 is often simplified for the perfect gas case assuming

a constant polytropic exponent γ through the Taylor wave.

J− = u− 2c

γ − 1
= u2 −

2c2

γ − 1
= − 2c3

γ − 1
(1.40)

The speed of sound in state 3 can be calculated from the previous equation as

c3 = c2 −
γ − 1

2
u2 =

γ + 1

2
c2 −

γ − 1

2
UCJ . (1.41)



15

Inside the Taylor wave, the C+ characteristics are straight lines with a slope given by

x/t = u+ c, for c3 ≤ x/t ≤ UCJ . Using the Riemann invariant J− to relate u and c to

the flow parameters in state 3, the flow properties in the Taylor wave can be derived.

The speed of sound is

c

c3

=
2

γ + 1
+

γ − 1

γ + 1

x

c3t
= 1−

(
γ − 1

γ + 1

)[
1− x

c3t

]
. (1.42)

Equation 1.42 is valid in the expansion wave, for c3t ≤ x ≤ UCJt. The pressure in

the Taylor wave can be computed using the isentropic flow relations

P = P3

(
1−

(
γ − 1

γ + 1

)[
1− x

c3t

]) 2γ
γ−1

, (1.43)

where the pressure P3 behind the Taylor wave is given by P3 = P2(c3/c2)
2γ

γ−1 . The

region following the Taylor wave is a uniform region of stagnant flow. Figure 1.8

shows the profile of the flow behind the detonation wave. The Taylor wave extends

from x = c3t to x = UCJt, which means that its end is always located at a fractional

distance of c3/UCJ behind the detonation front. This quantity can be expressed from

the detonation jump conditions and the Riemann invariant relationship.

c3

UCJ

=
γ + 1

γ

ρ1

ρ2

− γ − 1

2
(1.44)

In the limit of large CJ Mach numbers, the density ratio ρ1/ρ2 → γ/(γ + 1) and

the ratio c3/UCJ → 1/2. The stagnant region extends half of the distance travelled

by the detonation from the closed end of the tube. Experience with computations

using realistic values of the flow properties indicates that this is a fairly reliable rule

of thumb for fuel-oxygen-nitrogen mixtures.

1.2 Steady-flow air-breathing propulsion

Air-breathing propulsion systems are based on the jet propulsion principle: they

develop thrust by imparting momentum to the fluid passing through them. These
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Figure 1.8: Profile of pressure, temperature, density, and flow velocity behind an ideal
detonation wave modeled using the one-γ model. γ = 1.2, q/RT1 = 40.

propulsion systems are steady-flow devices and include propellers, which are more

efficient at low flight speeds, and turbojet, turbofan, and ramjet engines, which have

a higher performance at high subsonic or supersonic flight speeds. Since we are

interested in high-speed propulsion applications, we do not consider propellers, but

focus on engines such as the turbojet and ramjet that are based on the Brayton

cycle. The Brayton cycle involves deceleration and compression of the inlet air, fuel

addition, combustion, and expansion and acceleration of the combustion products to

generate thrust. The combustion taking place in these engines consists of low-speed

(subsonic) deflagration. This section describes the framework in which the laws of

thermodynamics and mechanics can be applied to determine the performance as a

function of principal design parameters.
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1.2.1 Thrust and efficiencies

The general equations for thrust and efficiency of air-breathing jet engines are derived

from the mass, momentum, and energy conservation equations without consideration

of the internal mechanisms of the engines. The thrust is usually calculated by con-

sidering a control volume completely surrounding the engine, extending far upstream

and on the sides, and including the exit plane of the engine, as shown in Fig. 1.9. The

engine considered is assumed to have a single exhaust stream. The following analysis

is described in detail in Hill and Peterson (1992, pp. 147–149) but is shown here

because of its relevance to the thrust calculation for unsteady-flow devices discussed

later.

Figure 1.9: Control volume Ω used for the calculation of thrust produced by a general
steady-flow propulsion system.

The steady-flow mass equation for the control volume Ω is

∫
Σ

ρ(u · n)dS = 0 , (1.45)

which results in ṁs = ṁf + (ρ0u0 − ρeue)Ae. The mass flow rate through the side

surfaces ṁs is calculated by considering the additional mass balance through the
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engine: ṁe = ṁ0 + ṁf . Combining the two, we get the following expression for ṁs

ṁs = ρ0u0(Ae − A0) . (1.46)

The steady-flow momentum equation is applied to the control volume Ω

∫
Σ

ρu(u · n)dS = ΣF . (1.47)

The forces on the system consist of the pressure forces and the reaction to the thrust.

Assuming idealized external flow, the pressure and velocity are assumed constant over

the entire control surface, except over the exhaust area of the engine. If the sides

of the control volume are sufficiently distant from the engine, the flow crosses the

sides with an essentially undisturbed velocity component in the x-direction, and the

corresponding momentum term in Eq. 1.47 is ṁsu0. Rewriting Eq. 1.47 using the

result of Eq. 1.46, the momentum equation becomes

F = ṁeue − ṁ0u0 + (Pe − P0)Ae

= ṁ0[(1 + f)ue − u0] + (Pe − P0)Ae .
(1.48)

The steady-flow energy conservation equation for the control volume Ω can be

written ∫
Σ

ρ(e + u2/2)(u · n)dS = −
∫

Σ

P (u · n)dS +

∫
Ω

qdV (1.49)

in the absence of body forces. The evaluation of each term on the sides of the control

volume eventually leads to

ṁe(h + u2/2)e = ṁ0(h + u2/2)0 + ṁfhtf . (1.50)

Lean combustion is characteristic of air-breathing propulsion systems, and only a

portion of the incoming air mass flow rate reacts with the fuel. Thus, the exit plane
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flow consists of a mixture of air and combustion products. We write

ṁe = φṁ0(1 + fst) + (1− φ)ṁ0 , (1.51)

where fst is the fuel-air mass ratio at stoichiometric conditions and φ = f/fst < 1 is

the equivalence ratio. The first term on the right-hand side of Eq. 1.51 represents the

mass flow rate of the combustion products and the second term represents the mass

flow rate of the unburned air at the exit plane. Similarly, the total enthalpy term is

the sum of the contributions of the combustion products and the unburned air.

ṁehte = φṁ0(1 + fst)htpr + (1− φ)ṁ0htair (1.52)

Expressing the enthalpy as the sum of the enthalpy of formation at a reference tem-

perature Tref and the sensible enthalpy assuming constant specific heats, the energy

equation, Eq. 1.50, can be expressed as

φṁ0(1+fst)
[
∆fh

0
pr + Cpr

p (Te − Tref )
]
+(1−φ)ṁ0

[
∆fh

0
air + Cair

p (Te − Tref )
]
+ṁeu

2
e/2 =

ṁ0

[
∆fh

0
air + Cair

p (T0 − Tref ) + u2
0/2
]
+ ṁf

[
(∆fh

0
f + Cf

p (Tf − Tref ) + u2
f/2)

]
.

(1.53)

The heat of combustion per unit mass of fuel qf is defined for stoichiometric combus-

tion of fuel and air:

qf = ∆fh
0
f +

1

fst

∆fh
0
air −

1 + fst

fst

∆fh
0
pr , (1.54)

which is related to the heat of combustion per unit mass of mixture by qc = fstqf/(1+

fst). Rewriting Eq. 1.53 in terms of the heat of combustion and the total temperature,

ṁeCp(Tte−Tref ) = ṁ0C
air
p (Tt0−Tref )+ṁf

[
(Cf

p (Tf − Tref ) + u2
f/2)

]
+ṁfqf , (1.55)
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where Cp is the average specific heat capacity in the exhaust flow

Cp =
φṁ0(1 + fst)C

pr
p + (1− φ)ṁ0C

air
p

ṁe

, (1.56)

and the stagnation temperature at the exit plane is defined with respect to Cp. Equa-

tion 1.55 is usually simplified by neglecting the contribution of the fuel sensible en-

thalpy and velocity terms compared to the heat of combustion per unit mass of fuel.

We also assume equal specific heats for the inlet air and the combustion products.

Using the mass balance through the engine, Eq. 1.55 becomes

(1 + f)CpTte = CpTt0 + fqf . (1.57)
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Figure 1.10: Total temperature at the exit plane of a constant-pressure combustor as
a function of equivalence ratio for propane-air mixtures. Initial stagnation conditions
at the combustor inlet are 400 K and 2 bar.

The result of Eq. 1.57 assumes that the combustion products consist of the major

products of the fuel-air chemical reaction. This assumption is acceptable for very

lean mixtures. However, as the equivalence ratio increases, the increasing degree
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of dissociation in the combustion products caused by the higher combustion tem-

perature decreases the effective energy released into the flow. This is illustrated in

Fig. 1.10 where the total temperature at the exit plane of a constant-pressure com-

bustor is plotted as a function of the equivalence ratio. Equilibrium calculations

using realistic thermochemistry with STANJAN (Reynolds, 1986) are compared with

the simple model of Eq. 1.57. Although both computations agree at very low values

of the equivalence ratio, the simple model predicts much larger values for the exit

plane total temperature than the equilibrium computations as the equivalence ratio

approaches one. Although the agreement could be somewhat improved by computing

different values of the heat capacity for combustion products and incoming air, the

large discrepancies caused by dissociation effects near stoichiometric point out the

limitations of this simple model.

It is useful to define several efficiencies in describing the performance of jet engines.

The thermal efficiency ηth is defined as the ratio of the rate of addition of kinetic

energy to the propellant to the total energy consumption rate

ηth =
u2

e/2− u2
0/2

fqf

. (1.58)

The propulsive efficiency ηp is the ratio of the thrust power to the rate of production

of propellant kinetic energy

ηp =
Fu0

ṁ0[u2
e/2− u2

0/2]
. (1.59)

For air-breathing engines, f � 1 (usually less than 5% for lean hydrocarbon-air

combustion). For a pressure-matched exit nozzle (Pe = P0), the propulsive efficiency

may be approximated by

ηp ≈
2u0/ue

1 + u0/ue

. (1.60)

Finally, the overall efficiency η0 is the ratio of the thrust power to the rate of energy

consumption

η0 = ηthηp =
Fu0

ṁfqf

. (1.61)
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1.2.2 Ramjet

The ramjet is the simplest of all air-breathing jet engines. A standard ramjet consists

of an inlet diffuser through which the air flow is decelerated to a low subsonic Mach

number and mixed with the fuel, a combustor where the mixture is burned, and

an exit nozzle through which the hot products are expelled due to the pressure rise

in the diffuser (Hill and Peterson, 1992, Chap. 5.3). A schematic of a ramjet is

shown in Fig. 1.11, including the corresponding variations of pressure and temperature

throughout the engine. A typical fluid element undergoes a compression through the

inlet between stations 0 and 4, then a heat addition process in the combustor (station 4

to 5) before undergoing an expansion through the nozzle (station 5 to 9). Ramjets can

operate at subsonic flight conditions, but the increasing pressure rise accompanying

higher flight speeds makes them more suitable for supersonic flight.

Figure 1.11: Schematic representation of a ramjet. The pressure and temperature
profiles through the engine are shown.

The performance of the ideal ramjet can be calculated based on flow path anal-

ysis (Hill and Peterson, 1992, Oates, 1984). The simplest performance model of an

ideal ramjet is derived assuming that the compression and expansion processes are

isentropic and that the combustion process takes place at constant pressure and very
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low Mach number. These assumptions are, of course, not realistic due to the presence

of irreversible processes such as inlet shocks, mixing, wall friction, and heat transfer.

In the ideal ramjet model, we consider steady, inviscid, and adiabatic flow of an ideal

gas. Products and reactants are assumed to have the same heat capacity and spe-

cific heat ratio. Dissociation of the combustion products is not taken into account.

The performance characteristics of an ideal ramjet are usually derived assuming a

maximum temperature Tmax at the combustor outlet due to material limitations (Hill

and Peterson, 1992, Chap. 5.3). This maximum temperature implies a limitation on

the total temperature at the combustor outlet Tt5 since it is the temperature of a

stationary material element in the flow. The performance of an air-breathing propul-

sion system is usually expressed in terms of specific thrust, specific impulse, overall

efficiency, and thrust-specific fuel consumption. It can be shown that the maximum

thrust is generated when the nozzle is pressure-matched, i.e., P9 = P0 (Hill and Pe-

terson, 1992). For a ramjet with a pressure-matched exit nozzle, the thrust equation,

Eq. 1.48, becomes

F = ṁ0[(1 + f)u9 − u0] . (1.62)
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Figure 1.12: Specific thrust (left) and thrust-specific fuel consumption (right) of the
ideal ramjet for various values of Tmax. qf = 45 MJ/kg, T0 = 223 K.

The fuel-air mass ratio f is dictated by the maximum temperature condition and

the energy balance for the combustion process (Eq. 1.57), assuming the heat capacity
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is constant and equal to a common value for reactants and products

CpTt4 + fqf = (1 + f)CpTt5 . (1.63)

In practice, f � 1 (usually less than 5% for hydrocarbon fuels) and the fuel mass

addition will be neglected. Hence, F ≈ ṁ(u9 − u0). Assuming the nozzle isentrop-

ically expands the combustion products to the ambient pressure, the performance

parameters of interest (Hill and Peterson, 1992) are the specific thrust

F

ṁ0

= M0c0

[√
Tmax

T0

(
1 +

γ − 1

2
M2

0

)−1/2

− 1

]
, (1.64)

the fuel-based specific impulse

ISPF =
F

ṁfg
, (1.65)

and the thrust-specific fuel consumption

TSFC =
ṁf

F
=

f

F/ṁ
. (1.66)

The specific thrust and thrust-specific fuel consumption of the ideal ramjet are plot-

ted in Fig. 1.12 as a function of the flight Mach number for a heat of combustion

representative of hydrocarbon fuels. The decrease in specific thrust at high flight

Mach numbers is due to the limitation of the combustor outlet temperature. Lower

maximum temperatures decrease the specific thrust because less fuel can be added

and the combustion has to occur at a leaner composition. The thrust-specific fuel

consumption decreases from high values at subsonic flight Mach numbers and re-

mains finite as the specific thrust approaches zero due to the maximum temperature

condition. The ideal ramjet model is a useful tool to draw an upper bound on the

possible performance of real ramjets, since all the processes are assumed to be ideal.

In practice, stagnation pressure losses due to shock systems in the inlet, mixing, wall

friction and heat transfer will generate performance losses compared to the ideal case.
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Methodologies have been developed to take into account the non-ideal behavior of the

various engine components (Hill and Peterson, 1992, Oates, 1984).

1.2.3 Turbojet

Because the compression in the ramjet engine is uniquely due to the ram effect, the

ramjet cannot develop takeoff thrust. In fact, ramjets do not perform well unless

the flight speed is considerably above the speed of sound. One way to overcome

this disadvantage is to install a mechanical compressor upstream of the combustion

chamber so that even at zero speed, air can be drawn into the engine to produce

thrust. The presence of the compressor requires the presence of a turbine driven by

the hot gas expanding from the combustion chamber into the nozzle in order to supply

the power needed by the compressor. Thus, a turbojet engine includes a compressor,

which is used to add work to the flow, and a turbine, which powers the compressor,

as seen in Fig. 1.13.

Figure 1.13: Schematic of a turbojet engine, including the variation of pressure and
temperature across the engine.

The turbine blades are subjected to high temperatures, and a limitation is usually

placed on the temperature at the combustor outlet due to material considerations.

The ideal turbojet can be analyzed in the same fashion as the ramjet, assuming that
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all processes except combustion are isentropic (Hill and Peterson, 1992, Chap. 5.4).

We use the same assumptions as those used in the ideal ramjet model. The flow

undergoes an isentropic compression through the inlet: Pt2 = Pt0 and Tt2 = Tt0.

The compressor is characterized by a compression ratio πc, which is usually specified.

Assuming the compression is isentropic, Pt4 = πcPt2 and Tt4 = π
(γ−1)/γ
c Tt2. The

combustion occurs at constant pressure. The flow then goes through the turbine,

which must supply the power required to drive the compressor. For steady adiabatic

flow in both components, an energy balance can be written between the compressor

and the turbine

(1 + f)ṁ0(ht8 − ht5) = ṁ0(ht4 − ht2) . (1.67)

Assuming f � 1 and that the specific heat capacity of the products is the same as

that of the reactants, the equation simplifies to Tt8 ≈ Tt5 +Tt4−Tt2. After its passage

through the turbine, the flow is expanded through an exit nozzle into the atmosphere.

For a pressure-matched nozzle, the specific thrust of an ideal turbojet engine is given

below and the other relevant performance parameters can be calculated using it.

F

ṁ0

= c0

[√
2

γ − 1

[(
Tmax

Tt0

− (π
γ−1

γ
c − 1)

)(
1 +

γ − 1

2
M2

0

)
− π

− γ−1
γ

c
Tmax

Tt0

]
−M0

]
(1.68)

Figure 1.14 shows the variation of the specific thrust of the ideal turbojet with

flight Mach number for different compression ratios. The case with πc = 1 is the base-

line case corresponding to the ramjet. As the compression ratio increases, the specific

thrust of the turbojet increases, in particular at subsonic flight speeds. However,

the thrust-producing range of the turbojet becomes smaller with increasing πc due

to the maximum temperature limitation. Similarly, for high compression ratio values

(above 20), increasing πc does not benefit the specific thrust because less fuel has to

be added in order to satisfy the maximum temperature condition. The compression

ratio is usually chosen based on consideration of both specific thrust and thrust spe-

cific fuel consumption, and depends strongly on the design point. The influence of

irreversible processes through the different components of the engine on the perfor-
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Figure 1.14: Specific thrust of the ideal turbojet as a function of flight Mach number
for varying compression ratios. Tmax = 1700 K, qf = 45 MJ/kg, T0 = 223 K.

mance parameters can be estimated, and some of the procedures developed for this

purpose are described in Hill and Peterson (1992) and Oates (1984). In particular,

turbojet operation at M0 � 1 (see Fig. 1.14) is not realistic due to losses in real inlet

diffusers.

1.2.4 Thermodynamic cycle analysis

A very useful method to estimate performance for steady-flow propulsion systems is to

represent the various processes occurring inside the engine on a thermodynamic state

diagram. The results obtained previously, based on flow path analysis for the ideal

ramjet and the ideal turbojet, can all be obtained using a thermodynamic approach,

which considers the processes from a thermodynamic standpoint, without associating

them with the actual flow through the engine. This approach is possible only because

of the correspondence (for steady flow) between thermodynamic state points and

flow locations within the engine. We start by describing the general cycle analysis for
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thermodynamic systems.

1.2.4.1 General cycle analysis

The thermodynamic processes encountered in air-breathing propulsion involve se-

quential compression, combustion, and expansion. This sequence is turned into a

closed cycle through a constant-pressure process during which the fluid exhausted

into the atmosphere at the end of the expansion process is converted into the inlet

fluid by exchanging heat and work with the surroundings. The thermal efficiency of

an arbitrary cycle involving adiabatic combustion can be defined as the ratio of the

work done by the system to the heat of combustion of the mixture.

ηth =
w

qc

(1.69)

P

v

1 4

qout

5

qin

Figure 1.15: Arbitrary thermodynamic cycle ending with constant-pressure process.

The work done and mixture heat of combustion can be clarified by considering a

thermodynamic cycle consisting of an arbitrary adiabatic process taking the system

from its initial state 1 to state 4, and ending with a constant-pressure process taking

the system back to state 1. As shown in Fig. 1.15, there is an intermediate state 5

between 4 and 1. The heat interaction between steps 4 and 5 is required to remove

an amount of thermal energy qout > 0 from the products of combustion and cool
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the flow down from the exhaust temperature to the ambient conditions. Since this

process occurs at constant pressure, the heat interaction can be determined from the

enthalpy change

qout = h4 − h5 . (1.70)

The heat interaction between steps 5 and 1 is required to add an amount of thermal

energy qin > 0 in order to convert the combustion products back to reactants. This

interaction also takes place at constant pressure so that

qin = h1 − h5 . (1.71)

Note that this defines the quantity qc = qin in a fashion consistent with standard

thermochemical practice if the ambient conditions correspond to the thermodynamic

standard state. Applying the First Law of Thermodynamics around the cycle, the

work done by the system can be computed as

w = qin − qout = h1 − h4 . (1.72)

The thermal efficiency can, therefore, be written as

ηth =
h1 − h4

h1 − h5

=
h1 − h4

qc

, (1.73)

which agrees with the definition given in Eq. 1.69 in terms of the mixture heat of

combustion.

For an ideal (reversible) process, the heat removed during the constant-pressure

process 4–5 can be expressed as

qout =

∫ s4

s5

Tds (1.74)

and the thermal efficiency is

ηth = 1−
∫ s4

s5
Tds

qc

. (1.75)
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For a given initial state 1 and a given mixture, state 5 is fixed and the value of the

entropy is determined by the heat of combustion and the product and reactant com-

position. Thus, the heat removed qout increases and the thermal efficiency decreases

with increasing values of s4. In general, the thermal efficiency is maximized when the

entropy rise during process 1–4 is minimized.

This general result can be computed explicitly if we consider a perfect gas and

take s5 = s1, which is approximately satisfied for real mixtures and exactly so for the

equivalent heat addition model. This model considers the case of the perfect gas P =

ρRT and models the combustion process as the addition of an amount of heat equal

to the heat of combustion of the mixture. We assume equal specific heat capacities

for reactants and products

Cp =
γ

γ − 1
R (1.76)

and the enthalpy in the reactants and products can be expressed as

h1 = CpT1 h2 = CpT2 − qc . (1.77)

In the simple heat addition model, the heat rejected during the final constant-pressure

portion of the cycle is a function of the temperature at states 1 and 4

qout = Cp(T4 − T1) . (1.78)

The thermal efficiency is written as

ηth = 1− Cp(T4 − T1)

qc

. (1.79)

The integral of Eq. 1.74 can also be calculated explicitly as a function of the entropy

rise between states 1 and 4, and the thermal efficiency becomes

ηth = 1− CpT1

qc

[
exp

(
s4 − s1

Cp

)
− 1

]
. (1.80)

The overall entropy rise is the sum of the entropy rise generated by combustion and
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of the entropy increments generated by irreversible processes such as shocks, friction,

heat transfer, Rayleigh losses (combustion or equivalent heat addition at finite Mach

number), or fuel-air mixing (Foa, 1960). The entropy increment associated with the

combustion process is often the largest of all increments in the cycle. Because of the

dependence of the thermal efficiency on the total entropy rise, the selection of the

combustion mode is critical to engine performance.

1.2.4.2 Cycle analysis for propulsion systems

For steady-flow engines, the cycle analysis based on a closed system (fixed mass of

material) is completely equivalent to the flow path analysis based on an open system,

as long as the mass and momentum contributions of the fuel are negligible and the

exhaust flow is fully expanded at the exit plane (Foa, 1960, Chap. 13). Within these

assumptions, we can make a correspondence between states in the cyclic process of

Fig. 1.15 and an open thermodynamic cycle. If the states in the open and closed

cycles are equivalent, then the thermal efficiencies are the same for the two processes.

The equivalence is based on the control volume analysis of the energy balance in an

open system whose inlet plane is at state 1 and exit plane is at state 4.

h1 + u2
1/2 = h4 + u2

4/2 (1.81)

Using the cycle thermal efficiency as defined in Eq. 1.69, we find that

ηth =
u2

4 − u2
1

2qc

. (1.82)

Based on this equivalence, the thrust of a steady pressure-matched propulsion system

can be directly calculated from the thermal efficiency (Foa, 1960, Chap. 13).

F = ṁ1 (u4 − u1) = ṁ1

(√
u2

1 + 2ηthqc − u1

)
(1.83)

In air-breathing propulsion system analysis, the heat of combustion per unit mass of

the mixture is often replaced in terms of the heat of combustion per unit mass of fuel
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and the fuel-air ratio: qc = fqf/(1 + f).

Equations 1.80 and 1.83 allow to calculate the thermal efficiency of the propulsive

flow through computation of the entropy increments associated with all the processes

to which the flow is subjected through the cycle. The overall entropy increment is the

sum of the increments associated with each process. The thermal efficiency decreases

with increasing entropy rise.

Flow path analysis shows that stagnation pressure losses through the engine are

detrimental to the thermal efficiency and the performance. Stagnation pressure losses

are generated by entropy increments and can be related to them the following way.

Consider a steady process bringing the flow from a state a to a state b. Using isentropic

processes to connect those states to their respective stagnation states, the entropy

rise can be expressed as a function of the stagnation properties.

∆s

R
=

γ

γ − 1
ln

(
Ttb

Tta

)
− ln

(
Ptb

Pta

)
(1.84)

The largest entropy rise is usually associated with the combustion process. For adia-

batic processes (Ttb = Tta), the stagnation pressure ratio can be related to the entropy

increment ∆s
Ptb

Pta

= exp

(
−∆s

R

)
. (1.85)

The propulsive performance calculation of Eq. 1.83 using the entropy increments

through the cycle has been called the “entropy method” by Foa (1960, p. 282). It does

not require any consideration of the flow path since the effects of the cycle processes

are all accounted for in the cycle calculation of the thermal efficiency. Foa (1959,

p. 382) proposes a method to extend the entropy method to conditions when the

exit plane flow is not fully expanded by correcting the exit velocity for fully expanded

flow. For low pressure ratios between the exit plane and the freestream, the correction

factor is found to be very close to 1 and Foa (1959) concludes that the exhaust may

be treated in good approximation as completely expanded. Foa (1951, 1959, 1960)

describes how to calculate the entropy increments associated with the compression,

expansion, and combustion processes, as well as those induced by pressure exchange
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and mixing.
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Figure 1.16: Brayton cycle plotted in the pressure-specific volume plane (left) and
the temperature-entropy plane (right). qf = 45 MJ/kg, f = 0.05, γ = 1.4, T0 = 223
K, P4/P0 = 8.

Both the ramjet and turbojet engines operate following the same thermodynamic

cycle, called the Brayton cycle. The Brayton cycle consists of the following processes:

isentropic compression from state 0 to state 4, constant-pressure combustion from

state 4 to state 5, isentropic expansion from state 5 to state 9, and constant-pressure

heat removal from state 9 to state 0. The ideal Brayton cycle is plotted in the

pressure-specific volume plane and the temperature-entropy plane in Fig. 1.16. The

thermal efficiency of the Brayton cycle is obtained from Eq. 1.79

ηth = 1− CpT0

fqf

(
T9

T0

− 1

)
. (1.86)

The temperature ratio can be calculated using the isentropic flow relationships and

the assumption of constant-pressure combustion (P4 = P5).

T9

T0

=
T9

T5

· T5

T4

· T4

T0

=

(
P0

P5

) γ−1
γ
(

1 +
fqf

CpT4

)(
P4

P0

) γ−1
γ

= 1 +
fqf

CpT4

(1.87)
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We obtain the classical expression for the thermal efficiency of the Brayton cycle

(Oates, 1984, pp. 123–124)

ηth = 1− T0

T4

. (1.88)

The performance parameters presented in Sections 1.2.2 and 1.2.3 can be derived

from Eq. 1.88 using the entropy method, as long as conditions 1. and 2. are satisfied.

The efficiency of the Brayton cycle increases with increasing static temperature at

the beginning of the combustion process. According to Foa (1960, pp. 283–287), this

result can be generalized to a variety of combustion modes.

1.3 Unsteady-flow air-breathing propulsion

An entirely different class of air-breathing engines is based on the unsteady generation

of jets from a combustion chamber. The concept of intermittent combustion jet

engines was actually the precursor of steady-flow concepts that led to the development

of the gas turbine (Foa, 1959, Chap. 14). Unsteady-flow propulsion concepts present

advantages related to the unsteady nature of the flow, such as inertia effects for

scavenging of the combustion chamber and pressure exchange for precompression of

the reactants. However, some of the characteristic features of unsteady flows have

not yet been fully understood and exploited, in spite of significant efforts in the 1950s

on pulsejet engines and, more recently, on pulse detonation engines. Due to the

complexity of the unsteady flow in these engines, there are no unsteady-flow analogs

to the ideal ramjet or turbojet models. We present a flow path analysis for unsteady

air-breathing engines before considering to what extent thermodynamic cycle analysis

can be applied to unsteady propulsion1. Then, we review some of the literature on

the two principal types of unsteady air-breathing engines studied, the pulsejet and

the pulse detonation engine.

1The analysis of Sections 1.3.1 and 1.3.2 is based on work presented in Wintenberger et al. (2004).
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1.3.1 Flow path analysis

We consider a general unsteady propulsion system during steady flight with a steady

inflow and an unsteady outflow. The unsteadiness is assumed to be confined to the

interior of the engine and downstream of the exit plane. The assumption of steady

inflow is more realistic in terms of the conventional steady inlets under consideration

for pulse detonation engine applications (Mullagiri et al., 2003, Nori et al., 2003).

We perform a control volume analysis for the control volume of Fig. 1.9 completely

surrounding the engine. However, in the unsteady case, the properties at the exit

plane of the engine are time-dependent. We consider the unsteady equations for

mass, momentum, and energy conservation (Hill and Peterson, 1992).

d

dt

∫
Ω

ρdV +

∫
Σ

ρ(u · n)dS = 0 (1.89)

d

dt

∫
Ω

ρudV +

∫
Σ

ρu(u · n)dS = ΣF (1.90)

d

dt

∫
Ω

ρ(e + u2/2)dV +

∫
Σ

ρ(e + u2/2)(u · n)dS = −
∫

Σ

P (u · n)dS (1.91)

The first term in each equation represents the contribution due to storage in the

control volume. Assuming that the engine operates in a cyclic mode, there can be no

storage during steady flight and the time derivatives of volume integrals vanish when

integrated over a cycle. We average those equations over a cycle, assuming that the

unsteadiness is limited to the exhaust flow and does not affect the assumption of ideal

external flow around the engine. The mass equation, Eq. 1.89, yields a result identical

to the steady case (Eq. 1.46), using the mass balance in the engine ṁe(t) = ṁ0+ṁf (t),

where () represents temporal averaging over a cycle. Based on this result, the average

mass and energy equations can be expressed as

F =
1

τ

∫ τ

0

F (t)dt = ṁe(t)ue(t)− ṁ0u0 + Ae

(
Pe(t)− P0

)
, (1.92)

ṁe(t)hte(t) = ṁ0ht0 + ṁf (t) · qf . (1.93)
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These equations clearly show that the standard results for steady flow (Eqs. 1.48 and

1.57) do not apply in the unsteady case and that the thrust depends on the details of

the time dependence of the pressure, velocity, and mass flow rate at the engine exit.

For subsonic flow, the problem is even more involved because the unsteadiness can

potentially extend to the inlet flow, rendering the analysis more complicated. Even

if the exit is pressure-matched on average (Pe = P0), this does not mean that the

thrust is optimized or uniquely determined by the time-averaged exit plane properties.

Hence, for a general unsteady propulsion system, it is necessary to carry out the

integration of the exit plane properties to calculate the thrust.

1.3.2 Thermodynamic cycle analysis

A key issue that must be dealt with in any unsteady propulsion system analysis is the

role of unsteady flow in the conversion of thermal energy into impulse. In the case

of steady flow, it is sufficient to consider the total enthalpy h + u2/2, and the usual

idealized isentropic compressions and expansions accomplish the conversion between

thermal and kinetic energy. This is the standard approach used in flow path analysis

of air-breathing systems such as turbines, ramjets, and scramjets (Section 1.2.4).

For these conventional steady-flow propulsion systems, the energy conservation and

known entropy changes uniquely determine the exit velocity, and it is possible to

focus on a thermodynamic interpretation based solely on thermodynamic variables

(the entropy method).

However, in the case of unsteady flow, the conversion of thermal energy into

impulse is not uniquely determined by the thermodynamic state changes. This means

that energy balance statements for the total energy e + u2/2 must be considered

and that the unsteady conversion of thermal energy into kinetic energy, including

wave propagation processes, has to be computed for idealized representations of the

processes in the engine. This has been recognized by Foa (1960, Chap. 15), who

explicitly computes the wave processes using the method of characteristics to analyze

a valved pulsejet. In the case of internal combustion engines, the Otto and Diesel
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cycles are indeed analyzed with a state approach using only thermodynamic variables,

most commonly (P ,v) or (T ,s). In those examples, the energy balance statement is

simplified by neglecting the kinetic energy of the gas. For an arbitrary unsteady-flow

air-breathing propulsion system, there is no way to uniquely and rigorously use a

given sequence of thermodynamic states to define the conversion of thermal energy to

velocity - a conversion that is required in order to compute the momentum balance

and net force on the engine.

It is possible to extend the entropy method to estimate the performance of a

limited range of unsteady propulsion systems. The entropy method, described in

Section 1.2.4, assumes that the mass and momentum contributions of the fuel input

are negligible (f � 1) and that the exit velocity is pressure-matched (Pe = P0).

Recognizing that it is difficult to maintain complete flow expansion in an unsteady

exhaust flow, we adopt the method of Foa (1959, p. 382) to account for conditions

when the flow is not fully expanded, by multiplying the exit velocity for fully-expanded

flow by a correction factor, which can be estimated assuming quasi-steady flow. Thus,

the results for under-expanded flow at the exit plane can be deduced from the results

for fully-expanded flow, and we now assume that Pe = P0.

The entropy method is based upon the steady-flow energy equation (Eq. 1.57). In

general, the cycle average of the unsteady energy equation, Eq. 1.93, is not equivalent

to the classical steady-flow result. For example, in unsteady inviscid flow, the rate

of change of the stagnation enthalpy is actually related instantaneously to the local

rate of pressure change
Dht

Dt
=

1

ρ

∂P

∂t
. (1.94)

This can result in unsteady exit velocities that are significantly different than in

the steady case. In order to illustrate this point, the pressure-velocity diagram of

Fig. 1.17 shows the different exit velocities that can be reached from the same initial

state (labeled 5) through a steady and an unsteady expansion. In steady flow, the

exit velocity is calculated using the conservation of stagnation enthalpy through the
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expansion process.

ue

c5

=

√√√√ 2

γ − 1

[
1−

(
Pe

P5

) γ
γ−1

]
(1.95)

For unsteady flow, the instantaneous exit velocity is calculated by using the Riemann

invariant along a C+ characteristic going across the left-facing expansion wave.

ue

c5

=
2

γ − 1

[
1−

(
Pe

P5

) γ−1
2γ

]
(1.96)

At the same pressure ratio, values both lower and higher than the steady state values

can be obtained through an unsteady expansion, depending on the pressure ratio. In

reality, the exit velocity does not take a single value during an unsteady process and

the value shown here is only representative of the beginning of the process. However,

this comparison shows that the value of the velocity at the exit plane is not uniquely

determined by thermodynamics alone and also that this value does not uniquely

determine the specific impulse.
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Figure 1.17: Steady- and unsteady-flow expansion from the same initial state. γ =
1.4.
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Hence, it is unclear whether the entropy method can be extended to an arbitrary

unsteady flow. Foa (1951, 1959, 1960) suggested an extension to the entropy method

for unsteady flows by redefining the average of the exit plane properties as

〈Xe〉 =
1

τṁe

∫ τ

0

ṁe(t)Xe(t)dt . (1.97)

Using this averaging method and assuming the conditions for use of the entropy

method are satisfied (i.e., f � 1 and Pe = P0), Eqs. 1.92 and 1.93 can be rewritten

the following way

F = ṁ0(〈ue〉 − u0) , (1.98)

〈hte〉 = ht0 + fqf , (1.99)

defining f as f = ṁf/ṁ0. These equations are analogous to the steady-flow equations

used in the entropy method. This means that the thermal efficiency can be defined

for unsteady flows as well

ηth =
〈u2

e〉 − u2
o

2fqf

(1.100)

and using the energy conservation equation (Eq. 1.99), this is equivalent to

ηth = 1− 〈he〉 − h0

fqf

. (1.101)

This is the desired extension to the steady-flow result of the entropy method. In order

to calculate performance from Eqs. 1.100 and 1.101, the averages 〈ue〉 and 〈u2
e〉 have to

be calculated. The key point of difference with the conventional steady-flow analysis

is that, in general, 〈ue〉2 6= 〈u2
e〉. Foa (1960, p. 281) suggests that the differences be

taken into account by defining an efficiency of non-uniformity

ην =
〈ue〉2

〈u2
e〉

. (1.102)

By definition, the efficiency of non-uniformity is less than one and equals one only
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when the exhaust flow is steady or a square wave function of time, corresponding to

an intermittent constant-exit velocity discharge of the gas. The entropy method is

then generalized to unsteady flows (Foa, 1951)

F = ṁ0

(√
ην(2ηthfqf + u2

o)− u0

)
. (1.103)

Equation 1.103 shows that fluctuations from the steady exit velocity profile, corre-

sponding to ην ≤ 1, result in performance losses compared to the steady-flow case.

The maximum performance is obtained when ην = 1, i.e., when the exhaust flow is

steady or a square wave function of time. This approach assumes that the average exit

pressure is equal to the ambient pressure and requires an estimate of the magnitude

of ην . The verification of this assumption and the calculation of ην require detailed

experimental measurements, unsteady analytical models, or numerical simulations.

In conclusion, the entropy method as described in Section 1.2.4 (ην = 1) is rigorously

applicable only to propulsion systems for which the exhaust flow is either steady or a

square wave function of time. The latter option represents an ideal case for unsteady

propulsion; however, whether it is representative of the exhaust flow in a practical

unsteady engine is unclear.

The various efficiencies associated with the flow through an unsteady air-breathing

propulsion system have to be defined more generally (Foa, 1960, Chap. 13) than for

steady-flow propulsion systems (Eqs. 1.58, 1.59, 1.61). The overall efficiency is defined

as the ratio between the propulsive power and the energy input

η0 =
Fu0

ṁfqf

=
u0(〈ue〉 − u0)

fqf

. (1.104)

The propulsive efficiency is defined as the ratio between the propulsive power and the

mechanical energy output from the transformations in the propulsive flow, which is

the sum of the propulsive work and the kinetic energy of the exhaust

ηp =
Fu0

Fu0 + 1
2
ṁe〈(ue − u0)2〉

, (1.105)
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which, for fully expanded flow (Pe = P0) and with f � 1, becomes

ηp =
2(〈ue〉 − u0)u0

〈u2
e〉 − u2

0

. (1.106)

The type of exit velocity profile most favorable from the standpoint of propulsive

efficiency, for given flight conditions and thermal efficiency, corresponds to maximum

〈ue〉, with 〈u2
e〉 held constant. Foa (1951) shows that this condition is reached for

ην = 1, i.e., for steady or square wave-type exit velocity profiles. Hence, propulsive

flows characterized by ην = 1 have a maximized propulsive efficiency.

1.3.3 Selection of the combustion mode

We consider a general unsteady propulsion system which satifies the conditions of

application of the entropy method. Since the entropy increment associated with

combustion is the largest component of the total entropy rise that determines the

thermal efficiency, it is critical to select the combustion mode minimizing the entropy

increment for the application considered.

The type of constraints on the propulsion system strongly influences the optimal

combustion mode. In particular, whether the initial temperature before combustion,

Ti, is prescribed or a maximum temperature, Tmax, is fixed at the combustor outlet

(usually for material considerations) modifies the trends observed. Foa (1951) showed

that the optimal combustion mode for the ramjet, where Tmax is usually prescribed,

is constant-pressure combustion. However, in the case of pulsejets where the initial

temperature before combustion, Ti, is prescribed, the optimal combustion mode is

found to be constant-volume combustion at low flight Mach numbers (Foa, 1951).

The use of unsteady combustion modes offers the possibility of avoiding continuous

exposure of the materials to the peak combustion temperatures. Therefore, the max-

imum allowable temperature of the burned gases is often considerably higher with

unsteady than with steady combustion modes, which may result in a lower entropy

rise and higher performance. These considerations led Foa (1960, pp. 345–346) to

conclude that the most efficient jet engine is characterized by a steady inflow, an
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unsteady combustion mode, and a steady or square wave-type exhaust flow.

Detonation appears as a particularly attractive combustion mode due to the fact

that the Chapman-Jouguet detonation corresponds to the end state of minimum en-

tropy on the Hugoniot curve. However, end states on the Hugoniot curve correspond

to processes starting from the same initial state. In unsteady flows, a variety of com-

bustion processes can be started from a given initial state, whereas in steady-flow

engines, the processes are constrained because the reaction front has to be station-

ary. This constraint requires a much higher stagnation temperature upstream of the

combustion chamber, as shown in Section 3.2.1. At given flight conditions and in

the absence of precompression, the static temperature upstream of the combustion

chamber will be lower for detonations than for deflagrations due to the high flow ve-

locity required to stabilize the detonation wave in the combustor. When considering

this fact, Foa (1960, pp. 285–286) concludes that detonation produces, in steady-

flow engines, a higher entropy rise than deflagration. Based on this argument, Foa

(1960) suggests that detonations offer better promise as an unsteady than as a steady

combustion mode. This point will be discussed in more detail in Section 2.1.

1.3.4 Pulsejet

The pulsejet is a compressorless, unsteady-flow jet engine without wave precompres-

sion of the combustible charge. A pulsejet is mechanically very simple and consists

of a short inlet diffuser leading to a set of flow check valves, followed by a combus-

tion chamber and a shaped tube, as shown in Fig. 1.18. A fuel injection system is

located downstream of the valves. The air flowing into the engine through the valves

is mixed with a fuel spray, and the mixture is ignited. As a result of the pressure rise

generated by the explosion, the inlet flow check valves close and the exhaust gases

expand outside through the exhaust tube. The exhaust of the burned gases generates

expansion waves that reduce the pressure behind the check valves until they open

again and a fresh charge of air enters. The cycle is then repeated. A spark is required

only to start because after the first cycle, the hot gases from the previous cycle ignite
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the fresh combustible charge. The most common version of the pulsejet is the valved

pulsejet; however, there exist valveless pulsejets, which rely on wave processes in an

adequately designed inlet to achieve the same function as intake valves in the valved

pulsejet.

Figure 1.18: Schematic of a valved pulsejet (from Foa, 1959).

The pulsejet was invented at the beginning of the twentieth century and the

concept was actually a precursor to the steady-flow concept now used in conventional

gas turbine engines (Foa, 1959). A review of the early developments of the pulsejet

is given by Edelman (1947). The use of unsteady combustion modes was thought

promising, with the ultimate goal of achieving constant-volume combustion (Eidelman

et al., 1991). Significant efforts were focused on the pulsejet in the late 1940s and

1950s. Some of the reviews on pulse detonation engines include extensive references

to this work (Eidelman et al., 1991, Bussing and Pappas, 1996, Lynch and Edelman,

1996). Foa (1959, 1960) also gives an extensive review of the development of the

pulsejet.

The first extensive analysis of pulsejet operation was conducted by Schultz-Grunow

(1947), using the method of characteristics. The results helped explain some experi-

mental observations and the effect of design parameters on performance. Zipkin and

Lewis (1948) carried out analytical and experimental investigations of an explosion-

cycle combustion chamber. Explosion pressure ratios from 1.7 to 5 were obtained in
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a combustion chamber with a timed inlet valve and various fixed-area exhaust noz-

zles. The effects of explosion pressure ratio and combustion time on cycle frequency,

inlet pressure, jet thrust, and thrust specific fuel consumption were investigated.

In particular, the calculations showed that a reduction in combustion time would

result in strong increases in explosion pressure ratio and thrust. Several experimen-

tal efforts later investigated the possibility of a resonant wave engine for subsonic

propulsion applications (Logan, 1954, Hertzberg and Russo, 1954). Researchers also

quickly realized that engines with multiple combustion chambers had a lower degree

of unsteadiness and higher potential performance. A number of studies proposed

multiple-chamber concepts (Bollay and Bitondo, 1954, Hertzberg and Russo, 1954,

Lawrence and Weatherston, 1954).

One of the main questions in pulsejet performance analysis is: what is the combus-

tion mode? It is obviously a strong function of cycle frequency and valve timing. For

example, when the valve opening ratio is increased beyond a certain value, the ampli-

tude of the flow pulsations decreases and constant-pressure combustion is approached

(Schultz-Grunow, 1947, Foa, 1959). Based on several experimental observations, Foa

(1959) claims that a polytropic combustion mode, characterized by P/ρn = constant,

with a polytropic exponent of −1 is representative of the explosion process in pulse-

jets. A value of n = −1 corresponds to explosion ratios around 2.5, which is in good

agreement with experimental measurements (Zipkin and Lewis, 1948).

Foa (1951) modeled the performance of the pulsejet based on quasi-steady blow-

down of a combustion chamber and shows that the pulsejet has a higher performance

than the ramjet not only in the subsonic flight domain but also well into the super-

sonic domain. Foa (1960, pp. 373–376) introduces the model of the ideal pulsejet,

based on the entropy method. This ideal model assumes that the conditions of appli-

cation of the entropy method are satisfied (Section 1.3.2) and that the flow velocity in

the combustion chamber is very low, so that the initial temperature before combus-

tion is equal to the freestream stagnation temperature. Under these conditions and

assuming constant specific heats, the thermal efficiency for a polytropic combustion
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mode is

ηth = 1− CpT0

fqf

[(
1 +

n− 1

n− γ

fqf

CvTt0

) n−γ
γ(n−1)

exp
∆s

Cp

− 1

]
, (1.107)

where the term exp(∆s/Cp) represents the losses associated with processes other

than combustion. Moreover, in the ideal pulsejet model, all flow processes except

combustion are assumed to be isentropic (hence, ∆s = 0) and the exhaust velocity

is assumed to be a square wave function of time, corresponding to ην = 1. It is then

possible to calculate the thrust from Eqs. 1.107 and 1.103. The specific impulse of

the ideal pulsejet is shown in Fig. 1.19 as a function of flight Mach number for a

polytropic exponent n = −1 (Foa, 1959, 1960). The ideal ramjet case (n = 0) is

given for comparison. The ideal pulsejet is seen to present a significant performance

advantage over the ramjet, at least at low flight Mach numbers.
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Figure 1.19: Specific impulse of ideal and standard pulsejet without backflow, cal-
culated using the entropy method (Foa (1959, 1960)). γ = 1.4, qf = 45 MJ/kg,
f = 0.035, T0 = 278 K, n = −1.

The actual performance of the pulsejet is quite different from the ideal case of

Fig. 1.19. The main difference is attributed to its inability to sustain ram pressure
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(Foa, 1960, pp. 373–376) in the combustion chamber during the charging phase of

the cycle. The pressure in the combustion chamber depends strongly on the exit

boundary conditions and is very close to the freestream static pressure. Foa (1959,

1960) accounts for the entropy increment associated with the stagnation pressure

loss by defining the standard pulsejet, for which combustion occurs at the freestream

static pressure and ∆s/Cp = ln(Tt0/T0). Specific impulse predictions for the standard

pulsejet are shown in Fig. 1.19 for the ideal square wave case (ην = 1) and for ην = 0.8

in order to evaluate the performance loss associated with exit velocity fluctuations.

The standard pulsejet specific impulse decreases quasi-linearly with increasing flight

Mach number from the ideal pulsejet specific impulse value at M0 = 0 and vanishes

below Mach 2.

Figure 1.20: Schematic of a ducted pulsejet with tail shrouding.

Thrust augmentation can be achieved for the pulsejet when some of the energy of

the combustion products is transferred to secondary air flows (Foa, 1960, Chap. 15c).

There are two main ways of thrust augmentation, using backflow and shrouding.

Backflow occurs at low speeds and is beneficial because of the energy transfer from

the hot combustion products to the cold backflow air (Foa, 1959, 1960). Shrouding

can be used to improve pulsejet performance by thrust augmentation and through

utilization of ram precompression for full shrouding. The ducted pulsejet has a higher

performance due to energy transfer of the primary pulsejet flow to the secondary flow

through pressure exchange and mixing. This type of thrust augmentation is more

efficient for unsteady than for steady flows. Significant thrust augmentation ratios

(higher than 1.5) can be obtained for the ducted pulsejet (Rudinger, 1951, Lock-

wood, 1954, Foa, 1960). The performance of the ducted pulsejet was investigated by
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Lawrence and Weatherston (1954) and Lockwood (1954). Lawrence and Weatherston

(1954) predicted that a ducted multiple-tube pulsejet has a superior performance than

the ramjet or the turbojet with afterburner at all supersonic speeds. They also in-

vestigated the potential use of the pulsejet as the combustion chamber in a turbojet.

Lockwood (1954) studied the ducted pulsejet at high subsonic flight Mach numbers

(around 0.9) and altitudes of 30,000 to 40,000 ft. His most optimistic predictions

showed that the performance of the ducted pulsejet is comparable to that of the

turbojet.

1.3.5 Pulse detonation engine

A pulse detonation engine is an intermittent propulsion system that uses the repet-

itive generation of detonations to produce thrust. In a sense, it is a pulsejet with a

particular type of combustion (detonation). A pulse detonation engine (PDE) typ-

ically consists of an inlet, a valve or series of valves, a fuel injection system, one or

multiple detonation tubes, and an exit nozzle. The basic PDE cycle consists of the

following steps, described in Fig. 1.21:

a) A detonation is initiated in a detonation tube filled with reactants.

b) The detonation propagates through the detonation tube and exits at the open

end.

c) The combustion products exhaust through a blowdown process.

d) At the end of the exhaust process, the tube contains expanded combustion

products.

e) The valve opens and reactants flow into the tube, pushing the combustion prod-

ucts out of the tube.

f) When the tube is filled with reactants, the valve closes and the cycle repeats.

Detonation is an attractive combustion mode for propulsion applications because

of the fast heat release rate and high peak pressures generated. The rapidity of
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Figure 1.21: Pulse detonation engine cycle.

the process makes it thermodynamically closer to a constant-volume process than a

constant-pressure combustion process typical of conventional steady-flow propulsion

systems (Eidelman et al., 1991, Bussing and Pappas, 1996, Kailasanath, 2000). Based

on thermodynamic cycle analysis, constant-volume combustion cycles yield a higher

thermal efficiency than the constant-pressure combustion cycle (Section 2.4.1). This

can translate into potential performance advantages for unsteady propulsion systems

using constant-volume combustion over typical steady propulsion systems based on

constant-pressure combustion, provided that the entropy method can be applied and

the exit velocity is a square wave function of time. Another advantage, pointed

out by Lynch and Edelman (1996), is that the operating frequency of a PDE is

not determined by the acoustics of the system as is typically the case in pulsejets,

but can be directly controlled. This also means that propulsion systems based on

pulsed detonations can be scaled, and their operating parameters can be modified for

different types of applications.

The first reported work on intermittent detonation engines is attributed to Hoff-

mann (1940), who operated with acetylene- and benzine-oxygen mixtures. Nicholls

et al. (1958) performed single-cycle and multi-cycle thrust measurements of a det-
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onation tube operating with hydrogen-oxygen, hydrogen-air, acetylene-oxygen, or

acetylene-air. They obtained fuel specific impulses as high as 2100 s and maximum

operating frequencies of 35 Hz and concluded that the concept held promise. It is

interesting to note that Nicholls et al. (1958) proposed the concept of a PDE with

multiple detonation tubes connected to a common air inlet using a rotary valve, which

is currently under development (Bussing, 1995). Krzycki (1962) performed an experi-

mental investigation of intermittent detonation engines with frequencies up to 60 Hz,

using a setup similar to that of Nicholls et al. (1958). Due to low spark energy at

high frequencies, a substantial part of the experiments involved deflagrations rather

than detonations, leading Krzycki (1962) to conclude that thrust was possible from

such a device but practical applications did not appear promising. At this point, all

experimental work related to the PDE concept stopped. Indirectly related work was

performed at the Jet Propulsion Laboratory by Back et al. (1983), who studied the

feasibility of a rocket thruster powered by intermittent detonations of solid explosive

for dense or high-pressure atmosphere applications. Work on PDEs started again in

the late 1980s and early 1990s, involving substantial experimental (Helman et al.,

1986), numerical (Eidelman et al., 1991, Lynch and Edelman, 1996, Cambier and

Tegner, 1998), and modeling (Bratkovich and Bussing, 1995) efforts. Most of the re-

cent work on PDEs has been reviewed by Eidelman et al. (1991), Bussing and Pappas

(1996), Lynch and Edelman (1996), Kailasanath (2000), and Kailasanath (2002).

A wide number of applications have been proposed for PDEs, perhaps due to

the uncertainty in PDE performance estimates and the remaining difficulties of ob-

taining reliable operation with practical fuels (Kailasanath, 2002). Applications in

air-breathing configurations include supersonic vehicles, miniature cruise missiles, af-

terburners, low cost UAV and UCAV applications, and SSTO launchers (Kailasanath,

2002). Rocket engine applications have also been considered (Bratkovich et al., 1997,

Coy, 2003). The rocket mode of operation is similar to the air-breathing mode except

that the oxidizer is also injected into the system periodically. Other applications in-

volving combined cycle modes, such as hybrid PDE-piston or detonation wave rotor

engine configurations, have been reviewed by Dean (2003).
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There are a number of key issues in PDE design, which have been highlighted

by Bussing and Pappas (1996) and, more recently, by Kailasanath (2002). For air-

breathing configurations, inlets are a critical component of the engine. They have

to undergo significant pressure fluctuations during multi-cycle operation (Mullagiri

et al., 2003). Unsteady valveless (Brophy et al., 2003) and valved (Bussing, 1995) inlet

designs exist. In parallel, some researchers are now focusing on using conventional

steady inlets in PDE configurations (Mullagiri et al., 2003, Nori et al., 2003). The

injection system has to be able to rapidly and reliably inject and mix fuel and oxidizer.

Many practical applications require the use of liquid fuels. The issue of atomization

and uniformity of the fuel-oxidizer distribution under pulsed conditions is discussed

by Lasheras et al. (2001). Detonation initiation is critical due to the requirement

to repeatedly initiate practical but insensitive mixtures of liquid jet fuel and air (in

air-breathing applications) using a weak ignition source. Direct detonation initiation

in typical mixtures of jet fuel and air requires an impractical amount of energy, and

indirect initiation methods are necessary. One of these methods is deflagration to

detonation transition (DDT), which satisfies the requirements mentioned above, but

typically results in long detonation formation distances (Shepherd and Lee, 1992).

Other approaches include the use of a sensitized predetonator (Brophy et al., 2002,

Saretto et al., 2003) or shock focusing through the generation of a toroidal imploding

detonation wave (Jackson and Shepherd, 2002).

Another key issue in PDE design, which is explored in the current work, is that

of performance. Because of the intrinsically unsteady nature of the flow field as-

sociated with the detonation process, it is difficult to evaluate the performance of

PDEs, and performance bounds have been elusive. Researchers started by focusing

on the simplest PDE configuration consisting of a straight tube closed at one end and

open at the other end. The results of several studies, including the one presented

in Chapter 4, now seem to agree on the impulse generated by a straight detonation

tube (Kailasanath, 2002, Dean, 2003). In order to optimize the thrust, an exit nozzle

is desirable whose role is to efficiently convert thermal energy into kinetic energy.

However, due to the unsteady nature of the flow field in the detonation tube, it is still
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unclear what the optimal configurations are (Kailasanath, 2001). Substantial specific

impulse increases have been observed with the addition of a simple straight extension

filled with air in single-cycle (Cooper and Shepherd, 2002, Falempin et al., 2001) and

multi-cycle (Schauer et al., 2001) static experiments. This effect has been shown to

be a purely unsteady gasdynamic effect (Li and Kailasanath, 2001). Recent work

by Morris (2003) indicates that, as in steady-flow nozzles, these optimal configura-

tions are a function of the pressure ratio. These results and the unsteady-flow effects

mentioned previously highlight the complexity of predicting the effects of nozzles on

performance. Another approach to enhancing performance, similar to what was used

for pulsejets, is the addition of ejectors and is currently under investigation (Rasheed

et al., 2003). Because of the uncertainties about the influence of exit nozzles and the

complexity of the unsteady reactive flow field with moving body parts in PDEs, very

few efforts have attempted to develop a system level model of air-breathing PDE

operation (Wu et al., 2003). Although several researchers (Kentfield, 2002, Heiser

and Pratt, 2002, Dyer and Kaemming, 2002) have developed thermodynamic cycle

models for PDEs, there is currently no widely accepted model for performance pre-

diction based on thermodynamic cycle analysis (Dean, 2003). Consequently, there is

still much uncertainty about system level performance estimates (Kailasanath, 2002).

1.4 Thesis outline

This thesis investigates the applications of detonations to air-breathing propulsion.

Chapter 1 presents an introduction to detonations and air-breathing propulsion and

reviews the fundamentals of these fields. Chapter 2 analyzes, from a thermodynamic

point of view, the potential of detonations for developing useful work and infers

conclusions upon steady and unsteady detonation-based propulsion systems. The

subsequent chapters are focused on specific engine concepts that utilize detonations

in a steady (Chapter 3) and an unsteady mode (Chapters 4 and 5). Chapter 3

presents a flow path analysis of steady detonation engines. The performance of these

engines is computed as a function of flight conditions and compared with conventional
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propulsion systems. The limitations associated with the use of steady detonations in a

combustor are presented and their influence on performance is discussed. Chapters 4

and 5 focus on pulse detonation engines. The unsteady generation of thrust in a PDE

is first analyzed and modeled in its simplest configuration consisting of a straight

detonation tube in Chapter 4. Chapter 5 builds on the results of Chapter 4 to predict

the performance of an air-breathing PDE based on gas dynamics and control volume

analysis. The performance of a supersonic single-tube PDE with no exit nozzle is

calculated for various flight conditions and compared with that of the ramjet.
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Chapter 2

Thermodynamic Analysis of
Combustion Processes for
Propulsion Systems

A key issue in conceptual design and analysis of proposed propulsion systems is the

role of the combustion mode in determining the overall efficiency of the system. In

particular, what mode of combustion should be used to extract the maximum amount

of work from a given combustible mixture? This issue is addressed by thermodynamic

considerations for ideal thermal cycles that simulate common combustion modes such

as constant-pressure (Brayton cycle) or constant-volume combustion (Humphrey cy-

cle). Our goal is to understand, based on thermodynamics, the merits of detonative

combustion relative to deflagrative combustion characteristic of conventional ramjet

and turbojet engines. After reviewing detonation thermodynamics, we analyze the

merits of detonations for steady-flow systems and highlight the importance of the ir-

reversible portion of the entropy rise in steady-flow analysis. This leads us to consider

the situation for unsteady, i.e., intermittent or pulsed, combustion systems which use

various modes of operation. For unsteady detonation waves, we consider a notional

cyclic process for a closed system (the Fickett-Jacobs cycle) in order to circumvent

the difficulties associated with analyzing a system with time-dependent and spatially

inhomogeneous states. We compute a thermal efficiency for detonations based on the

ideal mechanical work produced by the cycle and compare it with the Brayton and

This chapter is based on work presented in Wintenberger and Shepherd (2004).
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Humphrey cycles. The similar thermal efficiency values obtained for constant-volume

combustion and detonation motivate further comparison of these two combustion

modes. Finally, a gas-dynamics based model using constant-volume combustion is

developed to predict the performance of unsteady propulsion systems.

2.1 Entropy variation along the Hugoniot

The different combustion modes that can be obtained in steady flow are usually

analyzed using a control volume surrounding the combustion wave, such as that of

Fig. 1.1. The mass, momentum, and energy conservation equations are applied for

steady, constant-area, and inviscid flow (Eqs. 1.1–1.3). Solving these equations yields

the Hugoniot curve (Fig. 2.1), which is the locus of all possible solutions for state 2

from a given state 1 and a given energy release qc. In Section 1.1.1, we showed that

the entropy rise during combustion was minimum at the CJ detonation point, based

on the curvature of the Hugoniot. We now illustrate this point for the perfect gas

and discuss its relevance to thermodynamic cycle analysis.
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Figure 2.1: Solutions of the conservation equations for the Hugoniot for M2 as a
function of M1 (left) and Hugoniot curve in the pressure-specific volume plane (right)
for a perfect gas with γ = 1.4 and qc/CpT1 = 4.

The set of Eqs. 1.1–1.3 can be rewritten for a perfect gas as a function of the Mach
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numbers upstream and downstream of the wave.

ρ2

ρ1

=
M2

1 (1 + γM2
2 )

M2
2 (1 + γM2

1 )
(2.1)

P2

P1

=
1 + γM2

1

1 + γM2
2

(2.2)

qc

CpT1

+ 1 +
γ − 1

2
M2

1 =
M2

2 (1 + γM2
1 )2

M2
1 (1 + γM2

2 )2

(
1 +

γ − 1

2
M2

2

)
(2.3)

This set of equations can be solved analytically for a given q and initial state. The

Mach number downstream of the wave M2 is plotted as a function of the Mach

number upstream of the wave M1 in Fig. 2.1, along with the Hugoniot curve in the

pressure-specific volume plane. The lower CJ point yields the highest deflagration

Mach number, while the upper CJ point corresponds to the lowest detonation Mach

number.
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Figure 2.2: Variation of the total entropy rise along the Hugoniot. γ = 1.4, qc/CpT1 =
4.

The entropy rise associated with the combustion process can be computed from
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Eqs. 2.1 and 2.2.
s2 − s1

R
=

γ

γ − 1
ln

(
T2

T1

)
− ln

(
P2

P1

)
(2.4)

The entropy rise is plotted in Fig. 2.2 as a function of the specific volume. The differ-

ent solution regions are shown and the entropy rise is minimum at the CJ detonation

point and maximum at the CJ deflagration point. Thus, from Eq. 1.80, it appears as

if a cycle using detonative combustion will yield the highest thermal efficiency since

it has the lowest entropy rise.

2.2 The role of irreversibility in steady-flow propul-

sion

The fact that the entropy rise is minimum at the CJ detonation point, in conjunc-

tion with the result of Eq. 1.75, has motivated several efforts to explore detonation

applications to steady-flow propulsion (Dunlap et al., 1958, Sargent and Gross, 1960,

Wintenberger and Shepherd, 2003b). However, in spite of the apparent lower en-

tropy rise generated by detonations as compared with deflagrations, these studies

concluded that the performance of steady detonation-based engines is systematically

and substantially lower than that of the ramjet (Section 3.3.2).

The explanation of this apparent contradiction lies in considering the role of en-

tropy generation and irreversible processes in the combustor. It is a general conclusion

of thermodynamics and can be explicitly shown using availability arguments (Clarke

and Horlock, 1975) that the work obtained is maximized when the irreversibility is

minimized. When portions of the propulsion system involve losses and irreversible

generation of entropy, the efficiency is reduced and the reduction in performance (spe-

cific thrust) can be directly related to the irreversible entropy increase (Riggins et al.,

1997).

The entropy rise occurring during premixed combustion in a flowing gas has a

minimum component due to the energy release and the chemical reactions, and an

additional, irreversible, component due to the finite velocity and, in the case of a
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detonation, the leading shock wave.

s2 − s1 = ∆smin + ∆sirr (2.5)

For a combustion wave such as Fig. 1.1, we propose that the minimum entropy rise

(for a fixed upstream state and velocity) can be computed by considering the ideal

stagnation or total state.1 The total properties at a point in the flow are defined as

the values obtained by isentropically bringing the flow to rest. For example, the total

enthalpy is

ht = h +
u2

2
(2.6)

and the total pressure and temperature are defined by

h(Pt, s) = ht h(Tt, s) = ht , (2.7)

where by definition st = s. The process of computing the stagnation state is illustrated

graphically in the (h,s) or Mollier diagram of Fig. 2.3. At fixed total enthalpy, the

total pressure decreases with increasing entropy

dPt = −ρtTtds (2.8)

so that the minimum entropy rise is associated with the highest total pressure, which

is the upstream value Pt1. This is illustrated graphically in Fig. 2.3, showing the

additional entropy increment ∆sirr associated with a total pressure decrement Pt1 −

Pt2.

For a given stagnation state, the minimum entropy rise can be determined for gas

mixtures with realistic thermochemistry by considering an ideal constant-pressure

(zero velocity) combustion process. The first step is to determine the total tempera-

1This conjecture is easy to demonstrate for a perfect gas with an effective heat addition model of
combustion; for example, see Oates (1984, p. 44). We also demonstrate the correctness of this idea
explicitly in subsequent computations for the one-γ detonation model and numerical solutions with
realistic thermochemistry.
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Figure 2.3: Mollier diagram used to calculate minimum entropy component. Solid
lines are isobars for reactants and dotted lines are isobars for products.

ture in the products from the energy balance equation

h2(Tt2) = h1(Tt1) , (2.9)

where the species in state 2 are determined by carrying out a chemical equilibrium

computation. The second step is to determine the entropy rise across the combustion

wave by using the stagnation pressures, temperatures, and compositions to evaluate

the entropy for reactants and products

∆smin = s2(Tt2, Pt1)− s1(Tt1, Pt1) . (2.10)

The total entropy jump across the wave is

s2 − s1 = s2(T2, P2)− s1(T1, P1) , (2.11)

where state 2 in the products is determined by solving the jump conditions. The

irreversible component can then be computed by using Eq. 2.5.
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For a perfect gas model, the entropy change can be explicitly computed as

s2 − s1 = Cp ln

(
Tt2

Tt1

)
−R ln

(
Pt2

Pt1

)
. (2.12)

From Eq. 2.10, the minimum entropy rise is

∆smin = Cp ln

(
Tt2

Tt1

)
(2.13)

and the irreversible component is

∆sirr = −R ln

(
Pt2

Pt1

)
. (2.14)

The minimum component can be identified as the amount of entropy increase that

would occur with an equivalent reversible addition of heat

ds =
dq

T
(2.15)

at constant pressure, for which

dq = dh = CpdT . (2.16)

Substituting and integrating from stagnation state 1 to 2, we find that

∆srev = Cp ln

(
Tt2

Tt1

)
, (2.17)

which is identical to the expression for the minimum entropy rise found from eval-

uating the entropy change using the prescription given above. In what follows, we

will also refer to the minimum entropy rise as the reversible entropy rise. Using these

definitions, we show in Fig. 2.4 the partition of the entropy into these two portions

for the one-γ model of detonation considered earlier.

Although the total entropy rise is lower for the detonation branch than the de-

flagration branch, a much larger portion (greater than 50%) of the entropy rise is
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Figure 2.4: Reversible and irreversible components of the entropy rise along the
Hugoniot, γ = 1.4, qc/CpT1 = 4.

irreversible for detonations than for deflagrations (less than 5%). Separate com-

putations show that the majority of the irreversible portion of the entropy rise for

detonations is due to the entropy jump across the shock front, which can be obtained

directly from the total pressure decrease across the shock wave and Eq. 2.12. This

loss in total pressure is orders of magnitude larger for detonation than for deflagration

solutions and is shown in Section 3.3.2 to be responsible for the lower performance of

detonation-based engines relative to the ramjet. Hence, the paradox mentioned ear-

lier can be resolved by considering not just the total entropy rise, but by determining

what part of this is irreversible. An alternative way to look at this issue is given in

the next section, where we reformulate the jump conditions so that the role of irre-

versible entropy rise in the calculation of the thermal efficiency can be demonstrated

explicitly.
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2.2.1 Irreversible entropy rise and thermal efficiency

The role of the irreversible part of the entropy rise can be explored further by con-

sidering Eq. 1.75. In order to compare objectively different combustion modes, the

engine has to be studied in a given flight situation for a fixed amount of energy re-

lease during the combustion, as shown in Fig. 2.5. Our conceptual engine consists of

an inlet, a combustion chamber with a steady combustion wave, and a nozzle. Note

that the conditions for combustion wave stabilization are not considered here, but are

explored in detail for detonation waves in Section 3.2.

Figure 2.5: Ideal steady engine in flight showing the location of the combustion wave.

The entropy rise between the inlet and exit planes is the sum of the entropy rise

through the combustion and the irreversible entropy increments through the inlet and

nozzle. Grouping together the irreversible entropy increments through the inlet, the

combustion chamber, and the nozzle,

se − s0 = ∆smin + ∆sirr . (2.18)

The minimum part of the entropy rise during combustion is constant for a fixed

energy release and a fixed stagnation state upstream of the wave. From the general

principles of thermodynamics and consistent with Eq. 1.75, the highest efficiency is

obtained with the minimum irreversibility for a given chemical energy release qc.

This general statement can be shown explicitly for the case of the perfect gas.

The minimum component of the entropy rise for the one-γ model is

∆smin = Cp ln

(
1 +

qc

CpTt1

)
. (2.19)
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Substituting Eq. 2.18 into Eq. 1.80, and using the result of Eq. 2.19, the thermal

efficiency can be expressed as a function of the irreversible entropy rise

ηth = 1− CpT0

qc

[(
1 +

qc

CpTt1

)
exp

(
∆sirr

Cp

)
− 1

]
. (2.20)

From Eq. 2.20, the highest efficiency is obtained for ∆sirr = 0

ηth < ηth(∆sirr = 0) = 1− T0

Tt1

, (2.21)

which is the classical expression for the ideal Brayton cycle.

Consider an idealized version of our conceptual engine, for which the thermal effi-

ciency is determined only by the irreversible entropy rise during combustion. In order

to compare different combustion modes, we need to calculate the irreversible entropy

rise for all the possible solutions to Eqs. 1.1–1.3. However, the result of Fig. 2.2

does not apply directly because the velocity of the initial state and, consequently, the

total enthalpy are not constant for the conventional Hugoniot analysis. Instead, it

is necessary to compute another solution curve corresponding to a fixed freestream

stagnation state, which we will refer to as the stagnation Hugoniot.

2.2.2 The stagnation Hugoniot

The stagnation Hugoniot is the locus of the solutions to the conservation equations

(Eqs. 1.1-1.3) for a given stagnation state upstream of the combustion wave. The

initial temperature and pressure upstream of the wave vary with the Mach number

M1. We compute explicitly the stagnation Hugoniot for a perfect gas, based on

Eqs. 2.1–2.3. Equation 2.3 has to be rewritten as a function of the parameter qc/CpTt1,

which has a fixed value for a given freestream condition.

1 +
qc

CpTt1

=
M2

2 (1 + γM2
1 )2(1 + γ−1

2
M2

2 )

M2
1 (1 + γM2

2 )2(1 + γ−1
2

M2
1 )

(2.22)
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This equation can be solved analytically, and the solution for M2 as a function of

M1 is plotted in Fig. 2.6. The solution curves are very similar to those of Fig. 2.1,

with the CJ points yielding the maximum deflagration and minimum detonation

Mach numbers. There is, however, a difference for the weak detonation branch. As

M1 →∞, M2 asymptotes to a constant value instead of becoming infinite as for the

Hugoniot.

M2 →

√√√√√1− (γ − 1) qc

CpTt1
+
√

1− (γ2 − 1) qc

CpTt1

γ(γ − 1) qc

CpTt1

(2.23)

This is due to the fact that the stagnation conditions at state 2 are fixed by the

stagnation conditions at state 1 and the heat release. Detonation solutions are found

to be possible only for
qc

CpTt1

<
1

γ2 − 1
. (2.24)

This condition is imposed by the requirement that T1 > 0 which is necessary for the

limiting value of Eq. 2.23 to be real. For higher values of qc/CpTt1, the total enthalpy

is not high enough to enable a steady detonation in the combustor for the given value

of the heat release, and no steady solutions exist (Section 3.2).
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Figure 2.6: Solutions of the conservation equations for the stagnation Hugoniot for
M2 as a function of M1 (left) and stagnation Hugoniot curve in the pressure-specific
volume plane (right) for a perfect gas with γ = 1.4 and qc/CpT1 = 0.8.

For the conventional Hugoniot, Fig. 2.1, the entropy, pressure, and temperature at
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state 2 are finite for a constant-volume (v2 = v1) explosion process even though, in this

limit, M1 → ∞. However, in the stagnation Hugoniot representation, the pressure

ratio along the weak detonation branch becomes infinite as this limit is approached.

As M1 → ∞, the static pressure at state 1 decreases towards zero because the total

pressure is fixed, but the static pressure at state 2 remains finite due to the finite value

of M2. This explains the unusual shape of the stagnation Hugoniot, which is plotted

in the pressure-specific volume plane for γ = 1.4 and qc/CpTt1 = 0.8 in Fig. 2.6. Just

as for the conventional Hugoniot, there is no solution in the positive quadrant of

the pressure-specific volume plane for Rayleigh processes (Eq. 1.5). However, unlike

the conventional Hugoniot, the stagnation Hugoniot curve is not continuous across

this forbidden region. This means that the detonation and deflagration branches are

disjoint.

The total entropy rise along the stagnation Hugoniot is shown in Fig. 2.7 as a

function of the specific volume ratio. For a fixed heat release and initial stagnation

state, the minimum entropy rise is constant (Eq. 2.19). As in the conventional Hugo-

niot, the CJ points correspond to extrema of the entropy. However, they are only

local extrema because of the discontinuity of the solution curve in the pressure-specific

volume plane. The CJ detonation point corresponds to a minimum in entropy along

the detonation branch, while the CJ deflagration point corresponds to a maximum

in entropy along the deflagration branch. However, the entropy rise associated with

the CJ detonation point is much larger than that associated with the CJ deflagra-

tion point for all possible values of qc/CpTt1. In general, the irreversible entropy

rise associated with any physical solution on the deflagration branch is much lower

than that for any detonation solution. Of all physically possible steady combustion

modes, constant-pressure (CP) combustion at zero Mach number is the process with

the smallest entropy rise for a fixed stagnation condition.

We now use the result of Eq. 2.21 to compare the thermal efficiency of ideal steady

propulsion systems as a function of the combustion mode selected. Losses associated

with shock waves, friction, mixing, or heat transfer are neglected, and the compres-

sion and expansion processes are assumed to be isentropic. The thermal efficiency for
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an ideal steady propulsion system flying at a Mach number of 5 is plotted in Fig. 2.8.

The irreversible entropy rise in detonations strongly penalizes the efficiency of steady

detonation-based engines compared to the conventional ideal ramjet. The values

for the thermal efficiency at the upper CJ point obtained based on the stagnation

Hugoniot are identical to those predicted by flow path analysis for ideal detonation

ramjets (Section 3.3.2). Thus, this approach reconciles flow path analysis and thermo-

dynamic cycle analysis for detonation ramjets. The values of the thermal efficiency of

Fig. 2.8 are not representative of practical propulsion systems at a flight Mach num-

ber M0 = 5 because the total temperature at the combustor outlet is too high to be

sustained by the chamber walls. More realistic studies limit the total temperature at

the combustor outlet based on material considerations, which decreases substantially

the thermal efficiency. The analysis of steady detonation-based ramjets also has to

take into account effects such as condensation or auto-ignition of the fuel-air mixture
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and limitations associated with fuel sensitivity to detonation (Section 3.3.2). The net

effect is that propulsion systems based on steady detonation waves have a very small

thrust-producing range and the maximum performance is always substantially lower

than conventional turbojets or ramjets (Section 3.3.2).
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Figure 2.8: Thermal efficiency of an ideal engine flying at M0 = 5 as a function of
the combustion mode selected, γ = 1.4, qc/CpTt1 = 0.8.

For our ideal propulsion system, the constant-pressure (CP) combustion process

yields the highest thermal efficiency of all physical solutions to the conservation equa-

tions. Foa (1951) concluded that CP combustion was always the optimum solution

for steady flow using an argument based on a polytropic approximation of the com-

bustion mode for the perfect gas. We have now extended his result to all physically

possible steady combustion modes for the perfect gas. However, in order to compare

practical propulsion systems based on different combustion modes, one also has to

compute the irreversible entropy rise through the other components of the engine.

The entropy rise associated with irreversible processes such as shocks, friction, mix-

ing, or heat transfer may become significant (Riggins et al., 1997) and dominate the

results, particularly at high supersonic flight Mach numbers.
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2.3 Detonation applications in unsteady flow: the

Fickett-Jacobs cycle

The entropy minimum corresponding to CJ detonations and its implications on the

thermal efficiency have also motivated significant efforts to apply unsteady detona-

tions to propulsion, in particular through the research on pulse detonation engines

(Kailasanath, 2000). Unsteady detonations can be analyzed on a thermodynamic

basis by considering a closed system. The Fickett-Jacobs (FJ) cycle is a conceptual

thermodynamic cycle that can be used to compute an upper bound to the amount

of mechanical work that can be obtained from detonating a given mass of explosive.

The advantage of the FJ cycle is that it provides a simple conceptual framework for

handling detonations in a purely thermodynamic fashion, avoiding the complexity

of unsteady gas dynamics (Wu et al., 2003, Wintenberger and Shepherd, 2003a) of

realistic pulse detonation or pulsejet engines.

2.3.1 Basic FJ cycle

The FJ cycle for detonations is described in Fickett and Davis (2001, pp. 35–38) and

is an elaboration of the original ideas of Jacobs (1956). The notion of applying ther-

modynamic cycles to detonation was independently considered by Zel’dovich (1940b)

15 years before Jacobs, but Zel’dovich’s ideas were not known2 to Jacobs or Fickett

and, until recently, there was no appreciation in the West of this work by Zel’dovich.

The idea of the FJ cycle is similar to standard thermodynamic cycles such as the

Otto and Brayton cycles that are the basis for computing the ideal performance of

internal combustion and gas turbine engines. The basis of the cycle is the piston-

cylinder arrangement (Fig. 2.9) of elementary thermodynamics. The reactants and

explosion products are at all times contained within the cylinder and pistons so that

we are always considering a fixed mass. The explosive, pistons, and cylinder will be

considered as a closed thermodynamic system. All confining materials are assumed

2Personal communication from W. C. Davis, April 2003
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piston A explosive piston B

cylinder

Figure 2.9: Piston cylinder arrangement used to implement Fickett-Jacobs cycle.

to be rigid, massless, and do not conduct heat. The pistons can be independently

moved and there is a work interaction W (> 0 for work done by the system) with

the surroundings that results from these motions. In order to have a complete cycle,

there will be a heat interaction Q (> 0 for heat transferred into the system) between

the system and the surroundings. The piston-cylinder arrangement initially contains

reactants at pressure P1 and temperature T1.

The steps in the cycle are shown in Fig. 2.10. The cycle starts with the system at

state 1 and the application of external work to move the piston on the left at velocity

up. It instantaneously initiates a detonation front at the piston surface (step a).

The detonation propagates to the right with a velocity UCJ consistent with up. The

detonation products following the wave are in a uniform state. When the detonation

reaches the right piston, it instantaneously accelerates to velocity up, and the entire

piston-cylinder arrangement moves at constant velocity up (step b). The system

is then at state 2. The energy of this mechanical motion is converted to external

work (step c) by bringing the detonation products to rest at state 3. Then the

products are adiabatically expanded to the initial pressure (step d) to reach state

4. Heat is extracted by cooling the products at constant pressure (step e) to the

initial temperature (state 5). Finally, the cycle is completed by converting products

to reactants at constant temperature and pressure (step f) and the system reaches

state 1.
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a) b)

c) d)

e) f)

Figure 2.10: Physical steps that make up the Fickett-Jacobs cycle. a) Detonation
moving to right with simultaneous application of external work to move piston on
left at velocity up. b) Instantaneous acceleration of piston on right when detonation
has consumed all the material. c) Conversion of mechanical motion to external work
to bring detonation products to rest. d) Expansion of products back to atmospheric
pressure. e) Extraction of energy as heat at constant pressure to return detonation
products to initial temperature. f) Conversion of products to reactants at constant
temperature and pressure. The flows of work and heat corresponding to the various
steps are shown.

Based on this sequence of steps, it is possible to calculate the work done by the

system. During the detonation part of the cycle (step a), from state 1 to 2, the work
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received by the system is W12 = −P2up(t2 − t1)A, since the piston exerts a force

P2 while moving at velocity up for a time t2 − t1 = L/UCJ required by the wave

to propagate across the explosive. Using the fact that ρ1LA is the mass M of the

explosive, the work received by the system per unit mass of explosive is

w12 = − P2up

ρ1UCJ

. (2.25)

The work done by the system when extracting the energy of the mechanical motion

(state 2 to 3) is equal to the kinetic energy of the system. Hence, the work per unit

mass of explosive is

w23 =
u2

p

2
. (2.26)

The work per unit mass of explosive obtained during the isentropic expansion of the

detonation products to initial pressure (state 3 to 4) is

w34 =

∫ 4

3

Pdv . (2.27)

The last steps from state 4 to state 1 involve the exchange of heat and mechanical

work used to keep the system at constant pressure. The work per unit mass is

w41 = P1(v1 − v4) . (2.28)

The net work done by the system is equal to or less than the net work of the

cycle wnet = w12 + w23 + w34 + w41. Hence, wnet represents the maximum amount

of work that can be obtained from a detonation. The FJ cycle can be represented

in a pressure-specific volume diagram (Fig. 2.11) and wnet geometrically represents

the area contained within the triangle formed by the state points. Fickett and Davis

(2001, pp. 35–38) do not account for the work interaction during the process 4–1 in

their definition of the net work. They do not consider steps e) and f) to be physical

since the detonation products just mix with the surroundings, and they consider the

work generated between states 4 and 1 to be “lost” work. However, these interactions
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Figure 2.11: Pressure-specific volume diagram showing the sequence of states and
connecting paths that make up the FJ cycle for a stoichiometric propane-air mixture
at 300 K and 1 bar initial conditions.

have to be included for consistency with the First Law of Thermodynamics3. In high-

explosive applications, P1 � P2 and the additional work term corresponding to w41

may be small compared to the other work terms.

For all steps in the cycle, the First Law of Thermodynamics applies. Using the

sign convention defined previously,

∆E = Q−W , (2.29)

where E is the total energy in the system, composed of the internal and kinetic

energies. The only heat exchange between the system and the surroundings occurs

between steps 4 and 1. Hence, the work done by the system per unit mass of explosive

can be calculated for each process as a function of the total energy per unit mass and

3Our first effort (Cooper and Shepherd, 2002) to apply the FJ cycle to modeling impulse from
detonation tubes used Fickett and Davis’ interpretation of the available work rather than the ap-
proach taken here. As a consequence, the numerical values of the efficiencies given in Cooper and
Shepherd (2002) are different than given here.
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w14 = e1 − e4. Using Eq. 2.28, the net work done by the system over the FJ cycle is

wnet = e1 − e4 + P1(v1 − v4) = h1 − h4 . (2.30)

This result is consistent with Eq. 1.72 resulting from the general thermodynamic

cycle analysis for closed systems undergoing a cycle starting with an arbitrary process

between states 1 and 4 and ending with a constant pressure process between states

4 and 1. This consistency is achieved only if w41 is included in the computation. It

shows that the FJ cycle is a consistent conceptual framework to calculate the amount

of work available from a detonation. Since all processes other than the detonation are

ideal, the work computed is an upper bound to what can be obtained by any cyclic

process using a propagating detonation for the combustion step.

It can be verified using the detonation jump conditions that this result can also

be obtained by computing the amount of work done during each individual process.

Although it is straightforward from the First Law of Thermodynamics and Eq. 2.27

that w34 = e3 − e4, it is not obvious that w13 = w12 + w23 = e1 − e3. We write the

detonation wave jump conditions in terms of the velocities in a fixed reference frame.

ρ2(UCJ − up) = ρ1UCJ (2.31)

P2 = P1 + ρ1UCJup (2.32)

h2 = h1 − u2
p/2 + UCJup (2.33)

The work per unit mass generated between states 1 and 3, which correspond re-

spectively to reactants and detonation products at rest, can be calculated using the

results of Eqs. 2.31–2.33. Note that the thermodynamic properties of states 2 and 3

are identical, but the system at state 3 is at rest whereas it is moving at velocity up

at state 2. From Eqs. 2.25 and 2.26,

w12 + w23 = u2
p/2−

P2up

ρ1UCJ

= h1 − h2 + UCJup −
P2up

ρ1UCJ

.

(2.34)
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The third term on the right-hand side of the previous equation can be expressed using

Eq. 2.32, and Eq. 2.34 becomes

w12 + w23 = h1 − h2 +
P2

ρ1

(
1− up

UCJ

)
− P1

ρ1

. (2.35)

Using the result of Eq. 2.31, and after some algebra, this equation yields

w12 + w23 = e1 − e3 , (2.36)

where e = h − P/ρ is the specific internal energy per unit mass of the mixture.

Combining this with the previous results, we have

wnet = w12 + w23 + w34 + w41 = h1 − h4 (2.37)

in agreement with Eq. 2.30. Thus, we have verified that our two treatments give

identical results. This gives us additional confidence that the FJ physical model

of the detonation cycle is correct since the detailed energy balance agrees with the

simpler thermodynamic system approach.

2.3.2 Thermal efficiency

The FJ cycle is also used to define a thermal efficiency for the conversion of chemical

energy into mechanical work. The thermal efficiency is defined as

ηFJ =
wnet

qc

=
h1 − h4

qc

. (2.38)

For mixtures with a higher enthalpy at the end of the expansion process (state 4),

a higher portion of the useful work is lost through heat transfer during the constant

pressure processes between states 4 and 5.

We first investigate the values of the thermal efficiency for a perfect gas model.

The detonation process is represented using the one-γ model of detonation (Eqs. 1.15–

1.19) for values of γ representative of products from hydrocarbon fuel detonations with
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Figure 2.12: FJ cycle thermal efficiency as a function of CJ Mach number for the
one-γ model of detonation for two values of γ representative of fuel-oxygen (γ = 1.1)
and fuel-air (γ = 1.2) detonations.

oxygen and air. The thermal efficiency for the FJ cycle is calculated for a perfect gas

as

ηFJ = 1− CpT1

qc

[
1

M2
CJ

(
1 + γM2

CJ

1 + γ

) γ+1
γ

− 1

]
. (2.39)

The FJ cycle thermal efficiency is represented in Fig. 2.12 as a function of the CJ Mach

number for two values of γ representative of fuel-oxygen and fuel-air detonations.

The thermal efficiency increases with increasing CJ Mach number, which is itself

an increasing function of the heat of combustion qc (Eq. 1.15). As qc increases, a

lower fraction of the heat released in the detonation process is rejected during the

final constant pressure process. In the limit of large MCJ , the thermal efficiency

approaches 1 with 1 − ηFJ ∝ (1/M2
CJ)1−1/γ. Looking at the detonation as a ZND

process (Section 1.1.2), this result may be interpreted as follows: a higher heat of

combustion results in a higher precompression of the reactants through the shock

wave before combustion and yields a higher thermal efficiency.
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Figure 2.12 also shows that the variation of the thermal efficiency depends strongly

on the value chosen for γ. At constant CJ Mach number, a lower value of γ in

the detonation products yields a lower efficiency. The parameter γ − 1 controls the

slope of the isentrope 3–4 in the pressure-temperature plane. Lower values of γ

generate lower temperature variations for a fixed pressure ratio P4/P3. This means

that the temperature at state 4 is higher and the heat rejected during process 4–5 is

larger, decreasing the thermal efficiency. In order to gain some deeper insight into

the influence of γ on the thermal efficiency, we used the two-γ model of detonations

(Eqs. 1.8–1.14), which allows for property variations across the detonation wave front,

to calculate the thermal efficiency.

ηFJ = 1− Cp2T1

qc

[
γ2

γ1M2
CJ

(
1 + γ1M

2
CJ

1 + γ2

) γ2+1
γ2

− 1

]
(2.40)

The thermal efficiency for the two-γ model of detonations is represented in Fig. 2.13

as a function of the CJ Mach number for different values of γ2. The thermal efficiency

has a very different behavior depending on the value chosen for γ2. For γ1 = γ2, it

reproduces the results of the one-γ model with ηFJ increasing with MCJ . However, for

γ2 < γ1, it has a minimum, which depends on the value of γ2. For high enough MCJ ,

the thermal efficiency increases with increasing MCJ and tends to 1 for large values

of the Mach number. The parameter γ2− 1 determines the slope of the isentrope 3–4

along which the expansion process takes place, and therefore has a strong influence

on the magnitude of the heat rejected and the thermal efficiency. However, typical

fuel-air mixtures, for which γ2 ≈ 1.2 and MCJ > 4, and typical fuel-oxygen mixtures,

for which γ2 ≈ 1.1 and MCJ > 5, are located on the part of the curves in Fig. 2.13

where the thermal efficiency is an increasing function of MCJ . This general behavior

exhibited by the thermal efficiency will help us explain some of the trends observed

in real gases.

The most realistic approach to accounting for property variations is to use fits or

tabulated thermochemical properties as a function of temperature for each species

and the ideal gas model to find mixture properties. In keeping with the spirit of
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Figure 2.13: FJ cycle thermal efficiency as a function of CJ Mach number for the
two-γ model of detonation with γ1 = 1.4.
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Figure 2.14: FJ cycle thermal efficiency for stoichiometric hydrogen, ethylene,
propane, and JP10 mixtures with oxygen and air as a function of initial pressure
at 300 K (left) and initial temperature at 1 bar (right).

cycle analysis, all chemical states involving combustion products are assumed to be

in equilibrium. The FJ cycle thermal efficiency was calculated using realistic thermo-

chemistry for hydrogen, ethylene, propane, and JP10 fuels with oxygen and air. The
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Figure 2.15: Left: FJ cycle thermal efficiency as a function of equivalence ratio at
300 K and 1 bar initial conditions for hydrogen, ethylene, propane and JP10. Right:
FJ cycle thermal efficiency as a function of nitrogen dilution for stoichiometric fuel-
oxygen mixtures at 300 K and 1 bar initial conditions for hydrogen, ethylene, propane
and JP10.

equilibrium computations were carried out using STANJAN (Reynolds, 1986). The

thermal efficiency was determined using Eq. 2.38. The results are significantly influ-

enced by the variation of the specific heat capacity with temperature in the detonation

products and the dissociation and recombination processes.

The thermal efficiency is shown in Fig. 2.14 as a function of initial pressure. The

thermal efficiency decreases with decreasing initial pressure due to the increasing

importance of dissociation at low pressures. Dissociation is an endothermic process

and reduces the effective energy release through the detonation, and the maximum

amount of work that can be obtained from the FJ cycle. Exothermic recombina-

tion reactions are promoted with increasing initial pressure and the amount of work

generated during the FJ cycle increases. At high initial pressures, the major prod-

ucts dominate and the CJ detonation properties tend to constant values. Thus, the

amount of work generated by the detonation and the thermal efficiency asymptote to

constant values. Figure 2.14 shows that ηFJ decreases with increasing initial tempera-

ture. Because the thermal efficiency is an increasing function of the CJ Mach number

(Fig. 2.12), the decrease in initial mixture density and MCJ caused by the increasing
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initial temperature (Eq. 1.15) is responsible for the decreasing thermal efficiency.

The influence of equivalence ratio on the FJ cycle thermal efficiency is shown in

Fig. 2.15. The trends for fuel-oxygen and fuel-air mixtures are very different. The

thermal efficiency for fuel-air mixtures is maximum at stoichiometry, whereas it is

minimum for fuel-oxygen mixtures. This behavior illustrates clearly the strong influ-

ence of dissociation processes on the thermal efficiency. Fuel-air mixtures generate

much lower CJ temperatures than fuel-oxygen mixtures. The effect of dissociation

in fuel-air mixtures is weak because a significant part of the energy release is used

to heat up the inert gas (nitrogen) and the temperatures are lower than in the fuel-

oxygen case. Because of the weak degree of dissociation, these mixtures tend to follow

the same trends as the perfect gas and yield a maximum efficiency when the energy

release is maximized near stoichiometry. Lean mixtures have very little dissociation

and the CJ Mach number increases with the equivalence ratio from 4 to 5 or 6 at

stoichiometry. Thus, the thermal efficiency increases with increasing equivalence ratio

for φ < 1. Rich mixtures (φ > 1) have significant amounts of carbon monoxide and

hydrogen due to the oxygen deficit and the dissociation of carbon dioxide and water,

reducing the effective energy available for work and the thermal efficiency.

On the other hand, fuel-oxygen mixtures are characterized by high CJ temper-

atures, in particular near φ = 1. Endothermic dissociation reactions reduce the

effective energy release during the detonation process. During the subsequent expan-

sion process 3–4, the radicals created by the dissociation reactions start recombining.

However, the temperature in the detonation products of fuel-oxygen mixtures remains

high during this process and only partial recombination occurs. The products at state

4 are still in a partially dissociated state and a significant part of the energy released

by the detonation is not available for work. This extra energy is released during

the constant pressure process 4–5 under the form of heat and reduces the net work.

The influence of this phenomenon increases with increasing CJ temperature, which

explains why fuel-oxygen mixtures have a lower efficiency near stoichiometry.

In order to illustrate this point, we compare the mixture composition of stoichio-

metric propane-air and propane-oxygen mixtures at state 4 (initial conditions 300 K
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and 1 bar). The propane-air mixture has a temperature of 1798 K and the major

products CO2 and H2O dominate. All other species have mole fractions on the order

of 10−3 and lower. On the other hand, the propane-oxygen mixture has a temperature

of 2901 K and has a much higher degree of dissociation. The major species include

CO2 (with a mole fraction of 20%), H2O (39.5%), but also CO (16%), O2 (8%), H2

(4.5%), and radicals such as OH (7%), H (2.5%), and O (2%). The presence of these

radicals indicates that the major combustion products have dissociated. A significant

part of the energy released by the detonation has been absorbed by the endothermic

dissociation reactions and is therefore unavailable for work.

The influence of nitrogen dilution is also investigated in Fig. 2.15. The thermal

efficiency is plotted as a function of nitrogen dilution for stoichiometric mixtures

varying from fuel-oxygen to fuel-air. It increases with increasing nitrogen dilution

and is maximum for fuel-air mixtures. This behavior is explained mainly by the

influence of dissociation phenomena. The reduction in mixture specific heat capacity

with increasing nitrogen dilution also contributes to this behavior.

Although fuel-oxygen mixtures have a higher heat of combustion than fuel-air

mixtures, Fig. 2.15 shows that fuel-air mixtures have a higher thermal efficiency, in

particular near stoichiometry. This is attributed mainly to dissociation phenomena,

but also to the higher value of the effective ratio of specific heats γ in the detonation

products of fuel-air mixtures, which results in a higher thermal efficiency (Fig. 2.12).

In general, 1.13 < γ2 < 1.2 for fuel-oxygen mixtures when varying the equivalence

ratio, whereas 1.16 < γ < 1.3 for fuel-air mixtures. The parameter γ− 1 controls the

slope of the isentrope in the pressure-temperature plane. This difference is caused by

the influence of recombination reactions in the detonation products. These exother-

mic reactions are favored in the hot products of fuel-oxygen mixtures, and keep the

temperature from dropping as fast as in the colder products of fuel-air mixtures.

Note that, although stoichiometric fuel-oxygen mixtures have a lower thermal effi-

ciency than fuel-air mixtures, they generate 2 to 4 times as much work as fuel-air

mixtures because of their larger heat of combustion.

In general, hydrogen yields the lowest efficiency. Combustion of hydrogen with
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oxygen produces a mole decrement, which generates a much lower CJ pressure com-

pared to hydrocarbon fuel detonations. Because entropy increases with decreasing

pressure, a lower pressure translates into a higher entropy rise and a lower thermal

efficiency compared with hydrocarbon fuel detonations. In terms of work done, the

work generated during the expansion process w34 is much lower for hydrogen det-

onations because of their lower CJ pressure, which reduces the thermal efficiency.

Hydrocarbon fuels have a higher thermal efficiency, with propane and JP10 yielding

the highest efficiency. These two fuels have the highest molecular weight of all, which

translates into a higher initial density, CJ pressure, and propensity to generate work

during the expansion process. The values obtained for the FJ cycle efficiency are

quite low, generally between 0.2 and 0.3 for the range of mixtures investigated. The

typical way to increase low thermal efficiencies is to precompress the reactants before

combustion. The FJ cycle with precompression is investigated next.

2.3.3 FJ cycle with precompression

The role of precompression is to reduce the entropy rise through the combustion

process by increasing the initial temperature before combustion (Foa, 1960). Since

entropy increments are detrimental to the thermal efficiency, the most ideal way to

increase the fluid temperature is isentropic compression.

The FJ cycle with precompression is based on the steps described in Fig. 2.10, but

it includes an additional process. Before the piston starts moving and initiates the

detonation, the reactants are isentropically compressed with the piston to a state 1’.

The subsequent sequence of steps is identical to the basic FJ cycle case. The FJ cycle

with precompression is represented in Fig. 2.16 in the pressure-specific volume plane

for a propane-air mixture with a precompression ratio of 5. The precompression ratio

is defined as πc = P1′/P1.

During the initial compression of the reactants from state 1 to state 1’, the work

per unit mass is

w11′ = −
∫ 1′

1

Pdv . (2.41)
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Figure 2.16: Pressure-specific volume diagram showing the sequence of states and
connecting paths that make up the FJ cycle with precompression (πc = 5) for a
stoichiometric propane-air mixture at 300 K and 1 bar initial conditions.

The net work done by the system is then wnet = w11′ + w1′2 + w23 + w34 + w41.

Expressions for the terms in the previous equation are given respectively by Eqs. 2.41,

2.25, 2.26, 2.27, and 2.28. Applying the First Law of Thermodynamics, the result

obtained for the net work wnet = h1 − h4 is identical to that of Eq. 2.30.

The influence of the compression ratio on the thermal efficiency is investigated

first for a perfect gas. The expression for ηFJ using the one-γ detonation model is

identical to the result of Eq. 2.39 for the basic FJ cycle. However, in the case of

the cycle with precompression, the CJ Mach number varies because of the change

in initial temperature before detonation initiation. The thermal efficiency is plotted

in Fig. 2.17 as a function of πc for different values of the non-dimensional energy

release. The FJ cycle thermal efficiency increases with increasing compression ratio.

This increase can be explained by considering the temperature-entropy diagram of

Fig. 2.17. The heat rejected during the constant-pressure portion of the cycle 4–5 is

the area under the temperature-entropy curve between states 4 and 5 (Eq. 1.74). For
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Figure 2.17: Left: FJ cycle thermal efficiency as a function of the compression ratio
πc for the one-γ model of detonation using different values of the non-dimensional
heat release. Right: temperature-entropy diagram for FJ cycle without and with
precompression (πc = 20) using the one-γ model of detonation. qc/RT1 = 40, γ = 1.2.

a given state 1 and qin, the thermal efficiency is maximized when qout is minimized,

which occurs when s4 = s2 is minimized. Because the total entropy rise decreases with

increasing combustion pressure, the cycle thermal efficiency increases with increasing

compression ratio. In terms of net work, precompressing the reactants increases the

work done during the expansion process (state 3 to 4). The expansion of the hot gases

generates more work than is absorbed by the cold gases during the precompression

stage, so that precompression increases the thermal efficiency. This idea applies

equally well to other types of thermodynamic cycles such as the Brayton or the Otto

cycles.

The result of Eq. 2.39, which also applies to the FJ cycle with precompression, is

identical to the result obtained by Heiser and Pratt (2002) in their thermodynamic

cycle analysis of pulse detonation engines. They calculated the entropy increments

associated with each process in the detonation cycle and formally obtained the same

result. However, the numerical values shown in Fig. 2.17 are lower than those given

in Heiser and Pratt (2002) due to the difference in the value of the specific heat ratio

used. They used a value of γ = 1.4 corresponding to the reactants, whereas we use

values of γ equal to 1.1 or 1.2 since these are more representative of the detonation
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Figure 2.18: FJ cycle thermal efficiency as a function of the compression ratio πc for
hydrogen, ethylene, propane, and JP10 with oxygen and air at initial conditions of 1
bar and 300 K.

products. As illustrated in Fig. 2.12, the value chosen for the specific heat ratio

has a strong influence on the results obtained for the thermal efficiency in the one-

γ model. A more realistic cycle analysis for a perfect gas involves using the two-γ

model of detonations (Fig. 2.13). This approach was applied by Wu et al. (2003), who

extended the analysis of Heiser and Pratt (2002) to the two-γ model of detonations.

In reality, one- or two-γ models of these cycles cannot correctly capture all the

features of dissociation-recombination equilibria and temperature-dependent proper-

ties. It is necessary to carry out numerical simulations with a realistic set of product

species and properties. Equilibrium computations using realistic thermochemistry

were carried out using STANJAN (Reynolds, 1986) for hydrogen, ethylene, propane,

and JP10. The thermal efficiency is given in Fig. 2.18 as a function of the compression

ratio. Its behavior is similar to the perfect gas case. The influence of dissociation

reactions is reduced with increasing compression ratio, but dissociated species are still

present for fuel-oxygen mixtures, even for high values of πc. The mixture composi-
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tion for the stoichiometric propane-oxygen mixture considered in Section 2.3.2 with a

precompression factor of 10 includes CO2 (with a mole fraction of 28%), H2O (46%),

CO (11%), O2 (6%), H2 (2.9%), and radicals OH (4%), H (0.9%), and O (0.9%). This

partially dissociated state explains why the efficiency of fuel-oxygen mixtures remains

much lower compared to fuel-air mixtures.

2.4 Detonation and constant-volume combustion

Constant-volume (CV) combustion has been used as a convenient surrogate for det-

onation for the purposes of estimating the thermal efficiency (Eidelman et al., 1991,

Bussing and Pappas, 1996, Kentfield, 2002). One viewpoint is that CV combustion is

an instantaneous transformation of reactants into products. Another view is that CV

combustion is the limit of a combustion wave process as the wave speed approaches

infinity.

2.4.1 Comparison of FJ cycle with Brayton and Humphrey

cycles

Constant-pressure combustion is representative of the process undergone by a fluid

particle in an ideal ramjet or turbojet engine (Oates, 1984). The ideal Brayton

cycle consists of the following processes: isentropic compression, CP combustion,

isentropic expansion to initial pressure, and heat exchange and conversion of products

to reactants at constant pressure. For the perfect gas, the thermal efficiency of the

Brayton cycle depends only on the static temperature ratio across the compression

process (Oates, 1984).

ηth = 1− T1

T1′
= 1− π

− γ−1
γ

c (2.42)

The Humphrey cycle is similar to the Brayton cycle, except that the combustion

occurs at constant volume instead of constant pressure. Unlike the Brayton cycle

and like the FJ cycle, the efficiency of the Humphrey cycle also depends on the non-
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dimensional heat release qc/CpT1 and the specific heat ratio γ.

ηth = 1− CpT1

qc

[(
1 + γ

qc

CpT1

π
− γ−1

γ
c

)1/γ

− 1

]
(2.43)

For fixed energy release and compression ratio, the thermal efficiency of the Humphrey

cycle is higher than that of the Brayton cycle, which can be related to the lower

entropy rise generated by CV combustion compared with CP combustion (Fig. 2.2).
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Figure 2.19: Pressure-specific volume diagram comparing the FJ, Humphrey, and
Brayton cycles with precompression (πc = 5) for a stoichiometric propane-air mixture
at 300 K and 1 bar initial conditions.

Equilibrium computations were carried out using STANJAN (Reynolds, 1986) to

compute the thermal efficiency of the FJ, Humphrey, and Brayton cycles for a sto-

ichiometric propane-air mixture at 300 K and 1 bar initial conditions. The amount

of precompression was varied. In comparing different combustion modes, the ques-

tion of which of the various pressures produced during the combustion event should

be considered (Talley and Coy, 2002). Two possibilities are explored here. The first

possibility consists of comparing the cycles based on the same pressure before combus-



86

πc

E
ffi

ci
en

cy

0 5 10 15 200

0.1

0.2

0.3

0.4

0.5

0.6

FJ
Humphrey
Brayton

πc’

E
ffi

ci
en

cy

0 25 50 75 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FJ
Humphrey
Brayton

Figure 2.20: Thermal efficiency as a function of compression ratio (left) and combus-
tion pressure ratio (right) for FJ, Humphrey and Brayton cycles for a stoichiometric
propane-air mixture at 300 K and 1 bar initial conditions.

tion, which corresponds to propulsion systems having equivalent feed systems. The

second possibility is based on the peak combustion pressure, which corresponds to

propulsion systems designed to operate at the same level of chamber material stresses.

The cycle efficiencies are shown in Fig. 2.20 as a function of the compression ratio

and the combustion pressure ratio. The combustion pressure ratio π′c is defined as the

ratio of post-combustion pressure to initial cycle pressure. Detonation generates the

lowest entropy rise, closely followed by CV combustion and finally CP combustion

(Fig. 2.2). Thus, for a given compression ratio, the FJ cycle yields the highest thermal

efficiency, closely followed by the Humphrey cycle and, finally, the Brayton cycle. This

calculation using detailed thermochemistry (Reynolds, 1986) agrees qualitatively with

the thermodynamic cycle analysis results of Heiser and Pratt (2002) who used a one-γ

model for detonations. The fact that detonation and CV combustion yield very close

efficiencies when calculated for the same compression ratio (Fig. 2.20) has motivated

some researchers to estimate pulse detonation engine performance by approximating

the detonation process with CV combustion (Kentfield, 2002). However, when the

thermal efficiency is shown as a function of the combustion pressure ratio (Fig. 2.20),

the trend is inverted and the Brayton cycle yields the highest efficiency, followed by
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the Humphrey and FJ cycles. The lower efficiency of the FJ cycle can be attributed to

the very high peak pressure behind the detonation wave. Although these efficiencies

cannot be precisely translated into specific performance parameters, these general

results agree with the observations of Talley and Coy (2002) based on specific impulse

calculations using a gas dynamic model of CV combustion propulsion. The superiority

of the Brayton cycle in the left graph of Fig. 2.20 will be reduced if the Humphrey

and FJ cycles are operated at a higher combustion peak pressure or temperature.

The comparison of the thermal efficiencies in Fig. 2.20 shows that unsteady det-

onations have the potential to generate more mechanical work than CP or CV com-

bustion and, thus, appear to be more efficient combustion process. This result can be

directly related to the lower entropy rise associated with detonations and is discussed

further in the next section. However, as we have already seen for the case of steady

detonation, some care is needed in interpreting thermodynamic results in terms of

propulsion system performance. We cannot use these efficiencies directly since perfor-

mance estimates based on Eq. 1.83 are applicable only to steady propulsion systems.

In particular, the initial state (before the detonation wave) and the conversion of

thermal energy to impulse in unsteady systems requires detailed consideration of the

gas dynamic processes (Wintenberger and Shepherd, 2003a) within the engine.

2.4.2 Entropy generated by a detonation

The results of Fig. 2.20 for a fixed compression ratio are the direct consequence of

entropy production during the combustion (see Eq. 1.75), since all the other processes

in the cycle are assumed to be isentropic. The lower entropy rise generated by deto-

nations for a given initial state (Section 1.1.1), followed by CV and CP combustion,

is responsible for the higher efficiency generated by the FJ cycle (see Section 2.1).

The entropy increases during a combustion process primarily because of the chem-

ical energy release and secondarily because of the change in mixture composition. The
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entropy of an ideal gas mixture containing j species can be expressed as

s =

j∑
i=1

Nisi(T, Pi) , (2.44)

where si(T, Pi) is the partial molar entropy evaluated at the mixture temperature

T and the partial pressure Pi. The specific entropy of species i can be written as

a function of the standard entropy, the pressure (in atmospheres), and the molar

fraction of species i

si(T, Pi) = s0
i (T )−R ln

(
Ni

N

)
−R ln(P ) . (2.45)

The standard entropy s0
i (T ) depends only on temperature and is, by definition, zero

at the state where the temperature is 0 K and the pressure is 1 atmosphere.

s0
i (T ) =

∫ T

0

Cp(T )

T
dT (2.46)

The entropy of the mixture is

s =

j∑
i=1

Nis
0
i (T )−R

j∑
i=1

Ni ln(Ni) +R
j∑

i=1

N ln(N)−RN ln(P ) . (2.47)

The entropy increase during combustion is due mainly to the increase in temper-

ature and the contribution of the first term on the right-hand side of Eq. 2.47. The

second and third terms, which result from the change in composition, contribute only

a small fraction of the total entropy change. In order to illustrate this point, the

calculation of Eq. 2.47 was carried out with realistic thermochemistry for a stoichio-

metric propane-air detonation at 1 atm and 300 K. The combined contribution of the

second and third terms was found to account for less than 11% of the total change

in entropy per unit mass. The pressure increase through the detonation reduced the

total entropy rise by 25%. The main contributions to the total entropy rise were

due to the variations in temperature and pressure, and the influence of the change in
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chemical composition was found to be smaller.
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Figure 2.21: Entropy rise generated by CP combustion, CV combustion, and detona-
tion. γ = 1.2.

This leads us to consider the perfect gas case where we neglect the change in

chemical composition. The entropy rise was calculated for a perfect gas as a function

of the energy release through combustion based on Eqs. 2.46 and 2.47 assuming a

constant specific heat capacity. The entropy rise for CP combustion is given by

s2 − s1

R
=

γ

γ − 1
ln

(
1 +

qc

CpTt1

)
. (2.48)

For CV combustion, the entropy rise can be calculated directly as

s2 − s1

R
=

1

γ − 1
ln

(
1 + γ

qc

CpTt1

)
. (2.49)

The entropy rise for detonation was calculated using the one-γ model for detonation
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(Eqs. 1.15–1.19).

s2 − s1

R
=

γ

γ − 1
ln

[
(1 + γM2

CJ)2

(1 + γ)2M2
CJ

]
− ln

(
1 + γM2

CJ

1 + γ

)
. (2.50)

The entropy rise generated by CP combustion is larger than that generated by CV

combustion and detonation by up to 14% (compared to detonation) as shown in

Fig. 2.21. The entropy rise associated with CV combustion is higher than that asso-

ciated with detonation by about 2% in the perfect gas case of Fig. 2.21. Equilibrium

computations (Reynolds, 1986) for stoichiometric fuel-oxygen and fuel-air mixtures

show that for hydrogen, ethylene, propane, and JP10, CV combustion generates an

entropy increase up to 2.7% higher than detonation, whereas CP combustion results

in an entropy rise up to 24% higher than detonation.

CV combustion represents a limit of combustion phenomena, which is approached

for large wave propagation speeds or, in an adiabatic system, at late times when all the

wave processes have decayed (Talley and Coy, 2002). In particular, CV combustion

is approached following a long time (meaning a large number of wave reflections)

after a detonation wave propagates through a closed volume and the resulting fluid

motion has been dissipated into thermal energy. In order to illustrate this point, a

one-dimensional numerical simulation was carried out with an Euler code under the

Amrita software environment (Quirk, 1998). The configuration studied consists of a

one-dimensional duct or channel closed at both ends and simulated with reflective

boundary conditions. The simulation was started with the detonation wave having

propagated to the right end of the duct. The one-γ model for detonation and the

Taylor wave solution following the detonation (Eqs. 1.42 and 1.43) were used as an

initial condition in the duct. The results of the numerical simulation are presented

in Fig. 2.22. The distance-time diagram shows the shock wave reflecting between the

ends of the duct. Figure 2.22 shows that the waves decay with time and that the

pressure at the left end of the duct asymptotes to the CV pressure. The pressure

at the right end of the duct follows a similar behavior. The shock wave reflections

generate entropy and the average entropy increases slowly from the CJ value towards
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Figure 2.22: Numerical simulation of detonation propagation and reflection in a closed
duct. q/RT1 = 40, γ = 1.2. Left: distance-time diagram (horizontal axis is distance,
vertical axis is time). Right: average entropy rise in the duct and pressure at the left
end of the duct as a function of time.

the value corresponding to CV combustion. The results obtained from this simulation

at late times will not be quantitatively correct since the only dissipative processes

in this simulation are purely numerical. Additionally, numerical errors caused by

approximating gradients, in particular near the duct ends, accumulate over time and

can result in significant errors after a large number of shock reflections. However,

the results are in agreement with the exact thermodynamic analysis that the entropy

must be less than that obtained from idealized CV combustion of the reactants.
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2.4.3 Kinetic energy in detonations

A major difference between detonation waves and idealized CV combustion is that

detonations induce a flow behind them, whereas idealized CV combustion represents

an instantaneous transformation from reactants to products with no fluid motion.

Thus, the question arises as to how much of the energy released by the chemical

reactions is converted into thermal energy in a detonation, and how much is converted

into kinetic energy. In the case of CV combustion, all of the energy supplied by the

chemical reactions is converted into thermal energy. However, due to the substantial

flow velocities induced by detonation waves, it is unclear whether the same holds for

detonations.

Jacobs (1956) was the first to study this problem when computing the total en-

ergy of detonations. He used two approaches to this problem: one by considering

a propagating detonation in a closed tube and the following Taylor wave and the

second by considering a detonation driven by a moving piston. He found that for

typical high explosives (characterized by γ = 3), the kinetic energy in a detonation

wave propagating in a tube accounts for about 10% of the chemical energy released.

In gaseous detonations, the effective value of γ is much lower, on the order of 1.1 to

1.2, and we anticipate the results to be quantitatively different.

Following the approach presented by Jacobs (1956), we first consider a one-

dimensional propagating gaseous detonation in a closed tube. The Taylor similarity

solution applies to the flow following the wave (Fig. 1.8). The total energy in the

volume of cross section 1 and length L(t) occupied by the burned products resulting

from the detonation of reactants at initial density ρ0 is

Etotal =

∫ L(t)

0

ρ(x, t)

[
e(x, t) +

u2(x, t)

2

]
dx = ρ0qL(t) . (2.51)
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The total energy is the sum of the kinetic and thermal energies defined by

Ekinetic =

∫ L(t)

0

ρ(x, t)
u2(x, t)

2
dx , (2.52)

Ethermal =

∫ L(t)

0

ρ(x, t)e(x, t)dx . (2.53)

The stagnant region following the Taylor wave, which extends about half of the dis-

tance from the duct end to the detonation front, does not contribute to the kinetic

energy but still contributes to the thermal energy budget. The velocity in the Taylor

wave is calculated from Eq. 1.42 using the Riemann invariant. The calculation of the

kinetic energy per unit length yields

Ekinetic/L(t) =
2γ

(γ + 1)2

(
γ − 1

γ + 1

) 2
γ−1 ρ3c

3
3

UCJ

∫ UCJ/c3

1

(
ξ +

2

γ − 1

) 2
γ−1

(ξ − 1)2dξ ,

(2.54)

where ξ = x/c3t. The integral in Eq. 2.54 is evaluated numerically. The ratio of the

kinetic energy to the total energy release was calculated using the one-γ model for

detonations. It is found to be quite insensitive to the value of the energy release (it

varies from 1.93% to 2.23% when q/RT1 is increased from 10 to 100 for γ = 1.2).

However, it strongly depends on the value of γ. The variation of the kinetic energy

fraction with γ is shown in Fig. 2.23. The kinetic energy fraction increases with

increasing γ from zero at γ = 1 to about 10% at γ = 3, which is representative

of high explosives. The latter value agrees with the results of Jacobs (1956). The

interesting point is that for typical gaseous detonations in hydrocarbon-oxygen or -air

mixtures, for which γ is on the order of 1.2, the kinetic energy represents only about

2% of the total energy release.

The second approach we follow considers a detonation driven by a piston, such

as in Fig. 2.10 a). The piston moves at a velocity up and initiates a detonation wave

propagating at velocity UCJ . No expansion of the gas occurs behind the detonation

because of the work provided by the piston. The energy conservation equation for a
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Figure 2.23: Ratio of kinetic energy to total energy release as a function of the
adiabatic exponent for a detonation wave propagating in a closed tube. qc/RT1 = 40.
Note that the dashed portion is non-physical for ideal gases but is often used in
modeling high explosives.

perfect gas can be written as

Cv(T2 − T1) +
u2

p

2
− P2(v1 − v2) = qc . (2.55)

The sum of the thermal and kinetic energies equals the sum of the energy released

by the detonation and the work done by the piston. It is instructive to compare the

magnitude of the different terms of Eq. 2.55 relative to the heat release. Based on the

one-γ model for detonations with qc/RT1 = 40 and γ = 1.2, the thermal energy term

accounts for +110.4%, the kinetic energy term accounts for +9.1%, while the piston

work term represents -19.5%. In the case of a propagating detonation in a closed

tube, there are no moving boundaries but the flow plays the role of the piston. Right

behind the detonation, Eq. 2.55 applies. Immediately following is the expansion fan
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in which the fluid decelerates to rest and

ρ
De

Dt
= −P

Dv

Dt
. (2.56)

The internal energy of the fluid particles going through the Taylor wave decreases

due to the volume expansion of the fluid. This volume expansion acts as an effective

piston and drives the propagating detonation wave.

2.4.4 Performance comparison for a straight detonation tube

The results of the previous sections indicate that detonation and CV combustion

are processes with thermodynamic similarities. However, it is still unclear whether

these processes result in similar unsteady propulsive performance. This problem is

investigated numerically using Amrita (Quirk, 1998) for the simple case of unsteady

combustion in a straight tube open to a half space. In the CV combustion case, the

initial configuration consisted of the tube entirely filled with combustion products in

a uniform state corresponding to CV combustion. The initial configuration for the

detonation case consisted of the Taylor wave similarity solution (Zel’dovich, 1940a,

Taylor, 1950) assuming the detonation has just reached the open end. The open half

space is at temperature T1 and pressure P1, while the reactants in the tube prior to

combustion are at the same temperature but precompressed with a pressure ratio PR.

For a given energy release qc/RT1, the state of the combustion products is computed

for CV combustion using the perfect gas relationships (Eq. 2.77) and, for detonation,

using the one-γ model of detonation (Section 1.1.1).

The impulse generated by the blowdown process is calculated by integrating the

pressure at the closed end of the tube (Section 4.3). Figure 2.24 shows the non-

dimensional pressure at the closed end and the integrated impulse. In the case of CV

combustion, the pressure at the closed end remains constant while the expansion wave

generated at the open end propagates back to the closed end, reflects, and decreases

the pressure. In the case of detonation, the pressure remains constant while the

detonation propagates to the open end (not simulated but accounted for in Fig. 2.24)
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Figure 2.24: Non-dimensionalized pressure at the closed end of the tube and impulse
for CV combustion and detonation as a function of time. qc/RT1 = 40, PR = 1,
γ = 1.2.

and the reflected wave comes back to the closed end. This is followed in both cases

by a pressure decrease while the combustion products exhaust from the tube. The

flow in the tube becomes overexpanded before reaching mechanical equilibrium. The

features of this flow are described in more detail in Section 4.2.4 for the detonation

case. The flow overexpansion explains the slight dip in impulse observed in Fig. 2.24

for c1t/L > 2.

A series of simulations was conducted varying the energy release and the pressure

ratio, and the results are presented in Fig. 2.25. The impulse reaches a constant value

after a non-dimensional time of about 3 (Fig. 2.25). Thus, all the impulse values

presented in Fig. 2.25 were calculated for c1t/L = 3. In general, CV combustion

and detonation generate almost identical impulses at all the conditions tested. The

CV combustion impulse is within 4.1% of the detonation impulse when varying the

energy release, and within 2.8% when varying the pressure ratio. Although limited

to a fixed geometry, these simulations are a good indication that CV combustion

and detonation generate very similar propulsive performance. This result can be

explained by recognizing that the kinetic energy in the gas behind the detonation is

small compared to the thermal energy, as computed in the previous section. The bulk

of the impulse is apparently created by the unsteady expansion of the hot products.
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Figure 2.25: Non-dimensionalized impulse for CV combustion and detonation as a
function of energy release qc/RT1 with PR = 1 (left) and pressure ratio PR with
qc/RT1 = 40 (right). γ = 1.2.

Judging from the similarity of the pressure histories at the closed end, the unsteady

process is essentially identical for both the CV combustion and detonation processes.

Thus, this result suggests that a detonation process can be approximated as infinitely

fast for the purposes of propulsion performance computation.

2.5 Blowdown model

Based on the similarities between detonation and constant-volume combustion ob-

served in Section 2.4, a gas dynamics–based model using the CV mode of combustion

is useful to consider as a reference case for PDEs. In practice, CV combustion is ap-

proached when the blowdown time is much larger than the characteristic wave transit

time in the combustion chamber. Our approach is similar to the simple theory for the

performance of the aeropulse (or pulsejet) presented in the pioneering book by Tsien

(1946). This theory assumes an inlet stagnation pressure ratio of 0.5 and does not

model the filling of the combustion chamber, accounting only for the combustion and

blowdown events. The results are compared with experimental data for the German

V-1 engine (Tsien, 1946). Talley and Coy (2002) followed the same approach to es-

timate the constant-volume limit of pulsed propulsion, including the chamber filling
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process in their analysis. Unlike Talley and Coy (2002) who considered rocket-type

engines, we develop our model in the context of air-breathing propulsion systems. We

also model the combustion process using realistic thermochemistry for hydrogen and

JP10. JP10 is a conventional aviation fuel with a high energy density. It is liquid at

ambient conditions, which makes it attractive for volume-limited applications. Unlike

other kerosene-based fuels such as JP5, JP8, or Jet A, JP10 is a single-component

hydrocarbon (C10H16), which makes its detonation properties much easier to charac-

terize for PDE applications.

2.5.1 Constant-volume combustion engine

Our ideal constant-volume (CV) combustion engine consists of an inlet and multiple

combustion chambers with their own exit nozzle, as shown in Fig. 2.26. The combus-

tion chambers operate out of phase so that the flow upstream decouples from the flow

in the chamber and becomes quasi-steady. Two infinitely fast valves are located at the

inlet and the outlet of the combustion chambers, and control the introduction of the

fuel-air mixture in each combustion chamber and the exhaust of the combustion prod-

ucts. The cycle for a given combustion chamber consists of the following steps, shown

in Fig. 2.27. The inlet air is stored within the combustion chamber with the exhaust

valve closed. The inlet valve closes while fuel is added, mixing instantaneously with

the air. The fuel-air mixture is burned instantaneously at constant volume. Then,

the exhaust valve opens and the combustion products exhaust from the combustion

chamber, decreasing the chamber pressure. When the chamber pressure equals the

initial inlet pressure, the inlet valve opens and the residual combustion products are

pushed out of the combustion chamber while the chamber is being filled with inlet

air. Such an ideal engine is not practical and we do not attempt to investigate the

conditions for cyclic operation. Rather, we are interested in using this conceptual

engine to determine bounding estimates for PDE performance.

The cycle consists of two parts, corresponding to CV blowdown during the first

part of the cycle and CP blowdown at the end of the cycle when the chamber is being
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Figure 2.26: Schematic of constant-volume combustion engine.

refilled. The combustion process and the decay of all associated wave processes are

instantaneous so that ideal CV combustion is assumed. Heat losses are neglected and

the blowdown processes are assumed to be quasi-one-dimensional, quasi-steady, and

isentropic. The conditions in the combustion chamber vary with time during the CV

blowdown but are assumed to be spatially uniform.

1) 2)

3) 4)

Figure 2.27: CV combustion engine cycle. 1) Combustion chamber contains reactants
between closed inlet and outlet valves. 2) Instantaneous CV combustion of reactants.
3) Outlet valve opens and CV blowdown of combustion products begins. 4) When
chamber pressure equals inlet pressure, inlet valve opens and air flows in. Residual
combustion products are exhausted through CP blowdown. Once the chamber is
filled with air, both valves close and fuel is instantaneously injected and mixed with
air.
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2.5.2 Constant-volume blowdown of a combustion chamber

The impulse generated during the CV blowdown is a function of the conditions inside

the combustion chamber. The flow in the chamber can be treated analytically using

a control volume approach. We write the mass conservation equation for a control

volume surrounding the combustion chamber and the exit nozzle, assuming the flow

through the exit nozzle is choked

dM
dt

= −ṁ∗(t) , (2.57)

where the mass flow rate at the throat ṁ∗ is obtained from the stagnation conditions

in the chamber.

ṁ∗(t) =

(
2

γ + 1

) γ+1
2(γ−1)

ρ3(t)c3(t)A
∗ (2.58)

WritingM(t) = ρ3(t)V and using the assumption of isentropic blowdown for a perfect

gas, Eq. 2.57 can be rewritten after some algebra as an equation for the speed of sound

in the chamber
d(c3(t)/c3)

dt
= − 1

tb
(c3(t)/c3)

2 , (2.59)

where tb is a characteristic timescale of the blowdown process and depends on the

initial speed of sound, the ratio of specific heats, and the geometry (throat area and

chamber volume).

tb =
2V(

2
γ+1

) γ+1
2(γ−1)

(γ − 1)A∗c3

(2.60)

tb is proportional to the transit time of an acoustic wave across a reservoir of volume

V and cross-sectional area A∗. Integrating Eq. 2.59, we obtain the following simple

expression for the speed of sound in the chamber as a function of time

c3(t) =
c3

1 + t/tb
. (2.61)

This expression is valid as long as the flow at the throat is choked. The other quantities

in the chamber are obtained using the isentropic flow relationships. The CV blowdown
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stops when the pressure in the chamber equals the inlet pressure P2. The flow at the

throat is choked during the entire CV blowdown process for

P2

P0

≥
(

γ + 1

2

) γ
γ−1

. (2.62)

For an air-breathing engine with no mechanical compression and an ideal inlet, this

condition is satisfied only for supersonic flight.

2.5.3 Performance calculation

The thrust of our CV engine is obtained by analyzing a control volume surrounding

the entire engine, such as that of Fig. 1.9. We write the cycle-averaged momentum

equation (Eq. 1.92). We neglect the interaction between the combustion chamber

exhaust flows. Assuming our CV engine contains k identical combustion chambers,

the thrust can be expressed as

F = k
[
ṁe(t)ue(t)− ṁCCu0 + Ae(Pe(t)− P0)

]
, (2.63)

where the exit quantities are defined for a single nozzle and ṁCC = ṁ0/k is the average

mass flow rate through a single combustion chamber. For these idealized conditions,

the specific impulse is independent of the number of combustion chambers.

ISPF =
ṁe(t)ue(t) + Ae(Pe(t)− P0)

ṁCCfg
− u0

fg
(2.64)

Fixed expansion ratio exit nozzles can be optimized only for one value of the

pressure ratio between the chamber and the atmosphere. However, the chamber

pressure is continuously varying during the CV blowdown. Performance losses arise

when the flow is not fully expanded to ambient pressure at the nozzle exit. We

consider an ideal variable nozzle that expands the flow at its exit plane to ambient

pressure at all times of the blowdown processes. This ideal case corresponds to the

maximum performance that can be obtained from the blowdown process. Talley and
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Coy (2002) compared fixed and variable nozzles for a range of pressure ratios and

found that the impulse penalty due to using a fixed expansion ratio nozzle was less

than 3% in the cases they considered. Assuming pressure-matched flow at the nozzle

exit plane, the expression for the specific impulse is simplified to

ISPF =
ṁe(t)ue(t)

ṁCCfg
− u0

fg
. (2.65)

The momentum term at the nozzle exit is the sum of the momentum contributions

during the CV blowdown and the CP blowdown portions of the cycle.

ṁe(t)ue(t) =
1

τ

∫ τ

0

ṁe(t)ue(t)dt (2.66)

=
1

τ

[∫ tCV

0

ṁe(t)ue(t)dt +

∫ τ

tCV

ṁe(t)ue(t)dt

]
(2.67)

=
1

τ
[ICV + ICP ] (2.68)

We first analyze the CV blowdown (from time 0 to tCV ) using the results of Sec-

tion 2.5.2. Since we assume that the flow is quasi-steady, we have ṁe(t) = ṁ∗(t), and

the velocity at the nozzle exit plane is obtained from the conservation of stagnation

enthalpy through the nozzle and the isentropic flow relationships

ue(t) =

√√√√2CpT3

[
T3(t)

T3

−
(

P0

P3

) γ−1
γ

]
. (2.69)

After some algebra, the impulse generated by the CV blowdown is given by the

following integral

ICV =

√
2

γ − 1

(
2

γ + 1

) γ+1
2(γ−1)

A∗ρ3c
2
3

∫ tCV

0

(1+t/tb)
− γ+1

γ−1

√
(1 + t/tb)−2 −

(
P0

P3

) γ−1
γ

dt .

(2.70)

Substituting Eq. 2.60 into Eq. 2.70 and using the change of variables ξ = 1+ t/tb and
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the notation χ = (P0/P3)
(γ−1)/γ, the CV blowdown impulse can be expressed as

ICV =

(
2

γ − 1

)3/2

ρ3V c3ΓCV , (2.71)

where ΓCV is the non-dimensional integral defined by

ΓCV =

∫ ξCV

1

ξ−
γ+1
γ−1

√
ξ−2 − χ dξ . (2.72)

Equation 2.72 has to be integrated numerically. The end of the CV blowdown cor-

responds to the time when the chamber pressure equals the inlet air pressure P2.

ξCV =

(
P3

P2

) γ−1
2γ

(2.73)

The following CP blowdown occurs at constant stagnation conditions as the re-

maining burned gases are pushed out of the combustion chamber. The exit velocity

is, thus, constant and given by

ue =

√√√√ 2c2
3′

γ − 1

[
1−

(
P0

P2

) γ−1
γ

]
, (2.74)

where state 3’ denotes the state in the products at the end of the CV blowdown. The

impulse obtained during the CP blowdown is generated by the complete expulsion of

the remaining mass of products ρ3′V .

ICP = ρ3′c3′V

√√√√ 2

γ − 1

[
1−

(
P0

P2

) γ−1
γ

]
(2.75)

The cycle-averaged mass conservation equation for the combustion chamber yields

ṁCC = ρ2V/τ since there is no average mass storage during steady operation. Substi-

tuting Eqs. 2.70 and 2.75 in Eq. 2.65 and simplifying, the fuel-based specific impulse



104

is

ISPF =
c3

fg

( 2

γ − 1

)3/2

ΓCV +

(
P2

P3

) γ+1
2γ

√√√√ 2

γ − 1

[
1−

(
P0

P2

) γ−1
γ

]− u0

fg
. (2.76)

2.5.4 Hydrogen and JP10 fueled CV engines

The specific impulse of ideal CV engines operating with stoichiometric hydrogen- and

JP10-air is shown as a function of the flight Mach number in Fig. 2.28. Equilibrium

computations using STANJAN (Reynolds, 1986) were carried out to calculate the

CV combustion process and, in particular, the speed of sound c3 and the pressure P3.

The expansion process was modeled using a constant value of γ obtained from the

equilibrium calculations. Calculations showed that this value of γ is around 1.17 for

the cases considered and is in good agreement (within 1.1% error) with the effective γ

obtained following the isentrope during the expansion process. The specific impulse

is shown only for supersonic flight, where the model assumptions are valid.
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Figure 2.28: Fuel-based specific impulse of stoichiometric hydrogen and JP10 fueled
CV engines compared with the ideal ramjet at 10,000 m altitude.
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The specific impulse of the ideal CV engines has a weak dependence on the flight

Mach number and is around 5000 s for hydrogen and around 1800 s for JP10. It

increases slowly with increasing M0 for hydrogen. Figure 2.28 also displays the specific

impulse for the ideal ramjet. The ramjet performance is calculated by following the

ideal Brayton cycle. Equilibrium computations are carried out for the combustion

and expansion processes, assuming that the flow is in equilibrium at every point in

the nozzle. The CV engine specific impulse is significantly higher than that of the

ramjet, especially at low flight Mach numbers. The pressure increase associated with

CV combustion benefits performance since the combustion products are expanded

from a higher stagnation pressure. However, as the flight Mach number increases,

the CV engine specific impulse approaches that of the ramjet, which is particularly

obvious for JP10. This is attributed to the larger contribution of the CP part of

the blowdown process. For CV combustion of a perfect gas, the combustion pressure

ratio can be obtained from the energy equation

P3

P2

=
T3

T2

= 1 +
qc

CvT2

. (2.77)

It is clear from Eq. 2.77 that the combustion pressure ratio decreases with increasing

flight Mach number due to the increased freestream stagnation temperature. This

means that the contribution of the CV blowdown decreases compared to that of the

CP blowdown, which occurs at P2. This result is also clear from Eq. 2.76. In the limit

of very high flight Mach numbers, it is expected that the CP blowdown will dominate

and that the CV blowdown contribution will become negligible. The performance of

our CV engine will approach that of a CP combustion engine, which is the ramjet.

These conclusions agree with Talley and Coy (2002), who concluded that a CV

engine has a higher specific impulse than a CP device operating at the same fill

pressure. Additionally, they observed that the magnitude of the difference between

CV and CP devices increased with increasing P0/P3. In our case, decreasing the

flight Mach number increases P0/P3 and corresponds to a larger impulse difference.

Finally, Talley and Coy (2002) also concluded that, in the limit of P0/P3 = 0, the
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specific impulse of the CP device can become either slightly higher or slightly lower

than the impulse of the CV device, depending on the magnitude of P3/P2. The limit

P0/P3 = 0 corresponds, in our case, to very large flight Mach numbers, and the results

of Fig. 2.28 agree with these conclusions.

It is also possible to estimate the integral of Eq. 2.72 analytically by approximating

the exponent (γ + 1)/(γ − 1) with an integer n. This approximation yields γ =

(m + 1)/(m− 1). A value of m = 13 is found to result in γ = 1.1667, which is within

1.1% of the values of the specific heat ratio obtained from fitting the isentrope with a

constant γ for the cases considered (γ− 1, which controls the gas dynamics, is within

7.5% error). Using the value m = 13, ΓCV can be expressed analytically.

ΓCV =

∫ ξCV

1

ξ−n
√

ξ−2 − χ dξ (2.78)

=

[√
1/ξ2 − χ

(
− 1

13ξ12
+

χ

143ξ10
+

10χ2

1287ξ8
+

80χ3

9009ξ6
+

32χ4

3003ξ4
+

128χ5

9009ξ2
+

256χ6

9009

)]ξCV

1

(2.79)

The values of the specific impulse obtained using this expression are within 0.6% of

the values resulting from the numerical integration of ΓCV for the cases considered.

2.6 Conclusions

We have used thermodynamic considerations to investigate the merits of detona-

tive combustion relative to other combustion modes for applications in steady- and

unsteady-flow propulsion systems. For steady-flow systems, we have shown that the

irreversible component of the entropy rise controls the thermal efficiency. Although

detonations generate the minimum amount of total entropy rise along the conven-

tional Hugoniot, they also generate the maximum amount of irreversible entropy rise.

For air-breathing propulsion applications, the thermodynamic cycle analysis has to

be conducted based on a fixed initial stagnation state, and the conventional Hugoniot

analysis does not apply. We analyzed steady combustion waves for a fixed initial

stagnation state and derived a new version of the Hugoniot, called the stagnation
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Hugoniot. The total entropy rise for the detonation solutions along the stagnation

Hugoniot is much higher than the deflagration solutions and, therefore, ideal engines

based on steady detonation have much poorer performance than those based on de-

flagration. These findings reconcile thermodynamic cycle analysis with flow path

performance analysis of detonation-based ramjets (Dunlap et al., 1958, Sargent and

Gross, 1960, Wintenberger and Shepherd, 2003b). The highest thermal efficiency oc-

curs for the combustion process with the lowest entropy increment, corresponding to

the ideal Brayton cycle.

For unsteady-flow systems, we presented a thermostatic approach of a closed sys-

tem, the Fickett-Jacobs cycle, to compute an upper bound to the amount of mechani-

cal work that can be produced by a cycle using an unsteady detonation process. This

cycle is used to calculate a thermal efficiency based on this ideal mechanical work.

Values of the thermal efficiency for a variety of mixtures are calculated for the FJ

cycle with and without initial precompression. Fuel-air mixtures are found to have a

higher thermal efficiency than fuel-oxygen mixtures near stoichiometric due to disso-

ciation phenomena and to the higher value of the effective ratio of specific heats in

their detonation products.

Comparison with the Humphrey and Brayton cycles shows that the thermal effi-

ciency of the FJ cycle is only slightly higher than that of the Humphrey cycle, and

much higher than that of the Brayton cycle when compared on the basis of pressure at

the start of the combustion process. The opposite conclusion is drawn when the com-

parison is made on the basis of the pressure after the combustion process. Although

these efficiencies cannot be precisely translated into propulsive efficiency, these results

are useful in comparing unsteady detonation with other combustion modes.

The similar values obtained for the entropy rise and the thermal efficiency of the

Humphrey and FJ cycles suggest that CV combustion is a good surrogate for deto-

nation. The kinetic energy in a propagating detonation was shown to represent only

a small fraction of the total chemical energy release, which also indicates similarities

between CV combustion and detonation. Numerical simulations of unsteady combus-

tion in a straight tube open to a half space showed that these two processes result in
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essentially the same propulsive performance. Based on these results, a gas dynamics–

based model using CV combustion was developed to calculate the ideal performance

of unsteady propulsion systems. This model showed that the ideal CV engine yields

a higher specific impulse than the ideal ramjet, in particular, below Mach 3.
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Chapter 3

Steady Detonation Engines

3.1 Introduction

The idea of using steady detonation waves for propulsion applications is not new but

started in the 1950s when Dunlap et al. (1958) studied the feasibility of a reaction

engine employing a continuous detonation process in the combustion chamber. The

configuration studied included a converging-diverging nozzle designed to accelerate

the flow to a velocity higher than the CJ detonation velocity, a wedge where a normal

or oblique detonation could be stabilized, and a diverging nozzle. Their study of

a detonation ramjet was carried out without accounting for total pressure losses at

supersonic speeds but took into account the supersonic mixing of fuel and air. One

important condition in their work was that the static temperature of the unreacted

fuel-air mixture be kept below an effective ignition temperature, corresponding to

spontaneous ignition of the flowing gas mixture. They also assumed that the detona-

tion waves formed in their engine were intrinsically stable, which may not be the case

(Shepherd, 1994). Their results showed that no thrust was produced below a Mach

number of 4 for hydrogen-air because the total enthalpy of the incoming flow was too

low to stabilize a CJ detonation wave.

Sargent and Gross (1960) carried out a propulsive cycle analysis of a hypersonic

detonation wave ramjet. They computed the performance of the normal detonation

engine for flight Mach numbers between 2.5 and 10. Their analysis assumes that the

This chapter is based on work presented in Wintenberger and Shepherd (2003b).



110

flow is slowed down or accelerated to the Chapman-Jouguet conditions just upstream

of the detonation. They presented estimates of the air specific impulse, the specific

fuel consumption, and the thermal efficiency for a fixed Mach number ahead of the

detonation wave varying the flight Mach number, and for a fixed flight Mach number

varying the Mach number ahead of the detonation. They concluded that the ramjet

always has better performance, although the differences are minor at some flight

regimes.

Dabora (1994) presented the results of a comparison of a hypersonic detonation-

driven ramjet with a conventional ramjet. The detonation-driven ramjet considered

consisted of an inlet, a wedge onto which a normal or oblique detonation wave can be

stabilized, and an expanding nozzle. Dabora derived the non-dimensional thrust of

this engine assuming the only non-reversible process other than combustion was the

expansion in the exit nozzle downstream of the detonation wave. In comparison, all

processes were assumed reversible in the ramjet case. His calculations were performed

assuming a constant non-dimensional heat release. He showed that no thrust was

obtained for the detonation-driven ramjet below a freestream Mach number of 5.

The normal wave engine produced thrust only between Mach numbers of 5 and 8.9,

whereas the oblique wave engine generated thrust for any Mach number higher than

5. The comparison with the ramjet showed that the performance of both detonation

engines was much lower (by at least a factor of 2) than that of the ramjet.

Rubins and Bauer (1994) reviewed some of the early research on stabilized det-

onation waves and carried out some experiments on stabilized normal and oblique

shock-induced combustion. They studied experimentally combustion behind a nor-

mal shock generated by oblique shocks induced by wedges. They described the phe-

nomenon observed as shock-induced combustion rather than detonation because the

normal shock wave was not directly affected by the combustion. They also inves-

tigated the generation of stabilized oblique shock-induced combustion. This type

of combustion requires a higher upstream stagnation temperature but creates lower

structural constraints than normal shock-induced combustion. They applied these

ideas to a hydrogen-fueled high-altitude scramjet concept and proposed a flight en-
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velope taking into account the limitations of hydrogen-air combustion kinetics for

a two-shock inlet diffuser. They calculated specific impulses based on fuel mass of

1000–1200 s for a hydrogen-air scramjet flying at Mach numbers between 6 and 16.

A substantial amount of work has also focused on oblique detonation waves (Pratt

et al., 1991) and oblique detonation wave engines (Cambier et al., 1988, Menees et al.,

1992, Ashford and Emmanuel, 1996, Dudebout et al., 1998, Sislian et al., 2001). The

oblique detonation wave engine concept was explored for hypersonic applications both

numerically and analytically. Oblique detonation waves require hypersonic freestream

Mach numbers (typically higher than 8) for stabilization, which places a lower bound

on the operating range of an oblique detonation wave engine.

In all of these exploratory studies, no limitation was placed on the combustor

outlet temperature, which is definitely an issue for the combustor structure at such

high freestream total enthalpies (Hill and Peterson, 1992, Chap. 5). Such limitations

create a more realistic upper bound on the performance of any propulsion system,

including ramjets.

The idea of using steady detonations as the main combustion mode in an en-

gine has been attractive because of the rapid energy release occurring in detonations.

Since detonations are characterized by higher temperatures and pressures than de-

flagrations, steady detonation engines may offer performance gains over usual air-

breathing engines. They also offer other advantages in terms of simplicity (for the

detonation ramjet), higher pressure rise in the combustor which facilitates the exhaust

of burned gases, and shortened combustion chamber due to a smaller reaction zone.

On the other hand, it has also been recognized early (Foa, 1960) that detonations

produced, in steady-flow engines, a considerably higher entropy rise than is produced

by deflagration, due to the requirement that the reaction front be stationary. Foa

(1960) concluded, based on general considerations, that detonations offered better

promise for use as a non-steady than as a steady combustion mode.

In this chapter, we study the feasibility of steady propulsion systems using nor-

mal detonative combustion. Normal detonation waves require lower freestream Mach

numbers than oblique detonation waves for stabilization, and the operating range of a
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normal detonation-based propulsion system might be broader than that of an oblique

detonation wave engine. However, there are many issues associated with stabilized

normal detonation waves. The most obvious one is that the total enthalpy just up-

stream of the combustor must be high enough so that the flow can be accelerated to

the CJ detonation velocity. We first consider these issues and propose some criteria

for the generation of stabilized normal detonations. We show that detonation waves

can be stabilized only for a limited range of initial conditions. Limitations associated

with fuel or oxidizer condensation, mixture pre-ignition, detonation stability, and fuel

sensitivity to detonation are presented. Then we apply our solution to an analytical

treatment of a detonation ramjet and a detonation turbojet, where detonative com-

bustion replaces the usual deflagrative subsonic combustion. Unlike previous studies,

we place a limitation on the maximum temperature in the combustor due to material

considerations. Performance figures of merit of steady detonation engines are derived

using an ideal model and the results are compared with the analogs that use the

standard deflagrative combustion mode.

3.2 Stabilized normal detonations

A propulsive device using a steady detonation wave is constrained by the considera-

tion that the wave be stabilized within the combustor. Propagating detonation waves

in hydrocarbon fuel-air mixtures typically move at a Mach number on the order of

5, which requires that the flow Mach number upstream of a combustor with a stabi-

lized, steady detonation be at least this value. Thus, it is clear why experimentally

stabilizing a detonation wave may be difficult.

The first reported works on stabilized detonation waves were those of Nicholls

et al. (1959), Nicholls and Dabora (1962) and Gross and Chinitz (1960). Nicholls

et al. (1959) and Nicholls and Dabora (1962) used heated air going through a highly

under-expanded nozzle to generate an accelerating jet. They injected cold hydrogen

at the nozzle throat. The jet was characterized by a complex system of waves form-

ing a Mach disk. The conditions behind the Mach disk were such that combustion
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occurred. Nicholls proposed some criteria for the establishment of standing detona-

tion waves based on hydrodynamic considerations, the second explosion limit, and

ignition delay time considerations. The key result is that the freestream total tem-

perature has to be high enough so that CJ detonations can be established. Gross and

Chinitz (1960) studied stabilized detonation waves using a normal shock generated

by the intersection of two oblique shocks created by wedges in a Mach reflection con-

figuration. They observed steady detonations behind this shock using hydrogen-air

mixtures. They also investigated oblique detonation waves stabilized behind a single

wedge. All their experiments were characterized by a hysteresis effect: once the deto-

nation was established, the upstream temperature could be greatly decreased without

quenching of the detonation. They considered this hysteresis effect as promising for

engine applications operating over a wide range of conditions. It was not observed

by Nicholls and Dabora (1962). However, this hysteresis effect was later reported

to be due to the use of vitiated air which may have contained residual radicals, in-

ducing combustion at low temperatures (Dabora and Broda, 1993). Although the

phenomena obtained in the experiments of Nicholls and Dabora (1962) and Gross

and Chinitz (1960) were originally described as standing detonations, the influence

of the combustion on the shock wave was very limited and these phenomena are bet-

ter described as shock-induced combustion (Rubins and Bauer, 1994). Propagating

detonations are characterized by a strong coupling between the shock and the reac-

tion zone and by a cellular instability, which we would expect to also observe in the

stabilized case as long as the overdrive is sufficiently low. However, neither strong

coupling nor transverse instabilities were observed in these experiments.

The primary difficulty in creating standing detonation waves is to obtain a mixture

with a total enthalpy that is high enough to stabilize the detonation without igniting

the mixture upstream of the shock. For lower total enthalpies, the low post-shock

temperature will result in a wider induction zone and a decoupling of the shock

and the reaction zone. Shepherd (1994) estimated the necessary total enthalpy by

considering the stagnation states upstream of a CJ detonation. A minimum total

enthalpy of 2 MJ/kg is required for hydrogen-air mixtures.



114

3.2.1 Detonation stabilization condition

We propose to study analytically the problem of generating a stabilized normal det-

onation wave using a flow isentropically expanded from a reservoir at a total temper-

ature Tt0. This situation is analog to the experimental setup of Nicholls et al. (1959),

except that we assume the expansion takes place entirely through the nozzle, whereas

Nicholls et al. expanded the flow through a nozzle and an open jet. A schematic

of the problem considered is shown in Fig. 3.1. Air is accelerated to a supersonic

velocity from a reservoir of total temperature Tt0 through a converging-diverging noz-

zle. Fuel is injected at some location downstream of the nozzle throat. The mixing

of fuel and air is not considered in our approach, and we consider that fuel and air

mix homogeneously in an instantaneous fashion without total pressure loss. In order

to stabilize a normal detonation, the flow has to be accelerated to a velocity greater

than or equal to the CJ velocity through the converging-diverging nozzle. For flow

velocities higher than UCJ , overdriven detonations are possible but, as discussed later,

the requirements for a minimum total pressure loss across the detonation in an engine

make them undesirable. Hence, we will consider only Chapman-Jouguet detonation

waves.

Figure 3.1: Standing detonation generated by the isentropic expansion of an airflow
from a reservoir of total temperature Tt0, with fuel injection downstream of the nozzle
throat.

Assuming steady, adiabatic and inviscid flow of an ideal gas, the detonation sta-
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bilization condition can be written as M4 = MCJ , where station 4 corresponds to the

location just upstream of the detonation wave. The detonations are modeled as hy-

drodynamic discontinuities using the one-γ model described in Eqs. 1.15–1.19. This

simple model does not include any considerations of the detonation wave structure.

The influence of chemical kinetics and the reaction zone structure have to be consid-

ered in order to get a more realistic idea of the flow. However, the one-γ model is a

useful approximation for studying the thermodynamic aspects of performance. The

Mach number M4 depends on the static temperature T4 and the total temperature of

the flow upstream of the detonation Tt4 = Tt0

M4 =

√
2

γ − 1

(
Tt4

T4

− 1

)
. (3.1)

The equation M4 = MCJ can be solved analytically for the temperature upstream of

the detonation wave T4. Two solutions are obtained, only one of which is acceptable

since MCJ has to be greater than 1. The solution of this equation is

T4 =
2(γ − 1)

γ + 1
Tt4

(
1

γ − 1
−Q−

√
Q(1 +Q)

)
, (3.2)

where Q is a non-dimensional heat release parameter defined by Q = fqf/(CpTt4).

Once T4 is calculated, the properties downstream of the detonation wave can be

computed using the one-γ model.

3.2.2 General limitations

Detonations cannot be stabilized for arbitrary values of the governing parameters. In

particular, there are restrictions on the allowable values of T4. Since the flow is accel-

erated through the nozzle up to a Mach number of about 5, the static temperature

drop can become significant and condensation of some components of the mixture

can occur in the nozzle. Hence, T4 has to stay above a limiting temperature Tc cor-

responding to fuel or oxidizer condensation. Condensation is actually determined by

the value of the gas-phase fuel or oxidizer partial pressure relative to its corresponding
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liquid-phase vapor pressure, which depends only on temperature. In order to simplify

the problem, we assume the fuel or oxidizer condenses below a temperature Tc con-

stant throughout the range of pressures encountered in the nozzle. This simplifying

assumption allows the derivation of a zero-order criterion for the establishment of

stabilized normal detonation waves: T4 > Tc. This condition imposes a restriction on

the total enthalpy of the reservoir. It is directly relevant to liquid fuels, such as Jet

A or JP10, which condense below 450 K. However, if hydrogen is used as a fuel, then

the oxygen of the air will condense before the fuel at 90 K. The restriction on Tt0 is,

therefore, much less stringent for hydrogen than for liquid hydrocarbon fuels.

Another issue is the location of fuel injection. The flow at the nozzle throat is hot

and the fuel-air mixture must be prevented from pre-igniting before the conditions

for the stabilized detonation are encountered (Rubins and Bauer, 1994). It is better

to locate the fuel injection system further downstream from the throat, where the

flow is cooler. However, in practice, there is a compromise with the length necessary

for supersonic mixing of the fuel and air. The pre-ignition of the fuel-air mixture can

occur if the mixture is at a sufficiently high temperature and its residence time is

large enough so that combustion can start. The location of fuel injection is design-

dependent and varies with the total enthalpy of the reservoir. However, we can

gain some insight into the influence of the upstream conditions on this problem by

considering the simple criterion that T4 be smaller than the auto-ignition temperature

of the fuel-air mixture Tign. This is a minimum requirement since the flow upstream

of station 4 is always hotter. The residence time is supposed to be long enough so

that the only criterion for ignition is the flow static temperature. This criterion allows

the determination of an upper boundary on the allowable domain for the upstream

conditions, above which no detonation will be possible because of auto-ignition of

the fuel-air mixture in the nozzle. Another simplifying assumption is that Tign be

independent of pressure in the pressure range considered.

The temperature upstream of the detonation wave T4 has to be above the con-

densation temperature Tc and below the fuel-air mixture auto-ignition temperature

Tign: Tc < T4 < Tign. This condition can be solved using Eq. 3.2, yielding a criterion
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for the upstream total temperature

f(Tc) < Tt0 < f(Tign) , (3.3)

where f(T ) is defined by

f(T ) =
γ + 1

2
T +

γ2 − 1

2

fqf

Cp

(
1 +

√
1 +

2

γ + 1

CpT

fqf

)
. (3.4)

We applied this criterion to hydrogen-air mixtures, for which Tc = 90 K. The auto-

ignition temperature Tign for hydrogen-air (Kuchta, 1985) is on the order of 800 K

at 1 atmosphere. It is then possible to determine the values of the reservoir total

temperature for which a stabilized detonation is obtained as a function of the fuel-air

mass ratio (or, equivalently, the total heat release per unit time). Figure 3.2 shows

the allowable domain. Below the lower curve, Tt0 is too low and condensation of the

oxygen occurs inside the nozzle; above the upper curve, Tt0 is too large and the fuel-

air mixture will start combusting ahead of the detonation. Comparisons can be made

with the open-jet experiments of Nicholls et al. (1959) performed with hydrogen-

air. In one case, they reported shock-induced combustion corresponding to a total

temperature of the flow of 1194 K, which is within our predicted range for stabilized

detonations of 814 K < Tt0 < 1782 K. In another experiment, burning at the nozzle

exit upstream of the detonation was observed, corresponding to a total temperature

of the flow of 1172 K. Our criterion predicts that for Tt0 > 1164 K, pre-ignition of

the mixture should occur, which was observed in the experiments of Nicholls et al.

(1959).

The restrictions on the allowable domain for liquid hydrocarbon fuels are more

severe, since fuel condensation occurs at much higher temperatures, and the auto-

ignition temperature is lower than that of hydrogen. Therefore, a much smaller

region exists where stabilized detonations can be established using liquid hydrocarbon

fuels. This point is illustrated in Table 3.1, which gives boiling points and auto-

ignition temperatures for a range of fuels. However, detonations can be obtained
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Figure 3.2: Allowable domain for the generation of a stabilized detonation in
hydrogen-air as a function of the reservoir total temperature Tt0 and the fuel-air
mass ratio f . qf = 120.9 MJ/kg for hydrogen.

with liquid hydrocarbon fuels at temperatures below their boiling point as long as

the vapor pressure of the fuel at the temperature considered is high enough for the

given stoichiometry. If the vapor pressure is too low, then too little fuel will be present

in the vapor form and detonation will occur in a two-phase mixture. For example, for

a stoichiometric mixture of JP10 and air at atmospheric pressure, the temperature

has to be above 330 K for complete vaporization of the injected fuel (Austin and

Shepherd, 2003).

The presence of liquid fuel in the mixture makes it much harder to detonate

compared to a purely vapor phase mixture. In general, low vapor pressure liquid

fuel aerosols are characterized by higher ignition energies and larger reaction zones,

making it harder to establish self-sustained detonations. Papavassiliou et al. (1993)

measured the cell width in heterogeneous phase decane-air detonations and found it

to be twice that for decane vapor-air detonations. They concluded that the physi-

cal processes for droplet breakup, heat transfer, evaporation, and mixing require a
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length scale of the same order of magnitude as that needed for the chemical kinetic

processes. They also pointed out that the initiation energy, which scales with the

cube of the cell width, is increased by an order of magnitude when detonating a

liquid spray (Papavassiliou et al., 1993). Alekseev et al. (1993) showed that it was

possible to detonate kerosene in aerosol form. However, the unconfined cloud has to

be of significant size, and the cell width for kerosene spray-air was estimated to be on

the order of 0.5 m. Hence, condensation (even partial) of the fuel in the combustor

can be very penalizing for the establishment of a stabilized detonation wave.

fuel boiling point (K) Auto-ignition temperature (K)
hydrogen 20∗ 793†

ethylene 169∗ 763†‡, 723∗

propane 231∗ 466‡, 450∗†

hexane 342∗ 496‡, 498∗†

decane 447∗ 481‡, 483∗†

Jet A 440–539g 511g

JP10 455g 518g

Table 3.1: Boiling point and auto-ignition temperature of various fuels. ∗Lide (2001),
†Kuchta (1985), ‡Zabetakis (1965), gCRC (1983)

3.2.3 Steady detonation stability

In practice, the situation described previously, with a detonation wave stabilized in

a nozzle, might be unstable to flow perturbations and the wave might tend to move

upstream or downstream. The stability of the detonation wave location is of critical

importance in an engine configuration. We consider a CJ detonation stabilized at a

location x0 in a supersonic nozzle. The flow just upstream of the wave moves with a

velocity UCJ(x0) in a fixed reference frame. The wave, when located at x0, is idle in

the fixed reference frame. We study the effect of a flow perturbation that makes the

detonation wave move to a position x0 + dx. The perturbed detonation wave is going

to move in the fixed reference frame with a velocity u(x0 +dx)−UCJ(x0 +dx), where

UCJ(x0 + dx) corresponds to the CJ velocity associated with the initial conditions

P (x0 + dx) and T (x0 + dx). The sign of the quantity u(x0 + dx) − UCJ(x0 + dx) is
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going to determine whether the wave is stable or unstable. If dx > 0 and u(x0 +

dx) − UCJ(x0 + dx) > 0, then the wave is going to keep moving downstream and is

unstable. If u(x0 + dx)− UCJ(x0 + dx) < 0, then the wave will move back upstream

towards its initial position and is stable. So the stability condition for the stabilized

detonation wave can be expressed as

d(u− UCJ)

dx
< 0 . (3.5)

Considering a general area profile for the nozzle A(x), the equations of quasi one-

dimensional flow are used to compute the variation of flow properties with position,

including the velocity field. The one-γ model is used in combination with the temper-

ature profile in the nozzle to calculate the derivative of the CJ velocity with position.

d(u− UCJ)

dx
=

UCJ

M2
CJ − 1

[
1 +

γ − 1

2
MCJ(H + 1)−1/2

]
1

A(x0)

dA

dx
(3.6)

Equation 3.6 shows that a stabilized detonation wave is always unstable in a diverging

supersonic nozzle (dA/dx > 0) and always stable with respect to flow perturbations in

a converging supersonic nozzle (dA/dx < 0). The variation of the CJ velocity is only

second-order compared to the variation of the flow velocity in the nozzle. This effect

was confirmed by computations using realistic thermochemistry (Reynolds, 1986) at

various stagnation conditions.

This result is the opposite of that for shock waves, which are only stable in di-

verging supersonic nozzles (Hill and Peterson, 1992, p. 230). Unlike shock waves,

detonation waves have a characteristic velocity determined by the coupling between

the upstream flow properties and the heat release. In our analysis, we modeled

detonation waves as hydrodynamic discontinuities. However, the intrinsic behavior

of shock waves in sections with area change might influence the stability result for

detonation waves if the ZND structure of a detonation, consisting of a shock wave

coupled to an energy release zone (Section 1.1.2), is considered. A more detailed

analysis should take into account the acoustic and entropy waves generated due to

shock perturbation, and their respective interactions with the reaction zone. The cel-
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lular structure of the wave, its curvature, and the interaction of the transverse waves

with the area change also play a role. This problem has many aspects to it that our

simplistic analysis does not capture, and we will not consider them any further for

the purposes of the present study.

Zhang et al. (1995) studied the stability of a detonation wave passing through

opposed supersonic flow in a duct of varying cross section and with friction. They

developed a one-dimensional model using a single-step Arrhenius reaction scheme.

In their study, detonation stability was expressed in terms of an oscillatory behavior

that could potentially lead to failure with the detonation wave being expelled out of

the duct. They concluded that the detonation wave was being amplified in a diverg-

ing supersonic duct (becoming overdriven) and its stability increased, while it was

attenuated in a converging supersonic duct. Similarly, friction was shown to amplify

the wave. However, above a certain limit of the friction factor, a stabilized wave

configuration could not be reached with a given duct geometry and initial conditions.

Adding roughness behind the shock front was proposed as a novel concept to improve

detonation front stability.

In practice, efficiently stabilizing a detonation wave will probably require the pres-

ence of a stabilizing body, such as a wedge or a rod. The situation will be slightly

different with the creation of oblique waves. This situation, however, requires that

the flow Mach number be greater than MCJ . For engine applications, the pres-

ence of oblique detonation waves would modify the detonation stabilization criterion

(M4 > MCJ) and the flowfield downstream of the detonation, but the subsequent

performance analysis would still be valid, provided the flow component normal to the

wave is used to calculate the CJ properties. The analysis of Pratt et al. (1991) showed

that for high enough flow velocities and wedge angles, stable oblique detonation waves

can be obtained. At lower wedge angles, incomplete detonation, shock-induced de-

flagration, or no combustion will occur. At very high wedge angles, the wave will

detach and form a normal detonation near the stagnation streamline, similar to the

situation studied here. The situation of an oblique detonation stabilized on a body is

very similar to the case of projectile-induced detonations. Experiments by Kaneshige
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and Shepherd (1996) showed that stable oblique detonations could be obtained on

a spherical projectile in a straight channel for projectile speeds greater than UCJ .

Propagating oblique detonation waves have also been observed in two-layer deto-

nation experiments (Dabora et al., 1991) in a straight channel. Nevertheless, it is

not clear how oblique detonation waves would behave in a converging or diverging

channel.

3.2.4 Detonation-related limitations

Up to now, we have modeled detonations as hydrodynamic discontinuities. The sim-

plest model that includes chemical kinetics consists of a shock wave followed by a

reaction zone, referred to as the ZND model and described in Section 1.1.2. In this

model, the leading shock front is followed by an induction zone, through which the

thermodynamic variables remain relatively constant while free radicals, such as OH,

are produced. Significant energy release occurs at the end of the induction zone and

corresponds to a rapid rise in temperature and a decrease in pressure accompanied by

the formation of the major products. The length scale associated with the induction

zone, the reaction zone length ∆ (Fig. 1.3), is a strong function of the post-shock

temperature. It can be used to judge whether a detonation can be obtained, or only

shock-induced combustion can be produced. Another length scale associated with

detonations is the cell width λ (Fig. 1.5). The cell width is a characteristic length

scale corresponding to the intrinsic instability and the structure of propagating det-

onation waves (Section 1.1.3). Attempts have been made to correlate the cell width

with the induction zone length and showed that λ is between 10 and 50 times ∆

for stoichiometric mixtures, and between 2 and 100 times ∆ for off-stoichiometric

mixtures (Westbrook and Urtiew, 1982, Shepherd, 1986, Gavrikov et al., 2000).

Simulations of steady, one-dimensional detonations were performed with a code

developed by Shepherd (1986), based on a standard gas-phase chemical kinetics pack-

age (Kee et al., 1989). The code solves the one-dimensional, steady reactive Euler

equations of the ZND model (Eqs. 1.25–1.28). The chemical reaction model of Konnov
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(1998) and standard thermochemistry were used to calculate reaction zone lengths

for hydrogen-air mixtures at various initial conditions. Validation of this mechanism

against shock tube induction time data is given in Schultz and Shepherd (2000).

The reaction zone length was calculated as the distance from the leading shock to

the point of maximum temperature gradient. Reaction zone lengths were calculated

for hydrogen-air mixtures, for which the kinetics are fairly well understood. The

computed reaction zone lengths were then scaled to estimate the cell width. The

relationship λ = 50∆ gave the best agreement with the experimental data of Stamps

and Tieszen (1991), Ciccarelli et al. (1994), and Guirao et al. (1982), and was used

to predict cell widths for hydrogen-air mixtures.

Cell widths were also estimated for JP10-air mixtures, since JP10 is a fuel of

interest to propulsion applications because of its high energy density. The reaction

zone lengths for JP10-air mixtures were estimated from the ignition time correlation

of Davidson et al. (2000), who carried out shock tube measurements of JP10 ignition.

The correlation they obtained is

τign = 3.06 · 10−13 P−0.56 X−1
O2

φ0.29 e52150/RT . (3.7)

The ignition time was multiplied by the post-shock velocity, which was calculated

(Reynolds, 1986) for a non-reactive shock with realistic thermodynamic properties,

to obtain the reaction zone length. The relationship λ = 10∆ gave a good estimate

of the JP10 cell width data of Austin and Shepherd (2003) and was used to predict

JP10-air cell widths.

Cell widths for hydrogen- and JP10-air mixtures are presented in Figs. 3.3, 3.4,

and 3.5 versus initial pressure, equivalence ratio, and initial temperature, respectively.

Fig. 3.3 shows that the cell width decreases with increasing pressure for both fuels. For

JP10 and hydrogen at low pressures (below atmospheric), the cell width is roughly

inversely proportional to the initial pressure: λ ∝ 1/P4 due to the dependence of

the reaction rates on the rate of molecular collisions. However, the cell width for

hydrogen-air increases for initial pressures between 1 and 6 bar, a behavior similar
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Figure 3.3: Cell width λ as a function of initial pressure P4 for stoichiometric
hydrogen-air at 297 K and JP10-air at 373 K. The lines correspond to cell width
predictions using calculated reaction zone lengths (Shepherd, 1986, Kee et al., 1989)
for hydrogen and ignition time correlation (Davidson et al., 2000) for JP10. The
symbols correspond to experimental data of Stamps and Tieszen (1991) and Austin
and Shepherd (2003).

to that observed in the same pressure range by Westbrook and Urtiew (1982), and

Stamps and Tieszen (1991). This behavior is attributed to the prevalence of 3-body

reactions with increasing pressure (Westbrook and Urtiew, 1982, Stamps and Tieszen,

1991) and is related to the second explosion limit mechanism for the hydrogen-oxygen

system (Lewis and von Elbe, 1961, Chap. II.1). As the pressure is further increased,

the product of the 3-body recombination reaction, HO2, is rapidly consumed by other

bimolecular reactions favored by high pressures. This effect corresponds to the third

limit of the hydrogen-oxygen system (Lewis and von Elbe, 1961, Chap. II.1) and

overcomes the inhibiting effect of the recombination reaction, decreasing the reaction

zone length and the cell width. A more complete discussion is given in Westbrook

and Urtiew (1982).

The cell width in Fig. 3.4 exhibits a U-shaped behavior versus the equivalence



125

Φ

λ
(m

m
)

0 1 2 3 4
100

101

102

103

H2 - λ = 50∆
H2 - Ciccarelli et al.
H2 - Guirao et al.
JP10 - λ = 10∆
JP10 - Austin and Shepherd

Figure 3.4: Cell width λ as a function of equivalence ratio for hydrogen-air at 297 K
and JP10-air at 373 K and 1 bar. The lines correspond to cell width predictions using
calculated reaction zone lengths (Shepherd, 1986, Kee et al., 1989) for hydrogen and
ignition time correlation (Davidson et al., 2000) for JP10. The symbols correspond
to experimental data of Ciccarelli et al. (1994), Guirao et al. (1982), and Austin and
Shepherd (2003).

ratio with a minimum around stoichiometry caused by the variation of the post-

shock temperature with composition. The cell width at stoichiometry and standard

conditions is on the order of 10 mm for hydrogen-air and 60 mm for JP10-air. Finally,

λ does not vary significantly for hydrogen when the initial temperature is varied

(Fig. 3.5) due to the competing effects of a higher post-shock temperature and a

lower density on the reaction rates. The calculated JP10-air cell width decreases

with increasing initial temperature due to the larger activation energy for JP10. The

JP10 cell widths are shown above a minimum temperature of about 330 K due to

vapor pressure considerations (Austin and Shepherd, 2003). In conclusion, the initial

pressure and the equivalence ratio are the parameters with the strongest influence on

the cell width, since λ varies less than one order of magnitude with initial temperature.

These calculations can be used to estimate the characteristic length scales for various
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engine configurations.
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Figure 3.5: Cell width λ as a function of initial temperature T4 for stoichiometric
hydrogen- and JP10-air mixtures at 1 bar. The lines correspond to cell width pre-
dictions using calculated reaction zone lengths (Shepherd, 1986, Kee et al., 1989) for
hydrogen and ignition time correlation (Davidson et al., 2000) for JP10. The symbols
correspond to experimental data of Stamps and Tieszen (1991).

3.2.4.1 Limitations on detonation chamber diameter

The characteristic detonation length scales, which are the reaction zone length and

the cell width, impose constraints on the geometry and size of the combustor. The

usual rule of thumb for propagating detonations is that the channel width has to be

greater than the detonation cell width for the detonation to propagate. The limit

for detonation propagation in cylindrical tubes of diameter d is usually taken to be

determined by the criterion λ ≈ πd, or a velocity deficit of less than 10% of the

CJ velocity (Dupre et al., 1986). This criterion corresponds to the onset of single-

head spin detonation. Lee (1984) reviewed previous work and pointed out that the

limits for circular tubes could be specified by the criterion λ = πd and for two-

dimensional planar channels of width w by λ = w. Peraldi et al. (1986) found that
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the necessary condition for transition to detonation in circular obstacle-laden tubes

was λ > d. However, experiments by Dupre et al. (1990) with standardized initial

conditions for detonation propagation, failed to arrive at a definitive λ/d criterion

for smooth circular tubes. Unstable detonations with very large velocity fluctuations,

such as galloping waves, were obtained for λ/d up to 13. These unstable near-limit

phenomena were also observed by Manzhalei (1999) for acetylene-oxygen mixtures.

Manzhalei (1999) found that the lower pressure limit for detonation regimes in lean

mixtures was an order of magnitude smaller than that corresponding to single-head

spin detonation. The problem of detonability limits for propagating detonations does

not have a single definitive answer, and, at present, there are no data at all for

stabilized detonations. For the purposes of the present study, we adopt the criterion

λ = d as the detonability limit for a stabilized detonation wave in a given channel.

3.2.4.2 Limitations on detonation chamber length

It has been claimed (Dunlap et al., 1958, Sargent and Gross, 1960, Dabora and Broda,

1993) that using detonations in ramjet-like engines would enable reductions in the

combustor length. In practice, the CJ state has to be achieved inside the combustor

for maximum efficiency and to isolate the detonation from potential perturbations in

the flow downstream of the combustor. If the combustor is too short, the combustion

process inside the combustor is incomplete and part of the energy released is lost

to the surroundings. The detonation can also become unstable if flow perturbations

penetrate the subsonic region between the detonation front and the Chapman-Jouguet

plane. Hence, the location of the CJ surface is critical for the design of the detonation

chamber. Vasiliev et al. (1972) attempted to determine the location of the CJ surface

by photographic observation of a detonation wave propagating from a metal tube

into a thin cellophane tube. The velocity decrease observed at lower pressures was

associated with the penetration of the rarefaction wave caused by the destruction

of the cellophane tube into the subsonic region just behind the front. The upper

bound for the location of the CJ surface was found to be within 3.5-10 cell lengths

(or 6λ − 17λ, assuming a cell width to cell length ratio of 0.6) for hydrogen- and
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acetylene-oxygen mixtures diluted with argon. Another method used by Vasiliev

et al. (1972) consisted of observing the interaction of a detonation with a thin plate

and, more specifically, the detachment of the weak shock formed at the front edge

of the plate, corresponding to sonic conditions. These observations yielded a lower

bound to the location of the CJ surface, within 1-3 cell lengths (1.5λ−5λ) behind the

front. Edwards et al. (1976) measured the pressure oscillations associated with the

transverse waves behind a propagating detonation front for hydrogen- and acteylene-

oxygen mixtures. They noticed that the oscillations attenuated in a distance of two

to four cell lengths (3λ − 7λ) downstream of the front and suggested that there is a

link between the transverse oscillations and the establishment of sonic flow relative to

the front. More recently, Weber et al. (2001) reported measurements of the location

of the CJ surface using a method similar to Vasiliev’s thin plate technique. Their

results indicate that the location of the sonic surface is within 0.2λ − 0.6λ behind

the detonation front. Although there is a wide range of values for the sonic surface,

it apparently lies within 5λ of the front for propagating detonation waves and no

measurements have been made for stabilized waves. For the purposes of the present

study, we propose to use a criterion for the minimum length of the detonation chamber

L > 5λ.

3.2.4.3 Near-detonability limit effects

The problem of stabilizing a detonation in a channel gets more complicated in con-

figurations close to the detonability limits. It may not be necessary to have λ < d if

viscous effects can be used to stabilize the flow. The results of detonation propagation

in small-diameter tubes or at low pressures (Manzhalei, 1999, Lee et al., 1995) have

shown that the detonation velocity can be substantially lower than the CJ velocity

for these cases. Manzhalei (1999) and Lee et al. (1995) observed low-velocity deto-

nations in near-limit situations where the detonation velocity was as low as 50% of

the CJ velocity. These situations may significantly extend the regime of operation

of a steady detonation engine. In these cases, the criterion formulated previously,

M4 = MCJ , is no longer valid, and a more specific study is necessary to find the right



129

parameters for stabilization. The idea of being able to stabilize a detonation wave at

a lower velocity than UCJ is attractive, since it reduces the requirements on the total

temperature of the flow.

However, propagating detonations at near-limit conditions generally have an un-

stable behavior. Indeed, the same near-limit detonation studies (Manzhalei, 1999, Lee

et al., 1995) have shown that many different behaviors could be observed. Lee et al.

(1995) proposed a classification of the six different types of near-limit behavior they

observed. In particular, modes characterized by a strong oscillation of the detonation

velocity, such as the “stuttering” mode or the galloping waves (where the detonation

velocity oscillates between 0.4 and 1.5 UCJ), are characteristic of near-limit behavior.

Lee et al. (1995) pointed out that several modes could occur either within a single

propagation, or in different experiments at the same initial conditions. It is obvious

that such modes would be totally inadequate for detonation stabilization, and even

catastrophic in practice if the detonation exits the combustion chamber. We con-

clude that the possibility of stabilized detonations with velocities substantially less

than the CJ value is highly speculative and we will not consider these any further in

the present study. For the purposes of the present study, we adopt the requirement

u ≥ UCJ for stabilizing a detonation in a combustor.

3.2.4.4 Application to hydrogen-air and JP10-air stabilized detonations

The criteria proposed in the previous sections impose some severe restrictions on the

dimensions of the detonation chamber of a steady detonation engine. In particular,

it is interesting to illustrate these issues with a few representative numbers, corre-

sponding to typical flight conditions. Table 3.2 lists the minimum requirements for

the diameter and length of a detonation chamber at various initial conditions, in-

cluding subatmospheric and superatmospheric pressures and lean mixtures. The CJ

parameters corresponding to the mixtures considered are also given. Table 3.2 lists

parameters for two different temperatures, 300 K and 500 K. However, vapor pressure

considerations (Austin and Shepherd, 2003) indicate that the minimum temperature

required for vaporizing all the fuel injected in a stoichiometric JP10-air mixture is
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Fuel T0 (K) P0 (atm) φ UCJ (m/s) TCJ (K) PCJ (bar) d (mm) L (mm)
H2 300 0.1 1 1917.5 2771 1.5 84.9 424.5
H2 300 1 1 1971 2949 15.7 8.9 44.5
H2 300 10 1 2014.1 3097 162.5 11.2 56
H2 300 0.1 0.5 1603.7 2189 1.18 214.5 1072.5
H2 300 1 0.5 1610.1 2205 11.8 271.5 1357.5
H2 300 10 0.5 1613.3 2213 118.4 289 1445
H2 500 0.1 1 1885.2 2777 0.89 98.1 490.5
H2 500 1 1 1946.5 2977 9.4 10.4 52
H2 500 10 1 1998.4 3154 98.3 13.1 65.5
H2 500 0.1 0.5 1605.4 2305 0.73 213 1065
H2 500 1 0.5 1618 2339 7.4 215.2 1076
H2 500 10 0.5 1624.5 2356 74.1 247.9 1239.5

JP10 350 0.1 1 1734.4 2693 1.53 369.4 1847
JP10 350 1 1 1779.5 2850 16 55.2 276
JP10 350 10 1 1818.1 2989 165.4 9.2 46
JP10 350 0.1 0.5 1492.8 2092 1.078 8185 40925
JP10 350 1 0.5 1496.6 2101 10.7 2100 10500
JP10 350 10 0.5 1498.2 2105 107.3 561.5 2807.5
JP10 500 0.1 1 1719.6 2706 1.07 165.8 829
JP10 500 1 1 1768.6 2876 11.2 25.5 127.5
JP10 500 10 1 1811.5 3030 116.6 4.3 21.5
JP10 500 0.1 0.5 1500.4 2188 0.78 1557.5 7787.5
JP10 500 1 0.5 1507.6 2206 7.79 384.8 1924
JP10 500 10 0.5 1510.8 2215 77.9 100.8 504

Table 3.2: CJ parameters and minimum detonation chamber length and diameter for
a range of initial conditions for hydrogen- and JP10-air. The minimum dimensions are
based on the proposed criteria using the computed reaction zone lengths for hydrogen-
air (Shepherd, 1986, Kee et al., 1989) and the ignition time correlation for JP10-air
of Davidson et al. (2000).
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330 K. Hence, the minimum temperature chosen for JP10 was 350 K. The minimum

dimensions vary by several orders of magnitude with equivalence ratio and initial

pressure. Typical air-breathing engines run at an equivalence ratio substantially less

than one in order to limit the maximum temperature in the combustor due to material

considerations. The same approach with a steady detonation engine leads to imprac-

tical minimum dimensions when the equivalence ratio is decreased to 0.5. A similar

behavior is obtained when the pressure is decreased. The claim that using steady

detonations in propulsion devices might allow us to reduce the combustor length is

not justified, as a careful consideration of the minimum length required shows that

the detonation chamber length has to be at least five times the minimum chamber

diameter. Finally, Table 3.2 highlights the difficulty associated with detonation sta-

bilization using a liquid hydrocarbon fuel such as JP10. Liquid hydrocarbon fuels are

insensitive to detonation and their cell width is much larger than that of hydrogen,

yielding stricter constraints on steady detonation engine design.

3.3 Detonation ramjet

A detonation ramjet, or dramjet, is a steady propulsive device using the same principle

as a ramjet except that the combustion takes place in the combustor in the form of

a steady detonation wave instead of a bluff-body stabilized flame. The ideal ramjet,

described in Section 1.2.2, has many components in common with the dramjet, and

it will be used as a performance standard. First, we will discuss the portions of the

dramjet model which are different from the ramjet. Second, the performance of both

engines will be compared. Finally, limitations will be considered due to detonation

stabilization requirements, ignition limits, and fuel and oxidizer properties.

3.3.1 Performance analysis

A detonation ramjet has to accommodate a stationary detonation wave in the com-

bustor. The flow must be accelerated or slowed down to a velocity higher than or

equal to the CJ detonation velocity. For flow velocities higher than UCJ , overdriven
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detonation waves could be stabilized but they are not desirable in order to avoid ex-

cessive total pressure loss across the detonation. We consider only Chapman-Jouguet

detonation waves. A dramjet has to include a generic nozzle between the inlet diffuser

and the combustor inlet in order to bring the flow to the CJ velocity. This is a gen-

eral situation applicable to various flight Mach numbers. It will be shown later that

a converging inlet section is actually more appropriate for most flight Mach numbers.

The rest of the engine is similar to the ramjet. A schematic of a dramjet is given

in Fig. 3.6. A fluid element going through a dramjet first undergoes a compression

through the inlet (station 0 to 2) then an expansion through a nozzle (station 2 to 4)

until its velocity is equal to the CJ velocity. The fluid element is then compressed and

heated through the detonation wave (station 4 to 5) before undergoing an expansion

through the exit nozzle (station 5 to 9).

Figure 3.6: Schematic representation of a detonation ramjet (or dramjet). The pres-
sure and temperature profiles through the engine are shown.

In our performance analysis of the dramjet, we assume steady, inviscid and adia-

batic flow of an ideal gas. As in the ideal ramjet case, we consider the compression

and expansion processes to be isentropic. The dissociation of the combustion prod-

ucts is not taken into account. Products and reactants are assumed to have the same
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heat capacity and γ. The stabilization condition for the detonation wave is obtained

using Eq. 3.2. The detonation wave is assumed to be stable with respect to flow

perturbations. The limitations due to mixture condensation or pre-ignition were not

considered in these calculations, nor were the limitations due to reaction zone lengths

and detonation cell widths. The performance limits associated with these constraints

will be indicated later.

These assumptions are, of course, not realistic due to the presence of irreversible

processes such as shocks, mixing, wall friction, and heat transfer. It is possible to

make the model much more realistic but for the present purposes, these idealizations

are adequate since we are primarily interested in performance comparisons rather than

absolute performance. All these assumptions are used to derive simple performance

estimates of an ideal dramjet, which can be used as the detonative combustion analog

of the ideal ramjet. We apply a limitation on the total temperature at the combustor

outlet similar to the ramjet case. The flow evolves isentropically through the inlet

and the converging-diverging nozzle. Hence, Tt0 = Tt2 = Tt4 and Pt0 = Pt2 = Pt4.

The detonation stabilization condition is that the flow at station 4 must have a Mach

number M4 = MCJ .

The fuel-air mass ratio f is determined by the maximum temperature condition

(Eq. 1.63) and is assumed to have a value f � 1, which is typically the case for

stoichiometric or lean hydrogen- or hydrocarbon-air mixtures. The flow properties

at the combustor outlet are dictated by the Chapman-Jouguet conditions: M5 =

1, Tt5 = Tmax, P5 is obtained from Eq. 1.17. The flow through the exit nozzle is

considered isentropic and the exit velocity u9 can be calculated assuming the flow at

the nozzle exit is pressure-matched

u9 =

√√√√√2CpTmax

1− 2

γ + 1

T0

T4

(
γ + 1

1 + 2γ
γ−1

(Tt0

T4
− 1)

) γ−1
γ

 , (3.8)

where T4 is given by Eq. 3.2. The values of the various performance parameters can

be deduced from the value of u9 and are given in Appendix A.
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3.3.2 Performance comparison

The specific thrust (Eq. 1.64), TSFC (Eq. 1.66), and efficiencies (Eqs. 1.58, 1.59,

and 1.61) of the dramjet were calculated for a set of initial conditions corresponding

to flight at 10,000 m altitude using a fuel of heat release per unit mass qf = 45

MJ/kg (typical of hydrocarbon fuels) and a maximum allowable temperature in the

combustor Tmax = 2500 K. These parameters are compared to their ramjet analogs

in Figs. 3.7 and 3.10. The only performance parameter that would be modified if

hydrogen were used as a fuel would be the TSFC. The heat release per unit time

would be unchanged due to the maximum temperature condition, but the fuel-air

mass ratio would change and, comparatively, less hydrogen would be consumed.
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Figure 3.7: Specific thrust of ramjet and dramjet. T0 = 223 K, P0 = 0.261 atm,
qf = 45 MJ/kg, Tmax = 2500 K. The limits for effective detonation stabilization are
shown for hydrogen and JP10.

The dramjet does not produce any thrust below a flight Mach number of about 5

for the initial conditions considered due to the stabilization condition for a detonation

wave. The freestream Mach number is higher than the CJ Mach number for M0 > 5.1.

This means that the supersonic flow between stations 2 and 4 has to undergo a
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deceleration through the inlet and only a converging section is required, unlike the

situation depicted in Fig. 3.6. The pressure and temperature would then increase

continuously and isentropically from station 0 to station 4. It also means that the

stabilized detonation in the nozzle configuration would be stable with respect to flow

perturbations.

The specific thrust for the dramjet (Fig. 3.7) shows a maximum near M0 = 5.5.

The performance of the dramjet then decreases with increasing M0 due to the max-

imum temperature limitation in the combustor. As M0 approaches its upper limit,

the amount of fuel injected decreases (Eq. 1.63) and the CJ Mach number approaches

1. The combustion process becomes, in theory, closer to a constant-pressure heat

addition as in the case of the ramjet, which explains why the two curves match at

high Mach numbers. In practice, as the amount of fuel is reduced, the mixture will

stop being detonable and only subsonic deflagration will be obtained. Additionally,

the reaction zone length will strongly increase until it exceeds the physical dimension

of the combustor and incomplete reaction is obtained in the combustor. Below a

minimum fuel-air ratio, the mixture will not be flammable and combustion will not

be obtained. For this reason, the actual maximum flight Mach number will be lower

than the ideal value.

As the flight Mach number decreases, the performance of the dramjet sharply

drops. This can be explained by the very substantial total pressure loss across a

detonation wave. The total pressure ratio across a CJ detonation was computed

as a function of the CJ Mach number and is shown in Fig. 3.8. For reference, the

corresponding total pressure ratio across a normal shock wave is also displayed in

Fig. 3.8, along with the total pressure ratio across the reaction zone. The dramatic

total pressure loss across a CJ detonation is mainly due to the presence of the normal

shock wave, although the combustion process can account for up to 14% of the total

pressure loss. The total pressure ratio for a detonation decreases rapidly as MCJ

increases. CJ detonation waves have very high total pressure losses across them; for

example, the total pressure loss across a detonation wave with MCJ = 4 is 88%, and

the total pressure loss across a wave with MCJ = 5 is greater than 94%. In order
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Figure 3.8: Total pressure ratio across a CJ detonation wave, a normal shock, and
the reaction zone using the one-γ model. γ = 1.4.

to maximize the specific thrust, one has to maximize the exit velocity u9, which is

determined by the expansion of the flow from the combustor outlet total pressure Pt5

to the outside pressure P0 and increases with Pt5. This is why total pressure losses are

so penalizing for air-breathing engines. The variation of the CJ Mach number with

flight Mach number and the corresponding total pressure ratio across the detonation

wave Pt5/Pt4 are shown in Fig. 3.9. As the flight Mach number decreases, the CJ Mach

number increases sharply because of the lower static temperature upstream of the

detonation. The total pressure ratio across the detonation decreases correspondingly,

which causes the sharp drop in the dramjet performance. In the case considered, the

specific thrust vanishes at a flight Mach number M0 = 4.95, which corresponds to a

total pressure ratio of about 1.5%. If M0 is further decreased, the drag momentum

term ṁu0 then exceeds the thrust momentum term ṁu9 because of the substantial

total pressure losses and no net thrust is produced. The high total pressure loss across

the detonation strongly penalizes the performance of a dramjet compared to the ideal

ramjet, for which there is negligible total pressure loss across the combustor.
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detonation wave with flight Mach number for the dramjet. T0 = 223 K, P0 = 0.261
atm, qf = 45 MJ/kg, Tmax = 2500 K.

As seen in Fig. 3.10, the TSFC increases sharply for both engines as the flight

Mach number decreases. This is due to the decrease in specific thrust while the

fuel consumption rate remains finite. At higher Mach numbers, the TSFC remains

finite as both the fuel-air mass ratio and the specific thrust decrease, and the process

approaches constant-pressure combustion. The thermal efficiency of the ramjet and

the dramjet increases as M0 increases. The freestream total pressure increases with

M0, and adding heat at higher total pressure is thermally more efficient since the

exit velocity is higher (see Eq. 1.58). The overall efficiency follows a similar behavior,

showing that both engines are more efficient at higher flight speeds. A more realistic

approach would take into account irreversible processes such as inlet losses. These

losses would, in general, increase with increasing Mach number, making for a more

rapid decrease in performance at high Mach numbers for both ramjet and dramjet.

However, our goal here is to compare ideal models whose characteristics can be used

as performance goals of realistic engines.
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Figure 3.10: Thrust-specific fuel consumption (left) and efficiencies (right) of ramjet
and dramjet. T0 = 223 K, P0 = 0.261 atm, qf = 45 MJ/kg, Tmax = 2500 K.

Performance calculations using real gas thermodynamics (Reynolds, 1986) were

carried out for JP10 at M0 = 5.2 and M0 = 5.4. The performance calculation

methodology for real gas calculations is described in the appendix. These calculations

have to be iterated until the stabilization conditions for the detonation wave are

found. The use of real gas thermodynamics shows that more fuel would have to

be consumed in order to reach the temperature Tmax at the combustor outlet. The

TSFC numbers given in Fig. 3.10 are obtained using the one-γ model and are very

optimistic figures if the maximum temperature Tmax is to be reached at the combustor

outlet due to the effect of dissociation. Similarly, the numbers given in Fig. 3.11

are not very representative of real JP10- and hydrogen-air systems. The effect of

dissociation on performance was investigated by carrying out real gas calculations

at the same operating conditions (including fuel-air mass ratio) as those used in the

ideal model. Surprisingly, their results for the specific thrust were very close to those

of the ideal model (within 1.5% error) in the case for M0 = 5.4, and even higher

(by 15%) in the case for M0 = 5.2. The effect of endothermic dissociation reactions

through the detonation wave, which is to decrease the effective energy release, is

compensated for by the modified detonation wave stabilization condition, which is

satisfied for a lower CJ Mach number than in the ideal case. This lower CJ Mach
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number corresponds to a lower total pressure loss across the detonation wave and

results in improved performance. The effect of recombination reactions through the

nozzle was also considered, since the flow through the nozzle undergoes a substantial

expansion due to the high pressure ratios between the combustor and the nozzle exit.

However, frozen and equilibrium nozzle calculations resulted in very small differences

in terms of specific thrust (less than 1.5%) because of the low CJ temperatures (about

1800 K) due to low fuel input.

3.3.3 Dramjet limitations

Effects such as detonation stability, fuel condensation, mixture pre-ignition, and re-

action zone length have to be considered when looking at the dramjet performance

curves.

An important issue is the stability of the detonation wave, which has not been

assessed experimentally. If the wave is unstable, the consequences can be catastrophic

as it might be blown out of the combustor or run back into the fuel lines. Even though

the wave appears to be in a stable configuration with respect to flow perturbations

for most cases (in a converging nozzle), according to our analysis, a stabilizing body

might still be necessary. However, the analysis of Zhang et al. (1995) shows that a

detonation wave is attenuated in a converging nozzle and its oscillatory instability

increased. Both considerations need to be taken into account when evaluating the

overall stability of the wave for practical applications.

As M0 gets close to the lower limit of the dramjet thrust-producing range, such

effects as fuel or oxidizer condensation are going to take place as described in the

previous section about standing normal detonation waves. The static temperature

at the nozzle outlet is higher than the freestream temperature, but still low because

there is very little deceleration required to match the CJ Mach number. This is not an

issue for a fuel such as hydrogen, but it is definitely a problem for liquid hydrocarbon

fuels, which have boiling points above 450 K (see Table 3.1). On another hand,

near the upper limit of the thrust-producing range of M0, the static temperature T4
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becomes very high because of the strong flow deceleration from a high freestream Mach

number to a low MCJ due to low fuel input. Pre-ignition of the fuel-air mixture is

expected for M0 > 6. For hydrogen, the condition dictated by Eq. 3.3 corresponds to

5 < M0 < 6 for steady detonation generation. For a representative liquid hydrocarbon

fuel such as JP10, 5.45 < M0 < 5.55 for detonation stabilization. These limits are

shown in Fig. 3.7 for mixtures with hydrogen and JP10. If, instead of using the

condensation temperature criterion for JP10, we consider vapor pressure requirements

so that the amount of fuel injected is totally vaporized, then 5.25 < M0 < 5.55 for

effective detonation stabilization. The difficulties associated with generating steady

detonations using liquid hydrocarbon fuels are readily apparent.

Both the ramjet and dramjet have been modeled so far without considering any

total pressure loss other than across the detonation wave. There are obviously total

pressure losses across the inlet during supersonic flight, but both engines would suffer

a similar decrease in performance. However, the performance of a realistic dramjet

is handicapped compared to the ramjet due to the mixing requirements ahead of the

combustion chamber. In a ramjet, mixing and combustion occur at M � 1, where

losses are minimal. In a dramjet, mixing has to take place at supersonic speeds, which

is one of the key problems for scramjet research (Curran et al., 1996). Supersonic

mixing generates total pressure losses because of low residence times and fast mixing

rates. Dunlap et al. (1958) modeled the supersonic mixing process for hydrogen-air

mixtures and showed that the total pressure loss increases with the flow Mach number.

Total pressure losses on the order of 10–40% were predicted for Mach numbers between

2 and 5. Total pressure losses during supersonic mixing were also calculated by Fuller

et al. (1992), and Papamoschou (1994) showed that they directly result in thrust

losses for a simplified scramjet model. The calculated thrust loss is about 30% for

a convective Mach number of 2 and about 50% for a convective Mach number of 3,

stressing the importance of minimizing total pressure losses during supersonic mixing.

This effect could have a significant impact on the dramjet performance compared to

the ramjet.

The limitations associated with detonation reaction zone structure impose further
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Figure 3.11: Fuel-air mass ratio f (left) and cell width λ (right) versus flight Mach
number M0 for a dramjet operating with hydrogen and JP10. T0 = 223 K, P0 = 0.261
atm, Tmax = 2500 K, γ = 1.4.

constraints on the performance of the dramjet. The fuel-air mass ratio was calcu-

lated for a hydrogen-fueled and a JP10-fueled dramjet as a function of M0 at flight

conditions corresponding to an altitude of 10,000 m (T0 = 223 K, P0 = 0.261 atm)

and is plotted in Fig. 3.11. The fuel-air ratio decreases with increasing Mach num-

ber because of the fixed combustor outlet total temperature Tmax until it reaches

zero when the freestream total temperature equals Tmax and no fuel can be injected.

Cell width were estimated from the fuel-air mass ratio based on reaction zone length

computations (Shepherd, 1986, Kee et al., 1989) for hydrogen and ignition time cor-

relations (Davidson et al., 2000) for JP10, as described previously in Section 3.2.4.

Figure 3.11 displays the cell width estimates as a function of the flight Mach num-

ber. The computations and correlations used to estimate the cell widths are valid

only in a given range of parameters. However, the limits sought for practical engine

design (e.g., λ = 1 m) are usually located within or close to this parameter range.

The mixtures are all very lean, but the pressure P4 and temperature T4 increase very

rapidly with increasing M0. The cell width is sensitive to the changes in pressure and

temperature and decreases by many orders of magnitude with increasing Mach num-

ber. For conventional applications, the corresponding cell width λ probably has to be
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below 1 m, which requires that M0 > 5.6 for both fuels. The range of applicability

of hydrogen-fueled dramjets is now reduced to 5.6 < M0 < 6 at the flight condi-

tions considered due to cell width and pre-ignition considerations. For a JP10-fueled

dramjet, there is no practical range of applicability due to the lower auto-ignition

temperature of the fuel. The influence of flight altitude was also investigated as the

variation of the freestream pressure with altitude might result in smaller cell widths

at low altitude and, therefore, a wider operating range for the dramjet. However,

performance calculations at an altitude of 1,000 m showed that the useful operating

range for a hydrogen-fueled dramjet was only 4.9 < M0 < 5.15, and there was no

practical operating range for JP10. Performance figures similar to the 10,000 m case

were obtained for slightly lower flight Mach numbers due to the higher freestream

temperature. These results illustrate clearly the strong influence of the fuel prop-

erties and the characteristic detonation length scales on the use of detonations in

steady-flow engines.

3.4 Detonation turbojet

Figure 3.12: Schematic of a detonation turbojet, including the variation of pressure
and temperature across the engine.
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The principle of a detonation turbojet (or turbodet) is similar to that of the

dramjet. The detonation turbojet has the same components as the turbojet engine

described in Section 1.2.3, except that it requires an additional nozzle between the

compressor and the combustor in order to accelerate the flow to the CJ velocity,

as depicted in Fig. 3.12. Unlike the dramjet, the turbodet includes a converging-

diverging nozzle to accelerate the subsonic flow exiting the compressor to supersonic

in the combustor. This means that a stabilized detonation would be unstable to flow

perturbations without the presence of a stabilizing body. The sonic flow exiting the

combustor has to be decelerated before entering the turbine in order to minimize

losses associated with shock waves. The performance parameters are calculated the

same way as for the turbojet, except that the solution for the steady detonation wave

is used between the compressor and the combustion chamber. The formulas used to

calculate some of the performance parameters are given in the appendix.
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Figure 3.13: Specific thrust of turbojet and turbodet engines. πc = 30, T0 = 223 K,
P0 = 0.261 atm, qf = 45 MJ/kg, Tmax = 1700 K.

The specific thrust, TSFC, and efficiencies of the turbojet and turbodet engines

are plotted in Figs. 3.13 and 3.14, respectively. These plots correspond to a fixed
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Figure 3.14: Thrust-specific fuel consumption (left) and efficiencies (right) of turbojet
and turbodet engines. The efficiency curves for the turbodet are those extending
only from M0 = 1.75 to 3. πc = 30, T0 = 223 K, P0 = 0.261 atm, qf = 45 MJ/kg,
Tmax = 1700 K.

compression ratio of 30, flight conditions at an altitude of 10,000 m, a heat release per

unit mass of fuel of 45 MJ/kg, and a maximum turbine inlet temperature Tmax = 1700

K. The turbodet engine shows relatively poor performance compared to the turbojet.

It does not produce thrust below a Mach number of 1.75 for the case considered here

(the value of the limiting Mach number depends on the compression ratio at fixed

flight conditions) due to the detonation wave stabilization condition. The drastic

total pressure loss across the steady detonation causes the specific thrust to fall off

at lower flight Mach numbers, while the maximum temperature condition causes its

decrease at higher flight Mach numbers. The influence of the compression ratio was

investigated and the results are presented in Fig. 3.15. The turbodet was found to

produce thrust at lower flight Mach numbers as the compression ratio increases due to

the requirements on the nozzle total temperature for detonation stabilization. There

is a trade-off between ram and mechanical compression through the compressor. The

maximum specific thrust increases with increasing compression ratio because the same

stagnation conditions are achieved in the combustor at lower flight Mach numbers,

hence reducing the momentum drag term and increasing the specific thrust.

The limits corresponding to condensation and pre-ignition conditions are illus-
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Figure 3.15: Influence of compression ratio πc on the specific thrust of the turbodet.
T0 = 223 K, P0 = 0.261 atm, qf = 45 MJ/kg, Tmax = 1700 K.

trated for one case, corresponding to a compression ratio of 30, on Fig. 3.13 for

hydrogen and JP10. Hydrogen can be used for 1.75 < M0 < 2.6, and JP10 for

2.2 < M0 < 2.3 using the condensation temperature criterion, or 2 < M0 < 2.3 using

vapor pressure considerations. The TSFC of the turbojet, Fig. 3.14, is about 0.9

kg/N.hr and does not vary much with M0. The TSFC of the turbodet is higher at

all Mach numbers and peaks at low values of the thrust-producing range because the

specific thrust vanishes. The thermal efficiency of the turbojet, in Fig. 3.14, increases

with the flight Mach number due to the higher efficiency of heat addition at higher

stagnation conditions but already has a high value at zero Mach number due to the

compression work. The thermal efficiency of the turbodet increases with M0 but has

a lower value than that of the turbojet. The overall efficiency behaves the same way.

Cell width estimates corresponding to the flight conditions are shown in Fig. 3.16.

The cell widths obtained are very large due to the low fuel input of a temperature-

limited turbodet engine. The scaled cell widths are less than 1 m only for M0 > 2.8.

However, the static temperature upstream of the detonation T4 is already higher than
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Figure 3.16: Cell width λ versus flight Mach number M0 for a turbodet operating
with hydrogen and JP10. πc = 30, T0 = 223 K, P0 = 0.261 atm, Tmax = 1700 K.

the auto-ignition temperature of the mixture for this case for both hydrogen and JP10.

Consequently, there is no useful range of Mach numbers for practical applications of

the turbodet engine.

3.5 Thermodynamic cycle analysis

An alternative approach to performance calculation for steady propulsion devices

is thermodynamic cycle analysis (Section 1.2.4). The thermodynamic cycle for the

ramjet and the dramjet is illustrated in Fig. 3.17 in the pressure-specific volume

and temperature-entropy planes. The ideal ramjet cycle consists of isentropic ram

compression from state 0 to state 4, then constant pressure combustion from state 4

to state 5, and isentropic expansion from state 5 to state 9. The dramjet cycle consists

of isentropic compression from state 0’ to state 4’, detonation from state 4’ to state

5’, and isentropic expansion to state 9’. The detonation process is represented in

Fig. 3.17 by a dashed line, meaning that the process actually corresponds to a jump
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from state 4’ to state 5’. Both cycles are closed by an imaginary constant pressure

process through which heat is removed from the exhaust flow to the surroundings

until the fluid element is back to its initial thermodynamic state. Details about how

to compute the thermodynamic cycle using more realistic thermochemical properties

and efficiencies are given in the appendix.
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Figure 3.17: Ideal thermodynamic cycle of the ramjet and the dramjet in the (P ,V )
and (T ,s) planes. T0 = 223 K, P0 = 0.261 atm, M0 = 5.4, Tmax = 2500 K. Primes
denote states corresponding to the dramjet case.

Figure 3.18 shows the thermodynamic cycles for the turbojet and the turbodet at

the same initial conditions. The turbojet cycle consists of isentropic ram compression

from state 0 to 2, isentropic compression due to the compressor from state 2 to 4,

constant pressure combustion from 4 to 5, and then isentropic expansion through

the turbine from 5 to 8 and through the exit nozzle from 8 to 9. The turbodet

cycle is identical to the turbojet cycle from state 0’ to 3’, but includes an isentropic

expansion to the CJ velocity from state 3’ to 4’, detonation from 4’ to 5’, isentropic

flow deceleration before the turbine from 5’ to 6’, and then isentropic expansion

through the turbine from 6’ to 8’ and through the exit nozzle from 8’ to 9’.

The performance of steady detonation engines has been calculated so far by con-

ducting a flow path analysis, which is based on an open-system control volume analysis

that includes the kinetic energy terms associated with the gas motion. The require-
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ment of a steady detonation process is manifested as the detonation stabilization

condition, which, in turn, requires supersonic flow ahead of the detonation wave and

(sub)sonic flow behind the detonation wave. However, it is also possible to consider

the thermodynamic cycle associated with the detonation process in an engine (Heiser

and Pratt, 2002), and to compute the performance based on a notional thermody-

namic efficiency of an idealized cycle. The relationship between the flow path analysis

and the thermodynamic cycle analysis has been presented in Section 1.2.4.

We can calculate the thermal efficiency directly based on thermodynamic cycle

analysis for the dramjet cycle

ηth = 1− CpT0

fqf

[
1

M2
CJ

(
1 + γM2

CJ

1 + γ

) γ+1
γ

− 1

]
, (3.9)

which is the exact expression obtained by Heiser and Pratt (2002) when analyzing the

detonation cycle. The propulsion performance can be obtained from the thermal ef-

ficiency using the entropy method (Eq. 1.83). This is precisely the approach followed

by Heiser and Pratt (2002), who proposed that this would apply to pulse detonation

engines. In fact, careful examination of their paper shows that it is entirely based
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on steady concepts and their formal results are identical to the results of the steady

cycle analysis presented above. Although our analysis formally agrees with theirs,

our performance predictions (0–1900 s for the dramjet specific impulse) differ dra-

matically1 from the values of 3000–5000 s quoted in Heiser and Pratt (2002). This

is due to the fact that for a steady-flow engine, the conditions upstream of the det-

onation wave (state 4) are dictated by the requirements for detonation stabilization.

These conditions depend upon the freestream stagnation conditions and the energy

release through the wave (Eq. 3.2). On the other hand, the conditions that Heiser and

Pratt selected correspond to idealized low-speed combustor inlet conditions of zero

velocity for pulsed combustion. Thermodynamic cycle analysis has to account for

the fluid mechanics of the specific combustion process in the selection of the possible

thermodynamic states.

Figure 3.19: Altitude-Mach number diagram for a hydrogen-fueled dramjet. φ = 0.4.
The various limitations associated with net thrust production, cell sizes, hydrogen-air
auto-ignition, and a very optimistic maximum temperature condition are given.

1The reader is referred to our discussion of the analysis of Heiser and Pratt (2002) in Wintenberger
et al. (2004).
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In our analysis, we find that the performance of the steady detonation-based cycles

is always poorer than the Brayton cycle (ramjet or turbojet) and it requires very high

compressor pressure ratios (100) to obtain net thrust at flight Mach numbers less than

1. We also find that the thermal efficiency drops off very sharply towards zero as the

limiting flight Mach number (associated with the detonation stabilization limit) is

reached. We define here the limiting flight Mach number as the lowest Mach number

at which net thrust is produced. It does not necessarily correspond to the minimum

freestream Mach number for detonation stabilization because at Mach numbers close

to their minimum value for stabilization, the momentum drag term in the thrust

equation is greater than the thrust term due to the total pressure loss across the

detonation, and no net thrust is generated. The limiting flight Mach number is a

function of the freestream total enthalpy and the amount of fuel injected. Detonations

can, in theory, be stabilized at low supersonic freestream Mach numbers as long as the

amount of fuel injected is reduced. However, there are two limitations with this idea:

the first one is the limiting flight Mach number for net thrust generation, i.e., if too

little fuel is injected, then no thrust is produced. The second and stricter limitation

is due to the increase in the cell size of the mixture as the fuel-air mass ratio is

decreased. This limitation defines another minimum flight Mach number, which is

anticipated to vary with flight altitude due to the dependence of cell size on pressure.

Other limitations associated with fuel-air auto-ignition and maximum temperature

considerations place an upper bound on the possible design Mach numbers for a

dramjet. It is instructive to represent all of these limitations on an altitude-Mach

number diagram, which corresponds to the flight envelope of a dramjet for a given fuel-

air mass ratio. Figure 3.19 shows the diagram for a very lean hydrogen-air mixture.

A very optimistic maximum temperature was selected because the same calculation

with our previous maximum temperature of 2500 K did not result in any effective

operating range. The operating range of the dramjet in this case is represented by

the hatched region in Fig. 3.19.
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3.6 Conclusions

The performance of steady detonation engines was estimated and compared with

the ideal ramjet and turbojet models. A normal detonation wave ramjet does not

appear as an attractive alternative to the conventional ramjet. The performance

of the dramjet suffers from two problems: the stabilization of the detonation wave,

which reduces the thrust-producing range (between M0 = 5 and 7 for flight conditions

at 10,000 m), and the drastic total pressure loss across a normal detonation wave.

Moreover, the use of stabilized detonations imposes an additional set of constraints.

Although limitations associated with pre-ignition have been pointed out before, this

work considers for the first time issues associated with normal detonation stability in

a duct, condensation of fuel or oxidizer upstream of the detonation, and characteristic

detonation length scales. Additionally, unlike previous work, this analysis places a

limitation on the total temperature at the combustor outlet. All these considerations

strongly reduce the useful operating range of a dramjet, which is 5.6 < M0 < 6 for

a hydrogen-fueled dramjet at a flight altitude of 10,000 m. Liquid hydrocarbon fuels

such as JP10 have an even smaller range of application due to their lower auto-ignition

temperature.

The concept of the detonation turbojet, considered here for the first time, suffers

from the same drawbacks as the dramjet and generates thrust only for 1.75 < M0 <

3.1 at an altitude of 10,000 m for a compression ratio of 30. Moreover, if the various

limitations associated with detonations are taken into account, it turns out that there

is no Mach number for which a steady detonation can effectively be stabilized in a

reasonable-size combustor without getting pre-ignition. This result may vary with

the value of πc, but it shows that the presence of a compressor and a turbine in the

turbodet does not contribute to any performance gain over the dramjet. Finally, a

thermodynamic cycle analysis of steady detonation engines shows that, unlike con-

ventional air-breathing engines, their performance model has to explicitly take into

account the fluid mechanics of the combustion process.

The implications of our analysis are that using a detonation wave in a steady
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engine is not practical, but this clearly does not apply to the unsteady case. In

fact, it suggests that unsteady detonation wave engines, such as the pulse detonation

engine, are the only useful way to apply detonations to propulsion.
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Chapter 4

Single-Cycle Pulse Detonation
Tube Performance Modeling

4.1 Introduction

A key issue (Sterling et al., 1995, Bussing and Pappas, 1996, Bussing et al., 1997,

Cambier and Tegner, 1998, Kailasanath, 2000) in evaluating pulse detonation engine

(PDE) propulsion concepts is reliable estimates of the performance as a function of

operating conditions and fuel types. A basic PDE consists of an inlet, a series of

valves, a detonation tube (closed at one end and open at the other), and an exit

nozzle. It is an unsteady device which uses a repetitive cycle to generate thrust. The

engine goes through four major steps during one cycle: the filling of the device with

a combustible mixture, the initiation1 of the detonation near the closed end (thrust

surface), the propagation of the detonation down the tube, and finally, the exhaust of

the products into the atmosphere. A schematic of the cycle for the detonation tube

alone is shown in Fig. 4.1. The pressure differential created by the detonation wave

on the tube’s thrust surface produces unsteady thrust. If the cycle is repeated at a

constant frequency, typically 10 to 100 Hz, an average thrust useful for propulsion is

generated.

The goal of the present study is to provide a simple predictive model for detona-

This chapter is based on work presented in Wintenberger et al. (2003).
1Initiation at the closed end of the tube is not an essential part of PDE operation but greatly

simplifies the analysis and will be used throughout the present study. Zhdan et al. (1994) found
that the impulse is essentially independent of the igniter location for prompt initiation.
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Figure 4.1: Pulse detonation engine cycle: a) The detonation is initiated at the thrust
surface. b) The detonation, followed by the Taylor wave, propagates to the open end
of the tube at a velocity UCJ . c) An expansion wave is reflected at the mixture-air
interface and immediately interacts with the Taylor wave while the products start to
exhaust from the tube. d) The first characteristic of the reflected expansion reaches
the thrust surface and decreases the pressure at the thrust surface.

tion tube thrust. In order to do that, we have to carry out a fully unsteady treatment

of the flow processes within the tube. This is a very different situation from modeling

conventional propulsion systems such as turbojets, ramjets, and rockets for which

steady-state, steady-flow analyses define performance standards. In those conven-

tional systems, thermodynamic cycle analyses are used to derive simple but realistic

upper bounds for thrust, thrust-specific fuel consumption, and other performance fig-

ures of merit. Due to the intrinsically unsteady nature of the PDE, the analogous

thermodynamic bounds on performance have been elusive.

Unlike some previous (Bussing and Pappas, 1996) and contemporary (Heiser and

Pratt, 2002) analyses, we do not attempt to replace the unsteady PDE cycle with a

fictitious steady-state, steady-flow cycle. Although these analyses are purported to

provide an ideal or upper bound for performance, we find that these bounds are so

broad that they are unsuitable for making realistic performance estimates for simple
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devices like a detonation tube2. This becomes clear when comparing the predicted

upper bound values of 2800–3600 s (Heiser and Pratt, 2002) or 4000 s (Bussing et al.,

1997) for the fuel-based specific impulse of typical stoichiometric hydrocarbon-air

mixtures with the measured values of about 2000 s obtained in detonation tube ex-

periments (Zitoun and Desbordes, 1999, Zhdan et al., 1994, Cooper et al., 2002, Harris

et al., 2001). Instead, the present model focuses on the gas dynamic processes in the

detonation tube during one cycle. The model is based on a physical description of

the flow inside the tube and uses elementary one-dimensional gas dynamics and di-

mensional analysis of experimental observations. The model computes the impulse

delivered during one cycle of operation as the integral of the thrust during one cycle.

It is critical to gain understanding of the single-cycle impulse of a detonation

tube before more complex engine configurations are considered. There have been a

number of efforts to develop a gas dynamics-based model for single-cycle operation

of detonation tubes. The pioneering work on single-cycle impulse was in 1957 by

Nicholls et al. (1958) who proposed a very simplified model for the impulse delivered

during one cycle. Only the contribution of the constant pressure portion at the

thrust surface was considered and the contribution of the pressure decay period was

neglected. Consequently, their model predictions are about 20% lower than the results

of our model presented here and the values obtained from modern experiments.

Zitoun and Desbordes (1999) proposed a model for the single-cycle impulse and

compared this to their experimentally measured data. They showed predictions for

stoichiometric mixtures of ethylene, hydrogen and acetylene with oxygen and air.

The models of Nicholls et al. (1958), Zitoun and Desbordes (1999), and the more

recent work of Endo and Fujiwara (2002) have many features in common with the

present model since they are all based on a simple gas dynamic description of the

flow field. Zhdan et al. (1994) used both numerical simulations and simple analytical

models based on the results of Stanyukovich (1960) to predict the impulse for tubes

completely and partially filled with a combustible mixture.

2The reader is referred to our discussion of the analysis of Heiser and Pratt (2002) in Wintenberger
et al. (2004).
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In addition to analytical models, numerous numerical simulations have inves-

tigated various aspects of PDEs. Early studies, reviewed by Kailasanath et al.

(2001), gave disparate and often contradictory values for performance parameters.

Kailasanath (2000) identified how the issue of outflow boundary conditions can ac-

count for some of these discrepancies. With the recognition of this issue and the

availability of high-quality experimental data, there is now substantial agreement

(Kailasanath, 2002) between careful numerical simulation and experimental data, at

least in the case of ethylene-air mixtures. However, even with improvements in nu-

merical capability, it is desirable to develop simple analytical methods that can be

used to rapidly and reliably estimate the impulse delivered by a detonation tube dur-

ing one cycle in order to predict trends and to better understand the influence of fuel

type, initial conditions, and tube size without conducting a large number of numerical

simulations.

An end-to-end performance analysis of a pulse detonation engine has to take into

account the behavior of the inlet, the valves, the combustor, and the exit nozzle.

However, the ideal performance is mainly dictated by the thrust generation in the

detonation tube. In developing our model, we have considered the simplest configu-

ration of a single-cycle detonation tube open at one end and closed at the other. We

realize that there are significant issues (Bussing et al., 1997) associated with inlets,

valves, exit nozzles, and multi-cycle operation that are not addressed in our approach.

However, we are anticipating that our simple model can be incorporated into more

elaborate models that will account for these features of actual engines and that the

present model will provide a basis for realistic engine performance analysis.

This chapter is organized as follows. First, we describe the flow field for an ideal

detonation propagating from the closed end of a tube towards the open end. We de-

scribe the essential features of the ideal detonation, the following expansion wave, and

the relevant wave interactions. We present a simple numerical simulation illustrating

these issues. Second, we formulate a method for approximating the impulse with a

combination of analytical techniques and dimensional analysis. Third, the impulse

model is validated by comparison with experimental data and numerical simulations.
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Fourth, a scaling analysis is performed to study the dependency of the impulse on

initial conditions and energy release in the mixture. Fifth, the impulse model is used

to compute impulse for a range of fuels and initial conditions. The influence of fuel

type, equivalence ratio, initial pressure, and initial temperature are examined in a

series of parametric computations.

4.2 Flow field associated with an ideal detonation

in a tube

The gas dynamic processes that occur during a single cycle of a PDE can be sum-

marized as follows. A detonation wave is directly initiated and propagates from the

thrust surface towards the open end. For the purposes of formulating our simple

model, we consider ideal detonations described as discontinuities propagating at the

Chapman-Jouguet (CJ) velocity. The detonation front is immediately followed by

a self-similar expansion wave (Zel’dovich, 1940a, Taylor, 1950) known as the Taylor

wave and described in Section 1.1.4. This expansion wave decreases the pressure

and brings the flow to rest. The method of characteristics (Taylor, 1950, Zel’dovich,

1940a) can be used to calculate flow properties within the Taylor wave (see Eqs. 1.42,

1.41, 1.43 in the following section).

There is a stagnant region extending from the rear of the Taylor wave to the closed

end of the tube. When the detonation reaches the open end of the tube, a shock is

generated and diffracts out into the surrounding air. Because the pressure at the tube

exit is higher than ambient, the transmitted shock continues to expand outside of the

tube. Since the flow at the tube exit is subsonic, a reflected wave propagates back

into the tube. This reflected wave is usually an expansion wave, which reflects from

the closed end, reducing the pressure and creating an expansion wave that propagates

back towards the open end. After several sequences of wave propagation within the

tube, the pressure inside approaches atmospheric. A simplified, but realistic model

of the flow field can be developed by using classical analytical methods.
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4.2.1 Ideal detonation and Taylor wave

To predict the ideal impulse performance of a pulsed detonation tube, we can con-

sider the detonation as a discontinuity that propagates with a constant velocity (Sec-

tion 1.1.1). This velocity is a function of the mixture composition and initial thermo-

dynamic state. The reaction zone structure and the associated property variations

such as the Von Neumann pressure spike are neglected in this model since the con-

tribution of these features to the impulse is negligible.

The detonation speed is determined by the standard CJ model of a detonation

that assumes that the flow just downstream of the detonation is moving at sonic

velocity relative to the wave. This special downstream state, referred to as the CJ

point, can be found by numerically solving the relations for mass, momentum, and

energy conservation across the discontinuity while simultaneously determining the

chemical composition. Equilibrium computations (Reynolds, 1986) based on realistic

thermochemical properties and a mixture of the relevant gas species in reactants and

products are used to calculate the chemical composition.

Alternatively, the conservation equations can be analytically solved for simple

models, using an ideal gas equation of state, a fixed heat of reaction, and heat ca-

pacities that are independent of temperature. A widely used version of this model,

described in Eqs. 1.8-1.14 (Thompson, 1988), uses different properties in the reac-

tants and products, and a fixed value of the energy release, q, within the detonation

wave. In the present study we use an even simpler version (Fickett and Davis, 2001),

the one-γ model (Eqs. 1.15-1.19), which neglects the differences in specific heat and

molar mass between reactants and products.

4.2.2 Interaction of the detonation with the open end

The flow behind a CJ detonation wave is subsonic relative to the tube and has a

Mach number M2 = u2/c2 of approximately 0.8 for typical hydrocarbon mixtures.

Hence, when the detonation wave reaches the open end, a disturbance propagates

back into the tube in the form of a reflected wave (Glass and Sislian, 1994). The
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interface at the open end of the tube can be modeled in one dimension as a contact

surface. When the detonation wave is incident on this contact surface, a transmitted

wave will propagate out of the tube while a reflected wave propagates into the tube

towards the thrust surface.

The reflected wave can be either a shock or an expansion wave. A simple way

to determine the nature of the reflected wave is to use a pressure-velocity diagram

(Glass and Sislian, 1994), as the pressure and velocity must be matched across the

contact surface after the interaction. In the case of a detonation wave exiting into

air, the transmitted wave will always be a shock wave; the locus of solutions (the

shock adiabat) is shown in Figs. 4.2 and 4.3. The shock adiabat is computed from

the shock jump conditions, which can be written in term of the pressure jump and

velocity jump across the wave

∆u

c1

=
∆P/P1

γ
(
1 + γ+1

2γ
∆P
P1

) 1
2

. (4.1)

The reflected wave initially propagates back into the products at the CJ state

behind the detonation wave. The CJ states for various fuels and equivalence ratios

appear in Figs. 4.2 and 4.3. If the CJ point is below the shock adiabat, the reflected

wave must be a shock to increase the pressure to match that behind the transmitted

shock. Alternatively, if the CJ state is above the shock adiabat, the reflected wave

must be an expansion in order to decrease the pressure to match that behind the

transmitted shock.

Hydrocarbon fuels all produce a reflected expansion wave at the tube’s open end

for any stoichiometry. However, a reflected shock is obtained for hydrogen-oxygen at

an equivalence ratio φ > 0.8 (Fig. 4.2) and for very rich hydrogen-air mixtures with

φ > 2.2 (Fig. 4.3).

Ultimately, following the initial interaction of the detonation wave with the contact

surface, the pressure at the exit of the tube will drop as the transmitted shock wave

propagates outward. In all cases, since the flow outside the tube is expanding radially
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Figure 4.2: Pressure-velocity diagram used to compute wave interactions at the tube
open end for fuel-oxygen mixtures.
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behind the diffracting shock wave, an expansion wave also exists in the flow external

to the tube. The flow in this region can not be modeled as one-dimensional. A

numerical simulation (discussed below) is used to illustrate this portion of the flow.

4.2.3 Waves and space-time diagram

A space-time (x–t) diagram, shown in Fig. 4.4, is used to present the important

features of the flow inside the tube. The x–t diagram displays the detonation wave

propagating at the CJ velocity UCJ followed by the Taylor wave. The first characteris-

tic Ĉ− of the wave reflected from the mixture-air interface at the open end of the tube

is also shown. The initial slope of this characteristic is determined by the conditions

at the mixture-air interface and is then modified by interaction with the Taylor wave.

After passing through the Taylor wave, the characteristic Ĉ− propagates at the sound

speed c3. The region lying behind this first characteristic is non-simple because of the

interaction between the reflected expansion wave and the Taylor wave. Two charac-

teristic times can be defined: t1 corresponding to the interaction of the detonation

wave with the open end, and t2 corresponding to the time necessary for the charac-

teristic Ĉ− to reach the thrust surface. The diffracted shock wave in Fig. 4.4 is shown

outside the tube as a single trajectory; however, this is actually a three-dimensional

wavefront that can not be fully represented on this simple plot.

4.2.4 A numerical simulation example

In order to further examine the issues related to the interaction of the detonation with

the open end of the tube, the flow was investigated numerically (Hornung, 2000) using

Amrita (Quirk, 1998). The Taylor wave similarity solution (Zel’dovich, 1940a, Taylor,

1950) was used as an initial condition, assuming the detonation has just reached the

open end of the tube when the simulation is started. This solution was calculated

using a one-γ model for detonations (Fickett and Davis, 2001, Thompson, 1988) for

a non-dimensional energy release q/RT1 = 40 across the detonation and γ = 1.2

for reactants and products. The corresponding CJ parameters are MCJ = 5.6 and



162

�

�

�������
	 �
�
�����

�
�������
�����

��� � � � � � 	������ � � �

��� � � � � � � � � �
��! �

� � � � 	�" �#��� ���
	�� �$�
%

� �'&(� � � �
��! �
�*)

�*),+-�/.

� � �0	 � � � � � � � � ���
� � � � � � � � � � 	 � � �

� � �
1 	 � " � � � � �(2 � � �

34
�(5$687 � 5 ��9

:

�<;

=?>

� � � � � � � ���
� � � � � � � � � � 	 � � � 	

@

6

Figure 4.4: Space-time diagram for detonation wave propagation and interaction with
the tube open end.

PCJ/P1 = 17.5, values representative of stoichiometric hydrocarbon-air mixtures.

The initial pressure P1 ahead of the detonation wave was taken to be equal to

the pressure P0 outside the detonation tube. The simulation solved the non-reactive

Euler equations using a Kappa-MUSCL-HLLE solver in the two-dimensional (cylin-

drical symmetry) computational domain consisting of a tube of length L closed at

the left end and open to a half-space at the right end. Numerical schlieren images are

displayed in Fig. 4.5, and the corresponding pressure and horizontal velocity profiles

along the tube centerline are shown on Figs. 4.6 and 4.7, respectively. Only one-half

of the tube is shown in Fig. 4.5; the lower boundary is the axis of symmetry of the

cylindrical detonation tube. The times given on these figures account for the initial

detonation travel from the closed end to the open end of the tube, so that the first

frame of Figs. 4.5, 4.6, and 4.7 corresponds to a time t1 = L/UCJ .

The first frame in Figs. 4.5, 4.6, and 4.7 shows the initial condition with the

pressure decreasing behind the detonation front from the CJ pressure P2 to a value
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t = 1.95t1 t = 2.81t1

Figure 4.5: Numerical schlieren images of the exhaust process.
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Figure 4.6: Pressure along the tube centerline from numerical simulation. P1 is the
initial pressure inside and outside the tube.
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Figure 4.7: Velocity along the tube centerline from numerical simulation. c1 is the
initial sound speed inside and outside the tube.
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P3 at the end of the Taylor wave. The detonation wave becomes a decaying shock as

it exits the tube since the region external to the tube is non-reactive, simulating the

surrounding atmosphere of most experimental configurations.

This decaying shock is initially planar but is affected by the expansions originating

from the corners of the tube and gradually becomes spherical. The pressure profiles

show the decay of the pressure behind the leading shock front with time. A very

complex flow structure, involving vortices and secondary shocks, forms behind the

leading shock. The fluid just outside the tube accelerates due to the expansion waves

coming from the corners of the tube. At the same time the leading shock front exits

the tube, a reflected expansion wave is generated and propagates back into the tube,

interacting with the Taylor wave. This reflected wave propagates until it reaches the

closed end of the tube, decreasing the pressure and accelerating the fluid towards

the open end. The exhaust process is characterized by low pressure and high flow

velocity downstream of the tube exit. A system of quasi-steady shocks similar to

those observed in steady underexpanded supersonic jets, and an unsteady leading

shock wave, bring the flow back to atmospheric pressure.

One of the most important points learned from this simulation is that the flow

inside the tube is one-dimensional except for within one-to-two diameters of the open

end. Another is that the pressure at the open end is unsteady, initially much higher

than ambient pressure, and decreasing at intermediate times to lower than ambient

before finally reaching equilibrium. Despite the one-dimensional nature of the flow

within the tube, it is important to properly simulate the multi-dimensional flow in

the vicinity of the exit in order to get a realistic representation of the exhaust process.

In our simple model, this is accomplished by using a non-dimensional correlation of

the experimental data for this portion of the process.

The normalized pressure P/P1 at the thrust surface as well as the normalized

impulse per unit volume IV UCJ/P1 are shown as a function of normalized time t/t1

in Fig. 4.8. The impulse per unit volume was computed by integrating the pressure

at the thrust surface over time. Note that these plots take into account the initial

detonation travel from the closed end to the open end of the tube. The pressure at
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the thrust surface remains constant until the reflected wave from the tube’s open end

reaches the thrust surface at time t1 + t2 ≈ 2.81t1. The final pressure decay process is

characterized by a steep pressure decrease and a region of sub-atmospheric pressure.

The integrated impulse consequently increases to a maximum before decreasing due

to this region of negative overpressure.
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Figure 4.8: Non-dimensionalized thrust surface pressure and impulse per unit volume
as a function of non-dimensionalized time for the numerical simulation.

4.3 Impulse model

Our impulse model is based on elementary gas dynamic considerations. We assume

one-dimensional, adiabatic flow in a straight unobstructed tube closed at one end and

open at the other. The impulse is calculated by considering a control volume around

the straight tube as shown in Case (b) of Fig. 4.9. Case (a), which represents the

usual control volume used for rocket engine analysis, requires the knowledge of the

exit pressure Pe, the exhaust velocity ue and exhaust density ρe (or mass flow rate).

Case (b), the control volume considered in the model, requires only the knowledge

of the pressure history at the thrust surface. The impulse is obtained by integrating

the pressure differential P3 − P0 across the thrust surface during one cycle, assuming

Pe = P0. This approach is rather limited and is certainly not applicable to air-
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breathing engines with complex inlets and/or exits. However, it is appropriate for

a single tube of constant area and the modeling assumptions eliminate the need for

numerical simulations or detailed flow measurements required to evaluate the thrust

by integration over the flow properties at the exit plane.
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Figure 4.9: Control volumes a) typically used in rocket engine analysis b) used in our
analysis.

We have made a number of other simplifying assumptions. Non-ideal effects such

as viscosity or heat transfer are not considered. The detonation properties are calcu-

lated assuming the ideal one-dimensional CJ profile. Real-gas thermodynamics are

used to calculate the CJ detonation properties, and classical gas dynamics for a per-

fect gas are used to model the flow behind the detonation wave. We assume direct

instantaneous initiation of planar detonations at the thrust surface. The effect of

indirect initiation is discussed in Cooper et al. (2002) The model assumes that a re-

flected expansion wave is generated when the detonation wave reaches the open end,

which is generally true, as discussed previously. The model is based on analytical

calculations except for the modeling of the pressure decay period, which results from

dimensional analysis and experimental observations.

4.3.1 Determination of the impulse

Under our model assumptions, the single-cycle impulse is generated by the pressure

differential at the thrust surface. A typical experimental pressure history at the thrust

surface recorded by Cooper et al. (2002) is given in Fig. 4.10. When the detonation is
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Figure 4.10: Sample pressure recorded at the thrust surface (Cooper et al., 2002) for
a mixture of stoichiometric ethylene-oxygen at 1 bar and 300 K initial conditions.

initiated, the CJ pressure peak is observed before the pressure decreases to P3 by the

passage of the Taylor wave. The pressure at the thrust surface remains approximately

constant until the first reflected characteristic reaches the thrust surface and the

reflected expansion wave decreases the pressure. The pressure is decreased below

atmospheric for a period of time before ultimately reaching the atmospheric value

(Fig. 4.8).

For our modeling, the pressure-time trace at the thrust surface has been idealized

(Fig. 4.11). The CJ pressure peak is considered to occur during a negligibly short

time. The pressure stays constant for a total time t1 + t2 at pressure P3. Then

the pressure is affected by the reflected expansion and eventually decreases to the

atmospheric value.

Using the control volume defined in Case (b) of Fig. 4.9, the single-cycle impulse

is the integral of the pressure differential over the detonation tube cross-sectional area

A,

I = A

∫ ∞

0

∆P (t) dt , (4.2)

where ignition is assumed to occur at t = 0. From the idealized pressure-time trace,

the impulse can be decomposed into three terms

I = A

[
∆P3 t1 + ∆P3 t2 +

∫ ∞

t1+t2

∆P (t) dt

]
. (4.3)
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Figure 4.11: Idealized model of the thrust surface pressure history.

The first term on the right-hand side of Eq. 4.3 represents the contribution to the

impulse associated with the detonation propagation during time t1 = L/UCJ , the

second term is the contribution associated with the time t2 required for expansion

wave propagation from the open end to the thrust surface, and the third term is

associated with the pressure decay period.

The time t2 depends primarily on the length of the tube and the characteristic

sound speed c3 behind the expansion wave which suggests the introduction of a non-

dimensional parameter α defined by

t2 = αL/c3 . (4.4)

Dimensional analysis will be used to model the third term on the right-hand side of

Eq. 4.3. The inviscid, compressible flow equations can always be non-dimensionalized

using reference parameters, which are a sound speed, a characteristic length, and a

reference pressure. Thus, we non-dimensionalize our pressure integral in terms of c3,

L, and P3 ∫ ∞

t1+t2

∆P (t) dt =
∆P3L

c3

∫ ∞

t′1+t′2

Π(t′) dt′ . (4.5)
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The non-dimensional integral on the right-hand side of Eq. 4.5 can depend only on the

remaining non-dimensional parameters of the flow, which are the ratio of specific heats

in the products γ, the pressure ratio between the constant pressure region and the

initial pressure P3/P1, and the non-dimensional energy release during the detonation

process q/RT1. We will define the value of this integral to be β, which has a definite

value for a given mixture

β(γ, P3/P1, q/RT1) =

∫ ∞

t′1+t′2

Π(t′) dt′ . (4.6)

For fuel-air detonations over a limited range of compositions close to stoichiomet-

ric, the parameters in Eq. 4.6 vary by only a modest amount and we will assume

that β is approximately constant. This assumption is not crucial in our model and

a more realistic expression for β can readily be obtained by numerical simulation.

For the present purposes, this assumption is justified by the comparisons with the

experimental data shown subsequently.

The dimensional integral on the left-hand side of Eq. 4.5 can be used to define a

characteristic time t3, which is related to β

∫ ∞

t1+t2

∆P (t) dt = ∆P3 t3 = ∆P3β
L

c3

. (4.7)

In Fig. 4.11, the time t3 can be interpreted as the width of the hatched zone repre-

senting the equivalent area under the decaying part of the pressure-time trace for t >

t1 + t2. The impulse of Eq. 4.3 can now be rewritten to include the non-dimensional

parameters α and β

I = A∆P3

[
L

UCJ

+ (α + β)
L

c3

]
. (4.8)

4.3.2 Determination of α

We have determined α by considering the interaction of the reflected wave and the

Taylor wave. The method of characteristics is used to derive a similarity solution for

the leading characteristic of the reflected expansion. This technique will also work
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for reflected compressions as long as the waves are sufficiently weak.

The derivation of the expression for α begins by considering the network of charac-

teristics within the Taylor wave, shown in Fig. 4.4. As in Section 1.1.4, we model the

detonation products as a perfect gas with a constant value of the polytropic exponent

γ. The Riemann invariant J− is conserved along a C− characteristic going through

the Taylor wave

J− = u2 −
2c2

γ − 1
= − 2c3

γ − 1
= u− 2c

γ − 1
. (4.9)

Inside the Taylor wave, the C+ characteristics are straight lines with a slope given by

x/t = u+c. Using the Riemann invariant J− to relate u and c to the flow parameters

in state 2, we find that

x

c2t
=

u + c

c2

=
u2

c2

+
γ + 1

γ − 1

c

c2

− 2

γ − 1
. (4.10)

Considering the interaction of the reflected expansion wave with the Taylor wave,

the slope of the first reflected characteristic Ĉ− can be calculated as

dx

dt
= u− c =

x

t
− 2c . (4.11)

Substituting for x/t from Eq. 4.10, we find that

1

c2

dx

dt
− 2(γ − 1)

γ + 1

[
u2

c2

− 2

γ − 1
+

3− γ

2(γ − 1)

x

c2t

]
= 0 . (4.12)

The form of Eq. 4.12 suggests the introduction of a similarity variable η = x/c2t.

Making the change of variables, we obtain an ordinary differential equation for η

t
dη

dt
+

2(γ − 1)

γ + 1

[
η − u2

c2

+
2

γ − 1

]
= 0 . (4.13)

The solution to this equation is

η(t) =
u2

c2

− 2

γ − 1
+

γ + 1

γ − 1

(
L

UCJt

) 2(γ−1)
γ+1

, (4.14)
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where we have used the initial condition η(t1) = UCJ/c2. The last characteristic of

the Taylor wave has a slope x/t = c3. Hence, the first reflected characteristic exits

the Taylor wave at time t∗ determined by η(t∗) = c3/c2. Solving for t∗, we have

t∗ =
L

UCJ

[(
γ − 1

γ + 1

)(
c3 − u2

c2

+
2

γ − 1

)]− γ+1
2(γ−1)

. (4.15)

For t∗ < t < t1 +t2, the characteristic Ĉ− propagates at constant velocity equal to the

sound speed c3. From the geometry of the characteristic network shown in Fig. 4.4,

Ĉ− reaches the thrust surface at time t1 + t2 = 2t∗. Thus, t2 = 2t∗ − t1 = αL/c3.

Solving for α, we obtain

α =
c3

UCJ

[
2

(
γ − 1

γ + 1

[
c3 − u2

c2

+
2

γ − 1

])− γ+1
2(γ−1)

− 1

]
. (4.16)

The quantities involved in this expression essentially depend on two non-dimensional

parameters: γ and the detonation Mach number MCJ = UCJ/c1. These can either be

computed numerically with realistic thermochemistry or else analytically using the

ideal gas one-γ model for a CJ detonation (Section 1.1.1). Numerical evaluations of

this expression for typical fuel-air detonations show that α ≈ 1.1 for a wide range of

fuel and compositions. Using the one-γ model, the resulting expression for α(γ, MCJ)

is

1

2

(
1 +

1

M2
CJ

)(
2

[
γ − 1

γ + 1

(
γ + 3

2
+

2

γ − 1
− (γ + 1)2

2

M2
CJ

1 + γM2
CJ

)]− γ+1
2(γ−1)

− 1

)
.

(4.17)

4.3.3 Determination of β

The region between the first reflected characteristic and the contact surface in Fig. 4.4

is a non-simple region created by the interaction of the reflected expansion wave with

the Taylor wave. The multi-dimensional flow behind the diffracting shock front also

plays a significant role in determining the pressure in this region. For these reasons,
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it is impossible to derive an analytical solution for the parameter β. It is, however,

possible to use experimental data and Eq. 4.6 to calculate β. We considered data

from Zitoun and Desbordes (1999), who carried out detonation tube experiments and

measured impulse using tubes of different lengths. They showed that the impulse

scales with the length of the tube, as expected from Eq. 4.8.

Zitoun and Desbordes used an exploding wire to directly initiate detonations,

which is representative of the idealized conditions of our model. They determined

impulse for stoichiometric ethylene-oxygen mixtures by integrating the pressure dif-

ferential at the thrust surface. The analysis of their pressure-time traces reveals that

the overpressure, after being roughly constant for a certain period of time, decreases

and becomes negative before returning to zero. The integration of the decaying part

of the pressure-time trace was carried out up to a time late enough (typically greater

than 20t1) to ensure that the overpressure has returned to zero. This integration gave

a value of β = 0.53.

4.3.4 Determination of P3 and c3

The properties in the stagnant region near the closed end of the tube are determined

by the gas expansion in the Taylor wave following the detonation front. This expan-

sion is modeled analytically in Section 1.1.4 for the ideal case of a perfect gas with a

constant value of γ. However, the value of γ in a dissociating gas is not unique and

changes with temperature and composition.

In the classical thermodynamic model of detonation, the speed of sound behind

the detonation front c2 is the equilibrium speed of sound, computed as

c2
eq =

(
∂P

∂ρ

)
s,Yi=Y eq

i

(4.18)

where the superscript eq means that the derivative is taken at conditions of chem-

ical equilibrium. As the state variable ρ is varied, the composition also changes so

that the mixture of species remains in chemical equilibrium. This is what standard

thermochemical programs such as STANJAN (Reynolds, 1986) use to compute the
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CJ state. The equilibrium speed of sound is distinct from the frozen speed of sound,

which is defined by differentiating for fixed species amounts.

c2
fr =

(
∂P

∂ρ

)
s,Yi

(4.19)

The frozen speed of sound is always higher than the equilibrium speed of sound and

the two are related by the equilibrium constraints and thermodynamic properties of

the species (Fickett and Davis, 2001).

Two distinct values of γ can be calculated from the frozen and equilibrium speeds

of sound by writing γ = ρc2/P . The frozen γfr is also the ratio of the specific heats.

The value of γeq is smaller than γfr by an amount that depends on the degree of

dissociation in the gas and the Gibbs energy associated with the dissociation and re-

combination reactions. The differences between γfr and γeq are much more significant

for high-temperature, low-pressure mixtures of detonation products of fuel-oxygen

mixtures used in laboratory experiments than for fuel-air mixtures at high pressure

used in engine combustors. Both γfr and γeq are functions of the thermodynamic

state and their values change as the combustion products expand in the Taylor wave.

In a dissociating gas such as detonation products, the role of chemical kinetics has

to be considered. The effective value of γ is determined by the competition between

the chemical reaction rates and the rate of pressure change along a particle path. If

the rate of pressure change is much larger than the chemical reaction rates, the flow

expansion occurs much faster than the chemical reactions and the species composition

is essentially unchanged and it is adequate to use γfr. If the chemical reaction rates are

much larger than the rate of pressure change, the detonation products are essentially

in equilibrium during the flow expansion and γeq should be used. The self-similarity

of the flow in the Taylor wave implies that particles initially located near the closed

end of the tube spend less time in the Taylor wave than particles located further

away from the closed end, and are, therefore, subject to higher temporal pressure

gradients. It is shown in Wintenberger et al. (2002), using numerical solutions with

detailed chemical kinetics, that for conditions representative of typical laboratory
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straight-tube PDE experiments, the flow in the Taylor wave can be approximated as

being in chemical equilibrium. Since the chemical reaction rates are a strong function

of temperature, departures from equilibrium will occur at low initial pressures or if

additional flow expansion is obtained through an exit nozzle. In particular, freezing

of the composition is likely to occur in exit nozzles at sufficiently high pressure ratios.
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Figure 4.12: Logarithm of pressure (left) and temperature (right) versus logarithm of
specific volume along the CJ equilibrium and frozen isentropes for ethylene-oxygen
and -air mixtures.

The classical model of gas dynamics in the detonation products presented in Sec-

tion 1.1.4 uses a simple polytropic model for the gas expansion: Pρ−γ = constant.

Characterizing the detonation products with a single value of γ is an approximation

that can result in substantial differences depending on whether the flow is in chemi-

cal equilibrium or frozen and the corresponding value of γ (Fig. 4.12). For example,

the value calculated for P3 using this analytical treatment for ethylene-oxygen mix-

tures at standard conditions is about 10% lower when assuming frozen flow and using

γfr = 1.2356 rather than when assuming chemical equilibrium with γeq = 1.1397

evaluated at the CJ point (Radulescu and Hanson, 2004). For most laboratory-scale

experiments, the flow through the Taylor wave is in chemical equilibrium and an ef-

fective value of γ can be calculated by fitting the equilibrium isentrope with the poly-

tropic relationship (Fig. 4.12). However, attempts at fitting the equilibrium isentrope

showed that the effective value of γ obtained varied depending on the thermodynamic
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variables selected for the fit. Table 4.1 illustrates this point for ethylene-oxygen and

ethylene-air mixtures. The pressure-specific volume fit seems to yield the best agree-

ment with the equilibrium γ at the CJ point. These variations can result in significant

errors in the calculation of c3 and P3.

γ C2H4+3O2 C2H4+3O2+11.28N2

CJ frozen 1.2356 1.1717
CJ equilibrium 1.1397 1.1611

P − v fit 1.1338 1.1638
T − v fit 1.0967 1.1466

Table 4.1: Frozen and equilibrium values of γ evaluated at the CJ point for stoi-
chiometric ethylene-oxygen and ethylene-air at 1 bar and 300 K initial conditions
compared with results from fitting the isentrope based on the polytropic relationship
using pressure and specific volume or temperature and specific volume.

The correct way to calculate the properties at state 3 is to use the original form

of the Riemann invariant (Eq. 1.39). The exact value of P3 is the solution to the

following equation ∫ P2

P3

dP

ρc
= u2 . (4.20)

This equation is solved numerically by integrating along the equilibrium isentrope

until the integral of dP/ρc satisfies Eq. 4.20. In general, using a polytropic approx-

imation with the equilibrium γ evaluated at the CJ point predicted fairly well the

values of c3 (within 1% error) and P3 (within 2% error) but could result in more

substantial errors on the impulse (up to 6% at high nitrogen dilution), which was

calculated based on Eqs. 4.8 and 4.16. The numerical solution of Eq. 4.20 was used

to calculate the values of P3 and c3 in all the subsequent impulse calculations. An

effective value of γ is still required in order to calculate the parameter α from the

self-similarity solution of Eq. 4.16. However, as long as c3 is calculated from Eq. 4.20,

α is relatively insensitive to the value of γ. For an ethylene-oxygen mixture at 300 K

and 1 bar initial conditions, varying γ between 1.05 and 1.25 resulted in variations of

α less than 1.6% and a resulting impulse variation less than 0.8% from their values

calculated with γeq = 1.1397. Based on these observations and the results presented

in Wintenberger et al. (2002), the equilibrium value γeq evaluated at the CJ point
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was chosen as the effective value of γ in the Taylor wave.

4.4 Validation of the model

The model was validated against experimental data, and comparisons were made in

terms of impulse per unit volume and specific impulse. The impulse per unit volume

is defined as

IV = I/Vdt . (4.21)

The mixture-based specific impulse Isp is defined as

Isp =
I

ρ1Vdtg
=

IV

ρ1g
=

I

Mg
. (4.22)

The fuel-based specific impulse Ispf is defined with respect to the fuel mass instead

of the mixture mass

Ispf =
I

ρ1XF Vdtg
=

Isp

XF

=
I

Mfg
. (4.23)

4.4.1 Comparisons with single-cycle experiments

The calculation of the parameter α was validated by comparing the arrival time of the

reflected expansion wave from experimental pressure histories at the thrust surface

with the time calculated from the similarity solution. For a mixture of stoichiometric

ethylene-air at 1 bar initial pressure, the time in an experimental pressure history

(Cooper et al., 2002) between detonation initiation and the arrival of the reflected

expansion wave was 1.43 ms from a 1.016 m long tube. The corresponding calculated

time was 1.37 ms, within 4% of the experimental value. Similarly, comparing with

data (Zitoun and Desbordes, 1999) for a tube of length 0.225 m, excellent agreement

(within 3.8%) is obtained between our calculated value (303 µs) and experiment (315

µs).

The value of β was also computed using data from our experiments (Cooper et al.,

2002) with stoichiometric ethylene-oxygen. Because these experiments used indirect
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detonation initiation (DDT), we were able to compare with only two cases using an

unobstructed tube and an initial pressure of 1 bar for which there was very rapid

onset of detonation. These cases correspond to values of β equal to 0.53 and 0.63.

Note that these values are sensitive to the time at which the integration is started.

We computed this time using our theoretical values of t1 and t2.

Model predictions of impulse per unit volume were compared with data from

Cooper et al. (2002). Direct experimental impulse measurements were obtained with

a ballistic pendulum and detonation initiation was obtained via DDT. Obstacles were

mounted inside the detonation tube in some of the experiments in order to enhance

DDT. A correlation plot showing the impulse per unit volume obtained with the

model versus the experimental values is displayed in Fig. 4.13. The values displayed

here cover experiments with four different fuels (hydrogen, acetylene, ethylene, and

propane) over a range of initial conditions and compositions. The solid line represents

perfect correlation between the experimental data and the model. The filled symbols

represent the data for unobstructed tubes, while the open symbols correspond to cases

for which obstacles were used in the detonation tube.

The analytical model predictions were close to the experimental values of the

impulse as shown on Fig. 4.13. The model assumes direct initiation of detonation, so

it does not take into account any DDT phenomenon. The agreement is better for cases

with high initial pressure and no nitrogen dilution, since the DDT time (time it takes

the initial flame to transition to a detonation) is the shortest for these mixtures. For

the unobstructed tube experiments, the model almost systematically underpredicts

the impulse by up to 13%, except for the acetylene case, where it is about 19% too

low. When obstacles are used, the experimental values are up to 73% lower than the

model predictions. The differences are larger for low-pressure cases, for which the

DDT time is higher. High-pressure cases yielded lower discrepancies of up to 21%.

The lower experimental values for cases with obstacles are apparently caused by the

additional form drag associated with the separated flow over the obstacles (Cooper

et al., 2002). In general, the discrepancy between model and experiment is less than

or equal to ±15%. This conclusion is supported in Fig. 4.13 by the ±15% deviation
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lines which encompass the experimental data.
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Figure 4.13: Model predictions versus experimental data (Cooper et al., 2002) for
the impulse per unit volume. Filled symbols represent data for unobstructed tubes,
whereas open symbols show data for cases in which obstacles were used. Lines cor-
responding to +15% and -15% deviation from the model values are also shown. *
symbols denote high-pressure (higher than 0.8 bar), zero-dilution cases.

The model parameters are relatively constant, 1.07 < α < 1.12 and 0.53 < β <

0.63, for all the mixtures studied here. A reasonable estimate for α is 1.1 and for β

is 0.53. The ratio UCJ/c3 for fuel-oxygen-nitrogen mixtures is approximately 2 (see

Eq. 1.44). For quick estimates of the impulse, these values can be used in Eq. 4.8 to

obtain the approximate model prediction formula

I = 4.3
∆P3

UCJ

AL = 4.3
∆P3

UCJ

Vdt . (4.24)

The approximate formula overpredicts the exact expressions by 4.1% for fuel-oxygen

mixtures, and by 8.3% for fuel-air mixtures. The discrepancy between exact ex-

pression and approximate formula increases with decreasing pressure and increasing

nitrogen dilution. The approximate formula reproduces the exact expressions for
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stoichiometric fuel-oxygen mixtures at 1 bar initial pressure within 2.6%, and for

stoichiometric fuel-air mixtures within 3.9%.

Zitoun and Desbordes (1999) calculated the single-cycle specific impulse for var-

ious reactive mixtures based on a formula developed from their experimental data

for ethylene-oxygen mixtures: Isp = K∆P3/(gρ1UCJ). The coefficient K is estimated

to be 5.4 in their study (although it was later corrected to 5.15 by Daniau (2001)),

whereas we obtained an estimate of 4.3. This accounts for the systematic difference

in the specific impulse results presented in Table 4.2. The present analytical model

impulse is between 16% and 18% lower than Zitoun’s predictions. This difference

can be explained by the fact that Zitoun and Desbordes (1999) considered only the

region of positive overpressure, which extends to about 9t1, in their integration of the

pressure differential. They based this on the assumption that the following region

of negative overpressure would be used for the self-aspiration of air in a multi-cycle

air-breathing application. However, since we were interested in comparing with bal-

listic pendulum measurements, we performed the integration until the overpressure

was back to zero, which occurs at about 20t1. The region of negative overpressure

between 9 and 20t1 results in an impulse decrease. If we calculate the value of β by

limiting the integration to the time of positive overpressure, we obtain a value of K

= 4.8.

Mixture Model Isp Zitoun and Desbordes (1999)
C2H4+3O2 164.3 200

C2H4+3(O2+3.76N2) 117.7 142
C2H2+2.5O2 166.8 203

C2H2+2.5(O2+3.76N2) 122.2 147
H2+0.5O2 189 226

H2+0.5(O2+3.76N2) 123.9 149

Table 4.2: Comparison of the model predictions for the mixture-based specific im-
pulse.
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4.4.2 Comparisons with multi-cycle experiments

Calculations of specific impulse and thrust were compared to experimental data from

Schauer et al. (2001). Their facility consisted of a 50.8 mm diameter by 914.4 mm

long tube mounted on a damped thrust stand. Impulse and thrust measurements were

made in hydrogen-air and propane-air mixtures with varying equivalence ratio. Data

were collected during continuous multi-cycle operation and the thrust was averaged

over many cycles. To compare with our model predictions, we assume multi-cycle

operation is equivalent to a sequence of ideal single cycles. In multi-cycle operation,

a portion of the cycle time is used to purge the tube and re-fill with reactants. The

expulsion of gas from the tube can result in a contribution to the impulse which is not

accounted for in our simple model. To estimate the magnitude of the impulse during

refilling, we assumed that the detonation and exhaust phase had a duration of about

10t1 and that the remaining portion of the cycle is used for the purging and filling

processes. We found that the contribution of the purge and fill portion to the thrust

was less than their stated experimental uncertainty of 6% (Schauer et al., 2001).

Comparisons of specific impulse are presented in Fig. 4.14 for hydrogen-air and

in Fig. 4.15 for propane-air. For comparison, predictions and one single-cycle mea-

surement for hydrogen-oxygen are shown in Fig. 4.14. Two sets of data are shown

for propane: data labeled “det” are from runs in which the average detonation wave

velocity was about 80% of the CJ value, and data labeled “no det?” are from runs

in which detonations were unstable or intermittent. The impulse model predictions

are within 10% of the experimental data for hydrogen-air at φ > 0.8, and within

16% for most stable propane-air cases. Figure 4.14 also includes an experimental

hydrogen-oxygen single-cycle data point from our own experiments (Cooper et al.,

2002). The vertical dashed line on Fig. 4.14 denotes a limit of the model validity.

For richer mixtures, a reflected shock is calculated (Figs. 4.2, 4.3). The fact that the

model still correctly predicts the impulse beyond this limit suggests that the reflected

shock is weak and does not significantly affect the integrated pressure. Indeed, a bal-

listic pendulum experiment (Cooper et al., 2002) carried out with hydrogen-oxygen
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Figure 4.14: Comparison of specific impulse between model predictions and exper-
imental data for hydrogen-air (Schauer et al., 2001) with varying equivalence ratio
and stoichiometric hydrogen-oxygen (Cooper et al., 2002). Nominal initial conditions
are P1 = 1 bar, T1 = 300 K. Lines corresponding to +15% and -15% deviation from
the model values are also shown.

resulted in the directly measured impulse being within 2.9% of the value predicted by

the model (Fig. 4.14). Figures 4.14 and 4.15 also include ±15% deviation lines from

the model predictions.

In Fig. 4.15, the significantly lower impulse of the experimental point at φ = 0.59 in

propane mixtures is certainly due to cell size effects. At the lower equivalence ratios,

the cell size (Shepherd and Kaneshige, 1997) of propane-air (152 mm at φ = 0.74)

approaches π times the diameter of the tube which is the nominal limit for stable

detonation propagation (Zel’dovich et al., 1956, Lee, 1984).

In the case of hydrogen-air, Fig. 4.14, the cell size (Shepherd and Kaneshige,

1997) at φ = 0.75 is 21 mm so the decrease in the experimental impulse data at low

equivalence ratios can not be explained by cell size effects. Following the work of

Dorofeev et al. (2001), the magnitude of the expansion ratio was examined for these

mixtures. However, calculations for lean hydrogen-air showed that the expansion ratio
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Figure 4.15: Comparison of specific impulse between model predictions and experi-
mental data (Cooper et al., 2002, Schauer et al., 2001) for propane-air with varying
equivalence ratio. Nominal initial conditions are P1 = 1 bar, T1 = 300 K. Lines
corresponding to +15% and -15% deviation from the model values are also shown.

is always higher than the critical value defined (Dorofeev et al., 2001) for hydrogen

mixtures. Instead, the results may be explained by the transition distance of the

mixtures. Dorofeev et al. (2000) studied the effect of scale on the onset of detonations.

They proposed and validated a criterion for successful transition to detonation: L >

7λ, where L is the characteristic geometrical size (defined to account for the presence

of obstacles) and λ the cell size of the mixture. Schauer et al. (2001) used a 45.7 mm

pitch Shchelkin spiral constructed of 4.8 mm diameter wire to initiate detonations

in their detonation tube. As defined by Dorofeev et al. (2000), this results in a

characteristic geometrical size of 257 mm, comparable to 7λ = 217 mm for a value of

φ = 0.67. The cell size increases with decreasing equivalence ratio for lean mixtures,

so mixtures with equivalence ratios smaller than 0.67 will not transition to detonation

within the spiral or possibly even the tube itself. This is consistent with the data

shown on Fig. 4.14; hydrogen-air tests with φ ≤ 0.67 have experimental specific
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impulse values significantly lower than the model prediction. Similar reductions in

Isp were also observed by Cooper et al. (2002) in single-cycle tests of propane-oxygen-

nitrogen and ethylene-oxygen-nitrogen mixtures with greater than a critical amount

of nitrogen dilution.
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Figure 4.16: Thrust prediction for a 50.8 mm diameter by 914.4 mm long hydrogen-
air PDE operated at 16 Hz. Comparison with experimental data of Schauer et al.
(2001). Nominal initial conditions are P1 = 1 bar, T1 = 300 K. Lines corresponding
to +15% and -15% deviation from the model values are also shown.

Average thrust for multi-cycle operation can be calculated from our single-cycle

impulse model predictions, assuming a periodic sequence of individual pulses that do

not interact. For a given single-cycle performance and tube size, the average thrust

is proportional to the frequency (which is the inverse of the cycle time τ)

F =
IV Vdt

τ
. (4.25)

Schauer et al. (2001) measured the average thrust in multi-cycle operation with

hydrogen-air over a range of frequencies between 14 and 40 Hz and verified the linear

dependence on frequency. Although this simple model suggests that thrust can be
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increased indefinitely by increasing the cycle frequency, there are obvious physical

constraints (Chao et al., 2001) that limit the maximum frequency for given size tube.

The maximum cycle frequency is inversely proportional to the sum of the minimum

detonation, exhaust, fill, and purge times. The purge and fill times are typically much

longer than the detonation and exhaust time and therefore are the limiting factors

in determining the maximum cycle frequency. Figure 4.16 compares measurements

(Schauer et al., 2001) and model predictions for operation at a fixed frequency of 16

Hz. The computation of the thrust with the model is within 5.8% of the experimental

data for φ > 0.8. The discrepancies at low equivalence ratios are due to the increased

transition distance discussed above.

4.4.3 Comparisons with numerical simulations

Data from the numerical simulation presented in Section 4.2.4 were used to compute

the impulse per unit volume. The pressure at the thrust surface (Fig. 4.8) was in-

tegrated over time to obtain the impulse per unit area. Since the simulation was

carried out for non-reactive flow and started as the detonation front exited the tube,

the initial time corresponding to the detonation travel from the closed end to the

open end of the tube was not simulated but was taken to be L/UCJ . The integration

was performed up to a time corresponding to 20t1 and the impulse per unit volume

was

IV = 22.6
P1

UCJ

. (4.26)

This result is within 0.1% of the approximate model formula of Eq. 4.24. The sim-

ulation results are valid only for cases where the initial pressure P1 is equal to the

pressure outside the detonation tube P0.

Comparisons with numerical computations of specific impulse by other researchers

can also be made. Numerical simulations are very sensitive to the specification of the

outflow boundary condition at the open end, and the numerical results vary widely

when different types of boundary conditions are used. Sterling et al. (1995) obtained

an average value of 5151 s for the fuel-based specific impulse of a stoichiometric
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hydrogen-air mixture in a multi-cycle simulation using a constant pressure boundary

condition. Bussing et al. (1997) obtained a range of values of 7500–8000 s. Other

predictions by Cambier and Tegner (1998), including a correction for the effect of the

initiation process, gave values between 3000 and 3800 s. More recently, Kailasanath

(2000) tried to reconcile these different studies for hydrogen-air by highlighting the

effect of the outflow boundary condition. They varied the pressure relaxation rate at

the exit and obtained a range of values from 4850 s (constant pressure case) to 7930

s (gradual relaxation case). Our analytical model predicts 4344 s for the fuel-based

specific impulse of stoichiometric hydrogen-air and the experimental value of Schauer

et al. (2001) is 4024 s.

4.5 Impulse scaling relationships

From Eq. 4.24, the impulse can be written as

I = K · Vdt
∆P3

UCJ

, (4.27)

where K has a weak dependence on the properties of the mixture, K(γ, q/RT1).

For the purposes of predicting how the impulse depends on the mixture properties

and tube size, the principal dependencies are explicitly given in Eq. 4.27 with K =

constant. The dependence of impulse on the mixture properties comes in through the

thermodynamic quantities UCJ and ∆P3. The CJ velocity is a function of composition

only and independent of initial pressure as long as it is not so low that dissociation

of the detonation products is significant. For the case of P1 = P0, the impulse can be

written

I = K
VdtP1

UCJ

(
P2

P1

P3

P2

− 1

)
. (4.28)

For a perfect gas with a constant value of γ, Eq. 1.43 implies that

P3

P2

=

[
1−

(
γ − 1

γ + 1

)(
1− UCJ

c3

)]− 2γ
γ−1

. (4.29)
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Equilibrium computations with realistic thermochemistry indicate that UCJ/c3 ≈

2 and 0.353 ≤ P3/P2 ≤ 0.382 with an average value of 0.37 for a wide range of

compositions and initial conditions. Under these conditions, the pressure ratio is

approximately constant

P3

P2

≈
(

2γ

γ + 1

)− 2γ
γ−1

. (4.30)

The approximate value of Eq. 4.30 is within 6% of the exact value of Eq. 4.29 for a

range of mixtures including hydrogen, acetylene, ethylene, propane, and JP10 with

air and oxygen varying nitrogen dilution (0 to 60%) at initial conditions P1 = 1 bar

and T1 = 300 K. This indicates that the impulse will be mainly dependent on the CJ

conditions and the total volume of explosive mixture

I ∝ VdtP2

UCJ

. (4.31)

Values of the CJ parameters and model impulses for several stoichiometric fuel-

oxygen-nitrogen mixtures are given in Table 4.3.

4.5.1 Dependence of impulse on energy content

In order to explicitly compute the dependence of impulse on energy content, the

approximate one-γ model of a detonation can be used. The CJ Mach number can be

written

MCJ =
√

1 +H +
√
H where H =

γ2 − 1

2γ

q

RT1

. (4.32)

The effective specific energy release q is generally less than the actual heat of com-

bustion qc due to the effects of dissociation, specific heat dependence on temperature,

and the difference in average molar mass of reactants and products. Values of γ,

qc, and q are given for selected fuel-oxygen-nitrogen mixtures in Table 4.3 and the

computation of q is discussed subsequently. For large values of the parameter H, we

can approximate the CJ velocity as

MCJ ≈ 2
√
H or UCJ ≈

√
2(γ2 − 1)q . (4.33)
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Mixture qc γ P2 T2 UCJ MCJ Isp q
(MJ/kg) (bar) (K) (m/s) (s) (MJ/kg)

H2-O2 13.29 1.1292 18.72 3679 2840 5.26 189 10.96
H2-O2-20% N2 8.39 1.1313 17.98 3501 2474 5.16 164.4 8.16
H2-O2-40% N2 5.20 1.141 16.95 3256 2187 5.01 142.3 5.93

H2-air 3.39 1.1633 15.51 2948 1971 4.81 123.9 4.17
C2H2-O2 11.82 1.1527 33.63 4209 2424 7.32 166.8 7.45

C2H2-O2-20% N2 9.60 1.1503 30.17 4051 2311 6.89 157.4 6.69
C2H2-O2-40% N2 7.31 1.1497 26.53 3836 2181 6.42 147.8 5.95
C2H2-O2-60% N2 4.95 1.1523 22.46 3505 2021 5.87 134.3 4.93

C2H2-air 3.39 1.1631 19.20 3147 1879 5.42 122.2 3.93
C2H4-O2 10.67 1.1397 33.27 3935 2376 7.24 164.2 7.74

C2H4-O2-20% N2 8.70 1.1366 29.57 3783 2258 6.79 156.1 7.05
C2H4-O2-40% N2 6.66 1.1372 25.89 3589 2132 6.32 145.6 6.16
C2H4-O2-60% N2 4.53 1.143 21.82 3291 1977 5.77 131.5 4.99

C2H4-air 3.01 1.161 18.25 2926 1825 5.27 117.7 3.73
C3H8-O2 10.04 1.1345 36.04 3826 2360 7.67 164.7 8.24

C3H8-O2-20% N2 8.33 1.133 31.73 3688 2251 7.14 155.6 7.44
C3H8-O2-40% N2 6.48 1.1342 27.45 3513 2131 6.58 146.3 6.47
C3H8-O2-60% N2 4.49 1.1411 22.79 3239 1980 5.95 132.6 5.18

C3H8-air 2.80 1.1655 18.15 2823 1801 5.29 115.6 3.57
JP10-O2 9.83 1.1378 38.89 3899 2294 7.99 160.8 7.67

JP10-O2-20% N2 8.34 1.1351 34.00 3759 2204 7.41 153 7.08
JP10-O2-40% N2 6.65 1.1353 29.18 3585 2103 6.81 145.2 6.28
JP10-O2-60% N2 4.73 1.1398 24.06 3316 1972 6.12 133.1 5.21

JP10-air 2.79 1.1637 18.40 2843 1784 5.32 114.9 3.55

Table 4.3: Detonation CJ parameters and computed impulse for selected stoichiomet-
ric mixtures at 1 bar initial pressure and 300 K initial temperature.
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The pressure ratio ∆P3/P1 is also a function of composition only as long as the initial

pressure is sufficiently high. The one-γ model can be used to compute the CJ pressure

as
P2

P1

=
γM2

CJ + 1

γ + 1
. (4.34)

For large values of the parameter H, equivalent to large MCJ , this can be approxi-

mated as

P2 ≈
1

γ + 1
ρ1U

2
CJ . (4.35)

In the same spirit, we can approximate, assuming P1 = P0,

∆P3/P1 =
P2

P1

P3

P2

− 1 ≈ P2

P1

P3

P2

(4.36)

and the impulse can be approximated as

I ≈ 1

γ + 1
MUCJK

P3

P2

. (4.37)

where M = ρ1Vdt is the mass of explosive mixture in the tube. Using the approxi-

mation of Eq. 4.33, this can be written

I ≈M√
q

[√
2
γ − 1

γ + 1
K

P3

P2

]
. (4.38)

The term in the square brackets is only weakly dependent on the mixture composition.

Using Eq. 4.30, the impulse can be approximated as

I ≈M√
qK

√
2
γ − 1

γ + 1

(
2γ

γ + 1

)− 2γ
γ−1

. (4.39)

This expression indicates that the impulse is directly proportional to the product of

the total mass of explosive mixture in the tube and the square root of the specific

energy content of the mixture.

I ∝M√
q (4.40)



191

4.5.2 Dependence of impulse on initial pressure

At fixed composition and initial temperature, the values of q, γ, and R are constant.

Equilibrium computations with realistic thermochemistry show that for high enough

initial pressures, UCJ , P3/P2, and P2/P1 are essentially independent of initial pressure.

From Eq. 4.39, we conclude that the impulse (or impulse per unit volume) is directly

proportional to initial pressure under these conditions, sinceM = ρ1Vdt = P1Vdt/RT1.

I ∝ VdtP1 (4.41)

4.5.3 Dependence of impulse on initial temperature

At fixed composition and initial pressure, the impulse decreases with increasing initial

temperature. This is because the mass in the detonation tube varies inversely with

initial temperature when the pressure is fixed. From Eq. 4.39, we have

I ∝ Vdt

T1

. (4.42)

4.5.4 Mixture-based specific impulse

At fixed composition, the mixture-based specific impulse is essentially independent

of initial pressure and initial temperature:

Isp =
I

Mg
≈
√

q

g
K

√
2
γ − 1

γ + 1

(
2γ

γ + 1

)− 2γ
γ−1

. (4.43)

This also holds for the fuel-based specific impulse since at fixed composition, the fuel

mass is a fixed fraction of the total mass. More generally, Eq. 4.43 shows that the

specific impulse is proportional to the square root of the specific energy content of

the explosive mixture

Isp ∝
√

q . (4.44)
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The coefficient in Eq. 4.43 can be numerically evaluated using our value of the coef-

ficient K of 4.3 and a value of γ obtained from equilibrium computations (Reynolds,

1986). The range of γ for the mixtures considered (Table 4.3) was 1.133 < γ < 1.166.

The resulting coefficient of proportionality in Eq. 4.44 is between 0.054 and 0.061

with an average value of 0.058 when q is expressed in J/kg, so that Isp ≈ 0.058
√

q.

The value of q is calculated with Eq. 4.32 and the results (Table 4.3) of equilibrium

computations of MCJ and γ. Eq. 4.32 can be rearranged to give q explicitly

q =
γRT1

2(γ2 − 1)

(
MCJ −

1

MCJ

)2

. (4.45)

Values of q given in Table 4.3 were computed using this expression with a gas constant

based on the reactant molar mass. Note that the values of q computed in this fashion

are significantly less than the heat of combustion qc when the CJ temperature is above

3500 K. This is due to dissociation of the major products reducing the temperature

and the effective energy release. The values of q in Table 4.3 calculated for highly

diluted mixtures can be higher than qc because of the approximations made in using

the one-γ model to calculate q. In general, the ratio of the effective energy release

to the heat of combustion q/qc decreases with increasing CJ temperature due to the

higher degree of dissociation.

The scaling relationship of Eq. 4.44 is tested in Fig. 4.17 by plotting the model

impulse Isp versus the effective specific energy release q for all of the cases shown in

Table 4.3. The approximate relationship Isp ≈ 0.058
√

q is also shown. In general,

higher values of the specific impulse correspond to mixtures with a lower nitrogen

dilution and, hence, a higher energy release, for which the CJ temperature is higher

and dissociation reactions are favored. There is reasonable agreement between the

model Isp and the approximate square root scaling relationship with a fixed coeffi-

cient of proportionality. There is some scatter about the average trend due to the

dependence of γ on the mixture composition and temperature, but the predictions of

Eq. 4.43 are within 6% of the values computed by Eq. 4.8.
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Figure 4.17: Specific impulse scaling with energy content. Model predictions (Eq. 4.8)
versus effective specific energy content q for hydrogen, acetylene, ethylene, propane,
and JP10 with air and oxygen including 0, 20%, 40%, and 60% nitrogen dilution at
P1 = 1 bar and T1 = 300 K.

4.6 Impulse predictions – Parametric studies

Impulse calculations were carried out for different mixtures, equivalence ratios, initial

pressures, and nitrogen dilutions. Unless otherwise mentioned, all calculations were

performed with an initial temperature of 300 K.

The model input parameters consist of the external environment pressure P0, the

detonation velocity UCJ , the equilibrium speed of sound behind the detonation front

c2, the CJ pressure P2, and the equilibrium polytropic exponent in the products γ. All

parameters were computed using equilibrium calculations (Reynolds, 1986) performed

with a realistic set of combustion products. The properties at state 3 were calculated

based on Eq. 4.20. These parameters were then used in Eq. 4.16 and 4.8 to obtain

the impulse.

The impulse is calculated for the following fuels: ethylene, propane, acetylene,

hydrogen, Jet A, and JP10 with varying initial pressure (Figs. 4.18, 4.21, 4.24),
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equivalence ratio (Figs. 4.19, 4.22, 4.25), and nitrogen dilution (Figs. 4.20, 4.23,

4.26). Results are expressed in terms of impulse per unit volume of the tube, spe-

cific impulse, and fuel-based specific impulse. Results for hydrogen-oxygen mixtures

are strictly valid for equivalence ratios less than 0.8 and for hydrogen-air mixtures

with equivalence ratios less than 2.2. In these cases, the calculations are probably

reasonable estimates but the reader should keep in mind that the underlying physical

assumption is no longer justified. The results for Jet A and JP10 assume that these

fuels are in completely vaporized form for all initial conditions. While unrealistic at

low temperatures, this gives a uniform basis for comparison of all fuels.

4.6.1 Impulse per unit volume

The impulse per unit volume is independent of the tube size and is linearly dependent

on the initial pressure, as indicated by Eq. 4.41. The variation of IV with P1, φ, and

N2% is shown in Figs. 4.18, 4.19, and 4.20. Hydrogen cases are very different from

hydrocarbons. The impulse per unit volume is much lower due to the lower molecular

mass of hydrogen, which results in lower density and CJ pressure. Eq. 4.40 shows that

the impulse per unit volume is proportional to the density of the explosive mixture

and the square root of the specific energy release. The specific energy release of

hydrogen mixtures is of the same order as that obtained with other fuels, but the

density of hydrogen mixtures is much lower, resulting in a lower impulse per unit

volume.

Impulse per unit volume versus equivalence ratio is shown in Fig. 4.19. The

impulse is expected to be maximum at stoichiometric conditions from Eq. 4.40 if

we consider only the major products of combustion. However, examining the plot,

we see that, with the exception of hydrogen, the maximum values of IV occur for

rich (φ ∼ 2) fuel-oxygen mixtures and slightly rich (φ ∼ 1.1–1.2) fuel-air mixtures.

Equilibrium computations reveal that the maximum detonation velocity and pressure

also occur for rich mixtures. Even though the nominal heat of reaction of the mixture

based on major products is maximum at stoichiometry, the detonation velocity is not
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Figure 4.18: Variation of impulse per unit volume with initial pressure. Nominal
initial conditions are T1 = 300 K, stoichiometric fuel-oxygen ratio.

a maximum at stoichiometric because of the product species distribution for rich

combustion. Increasing amounts of CO and H2 in increasingly rich mixtures results

in a larger number of products, effectively increasing the heat of reaction and shifting

the peak detonation velocity and pressure to a rich mixture. The effect is much

stronger in fuel-oxygen mixtures than in fuel-air mixtures since the nitrogen in the

air moderates the effect of the increasing number of products in rich mixtures. A

similar effect is observed in flames.

In the case of hydrogen, the product distribution effect is not as prominent since

the number of major products is always less than reactants, independent of stoichiom-

etry. For hydrogen-air mixtures, the maximum IV is obtained for an equivalence ratio

close to 1. The impulse of hydrogen-oxygen mixtures decreases monotonically with

increasing equivalence ratio. Unlike hydrocarbon fuels, which have a molecular mass

comparable to or higher than oxygen and air, hydrogen has a much lower molecular

mass. Thus, increasing the equivalence ratio causes a sharp decrease in the mixture

density. The linear dependence of the impulse per unit volume with mixture density
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Figure 4.19: Variation of impulse per unit volume with equivalence ratio. Nominal
initial conditions are P1 = 1 bar, T1 = 300 K.

dominates over its square root variation with effective energy release (Eq. 4.40), re-

sulting in a decreasing impulse with increasing equivalence ratio for hydrogen-oxygen

mixtures.

The impulse per unit volume generated by the different fuels with oxygen can be

ranked in all cases as follows from lowest to highest: hydrogen, acetylene, ethylene,

propane, Jet A, and JP10. The impulse is generated by the chemical energy of the

mixture, which depends on a combination of bond strength and hydrogen to carbon

ratio. The results obtained for the impulse per unit volume versus the equivalence

ratio are presented for an equivalence ratio range from 0.4 to 2.6. The results of

calculations at higher equivalence ratios were considered unreliable because carbon

production, which is not possible to account for correctly in equilibrium calculations,

occurs for very rich mixtures, in particular for Jet A and JP10.

The nitrogen dilution calculations (Fig. 4.20) show that the impulse decreases with

increasing nitrogen dilution for hydrocarbon fuels. However, as the dilution increases,

the values of the impulse for the different fuels approach each other. The presence of
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Figure 4.20: Variation of impulse per unit volume with nitrogen dilution. Nominal
initial conditions are P1 = 1 bar, T1 = 300 K, stoichiometric fuel-oxygen ratio.

the diluent masks the effect of the hydrogen to carbon ratio. The hydrogen curve is

much lower due to the lower CJ pressures caused by the lower molecular mass and heat

of combustion of hydrogen. Unlike for hydrocarbons, this curve has a maximum. The

presence of this maximum can be explained by the two competing effects of nitrogen

addition: one is to dilute the mixture, reducing the energy release per unit mass

(dominant at high dilution), while the other is to increase the molecular mass of the

mixture (dominant at low dilution). Note that the highest value of the impulse is

obtained close to 50% dilution, which is similar to the case of air (55.6% dilution).

4.6.2 Mixture-based specific impulse

The mixture-based specific impulse Isp is plotted versus initial pressure, equivalence

ratio, and nitrogen dilution in Figs. 4.21, 4.22, and 4.23, respectively. The specific

impulse decreases steeply as the initial pressure decreases due to the increasing im-

portance of dissociation at low pressures (Fig. 4.21). Dissociation is an endothermic
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Figure 4.21: Variation of mixture-based specific impulse with initial pressure. Nomi-
nal initial conditions are T1 = 300 K, stoichiometric fuel-oxygen ratio.

process and the effective energy release q decreases with decreasing initial pressure.

Recombination of radical species occurs with increasing initial pressure. At suf-

ficiently high initial pressures, the major products dominate over the radical species

and the CJ detonation properties tend to constant values. The mixture-based specific

impulse tends to a constant value at high pressures, which is in agreement with the

impulse scaling relationship of Eq. 4.43 if the values of q and γ reach limiting val-

ues with increasing initial pressure. Additional calculations for ethylene and propane

with oxygen and air showed that the specific impulse was increased by approximately

7% between 2 and 10 bar and by less than 2% between 10 and 20 bar, confirming the

idea of a high-pressure limit.

The specific impulses of hydrocarbon fuels varying the equivalence ratio (Fig. 4.22)

have a similar behavior to that of the impulse per unit volume. This is expected

since the only difference is due to the mixture density. Most hydrocarbon fuels have

a heavier molecular mass than the oxidizer, but the fuel mass fraction for heavier

fuels is smaller. The overall fuel mass in the mixture does not change much with
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Figure 4.22: Variation of mixture-based specific impulse with equivalence ratio. Nom-
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Figure 4.23: Variation of mixture-based specific impulse with nitrogen dilution. Nom-
inal initial conditions are P1 = 1 bar, T1 = 300 K, stoichiometric fuel-oxygen ratio.
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the equivalence ratio, so the mixture density does not vary significantly. However,

this effect is important in the case of hydrogen, where the mixture density decreases

significantly as the equivalence ratio increases. This accounts for the monotonic

increase of the hydrogen-oxygen curve. In the case of hydrogen-air, the mixture

density effect is masked because of the nitrogen dilution, which explains the nearly

constant portion of the curve on the rich side. The variation of the Isp with nitrogen

dilution, Fig. 4.23, is the same for all fuels including hydrogen. The mixture-based

specific impulse decreases as the nitrogen amount in the mixture increases.

4.6.3 Fuel-based specific impulse

The fuel-based specific impulse Ispf is plotted versus initial pressure, equivalence ratio,

and nitrogen dilution in Figs. 4.24, 4.25, and 4.26, respectively. The variation of Ispf

with initial pressure, Fig. 4.24, is very similar to the corresponding behavior of Isp.

The curves are individually shifted by a factor equal to the fuel mass fraction. Note

the obvious shift of the hydrogen curves because of the very low mass fraction of

hydrogen. The fuel-based specific impulse is about three times higher for hydrogen

than for other fuels.

The plots on Fig. 4.25 show a monotonically decreasing Ispf with increasing equiv-

alence ratio. This is due to the predominant influence of the fuel mass fraction, which

goes from low on the lean side to high on the rich side. The hydrogen mixtures again

have much higher values compared to the hydrocarbon fuels due to the lower molar

mass of hydrogen as compared to the hydrocarbon fuels. The values of Ispf shown in

Fig. 4.26 exhibit a monotonically increasing behavior with increasing nitrogen dilu-

tion, due to the decrease in fuel mass fraction as the nitrogen amount increases.

4.6.4 Influence of initial temperature

Temperature is an initial parameter that may significantly affect the impulse, espe-

cially at values representative of stagnation temperature for supersonic flight or tem-

peratures required to vaporize aviation fuels. The results shown in previous figures
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Figure 4.24: Variation of fuel-based specific impulse with initial pressure. Nominal
initial conditions are T1 = 300 K, stoichiometric fuel-oxygen ratio.
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Figure 4.26: Variation of fuel-based specific impulse with nitrogen dilution. Nominal
initial conditions are P1 = 1 bar, T1 = 300 K, stoichiometric fuel-oxygen ratio.

were for an initial temperature of 300 K. Calculations with initial temperatures from

300 to 600 K were carried out for stoichiometric JP10-air; JP10 is a low vapor pres-

sure liquid (C10H16) at room temperature. The impulse per unit volume (Fig. 4.27)

and the mixture-based specific impulse (Fig. 4.28) were calculated as a function of the

initial temperature for different pressures representative of actual stagnation pressure

values in a real engine.

The impulse per unit volume decreases with increasing initial temperature, as

predicted by Eq. 4.42. At fixed pressure and composition, this decrease is caused by

the decrease of the initial mixture density. The mixture-based specific impulse is found

to be approximately constant when initial temperature and initial pressure are varied

(Fig. 4.28). The scaling predictions of Eq. 4.43 are verified for constant composition.

The slight decrease of the specific impulse observed with increasing temperature and

decreasing pressure can be attributed to the promotion of dissociation reactions under

these conditions. Specific impulse is a useful parameter for estimating performance

since at high enough initial pressures, it is almost independent of initial pressure and
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Figure 4.27: Variation of impulse per unit volume with initial temperature for different
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temperature.

4.7 Conclusions

An analytical model for the impulse of a pulse detonation tube has been developed

using a simple one-dimensional gas dynamic analysis and empirical observations. This

model is one of the first tools available to the propulsion community to quickly and

reliably evaluate the performance of the most basic form of a pulse detonation engine,

consisting of a straight tube open at one end. The model predictions were compared

with various experimental results, from direct single-cycle impulse measurements (Zi-

toun and Desbordes, 1999, Cooper et al., 2002) to multi-cycle thrust measurements

(Schauer et al., 2001), and also numerical simulations. These show reasonable agree-

ment (within ±15% or better in most cases) for comparisons of impulse per unit

volume, specific impulse, and thrust. This work investigates for the first time the

dependence of the impulse on a wide range of initial conditions including fuel type,

initial pressure, equivalence ratio, and nitrogen dilution.

We found that the impulse of a detonation tube scales directly with the mass of the

explosive mixture in the tube and the square root of the effective energy release per

unit mass of the mixture. A procedure was given to account for product dissociation

in determining the effective specific energy release. Based on a scaling analysis and

the results of equilibrium computations, we reached the following conclusions:

a) At fixed composition and initial temperature, the impulse per unit volume varies

linearly with initial pressure.

b) At fixed composition and initial pressure, the impulse per unit volume varies

inversely with initial temperature.

c) At fixed composition and sufficiently high initial pressure, the specific impulse

is approximately independent of initial pressure and initial temperature. This

makes specific impulse the most useful parameter for estimating pulse detona-

tion tube performance over a wide range of initial conditions.
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The predicted values of the mixture-based specific impulse are on the order of 155

to 165 s for hydrocarbon-oxygen mixtures, 190 s for hydrogen-oxygen, and on the

order of 115 to 125 s for fuel-air mixtures at initial conditions of 1 bar and 300

K. These values are lower than the maximum impulses possible with conventional

steady propulsion devices (Sutton, 1986, Hill and Peterson, 1992). As mentioned in

the introduction, there are many other factors that should be considered in evaluating

PDE performance and their potential applications. The present study provides some

modeling ideas that are used in the next chapter as a basis for the development of a

performance model for air-breathing pulse detonation engines.
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Chapter 5

Air-Breathing Pulse Detonation
Engine Performance Modeling

5.1 Introduction

PDE performance analysis has followed several different approaches, starting with at-

tempts to measure and model the static performance of single-cycle detonation tubes.

The research efforts focused on the single-cycle performance of detonation tubes are

reviewed in Section 4.1. In parallel, researchers have also experimentally investigated

the static multi-cycle performance of single (Zitoun and Desbordes, 1999, Kasahara

et al., 2002, Brophy et al., 2003) and multiple (Schauer et al., 2001) detonation tubes.

Although good agreement has been obtained between the experimental multi-cycle

data of Schauer et al. (2001) and the single-cycle estimates presented in Chapter 4,

the numerical simulations of Cambier and Tegner (1998) also showed that the multi-

cycle performance can be substantially different from the single-cycle performance.

The fuel injection, ignition, and refilling strategies highlighted by Cambier and Teg-

ner (1998) as well as the assumptions made for detonation initiation discussed by

Kailasanath (2002) play a crucial role in estimating the multi-cycle performance.

Although PDE static performance has been studied extensively, very few efforts

have focused on estimating the performance of an air-breathing PDE. The difficul-

ties associated with coupling the inlet flow to the unsteady flow inside the deto-

This chapter is based on work presented in Wintenberger and Shepherd (2003a).
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nation tube(s) and the lack of understanding about the influence of an exit nozzle

(Kailasanath, 2001) are two significant modeling challenges. Bratkovich and Bussing

(1995) presented a performance model for air-breathing PDEs, which considers con-

tributions from an inlet, a mixer, a combustor, and a nozzle. The code is based on

a control volume analysis and a time averaging methodology for the unsteady com-

ponents. It allows for the selection of various inlet types and single- or multiple-tube

detonation chambers. Kaemming (2001) conducted a mission analysis showing that

an air-breathing PDE can present performance advantages over the turbo-ramjet,

without providing any absolute performance values. Because of the proprietary na-

ture of the work and the lack of details about these commercial codes (Bratkovich

and Bussing, 1995, Kaemming, 2001), the accuracy of these performance predictions

is difficult to assess.

Wu et al. (2003) have presented what is so far the most comprehensive system

performance analysis for an air-breathing PDE. Their work is based on a modular

approach, including supersonic inlet dynamics and detonation in single and multi-

ple tubes. They carried out detailed numerical simulations for a hydrogen-fueled

air-breathing PDE flying at 9.3 km altitude and a Mach number of 2.1. A series

of parametric studies showed that the system performance decreased with increasing

ignition delay and increasing refilling period for a fixed blowdown time. Investiga-

tions of nozzle design concluded that a limited performance gain was obtained for

non-choked nozzles, but that choked converging-diverging nozzles could considerably

improve performance. Maximum fuel-based specific impulses on the order of 3500

s were obtained for stoichiometric hydrogen-air. More recently, Ma et al. (2003)

presented numerical results showing the thrust chamber dynamics of multiple-tube

PDEs. They showed that the multiple-tube design improves the performance by re-

ducing the degree of unsteadiness in the flow. Specific impulses as high as 3800 s

at a flight Mach number of 2.1 were obtained with a single converging-diverging exit

nozzle.

Other PDE performance estimates have been based on thermodynamic cycle anal-

ysis. Heiser and Pratt (2002) proposed a thermodynamic cycle based on the ZND
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model of detonation and used the entropy method (Eq. 1.83) to predict performance.

The constant volume combustion cycle has also been used as a surrogate for the

detonation cycle (Bussing and Pappas, 1996, Kentfield, 2002). Performance models

based on gas dynamics have been proposed. Talley and Coy (2002) developed a blow-

down model assuming quasi-steady isentropic one-dimensional nozzle flow following

constant volume combustion. The performance results were compared to constant

pressure propulsion devices. Harris et al. (2002) evaluated the respective perfor-

mance of zero-, one-, and two-dimensional models for the PDE cycle showing that

the model of Talley and Coy (2002) offers a good approximation of the time-averaged

performance. Harris et al. (2002) also concluded that the Heiser and Pratt (2002)

analysis was overly optimistic in its maximum performance predictions.

Based on comparison with detonation tube experiments, the most realistic per-

formance models (Zitoun and Desbordes, 1999, Wintenberger et al., 2003, Talley and

Coy, 2002) have so far been based on unsteady gas dynamics because of the inherent

unsteadiness in the flow. Our goal is to develop a simple predictive model that can be

used to evaluate engine performance at various operating conditions. We present a

fully unsteady one-dimensional control volume analysis of a single-tube air-breathing

PDE, taking into account the kinetic energy of the flow, which is critical in analyzing

high-speed propulsion systems. The flow field inside the engine is investigated using

gas dynamics. The performance of the air-breathing PDE is calculated from the con-

servation equations and compared with that of a conventional propulsion system, the

ideal ramjet.

5.2 Single-tube air-breathing PDE

We consider a supersonic single-tube air-breathing PDE that consists of an inlet, an

acoustic cavity (or plenum), a valve, and a straight detonation tube. A schematic is

given in Fig. 5.1. We assume a steady inlet because of its well-known performance

characteristics. Installing a steady inlet in an unsteady air-breathing engine is possible

as long as quasi-steady flow downstream of the inlet is achieved by one of two ways.
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The first way uses multiple detonation tubes operating out of phase so that the

flow upstream of the detonation tubes decouples from the unsteady flow inside the

tubes, becoming quasi-steady. The second way is to have a plenum downstream

of the inlet that is large enough to dampen pressure transients generated by the

pulsed operation of the engine (Bussing and Pappas, 1996). This second approach

increases the engine total volume and may not be practical, but we adopt it in our

one-dimensional modeling due to its simplicity. Other types of inlets for PDEs include

unsteady valveless (Foa, 1960, Lynch and Edelman, 1996, Brophy et al., 2003) and

valved (Foa, 1960, Bussing and Pappas, 1996) inlets such as those used in pulsejet

applications. However, large external losses for valveless inlets and leakage problems

and poor off-design performance for valved inlets are serious handicaps for unsteady

inlets (Bussing and Pappas, 1996).

Figure 5.1: Schematic representation of a single-tube PDE.

The steady inlet is separated from the plenum by an isolator (a grid or screen sim-

ilar to what is used in ramjets). Flow perturbations generated by combustion or valve

motion are assumed to be isolated within the plenum. The inlet flow is unaffected by

these flow perturbations and remains started. Hence, the single-tube PDE considered

has a steady inflow entering the plenum and an unsteady outflow at the detonation

tube exit. This is true in practice when the inlet flow is choked during supersonic

flight. The valve is located at the upstream end of the detonation tube, separating

it from the plenum. We assume that the valve opens and closes instantaneously.
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Although there are transients associated with finite opening and closing times, they

must be modeled by more complex multi-dimensional numerical simulations and are

outside the scope of this one-dimensional model. The fuel injection system is located

downstream of the valve. Fuel is injected only during the filling process and is as-

sumed to mix instantaneously with the flowing air. As there is no wide agreement on

the influence of nozzles on PDE performance, the effect of exit nozzles on detonation

tube performance is not considered in this study and the detonation tube is assumed

to be straight.

5.3 Control volume analysis

The performance of the air-breathing PDE is determined by performing an unsteady

open-system control volume analysis. The control volume Ω considered, displayed

in Fig. 5.2, is stationary with respect to the engine. The engine is attached to the

vehicle through a structural support. The control surface Σ passes through the engine

valve plane and encompasses the detonation tube, extending far upstream of the inlet

plane. The side surfaces are parallel to the freestream velocity. We consider the

equations for mass, energy, and momentum for this control volume.

5.3.1 Mass conservation

The general unsteady conservation equation for mass in the control volume Ω bounded

by the surface Σ can be written

d

dt

∫
Ω

ρdV +

∫
Σ

ρ(u · n)dS = 0 . (5.1)

Note that the velocities are given in the engine reference frame. The first integral is

equal to the massM of fluid in the control volume. Due to the unsteady operation of

the engine, there is temporary mass storage through a cycle so that dM/dt 6= 0, but

the average mass storage must equal zero for cyclic operation. Assuming reversible

external flow, the pressure and velocity are constant over the entire control surface,
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except inside the detonation tube. Evaluating the surface integrals results in

dM
dt

+ ṁV (t)− ρ0u0AV + ṁs = 0 . (5.2)

As mentioned previously, there is no average mass storage in the engine during steady

flight, so we integrate the mass conservation equation between the inlet and the valve

plane over a cycle. ∫ τ

0

ṁV (t)dt = τṁ0 (5.3)

Integrating Eq. 5.2 over a cycle, we can calculate the mass flow of air through the

side surfaces of Ω.

ṁs = ρ0u0(AV − A0) (5.4)

5.3.2 Momentum conservation

The general unsteady conservation equation for momentum in the control volume is

d

dt

∫
Ω

ρudV +

∫
Σ

ρu(u · n)dS = ΣF . (5.5)

The forces to consider for our engine are the pressure forces and the reaction to

the thrust carried through the structural support. If we assume that the top and

bottom sides of the control volume are sufficiently distant from the engine, then the

flow crosses them with an essentially undisturbed velocity component in the flight

direction. Applying the previous equation in the flight direction, we obtain

d

dt

∫
Ω

ρudV + ṁV (t)uV (t)− ρ0u
2
0AV + ṁsu0 = −AV (PV (t)− P0) + F (t) . (5.6)

Using Eq. 5.4, we obtain an expression for the instantaneous thrust (Hill and Peterson,

1992)

F (t) = ṁV (t)uV (t)− ṁ0u0 + AV (PV (t)− P0) +
d

dt

∫
Ω

ρudV . (5.7)

The last term represents the unsteady variation of momentum inside the control

volume.
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Figure 5.2: Control volume considered for analysis of single-tube PDE.

5.3.3 Energy conservation

In the absence of body forces or heat release, the general unsteady conservation

equation for energy in the control volume Ω is

d

dt

∫
Ω

ρ(e + u2/2)dV +

∫
Σ

ρ(e + u2/2)(u · n)dS = −
∫

Σ

P (u · n)dS . (5.8)

Heat is released only in the detonation tube, which is outside our control volume Ω.

Evaluating each term leads to

d

dt

∫
Ω

ρ(e + u2/2)dV +ṁV (t)(e + u2/2)V − ρ0u0AV (e + u2/2)0 + ṁs(e + u2/2)0 =

P0u0AV − PV (t)uV (t)AV −
P0

ρ0

ṁs .

(5.9)
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Simplifying these terms using Eq. 5.4, we obtain the usual form of the unsteady energy

equation for an adiabatic system with no external work.

d

dt

∫
Ω

ρ(e + u2/2)dV + ṁV (t)htV (t)− ṁ0ht0 = 0 (5.10)

Integrating over a cycle, the first term vanishes because there is no average energy

storage in the control volume.

∫ τ

o

ṁV (t)htV (t)dt = τṁ0ht0 (5.11)

The energy conservation equation requires that the flux of stagnation enthalpy has

to be conserved during a cycle between the inlet and the valve plane.

5.3.4 Thrust calculation

The average thrust is calculated by integrating Eq. 5.7 over a complete cycle

F =
1

τ

∫ τ

0

F (t)dt

=
1

τ

∫ τ

0

ṁV (t)uV (t)dt +
1

τ

∫ τ

0

AV (PV (t)− P0)dt +
1

τ

∫ τ

0

d

dt

∫
Ω

ρudV dt− ṁ0u0

.

(5.12)

The unsteady term can be integrated and corresponds to the variation of total mo-

mentum in the control volume during a cycle.

1

τ

∫ τ

0

d

dt

∫
Ω

ρudV dt =
1

τ

[∫
Ω

ρudV

]τ

0

(5.13)

During steady flight, the total momentum in the control volume has a periodic be-

havior so the unsteady term vanishes when averaged over one period. The only

situation in which the mass, momentum, and energy storage terms lead to nonzero

cycle-averaged contributions are during unsteady flight conditions such as acceler-
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ation or deceleration. Even under these conditions, significant unsteady terms will

occur only if the accelerations are extremely large, on the order of u2
0/LE, where LE

is the engine size. For this study, we restrict ourselves to performance calculations

during steady flight conditions.

During a cycle, the valve is closed from time 0 to tclose and open from tclose to τ .

During the closed part of the cycle, the momentum contribution in Eq. 5.12 (first term

on right-hand side) vanishes. The pressure contribution (second term on right-hand

side) corresponds to the conventional detonation tube impulse Idt.∫ tclose

0

AV (PV (t)− P0)dt = Idt (5.14)

Hence, the average thrust is given by

F =
1

τ
Idt +

1

τ

∫ τ

tclose

ṁV (t)uV (t)dt +
1

τ

∫ τ

tclose

AV (PV (t)− P0)dt− ṁ0u0 . (5.15)

The average thrust is the sum of contributions from the detonation tube impulse,

the momentum and pressure at the valve plane during the open part of the cycle,

and the ram momentum. In order to evaluate this thrust, we need an estimate of

the detonation tube impulse and of the momentum and pressure contributions at the

valve plane during the part of the cycle when the valve is open. These terms have to

be estimated by modeling the filling process, which requires a detailed investigation

of the gas dynamics.

5.4 Detonation tube dynamics

In order to estimate the different terms in the PDE thrust equation (Eq. 5.15), it is

instructive to study the dynamics of the detonation tube during one cycle. This cycle

has three main components, which are illustrated in detail in Fig. 5.3: detonation and

blowdown of the burned gases, purging of the expanded burned products, and refilling

of the tube with fresh reactants. The detonation/blowdown process was studied in

detail in Chapter 4, and occurs when the valve is closed (from 0 to tclose). The purging
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and filling processes occur when the valve is open (from tclose to τ). The cycle time

is the sum of the valve close and open times, the latter being the sum of the fill and

purging times.

τ = tclose + topen = tclose + tfill + tpurge (5.16)

Experiments have shown that purging the burned gases (usually with air) is necessary

to avoid pre-ignition of the fresh mixture before the detonation initiation. Because

the air entering the plenum is decelerated and compressed through the inlet due to

the ram effect, the plenum acts as a high-pressure air reservoir that periodically fills

the detonation tube. Although the unsteady flow in the detonation tube is complex

and involves many wave interactions, the main physical processes occurring during a

cycle have been well documented in previous studies.

5.4.1 Detonation/blowdown process

A detonation is assumed to be instantaneously initiated at the closed end of the

tube. The detonation propagates to the open end of the tube, starting the blowdown

process. The specific gas dynamics during this process are described in detail in

Section 4.2 for a static detonation tube. It was shown that as the detonation exits the

tube, a reflected wave propagates back towards the closed valve. This reflected wave

is an expansion wave for hydrocarbon-air mixtures as well as for lean and slightly

rich hydrogen-air mixtures. After interacting with the Taylor wave, this reflected

expansion accelerates the fluid towards the tube’s open end and decreases the pressure

at the closed end of the tube. The exhaust gas is characterized by low pressure and

high flow velocity downstream of the tube exit. The pressure inside the tube typically

decreases below the ambient pressure (Zitoun and Desbordes, 1999) at the end of the

blowdown process before returning to ambient pressure after about 20t1. Zitoun and

Desbordes (1999) suggested to use the sub-ambient pressure part of the cycle for the

self-aspiration of air in an air-breathing PDE configuration. This suggests that the

valve for a given tube must be closed for at least 10t1 to maximize the impulse per

cycle.
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Figure 5.3: PDE cycle schematic for a detonation tube. a) The detonation is initiated
at the closed end of the tube and b) propagates towards the open end. c) It diffracts
outside as a decaying shock and a reflected expansion wave propagates to the closed
end, starting the blowdown process. d) At the end of the blowdown process, the tube
contains burned products at rest. e) The purging/filling process is triggered by the
opening of the valve, sending a shock wave in the burned gases, followed by the air-
products contact surface. f) A slug of air is injected before the reactants for purging.
g) The purging air is pushed out of the tube by the reactants. h) The reactants
eventually fill the tube completely and the valve is closed.

In an air-breathing PDE, the flow in the detonation tube differs from the static

case because of the interaction between the detonation and filling processes. The
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detonation propagation is affected by the flow following the filling process. The valve

is assumed to close instantaneously prior to the detonation initiation. Closing the

valve sends an expansion wave through the tube to decelerate the flow created by

the filling process. This expansion wave decreases the pressure and density inside the

tube, causing a reduction in detonation pressure and thrust. However, a detonation

that is initiated immediately after valve closing will overtake the expansion wave

within the tube. After this interaction, the detonation will propagate into the uniform

flow produced by the filling process. The thrust for this situation will be different from

the case of a detonation propagating into a stationary mixture but can be calculated

if we assume ideal valve closing and detonation initiation. When the detonation

propagates into a non-uniform moving flow, the subsequent gas dynamic processes

are similar to the static case, although the strength of the various waves generated is

a function of the moving flow velocity.

5.4.2 Purging/filling process

At the end of the detonation/blowdown process, the valve at the upstream end of

the tube opens instantaneously. This valve separates high-pressure air that was com-

pressed due to the ram effect through the inlet, and burned gases at ambient pressure

and elevated temperature. Opening the valve causes the high-pressure air to expand

into the detonation tube. A shock wave is generated and propagates into the det-

onation tube, followed by a contact surface between the fresh air and the burned

products. Fuel is not injected until after the burned gases have been purged. This

prevents pre-ignition of the fresh mixture as mentioned before. An unsteady expan-

sion wave propagates upstream of the valve inside the plenum, setting up a steady

expansion of the plenum air into the detonation tube. Thus, the filling process is

characterized by a combination of unsteady and steady expansions.

The gas dynamics of the flow are complex and involve multiple wave interactions,

but in the interest of simplicity, we will attempt to characterize the filling process with

a few key quantities. In order to do so, we analyzed the problem numerically using
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Amrita (Quirk, 1998). The simulations employed the non-reactive Euler equations

in an axisymmetric domain using a Kappa-MUSCL-HLLE solver. The configuration

tested appears in Fig. 5.4, and consists of a large cavity connected by a smooth area

change to a straight tube open to a half-space. The simulation was started with high-

pressure air in the cavity at conditions given by PC/P0 = PR and TC/T0 = P
(γ−1)/γ
R .

The burned gases in the tube were at pressure P0 and elevated temperature Tf =

7.69T0. The value used for Tf , on the order of 1700 K for a hydrogen-fueled PDE

flying at 10,000 m altitude, is representative of the burned gas temperature at the

end of the blowdown process. The air outside the detonation tube is at pressure P0

and temperature T0. The problem has two contact surfaces. One contact surface

is the inlet air-burned gas interface at the valve end, and the second is the burned

gas–outside air interface at the tube exit. Numerical schlieren images of the filling

process are given in Fig. 5.4.

Figure 5.4: Numerical schlieren images of the filling process. PR = 8, Tf/T0 = 7.69,
γ = 1.4.

When the shock wave formed by opening the valve reaches the open end of the

detonation tube, it diffracts outwards and eventually becomes a decaying spherical
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shock. This diffraction process is similar to that of the shock wave resulting from the

detonation and is characterized by low pressure and high flow velocity downstream

of the tube exit. When interacting with the area change at the open end, a reflected

shock is generated, since the detonation tube contains hot burned products at the

same pressure but with a lower density than the outside air (soft-hard interaction).

The reflected shock propagates upstream and decelerates the flow that is moving

towards the open end. However, this reflected shock interacts with the expansion

waves that propagate back into the tube from the corners and accelerate the flow

towards the open end, causing a decrease in pressure. This weakened shock now

interacts with the inlet air-burned gas contact surface. This soft-hard shock-contact

surface interaction generates a transmitted shock and a reflected expansion wave that

propagates towards the tube’s open end. When the flow behind the inlet air-burned

gas contact surface is supersonic (for PR > 5), the transmitted shock can either be

steady or be convected by the flow towards the open end. The reflected expansion

reflects again off the burned gas-outside air contact surface, diffracting outside the

tube to generate a shock wave located downstream of the tube exit.

For low pressure ratios (PR < 5), the simulations show that the initial flow and

subsequent wave interactions inside the tube are essentially one-dimensional. Multi-

dimensional effects are observed only within one tube diameter of the tube exit, just

after the exhaust of the incident shock. The multi-dimensional corner expansion waves

propagate back into the tube and quickly catch up to merge with the reflected shock.

The same behavior is observed at higher pressure ratios, although two-dimensional

waves are generated when the valve opens and closely follow the inlet air-burned gas

contact surface (Fig. 5.4). In practice, due to the finite time allowed for the detonation

and blowdown processes, the flow in the tube before valve opening will not be quite

uniform. It may contain residual waves still propagating in the tube, which can only

be captured by multi-cycle numerical simulations that model the moving components

and reacting gas chemistry of PDE operation. After this description of the main

processes occurring in a cycle, we discuss in detail how each was modeled.
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5.5 Modeling of the filling process

We now discuss our modeling of the filling process, which is critical to determining the

momentum and pressure contributions at the valve plane necessary to computing the

thrust (Eq. 5.15). Moreover, the filling process also determines the conditions in the

tube prior to detonation initiation, and so strongly influences the resulting impulse.

The plenum connects the steady inlet to the unsteady valve so the flow between the

plenum and the detonation tube is coupled. Thus, the average conditions in the

plenum must be modeled accurately.

5.5.1 Plenum/detonation tube coupling

The average plenum conditions can be estimated by analyzing the control volume

shown in Fig. 5.5. The cycle time is assumed to be much larger than the characteristic

acoustic transit time in the plenum so the plenum properties are assumed to be

spatially uniform. The plenum has a constant incoming mass flow rate equal to ṁ0

because of choked flow through the inlet, and an outgoing mass flow rate when the

valve is open. The outgoing mass flow rate is defined as the flow rate at the valve plane

ṁV (t). Since the plenum is located downstream of the inlet, its inflow is assumed to

have a low velocity. We start with the mass, momentum, and energy conservation

equations for the control volume VC defined in Fig. 5.5:

VC
dρC

dt
= ṁ0 − ṁV (t) , (5.17)

d

dt

∫
VC

ρudV + ṁV (t)uV (t) = A2Pt2 − AV PV (t) + (AV − A2)PC(t) , (5.18)

dEC

dt
= ṁ0ht2 − ṁV (t)htV (t) . (5.19)

In order to determine the average plenum conditions, we average the previous equa-

tions over a cycle. Although the mass, momentum, and energy in the control volume
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will vary, there can be no accumulation in the plenum over a cycle during periodic

operation. This yields

ṁV (t) = ṁ0 , (5.20)

ṁV (t)uV (t) = A2Pt2 − AV PV (t) + (AV − A2)PC(t) , (5.21)

ṁV (t)htV (t) = ṁ0ht2 . (5.22)

where () indicates temporal averaging over a cycle.

Figure 5.5: Control volume VC considered for analysis of flow in the plenum.

Based on our numerical simulations of the filling process, we model some of the

properties at the valve plane as piecewise constant functions of time. The velocity

uV (t) and mass flow rate ṁV (t) are equal to zero when the valve is closed and take

on values uo
V and ṁo

V when the valve is open. The mass conservation equation yields

topenṁ
o
V = τṁ0 . (5.23)

Assuming that the plenum volume is much larger than the detonation tube volume,

the plenum pressure will be approximately constant throughout a cycle. Deviations

from this are discussed further in Section 5.6.1. The pressure at the valve plane equals

the average pressure in the plenum PC when the valve is closed and equals P o
V when

the valve is open. The momentum equation becomes

ṁ0u
o
V = A2(Pt2 − PC)− topen

τ
AV (PC − P o

V ) . (5.24)
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The total temperature at the valve plane equals the average total temperature in the

plenum htC when the valve is closed and equals ho
tV when the valve is open. Rewriting

the averaged energy equation in terms of the temperature yields

T o
tV = Tt2 . (5.25)

The average conditions in the plenum, described by Eqs. 5.23, 5.24, and 5.25,

must be evaluated by considering the flow in the detonation tube when the valve is

open. Because the valve plane corresponds to a geometrical throat, either subsonic

or sonic flow at the valve plane may exist.

5.5.1.1 Subsonic flow at the valve plane

When the valve opens, the pressure differential at the valve plane generates an un-

steady expansion wave that propagates upstream in the plenum (Fig. 5.4). This

unsteady expansion sets up a steady expansion through the area change between

the plenum and the detonation tube, and decays when propagating through the area

change. We assume that its propagation time through the area change is much smaller

than the time necessary to fill the detonation tube. Thus, we neglect the initial tran-

sient corresponding to the unsteady expansion propagation through the area change.

The flow configuration consists of a left-facing unsteady expansion in the plenum,

a steady expansion through the area change, and a right-facing shock wave propa-

gating in the tube followed by the burned gases-fresh air contact surface. This flow

configuration is identical to that encountered in shock tubes with positive chambrage

(Glass and Sislian, 1994). The unsteady expansion in the plenum is very weak after

its propagation through the area change. For example, for an area ratio of 10, it

modifies the plenum stagnation temperature by less than 2.3% and the stagnation

pressure by less than 0.3%. Thus, we assume a large area ratio between the plenum

and the valve and we ignore it in our calculations.

Based on the previous assumptions, we model the flow during the filling process

with the flow configuration shown in Fig. 5.6. The interactions of the shock wave with
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the open end and any subsequent reflected waves are ignored. These assumptions are

discussed further with respect to the results of numerical simulations of the filling

process.

Figure 5.6: Flow configuration used to model the filling process in the case of subsonic
flow at the valve plane.

Since the filling process is modeled with a steady expansion between the plenum

and the valve plane (Fig. 5.6), the stagnation temperature is constant across it and

the average temperature in the plenum is estimated as TC ≈ TtC = TtV = Tt2 from

Eq. 5.25. Hence, the average temperature inside the plenum is equal to the total

temperature downstream of the inlet. The conditions at the valve plane are deter-

mined from the average plenum conditions as a function of the velocity uo
V , using the

isentropic flow relationships through a steady expansion wave. The ratio between the

open time and the cycle time is equal to the ratio of the mass flow rate at the valve

plane and ṁ0: topen/τ = ṁ0/ṁV . After some algebra, Eq. 5.24 yields the following

result for the average plenum pressure as a function of the velocity at the valve plane.

PC = Pt2 −
ṁ0u

o
V

A2

+
ṁ0RTC

A2uo
V

(
1− uo

V
2

2CpTC

)− 1
γ−1

[
1−

(
1− uo

V
2

2CpTC

) γ
γ−1

]
(5.26)

The velocity at the valve plane is determined by matching the flow in the plenum

with the downstream conditions in the detonation tube. Before the valve opens, the

detonation tube contains burned gases at atmospheric pressure. The initial pressure

ratio across the valve determines the shock Mach number and the velocity at the valve
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plane (also the velocity of the contact surface). Matching the interface conditions

yields the classical solution for the shock tube problem with positive chambrage (Glass

and Sislian, 1994).

PC = P0

1 + 2γb

γb+1
(M2

S − 1)[
1− 2(γ−1)

(γb+1)2

(
cf

cC

)2

(MS − 1/MS)2

] γb
γb−1

(5.27)

The velocity at the valve plane is equal to the post-shock velocity in the burned gases

uo
V

cf

=
2

γb + 1

(
MS −

1

MS

)
. (5.28)

We solve for MS by equating Eqs. 5.26 and 5.27, substituting Eq. 5.28 for uo
V . Once

MS is known, all other variables of the system are determined using the relationships

across the shock and the expansion wave.

5.5.1.2 Sonic flow at the valve plane

The velocity at the valve plane becomes sonic when the pressure ratio across the valve

exceeds a critical value, given by PC/PV = ((γ + 1)/2)
γ

γ−1 . The flow configuration

(Fig. 5.7) includes an additional unsteady expansion between the valve plane and the

fresh air-burned gases contact surface. This unsteady expansion accelerates the flow

from sonic at the valve plane to supersonic behind the contact surface and decouples

the plenum flow from the flow in the detonation tube. The velocity at the valve plane

equals the speed of sound

uo
V = c∗ =

√
2γ

γ + 1
RTC . (5.29)

Using the relationships for choked flow at the valve plane, it is possible to directly

estimate the average plenum pressure from Eq. 5.24.

PC = Pt2 −
ṁ0c

∗

γA2

[
γ + 1−

(
γ + 1

2

) γ
γ−1

]
(5.30)
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The properties at the valve plane are given by the standard isentropic relations and

the sonic condition.

Figure 5.7: Flow configuration used to model the filling process in the case of sonic
flow at the valve plane.

The flow in the detonation tube is calculated from a pressure-velocity diagram

by matching conditions across the interface and solving for the shock Mach number

(Glass and Sislian, 1994).

PC

P0

=
1 + 2γb

γb+1
(M2

S − 1)[√
γ+1

2
− γ−1

γb+1

cf

cC
(MS − 1/MS)

] 2γ
γ−1

(5.31)

The velocity of the contact surface equals the post-shock velocity.

5.5.1.3 Average plenum conditions

The coupled flow between the plenum and the detonation tube results in average

plenum conditions that are different from the stagnation conditions downstream of

the inlet. Although the average plenum stagnation temperature equals the inlet stag-

nation temperature, the average plenum pressure is lower than the stagnation pressure

downstream of the inlet due to the flow unsteadiness. Opening the valve generates an

unsteady expansion that propagates into the plenum, while closing the valve gener-

ates a shock wave. The entropy increase associated with these unsteady waves results

in losses in the plenum stagnation pressure as compared with the ideal steady-flow
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case in which the stagnation pressure remains constant. Although the actual waves

are not represented in our averaged model, the average unsteady losses associated

with them are taken into account through the momentum equation (Eq. 5.24). The

ratio of the average plenum pressure to the stagnation pressure downstream of the

inlet is shown as a function of the flight Mach number in Fig. 5.8. Values are given

only for M0 ≥ 1 because of the assumption of choked inlet flow and constant inflow

in the plenum. For subsonic flight, the constant inflow assumption is not valid since

propagating pressure waves can modify the inlet flow. In particular, the incoming

mass flow rate in the plenum can vary over time and does not equal a constant ṁ0.

The ratio PC/Pt2 decreases with increasing flight Mach number when the flow at

the valve plane is subsonic and increases when the flow becomes sonic. For subsonic

flow, increasing losses occur as the flight Mach number increases. However, for sonic

flow, the decoupling of the plenum flow from the detonation tube flow limits the losses.

In this case, the ratio PC/Pt2 increases with increasing flight Mach number because

the stagnation pressure increases faster than the velocity at the throat (second term

of Eq. 5.30). In the worst case of Fig. 5.8, PC is only 2.6% lower than Pt2. However,

this value can become significant (greater than 10%) if the ratio of the plenum area

to the inlet capture area A2/A0 is decreased.

In our calculations, we assumed fixed valve area AV and valve close time tclose.

Other parameters such as valve open time and detonation tube length are determined

by the periodicity of the system. The open time is determined by the mass balance

in the plenum (Eq. 5.23)

topen =
tclose

ṁo
V

ṁ0
− 1

. (5.32)

Another option would be to fix the open time and vary the valve area in order to

satisfy Eq. 5.23. As shown in Fig. 5.8, the open time increases with decreasing flight

Mach number because of the decrease in the mass flow rate at the valve plane. The

fixed valve area limits ṁo
V . There is a critical value of the flight Mach number at which

ṁo
V equals ṁ0, corresponding to an infinite open time (Eq. 5.32) . This critical value

depends on the ratio of the valve area to the inlet capture area and increases with
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Figure 5.8: Ratio of the average pressure in the plenum to the total pressure down-
stream of the inlet (left) and ratio of the open time to the close time (right) as a
function of the flight Mach number. P0 = 0.265 bar, T0 = 223 K, A0 = 0.004 m2,
A2 = 0.04 m2, AV = 0.006 m2.

decreasing AV /A0. For realistic values of this parameter, this behavior is observed at

subsonic flight conditions. In subsonic flight, the inlet flow is strongly affected by the

unsteady flow in the plenum and our model is no longer valid. In practice, when ṁo
V

approaches ṁ0, the system will adjust by sending pressure waves upstream in order

to modify the inlet flow. These pressure waves decrease the inlet mass flow rate and

keep the open time finite. Although our model does not capture this phenomenon, it

shows that there is a strong coupling between the mass flow rate at the valve plane

and the open time. This coupling and its associated limitations have to be taken into

account.

It is also possible to constrain the system by prescribing the valve area, the close

time and the open time. After some transient, the system will eventually reach a

cyclic limit corresponding to average conditions that are different from those for the

free system we calculated. However, there are limitations to this forced system. If

the open time or the valve area prescribed are too small, the plenum will accumulate

mass during the transient. The resulting plenum pressure may exceed the stagnation

pressure downstream of the inlet, and cause it to unstart. This behavior has been

observed by Wu et al. (2003), who prescribe the geometry, tclose and topen in their
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numerical simulations. It is very important to be aware of these limitations when

constraining the system. They can be predicted only by multi-dimensional numerical

simulations of the coupled system, including the moving valve.

5.5.2 Comparison with numerical simulations of the filling

process

The model predictions of the filling process are compared with the results of the

numerical simulations with Amrita (Quirk, 1998) described previously. The quantities

of interest are the average velocity and pressure at the valve plane and the average

filling velocity. The valve plane velocity and pressure were calculated from the two-

dimensional simulations by spatially and temporally averaging these quantities along

the valve plane. The average filling velocity was calculated as the average velocity of

the inlet air-burned gases contact surface between the valve plane and the tube exit.

These quantities are shown in Fig. 5.9 as a function of the initial pressure ratio PR

for both model and simulations.

PR

u/
c 0

5 10 15 200

0.5

1

1.5

2

2.5

3 uV - model
uV - Amrita
Ufill - model
Ufill - Amrita

PR

P
V
/P

0

5 10 15 200

2

4

6

8

10

12
model
Amrita

Figure 5.9: Comparison of model predictions and numerical simulations with Amrita
(Quirk, 1998) for the velocity at the valve plane, the average filling velocity, and the
pressure at the valve plane. Tf/T0 = 7.69, γ = 1.4.

According to our one-dimensional model, the flow at the valve plane is expected

to become sonic above a critical pressure ratio equal to 3.19. For pressure ratios
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below this value, the flow configuration is that of Fig. 5.6, and the velocity at the

valve plane is equal to the velocity of the contact surface: uV = Ufill. For higher

values of PR, the flow configuration is that of Fig. 5.7; the flow is sonic at the valve

plane and an unsteady expansion accelerates the flow to supersonic downstream of the

valve plane. Thus, the values of uV and Ufill are different. The velocity at the valve

plane is predicted by the speed of sound at the throat c∗, while the filling velocity is

predicted by the post-shock velocity. The two curves in Fig. 5.9 correspond to these

two cases. The pressure at the valve plane PV is predicted by the post-shock pressure

for subsonic flow at the valve plane (PR < 3.19) and by the pressure at the throat P ∗

for sonic flow (PR > 3.19).

The model predictions for Ufill and PV are in reasonable agreement with the results

of the numerical simulations, with a maximum deviation of 11% and 20%, respectively.

The model predictions for uV are systematically higher than the numerical results by

up to 40% near choking. The discrepancies between the model and the numerical

simulations can be attributed to two factors. First, the model neglects the transient

before the steady expansion is set up. The initial unsteady expansion that we ignore

in our model generates a lower flow velocity than the steady expansion it sets up in

the area change. Indeed, velocity profiles at the valve plane show that the velocity

increases significantly while the steady expansion is being set up and reaches a value

lower than that obtained from the model. This effect is expected to be stronger

at lower values of the pressure ratio, as is observed in the numerical simulations.

The second discrepancy between the model and the simulations is caused by the

model not accounting for two-dimensional flow at the valve plane. Oblique waves are

generated after valve opening and propagate back and forth between the tube walls

behind the contact surface. These waves are strongest at the valve plane and may

affect the average flow velocity and pressure. However, their influence is weaker far

from the valve plane, and the contact surface velocity is in good agreement with our

one-dimensional predictions. To investigate the effect of the reflected waves at the

open end, we conducted simulations with an infinitely long tube with only minimal

differences observed. This indicates that the discrepancies between the model and the
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numerical simulations observed in Fig. 5.9 are primarily the result of the unsteady

two-dimensional nature of the flow field associated with the valve opening.

The values of the flow properties at the end of the filling process determine the

amount of mass and energy in the detonation tube prior to detonation initiation.

Knowledge of these values is critical to accurately predicting the detonation tube

impulse. The model assumes that the flow in the detonation tube is uniform, moves

at a velocity Ufill, and has a pressure equal to the post-shock pressure. This crude

approximation is based on one-dimensional considerations. The unsteady transient

occurring when the valve opens, any reflected waves from the open end and further

wave interaction, as well as the two-dimensional nature of the flow are neglected.

In order to test the validity of this approximation, the pressure and velocity pro-

files along the centerline from our numerical simulations are plotted in Fig. 5.10 for

PR = 8. These profiles indicate that the flow inside the detonation tube, including

a quasi-steady left-facing shock followed by a steady expansion near the open end,

is relatively uniform in the upstream half of the tube but quite non-uniform in the

downstream half. The quasi-steady shock is the result of the interaction of the re-

flected shock from the open end with the inlet air-burned gases contact surface. Our

model tries to suitably represent the conditions in the tube at the end of the filling

process by uniform average conditions that can then be used to estimate detonation

tube impulse and engine performance. We calculated the spatial average of the pres-

sure and velocity in the detonation tube at the end of the filling process from the

numerical simulations and compared these values with our model predictions. The

model predicts a pressure between 5.8% and 22.7% higher than that of the numerical

simulations for values of PR between 2 and 10. For the same pressure ratios, the

model velocity is between -11.3% and +23.5% of the numerical results. These num-

bers are helpful to understand the influence of our approximations on the accuracy

of our predictions and their potential consequence on performance parameters.
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Figure 5.10: Pressure and velocity profiles along the centerline from the numerical
simulations with Amrita (Quirk, 1998). The valve is located at an axial distance of
100 and the detonation tube exit is located at 200. The dashed line shows the value
of the model prediction. PR = 8, Tf/T0 = 7.69, γ = 1.4.

5.6 Flow fluctuations in the engine

The unsteady pressure waves generated by valve closing and opening strongly affect

the coupled flow in the plenum and the inlet. Since conventional steady inlets are

sensitive to downstream pressure fluctuations, it is critical to be able to model these

flow fluctuations in the engine. In the previous section, the averaging process was

useful to determine the average values of the plenum properties. We now proceed to

estimate the magnitude of the fluctuations during a cycle and how they influence the

inlet flow.

5.6.1 Unsteady flow in the plenum

In order to model the unsteady flow in the plenum, we solve the unsteady mass and

energy equations (Eqs. 5.17 and 5.19). These equations are not averaged as in the

previous section but solved as a function of time. The flow downstream of the inlet

has a low Mach number so we neglect the kinetic energy term when calculating the

total energy and the total enthalpy in the plenum. The flow from the plenum into

the detonation tube is modeled with a steady expansion in the area change. Hence,

the total enthalpy is conserved between the plenum and the valve plane. Rewriting
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the energy equation (Eq. 5.19) as an equation for temperature leads to the following

system of equations

VC
dρC

dt
= ṁ0 − ṁV (t) , (5.33)

VCρC(t)
dTC

dt
= γṁ0Tt2 − [ṁ0 + (γ − 1)ṁV (t)] TC(t) . (5.34)

This system of equations has to be solved separately for the closed part of the

cycle [0, tclose], where ṁV (t) = 0 and for the open part of the cycle [tclose, τ ] where

ṁV (t) 6= 0. We approximate ṁV (t) as constant during the open part of the cycle, as

in the previous section, by assuming small variations in the plenum properties. For

sufficiently large supersonic flight Mach numbers in which the flow at the valve plane

during the filling process is choked, this approximation is justified. We seek the limit

cycle solution corresponding to periodic behavior for this system of equations.

The solution for the density is straightforward within the assumptions of constant

inflow and piecewise constant outflow in the plenum. The density varies linearly

around its average value ρC .

ρC(t) = ρC +
ṁ0tclose

VC

(t/tclose − 1/2) for 0 < t < tclose (5.35)

ρC(t) = ρC −
ṁ0tclose

2VC

+
ṁ0tclose

VC(1− tclose/τ)
(1− t/τ) for tclose < t < τ (5.36)

The limit cycle solution for the temperature has to satisfy the averaged energy

equation, Eq. 5.22. Taking into account the temporal variation of the temperature in

the plenum and using the conservation of total energy through a steady expansion,

Eq. 5.25 can be expressed as

1

topen

∫ τ

tclose

TC(t)dt = Tt2 = TC . (5.37)

Calculations were carried out for conditions corresponding to a PDE flying at 10,000

m and Mach 2 and operating at a frequency of 56.5 Hz (corresponding to the area
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values given in Fig. 5.11). The solution for the temperature evolution was obtained

numerically. An initial value of 350 K was prescribed for the temperature, and the

calculation was run for several cycles. The solution converges to a periodic behavior

after a few cycles (about five for the case shown in Fig. 5.11). The evolution of the

density and temperature inside the plenum is represented in Fig. 5.11. After ten

cycles, the average value of the temperature in the plenum during a cycle was found

to be within 0.35% of TC . The average temperature during the open part of the

cycle, corresponding to Eq. 5.37, was found to be within 0.14% of TC . This means

that the unsteady analysis of the flow in the plenum is consistent with the averaged

conservation equations. The characteristic acoustic time in this case was estimated as

V
1/3
C /cC and was found to be an order of magnitude lower than tclose, which justifies

our assumption of uniform flow properties in the plenum.
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Figure 5.11: Evolution of flow properties in the plenum. A0 = 0.004 m2, A2 = 0.04
m2, AV = 0.006 m2, VC = 0.02 m3, ṁ0 = 0.9915 kg/s, PC = 1.885 bar, TC = 401.4
K, tclose = 0.01 s, topen = 0.007865 s.

It is also possible to derive an analytical solution for the limit temperature in the

plenum,

TC(t) = γTC +
TC(0)− γTC

1 +
t/tclose

VCρC/(ṁ0tclose)− 1/2

for 0 < t < tclose (5.38)
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where TC(0) satisfies the limit cycle condition given in Eq. 5.37. The solution for

TC during the open part of the cycle can also be derived analytically but is rather

involved and is not given here. Equations 5.35 and 5.38 can be used to determine the

amplitude of the fluctuations in density, temperature, and pressure in the plenum.

∆ρC

ρC

=
ṁ0tclose

2VCρC

(5.39)

∆TC

TC

=
γ − 1

2
· ṁ0tclose

VCρC

(5.40)

∆PC

PC

=
ṁ0tclose

VCρC

(
γ

2
+

γ − 1

4
· ṁ0tclose

VCρC

)
(5.41)

The amplitudes of the fluctuations in density, temperature, and pressure for the case

shown in Fig. 5.11 are 15.2%, 6.1%, and 22.1%, respectively. These amplitudes are all

controlled by the same non-dimensional parameter, ṁ0tclose/(VCρC). This parameter

represents the ratio of the amount of mass added to the system during the closed part

of the cycle to the average mass in the plenum. The amplitude of the oscillations is

reduced for a lower inlet mass flow rate (corresponding to a lower flight Mach number

or a higher altitude), a lower close time, a larger plenum volume, or a higher average

plenum density.

5.6.2 Inlet response to flow fluctuations

The pressure oscillations in the plenum induce unsteady flow in the inlet. This un-

steady behavior has been previously studied in the context of longitudinal pressure

fluctuations generated by combustion instabilities in ramjets. The effect of pressure

oscillations on the inlet may be regarded as an equivalent loss of pressure margin

possibly resulting in inlet unstart.

The response of the shock wave in an inlet diffuser, such as that represented in

Fig. 5.1, was modeled by Culick and Rogers (1983). They analyzed the problem

of small-amplitude motions of a normal shock in one-dimensional inviscid flow and
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incorporated a simplified model for flow separation. Their analysis treats the acoustic

field only, consisting of a perturbing acoustic wave propagating upstream to the shock

and a reflected wave propagating downstream. One of their main findings is that the

shock response depends strongly on the following non-dimensional frequency

Φ =
ω/c2

1
A

dA
dx

. (5.42)

The response of the shock was shown to increase if Φ decreases (corresponding to lower

frequency oscillations or an area increase in the inlet diffuser). Thus, low-frequency

oscillations are potentially more dangerous than high-frequency oscillations.

Yang and Culick (1985) numerically studied the response of the diffuser shock to

finite-amplitude perturbations. Their analysis takes into account the fluctuations of

entropy and mass flow rate induced by the shock motion. The conclusions drawn

from the acoustic theory (Eq. 5.42) were confirmed as lower frequencies and higher

amplitudes displaced the shock toward the throat. However, unlike the predictions of

acoustic theory, the amplitude of the mass flow oscillations was found to be smaller

for disturbances with a higher amplitude. This was attributed to non-linear effects,

which tend to displace the shock toward the throat and reduce its strength. Pressure

oscillations at a frequency of 300 Hz and an amplitude of 10% caused the mass flow

rate to fluctuate by about 3%. No resonance phenomena due to the coupling of the

shock motion and initial flow perturbations were observed. Similar observations were

made based on the experiments of Sajben et al. (1984).

The strength of the diffuser shock plays an important role in the stability of the

inlet flow field to flow perturbations. The boundary layer at the wall may separate

and significantly alter the flow field in the strong shock case (Sajben et al., 1984).

Separation results in a reduced effective flow area and it is possible to use asymptotic

methods to analyze the unsteady flow through the diffuser (Biedron and Adamson,

1988). Recent experiments have focused on inlets specifically for PDEs. Mullagiri

et al. (2003) studied a supersonic inlet at Mach 2.5 with back pressure excitation

due to varying blockage at the exit plane. They observed that increasing the exci-
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tation frequency decreased the amplitude of pressure perturbations. Increasing the

excitation amplitude was found to increase the upstream distance over which the per-

turbation was sensed. Nori et al. (2003) produced pressure oscillations by injecting

air at the supersonic inlet exit in a Mach 3.5 air flow. Their results showed that even

when a substantial amount of the inlet capture mass was injected (40%), the inlet

remained started. For a given injection mass flow, lower back pressure excitation

frequencies produced larger pressure oscillations, confirming the predictions of Culick

and Rogers (1983).

The problem of the inlet response to pressure oscillations generated by valve clos-

ing and opening in a PDE is complex. However, the results of previous researchers

have given us some insight into what parameters exert a critical influence on the inlet

response in a PDE. Higher frequency oscillations tend to stabilize the diffuser shock

(Culick and Rogers, 1983, Yang and Culick, 1985, Nori et al., 2003). The frequency

of the oscillations in the plenum is given by 1/τ . Thus, reducing the cycle time is

going to benefit inlet stability. For a given inlet configuration and flight condition, the

amplitude of the pressure oscillations in the plenum and the inlet response decrease

with decreasing close time and increasing plenum volume (Eq. 5.41). Other factors

obviously have to be taken into account in determining the unsteady behavior of the

system, but this analysis gives some general ideas about the unsteady response of

the inlet. A more detailed investigation of this problem requires careful numerical

simulations and experiments based on a specific inlet design.

5.7 PDE performance calculation

The filling process modeling is used to estimate the momentum and pressure integrals

in the thrust equation (Eq. 5.15). Recall that the velocity and mass flow rate at the

valve plane are modeled as piecewise constant functions of time. The pressure at

the valve plane is assumed to be constant during the open part of the cycle, and

time-varying during the closed part due to the detonation process. The behavior

of the pressure and mass flow rate at the valve plane is illustrated schematically in
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Fig. 5.12. This section describes the thrust and specific impulse calculation for our

air-breathing PDE.

Figure 5.12: Modeling of pressure and flow velocity at the valve plane during a cycle.

5.7.1 PDE thrust equation

Before calculating the thrust from the momentum equation, we must verify that our

model satisfies the averaged energy equation, Eq. 5.11. Within the approximations

of our model, the stagnation temperature at the valve plane is constant during the

open part of the cycle. Using Eq. 5.23, Eq. 5.11 is equivalent to ho
tV = ht0. The

averaged energy conservation equation states that the stagnation enthalpy has to be

conserved between the freestream and the valve plane during the open part of the cy-

cle. The stagnation enthalpy of the plenum equals the freestream stagnation enthalpy

(Eq. 5.37). Because the flow from the plenum to the valve plane is modeled using

a steady expansion, the stagnation enthalpy is conserved and the averaged energy

equation is satisfied. The energy release in the detonation is implicitly considered in

the calculation of the detonation tube impulse.

In order to calculate performance, we consider the averaged thrust equation,

Eq. 5.15. The momentum and pressure contributions of the detonation tube during
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the open part of the cycle (from tclose to τ) are calculated using the model estimates

for velocity and pressure at the valve plane during the open part of the cycle. For

subsonic flow at the valve plane, the velocity and pressure uo
V and P o

V are the post-

shock values. For sonic flow, these quantities are the values at the throat c∗ and P ∗.

The pressure contribution during the open part of the cycle is

∫ τ

tclose

AV (PV (t)− P0)dt = AV

∫ τ

tclose

(P o
V − P0)dt = topenAV (P o

V − P0) . (5.43)

The momentum contribution is estimated with

∫ τ

tclose

ṁV (t)uV (t)dt = uo
V

∫ τ

tclose

ṁV (t)dt . (5.44)

The averaged mass conservation equation (Eq. 5.3) yields

∫ τ

tclose

ṁV (t)dt = τṁ0 . (5.45)

The contribution of the open part of the cycle is, therefore,

∫ τ

tclose

(ṁV (t)uV (t)dt + AV (PV (t)− P0)) dt = τṁ0u
o
V + AV (P o

V − P0)topen . (5.46)

Substituting Eq. 5.46 into Eq. 5.15, the average thrust can be expressed as follows

F =
1

τ
Idt + ṁ0(u

o
V − u0) +

topen

τ
AV (P o

V − P0) . (5.47)

Equation 5.47 shows that the average thrust depends on the contributions of deto-

nation tube impulse, momentum, and pressure at the valve plane. The first term is

always positive. The second term is negative because of the flow losses associated

with decelerating the flow through the inlet and re-accelerating it unsteadily during

the filling process. The third term is positive because the air injected during the

filling process is at a higher pressure than the outside air. However, the sum of the

last two terms is negative and corresponds to a drag term caused by flow losses and
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unsteadiness through the inlet and the plenum.

We now digress to do an analogy between Eq. 5.47 and the ramjet performance.

Figure 5.13 shows the usual control volume Ω that includes the entire ramjet engine.

Using this control volume, the thrust can be expressed (Hill and Peterson, 1992) as

F = ṁeue − ṁ0u0 + Ae(Pe − P0) . (5.48)

The thrust can also be expressed by introducing the variables at the plane located

just upstream of the fuel injectors, and denoted r

F = (ṁeue − ṁrur) + (ṁrur − ṁ0u0) + (AePe − ArPr) + (ArPr − AeP0) . (5.49)

In steady flight ṁr = ṁ0, and for the purposes of analogy with our straight-tube

PDE, we consider a ramjet with a straight nozzle (Ar = Ae). The thrust can then be

expressed as

F = [ṁeue − ṁ0ur + Ae(Pe − Pr)] + ṁ0(ur − u0) + Ae(Pr − P0) . (5.50)

From Eq. 5.50, the thrust of our ramjet consists of a thrust term (in brackets), a

momentum term, and a pressure term. Equation 5.50 is the analog of Eq. 5.47 for

the steady case where topen = τ . The valve plane in the PDE case corresponds to

the plane upstream of the injectors in the ramjet case. Note that only the impulse

terms differ between Eqs. 5.47 and 5.50, while the momentum and pressure terms

correspond exactly. This analogy is helpful in understanding the origin of the terms

in the PDE thrust equation.

5.7.2 Specific impulse and effect of purging time

The purging time has a strong influence on the overall engine thrust since the thrust

is inversely proportional to the cycle time, and, by definition, τ = tclose + tpurge + tfill.

Since topen is determined in our model by the condition for periodicity, increasing tpurge
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Figure 5.13: Control volume used to calculate ramjet performance.

means decreasing tfill and decreasing the mass of detonable gas in the detonation tube.

Decreasing the mass of detonable gas will decrease the detonation tube impulse. The

other terms in the thrust equation (Eq. 5.47) are not affected by tfill for a given topen.

Thus, we expect the specific performance of the engine to decrease with increasing

purging time.

Consider the mass balance in the detonation tube when the valve is open. At the

end of the purge time, fuel is injected into the detonation tube just downstream of the

valve. The mixture volume is calculated assuming ideal mixing at constant pressure

and temperature. We assume that the detonation tube volume equals the volume of

injected gas1. Since fuel is injected only during a time tfill, the mass of combustible

mixture in the tube at the end of the filling process can be expressed two ways. From

1This means the length of the detonation tube is being varied with the operating conditions in
this model.
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the filling process, we have

ṁo
V tfill(1 + f) = ρiVdt (5.51)

and from mass conservation (Eq. 5.45), we have

τṁ0 = topenṁ
o
V = (tfill + tpurge)ṁ

o
V . (5.52)

Define the purge coefficient as the ratio of the purging time to the fill time: π =

tpurge/tfill. Then the volume of the detonable mixture can be expressed as

Vdt =

(
1 + f

1 + π

)
τṁ0

ρi

. (5.53)

It is critical to make the distinction between the air mass flow rate ṁ0 and the

average detonable mixture mass flow rate ρiVdt/τ . The amount of fuel injected per

cycle is equal to ṁo
V tfillf . Using the mass balance in the detonation tube (Eq. 5.51),

we calculate the average fuel mass flow rate

ṁf =
ρiVdtf

(1 + f)τ
=

ṁ0f

1 + π
. (5.54)

The fuel-based specific impulse is calculated with respect to the fuel mass flow rate

as

ISPF =
F

ṁfg

= ISPFdt −
1 + π

fg

[
(u0 − uo

V )− AV (P o
V − P0)

ṁo
V

]
.

(5.55)

The engine specific impulse depends on the purging time through the parameter π.

Because the term in brackets in Eq. 5.55 is positive, the specific impulse decreases

linearly with increasing purge coefficient.
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5.7.3 Detonation tube impulse

The detonation tube impulse in the thrust equation (Eq. 5.47) needs to be evaluated

for various operating conditions. The static impulse due to the detonation process

only has been measured by Nicholls et al. (1958), Zhdan et al. (1994), Zitoun and Des-

bordes (1999), Harris et al. (2001) and Cooper et al. (2002) for single-cycle operation

and several models have been proposed (Zitoun and Desbordes, 1999, Endo and Fu-

jiwara, 2002, Wintenberger et al., 2003). However, in practice, the flow downstream

of the propagating detonation wave in an air-breathing engine is not at rest because

of the filling process. This is captured only in multi-cycle experiments (Zitoun and

Desbordes, 1999, Schauer et al., 2001, Kasahara et al., 2002) yet the multi-cycle im-

pulse can still be well predicted by our single-cycle estimates (Eq. 4.8) because of

the low filling velocity in these tests. During supersonic flight, the average stagna-

tion pressure in the plenum is much higher than the pressure in the tube at the end

of the blowdown process. This large pressure ratio generates high filling velocities,

which can significantly alter the flow field and the detonation/blowdown process so

we include this effect in our model. In an idealized case, we assume the detonation

wave is immediately initiated after valve closing and catches up with the expansion

wave generated by the valve closing. The situation corresponds to a detonation wave

propagating in a flow moving in the same direction at the filling velocity and is ob-

served in the multi-cycle numerical simulations of an air-breathing PDE by Wu et al.

(2003).

5.7.3.1 Detonation tube impulse model

The moving flow ahead of the detonation is assumed to have a velocity Ufill. Following

the detonation is the Taylor wave, which brings the products back to rest near the

closed end of the tube (see Section 1.1.4). In the moving-flow case, the energy release

across the wave is identical to the no-flow case and the CJ pressure, temperature,

density, and speed of sound are unchanged. However, the wave is now moving at a

velocity UCJ +Ufill with respect to the tube. The flow velocity immediately following
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this detonation wave is

uCJ = UCJ + Ufill − cCJ . (5.56)

The Taylor wave has to decelerate the flow from the velocity uCJ to zero velocity at

the upstream (closed) end of the tube. Since uCJ is higher than in the no-flow case,

the flow has to undergo a stronger expansion through the Taylor wave. Using the

method of characteristics as described in Section 1.1.4, we can obtain the speed of

sound and the pressure behind the Taylor wave

c3 = cCJ −
γb − 1

2
uCJ =

γb + 1

2
cCJ −

γb − 1

2
(UCJ + Ufill) , (5.57)

P3 = PCJ

(
c3

cCJ

) 2γb
γb−1

. (5.58)

The pressure behind the Taylor wave decreases with increasing filling velocity. For

c3t ≤ x ≤ (UCJ + Ufill)t, the speed of sound and the pressure inside the Taylor wave

are given by Eqs. 1.42 and 1.43. The Taylor wave occupies a larger region of the tube

behind the detonation in the moving-flow case.

The detonation tube impulse is calculated as the integral of the pressure trace at

the valve plane

Idt =

∫ tclose

0

AV (P3(t)− P0)dt . (5.59)

Using dimensional analysis, we idealize the pressure trace at the valve plane as in

Fig. 4.11 and model the pressure trace integral as described in Section 4.3.1. The

pressure history is modeled by a constant pressure region followed by a decay due to

gas expansion out of the tube. The pressure integral can be expressed as

∫ τ

topen

(P3(t)− P0)dt = ∆P3

[
L

UCJ + Ufill

+ (α + β)
L

c3

]
. (5.60)

using the notations of Section 4.3.1. As in the no-flow case, it is possible to derive a

similarity solution for the reflection of the first characteristic at the open end and to

analytically calculate α. The reader is referred to Section 4.3.2 for the details of the
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derivation in the no flow case. For the moving-flow case, the value of α is

α =
c3

UCJ + Ufill

[
2

(
γb − 1

γb + 1

(
c3 − uCJ

cCJ

+
2

γb − 1

))− γb+1

2(γb−1)

− 1

]
. (5.61)

The value of β is assumed to be independent of the filling velocity and the same value

as in Section 4.3.3 is used: β = 0.53.

5.7.3.2 Comparison with numerical simulations of detonation process

In order to validate the model for the valve plane pressure integration (Eq. 5.60),

the flow was simulated numerically using Amrita (Quirk, 1998). The axisymmetric

computational domain consists of a tube of length L closed at the left end and open

to a half-space at the right end. The moving flow was represented by an idealized

inviscid pressure-matched jet profile at constant velocity Ufill as shown on Fig. 5.14.

The modified Taylor wave similarity solution (Eqs. 5.57–5.58 and 1.42–1.43) was used

as an initial condition, assuming the detonation has just reached the open end of the

tube when the simulation is started. This solution was calculated using a one-γ model

for detonations (Eqs. 1.15–1.19) for a non-dimensional energy release q/RTi = 40

across the detonation and γ = 1.2 for reactants and products. The corresponding CJ

parameters are MCJ = 5.6 and PCJ/Pi = 17.5, values representative of stoichiometric

hydrocarbon-air mixtures. The initial refilling pressure Pi ahead of the detonation

wave was taken equal to the pressure P0 outside the detonation tube.

Figure 5.14: Numerical schlieren image of the initial configuration for the numerical
simulations of the detonation process with moving flow. The Taylor wave is visible
behind the detonation front at the tube exit.
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The configuration we adopted for the moving flow is a very elementary represen-

tation of the flow at the end of the filling process. This flow will, in reality, include

vortices associated with the unsteady flow and the unstable jet shear layers. How-

ever, the analysis of the numerical simulations showed that the flow in the tube is

one-dimensional except for within one to two tube diameters from the open end, as

observed in the no-flow case (Section 4.2.4). The flow in the tube is mainly dictated

by the gas dynamic processes at the tube exit plane. Since the exit flow is choked

for most of the process, the influence of our simplified jet profile on the valve plane

pressure integration is minimal.

Mfill

∫(P
3-

P
0)

dt
c i/V

P
i

0 1 2 30
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4

5
model, Eq. 5.60
Amrita

Figure 5.15: Non-dimensional detonation tube impulse as a function of the filling
Mach number. Comparison of model predictions based on Eq. 5.60 and results of
numerical simulations with Amrita (Quirk, 1998). q/RTi = 40, γ = 1.2.

Figure 5.15 shows the comparison of the non-dimensionalized valve plane pressure

integral with the predictions of our model based on Eq. 5.60 as a function of the filling

Mach number. The numerical pressure integration was carried out for a time equal

to 20t1, where t1 = L/UCJ . As the filling Mach number increases, the flow expansion

through the Taylor wave is more severe and the plateau pressure behind the Taylor
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wave P3 decreases. Even though P3 is lower, the blowdown process is accelerated due

to the presence of the initial moving flow. The overall result is that the detonation

tube impulse decreases with increasing filling Mach number, as shown in Fig. 5.15.

The model agrees reasonably well with the results of the numerical simulations. It

generally overpredicts the results of the numerical simulations by as much as 25% at

higher filling Mach numbers. The agreement is better at lower Mach numbers (within

11% error for Mfill ≤ 2 and 4% for Mfill ≤ 1).

5.8 Application to hydrogen- and JP10-fueled PDEs

Performance calculations are carried out for our single-tube air-breathing PDE op-

erating with hydrogen and JP10 fuels and compared with the ramjet performance.

The performance calculations are presented for supersonic flight only because the

assumptions made in the derivation of the model become invalid for subsonic flight.

The results presented here do not represent the ideal performance from an optimized

PDE. In particular, the addition of an exit nozzle can have a substantial influence on

the engine performance, as discussed further.

5.8.1 Input parameters

The input parameters for the performance model consist of the engine geometry, the

freestream conditions and flight Mach number, the fuel type and stoichiometry, the

valve close time, and the purging time. In the following performance calculations, the

fuel-air mixture is assumed to be stoichiometric.

The stagnation pressure loss across the inlet during supersonic flight is modeled

using the military specification MIL-E-5008B (Mattingly et al., 1987), which specifies

the stagnation pressure ratio across the inlet as a function of the flight Mach number,

for M0 > 1.
Pt2

Pt0

= 1− 0.075(M0 − 1)1.35 (5.62)

The calculation of the properties at the valve plane and the initial conditions
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in the detonation tube require the knowledge of the specific heat ratio γb and the

speed of sound cf in the burned gases at the end of the blowdown process. γb and

the CJ parameters are obtained by carrying out detonation equilibrium computations

using realistic thermochemistry (Reynolds, 1986). The speed of sound cf is calculated

assuming that the flow is isentropically expanded from the CJ pressure to atmospheric

pressure. This entire process needs to be iterated since the CJ parameters depend on

the initial conditions in the tube, which are determined by γb and cf . The solution was

found by iteration until the prescribed values of γb and cf matched the values obtained

at the end of the equilibrium computations. The iterative method is described in

detail in Appendix D.

5.8.2 Hydrogen-fueled PDE

5.8.2.1 Conditions inside the engine

The calculation of performance parameters first requires solving for the conditions

inside the engine. Figure 5.16 shows the filling velocity, the velocity at the valve

plane, and the cycle frequency for a PDE operating with stoichiometric hydrogen-air

at an altitude of 10,000 m. In this case, the flow at the valve plane during the filling

process is predicted to remain subsonic up to a flight Mach number of 1.36. Thus,

the two curves on Fig. 5.16 match for M0 < 1.36 but diverge at higher values of

M0 because Ufill > uV . The filling velocity increases with increasing flight Mach

number because of the increased stagnation pressure in the plenum, which generates

a stronger shock wave at valve opening. The cycle frequency was calculated for a

fixed close time of 5 ms. As shown in Fig. 5.16, it increases with increasing flight

Mach number due to the increasing filling velocity and the corresponding decreasing

open time (Fig. 5.8). In the case considered, the cycle frequency increases from a

value of about 50 Hz at M0 = 1 to about 180 Hz at M0 = 4.

The model filling velocity was compared with the results of the numerical simu-

lations of Wu et al. (2003) for an air-breathing PDE with a straight detonation tube

for a PDE flying at 9.3 km altitude and at Mach 2.1. The flow observed in these sim-
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Figure 5.16: Filling velocity and velocity at the valve plane (left) and cycle frequency
(right) as a function of flight Mach number for single-tube PDE operating with stoi-
chiometric hydrogen-air. Z = 10, 000 m, A0 = 0.004 m2, A2 = 0.04 m2, AV = 0.006
m2, tclose = 0.005 s.

ulations is qualitatively similar to the flow predicted by the model in the detonation

tube and represented schematically in Fig. 5.7. The numerical simulations yielded a

filling velocity of about 500 m/s, while the prediction of our model for this case is

539 m/s, within 8% error.

Figure 5.17 shows the pressure non-dimensionalized with the freestream stagnation

pressure and the temperature at various locations inside the engine. The ratio of inlet

stagnation pressure to freestream stagnation pressure decreases with increasing flight

Mach number because of the increasing stagnation pressure losses through the inlet

(Eq. 5.62). Additional losses occur in the plenum due to flow unsteadiness. The

pressure at the valve plane equals the filling pressure until the flow at the valve plane

becomes sonic. At higher flight Mach numbers, the filling pressure is lower because

of the additional flow acceleration through the unsteady expansion. The ratio of the

filling pressure to the freestream stagnation pressure decreases sharply with increasing

flight Mach number because of the substantial values obtained for the filling velocity

(Fig. 5.16). For example, the filling pressure represents less than 25% of Pt0 for

M0 > 2 and less than 9% for M0 > 3. The filling temperature increases slowly and

remains low even at high flight Mach numbers. Although the freestream stagnation
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Figure 5.17: Left: inlet stagnation pressure, plenum pressure, pressure at the valve
plane, and filling pressure non-dimensionalized with freestream total pressure as a
function of flight Mach number. Right: freestream stagnation temperature, temper-
ature at the valve plane and filling temperature as a function of flight Mach num-
ber. Stoichiometric hydrogen-air, Z = 10, 000 m, A0 = 0.004 m2, A2 = 0.04 m2,
AV = 0.006 m2.

temperature reaches close to 1000 K at Mach 4, the filling temperature is predicted

to reach only about 400 K.

5.8.2.2 Performance variation with flight Mach number

The specific impulse for a hydrogen-air PDE is shown in Fig. 5.18 as a function of the

flight Mach number for conditions at sea level and at 10,000 m altitude. The results

shown in Fig. 5.18 are for π = 0, i.e., no purging, and represent the maximum values

predicted by the model for a given engine geometry. Experimental static multi-cycle

data from Schauer et al. (2001) and single-cycle impulse predictions (Chapter 4) are

given as reference points for the specific impulse at static conditions close to sea level.

Even though the model assumptions do not apply for subsonic flight, the reference

values for the static case (M0 = 0) apparently lie on or close to a linear extrapolation

of the results obtained for supersonic flight. Our single-tube PDE generates thrust

up to a flight Mach number of 3.9 at sea level and 4.2 at an altitude of 10,000 m.

The specific impulse decreases almost linearly with increasing flight Mach number



250

Figure 5.18: Specific impulse of a single-tube PDE operating with stoichiometric
hydrogen-air as a function of flight Mach number at sea level and at an altitude of
10,000 m. A0 = 0.004 m2, A2 = 0.04 m2, AV = 0.006 m2, π = 0. Data from multi-
cycle numerical simulations by Wu et al. (2003) for M0 = 2.1 at 9,300 m altitude are
shown. Experimental data from Schauer et al. (2001) and our single-cycle impulse
model predictions are also given as a reference for the static case. The uncertainty
region for the specific impulse at 10,000 m is the shaded area.

from a value at M0 = 1 of about 3530 s at 10,000 m and 3390 s at sea level. In order to

understand the behavior of the specific impulse with varying flight Mach number, the

three terms of the specific impulse equation (Eq. 5.55) are plotted on Fig. 5.19. The

detonation tube impulse decreases with increasing flight Mach number due to the in-

creasing filling velocity (Fig. 5.16). The momentum and pressure terms are relatively

constant for subsonic flow at the valve plane because of the corresponding increases in

velocity, pressure and mass flow rate with increasing flight Mach number. However,

for sonic flow at the valve plane, the negative momentum term decreases linearly with

freestream velocity, because the speed of sound at the valve plane decreases linearly

with M0, but more slowly than u0. Neglecting the outside pressure P0, the pressure

term is proportional to the square root of the temperature T ∗ = 2Tt0/(γ + 1), which
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Figure 5.19: Various terms in specific impulse equation as a function of flight Mach
number for hydrogen-fueled PDE. Z = 10, 000 m, A0 = 0.004 m2, A2 = 0.04 m2,
AV = 0.006 m2, π = 0.

increases almost linearly with M0. This pressure term is positive and increases with

increasing M0 for sonic flow at the valve plane. As mentioned before, the sum of these

two terms, which is displayed in Fig. 5.19, is negative.

Figure 5.18 also shows a data point from the numerical simulations by Wu et al.

(2003). Their baseline case value for the specific impulse for a straight detonation

tube is 2328 s. The model prediction for the same configuration and flight conditions

is 2286 s, which is within 1.8% from the result of their numerical simulations.

5.8.2.3 Performance variation with altitude

The specific impulse at sea level is systematically lower than the specific impulse at

10,000 m by 150–300 s, as shown in Fig. 5.18. Both pressure and temperature change

with altitude. However, the specific impulse is independent of outside pressure. At

constant outside temperature, the Mach number MS of the shock wave generated at

valve opening is independent of pressure because the average plenum pressure scales
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with the outside pressure (Eq. 5.30). The filling velocity and temperature are thus

independent of pressure. We showed in Section 4.6.4 that the detonation tube specific

impulse was independent of initial pressure in the static case. This conclusion can

be extended to the moving-flow case because Ufill is independent of P0. Since the

momentum term and pressure terms are also independent of P0, the engine specific

impulse does not depend on the outside pressure.

However, it depends on the outside temperature T0. At fixed outside pressure, the

momentum and pressure terms vary proportionally to
√

T0 for sonic flow at the valve

plane. The magnitude of the drag term increases with the outside temperature, but

the variation of T0 between sea level and 10,000 m (223 K to 288 K) is not sufficient

to account for the differences observed in the specific impulse. The detonation tube

impulse is primarily modified because of the change in filling conditions. Increasing

the outside temperature results in a stronger shock wave at valve opening, and, there-

fore, in a higher filling velocity. Since the detonation tube specific impulse has been

shown to be insensitive to changes in initial conditions in the static case (Fig. 4.28),

the variation in ISPFdt observed is attributed to the effect of the filling velocity. In-

creasing T0 from 223 K to 288 K causes an increase in Ufill consistent over the range

of flight Mach numbers of about 10%. Recalculating the specific impulse at 10,000 m

with Ufill 10% higher results in a lower ISPFdt by 100–180 s. We conclude that the

decrease in detonation tube specific impulse caused by the increasing outside tem-

perature is the main contribution to the decrease in engine specific impulse observed

between 10,000 m altitude and sea level. The increase in the drag term accounts for

a smaller contribution to this difference.

5.8.2.4 Performance variation with purge coefficient

Figure 5.20 shows that increasing the purge coefficient results in an increase of the

drag term in the specific impulse equation and a decrease of the overall specific im-

pulse. At given flight conditions, the specific impulse decreases linearly with increas-

ing purge coefficient. The reduction in performance due to an increase in purge

coefficient increases with flight Mach number. Increasing π results in a very small
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reduction in performance at low supersonic Mach numbers but results in a significant

specific impulse decrease at higher Mach numbers (2.9% decrease if π is increased

from 0 to 0.5 at M0 = 2 but 19.3% decrease at M0 = 3). Since the size of the drag

term in the specific impulse equation increases significantly as M0 increases, the purge

coefficient is found to have a substantial effect on the thrust-producing range of an

air-breathing PDE. Indeed, the maximum flight Mach number for a hydrogen-fueled

PDE at an altitude of 10,000 m decreases from 4.2 at π = 0 to 3.8 at π = 0.5 and 3.5

at π = 1.
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Figure 5.20: Left: specific impulse of a single-tube PDE operating with stoichiometric
hydrogen-air as a function of flight Mach number varying the purge coefficient. Right:
variation of specific impulse of a single-tube hydrogen-fueled PDE flying at M0 = 2
with purge coefficient. Z = 10, 000 m, A0 = 0.004 m2, A2 = 0.04 m2, AV = 0.006 m2.

5.8.3 JP10-fueled PDE

5.8.3.1 Performance parameters

The conditions inside a JP10-air PDE exhibit similar behavior to those seen for

hydrogen in Fig. 5.17. The flow at the valve plane becomes sonic at M0 = 1.41

for flight at 10,000 m. The filling pressure and temperature are slightly higher in

the case of JP10 than in the case of hydrogen because of the lower speed of sound

in the burned gases for JP10. JP10 generates a much higher detonation pressure



254

than hydrogen, but similar CJ temperatures. The subsequent expansion to ambient

pressure is stronger and decreases the temperature of the burned gases to a lower

value for JP10 than for hydrogen. Indeed, the temperature of the burned gases at

the end of the blowdown process is about 120 K lower for JP10 than for hydrogen.

The specific impulse of a JP10-air PDE decreases from a value of about 1370 s

at M0 = 1 and vanishes for a flight Mach number of about 4, as shown in Fig. 5.21.

A data point for a ballistic pendulum experiment (Wintenberger et al., 2002) for

stoichiometric JP10-air at 100 kPa and 330 K and our single-cycle impulse prediction

are given as references for the static case. As in the hydrogen case, the reference

values for the static case apparently lie close to the extrapolation to M0 = 0 of the

curve obtained for supersonic flight.

5.8.3.2 Issues associated with the use of JP10

The temperature of the flow at the valve plane exceeds above M0 = 3 the auto-ignition

temperature (CRC, 1983) of JP10-air (518 K), which is assumed to be independent

of pressure to the first order. Pre-ignition of the JP10-air mixture is expected above

Mach 3 before the detonation is initiated if the fuel injection system is located at

the valve plane. Pre-ignition can result in a significant decrease in detonation tube

impulse due to potential expulsion of unburned reactants out of the detonation tube

(Cooper et al., 2002). Moreover, combustion of the fuel while the valve is open will

generate very little thrust due to a reduced thrust surface (Cooper et al., 2003). The

design of the fuel injection system for high supersonic Mach numbers has to take into

account this issue. An option is to move it downstream of the valve plane, where the

temperature is lower due to the unsteady expansion downstream of the valve.

Another issue with the use of liquid hydrocarbon fuels is related to potential con-

densation of the fuel in the detonation tube due to the low filling temperature. For

the case considered here with JP10, the filling temperature remains under 300 K as

long as M0 < 2.3. The fuel injected will vaporize completely as long as its vapor pres-

sure is high enough at the temperature considered. In order to vaporize completely

the fuel in a stoichiometric JP10-air mixture at 100 kPa, the temperature has to be
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at least 330 K (Austin and Shepherd, 2003). Since both pressure and temperature in

the detonation tube vary with flight Mach number, it is necessary to carry out vapor

pressure calculations to verify whether all the liquid fuel injected will vaporize. It is

possible that not all the fuel corresponding to stoichiometric quantity will be able to

vaporize and the engine may have to be run at a leaner composition depending on the

flight conditions considered. Detonations in hydrocarbon fuel sprays are undesirable

because low vapor pressure liquid fuel aerosols are characterized by higher initiation

energies and larger reaction zones, making it harder to establish self-sustained det-

onations. Papavassiliou et al. (1993) found the cell width in heterogeneous phase

decane-air detonations to be twice that for decane vapor-air detonations due to the

requirements for droplet breakup, heat transfer, evaporation, and mixing. In prac-

tice, during steady flight, the walls of the detonation tube will heat up due to the

repetitive detonations, and heat transfer from the tube walls will contribute to fuel

vaporization.

5.8.4 Uncertainty analysis

Since our performance model is based on many simplifying assumptions, we need to

estimate the effect of the uncertainty on the performance parameters. Unfortunately,

there is, at this time, no existing standard to which our model can be compared, due

to the complexity of the unsteady reactive flow in a PDE. It is difficult to estimate

the influence of our assumptions unless a numerical simulation of the entire system is

conducted. At present, only Wu et al. (2003) and Ma et al. (2003) have published such

computations and although our work agrees with their results at a single condition,

this is far from conclusive validation of our approach.

We know from our numerical simulations of the filling process the uncertainty

of the model predictions on some of the parameters, which is shown in Table 5.1.

We estimated the model uncertainty for a case corresponding to a stoichiometric

hydrogen-air PDE flying at 10,000 m with no purging. We evaluated how the specific

impulse varies with each parameter. We carried out calculations corresponding to
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Parameter Minimum error (%) Maximum error (%)
Ufill -11.3 +23.5
uV 0 +40
PV -20.5 +13.4
Pi +5.8 +22.7

ISPFdt 0 +25

Table 5.1: Uncertainty on some of the model parameters compared to the results of
the numerical simulations of the filling and detonation processes.

best-case and worst-case scenarios. For example, the best-case scenario corresponds to

a minimized Ufill and maximized uV , PV , Pi, and ISPFdt. The value of the detonation

tube impulse was first calculated with the new parameter values before being adjusted

for its own uncertainty as a function of the filling Mach number (-4% for Mfill < 1,

-11% for 1 < Mfill < 2, and -25% for Mfill > 2). The region of uncertainty is shown in

Fig. 5.18 as the grey shaded area around the predicted specific impulse curve at 10,000

m. The upper bound of the shaded region corresponds to the best-case scenario,

while the lower bound is the result of the worst-case scenario. As expected, the

uncertainty margin is quite large and increases with increasing flight Mach number,

due to the growing uncertainty on the detonation tube impulse. The uncertainty

on the specific impulse at M0 = 1 is ±9.9% and at M0 = 2, it is -36.5%/+12.7%.

Since the predicted detonation tube impulse overpredicts the numerical values, the

magnitude of the uncertainty in the worst-case scenario is larger than that in the

best-case scenario.

5.8.5 Comparison with the ideal ramjet

The specific impulse of our air-breathing PDE is compared in Fig. 5.21 with that

of the ideal ramjet at flight conditions corresponding to 10,000 m altitude for sto-

ichiometric hydrogen- and JP10-air. The ideal ramjet performance was calculated

following the ideal Brayton cycle, taking into account the stagnation pressure loss

across the inlet (Eq. 5.62). Combustion at constant pressure was computed using re-

alistic thermochemistry (Reynolds, 1986), and performance was calculated assuming
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thermodynamic equilibrium at every point in the nozzle. According to our perfor-

mance predictions, the single-tube air-breathing PDE in the present configuration

(straight detonation tube) has a higher specific impulse than the ideal ramjet for

M0 < 1.35 for both hydrogen and JP10 fuels.
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Figure 5.21: Specific impulse of a single-tube air-breathing PDE compared to the
ramjet operating with stoichiometric hydrogen-air and JP10-air. Z = 10, 000 m,
A0 = 0.004 m2, A2 = 0.04 m2, AV = 0.006 m2, π = 0. Data from multi-cycle
numerical simulations by Wu et al. (2003) for M0 = 2.1 at 9,300 m altitude are
shown. Experimental data from Schauer et al. (2001) and Wintenberger et al. (2002),
referred to as CIT, and our impulse model predictions are also given as a reference
for the static case.

The results of our performance calculations show that PDEs with a straight det-

onation tube are not competitive with the ramjet at high supersonic flight Mach

numbers. The lack of performance at higher flight Mach numbers can be attributed

to the decreasing detonation tube impulse. The present configuration results in very

high filling velocities (higher than 500 m/s for M0 > 2), which have two main conse-

quences. First, the pressure and density of the reactants before detonation initiation

are low compared to the corresponding properties in the plenum (Fig. 5.17). The
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detonation tube impulse being proportional to the initial mixture density (Eq. 4.40),

a low reactant density is detrimental to the specific impulse. The straight-tube PDE

exhibits the same problem as the standard pulsejet, which is the inability of the engine

to sustain ram pressure in the detonation tube during the filling process (Foa, 1960,

p. 373). Our specific impulse predictions for the straight-tube PDE indeed display the

same behavior as Foa’s predictions (Fig. 1.19) for the standard pulsejet, decreasing

quasi-linearly with increasing flight Mach number. Second, as shown in Fig. 5.15, the

detonation tube impulse is very sensitive to the filling velocity and decreases sharply

with increasing Ufill. For example, if the filling velocity is reduced to half of its value

at M0 = 2 for a hydrogen-air PDE flying at 10,000 m, our model predicts that the

detonation tube impulse will increase by 36%. Adding a choked converging-diverging

exit nozzle has been proposed by several researchers (Kailasanath, 2001, Wu et al.,

2003) as a means to increase the chamber pressure and decrease the effective filling

velocity. The strong sensitivity of the detonation tube impulse to the filling velocity

suggests a potential for improving performance, provided that the filling velocity can

be decreased without excessive internal flow losses. The numerical simulations of Wu

et al. (2003) support this idea, showing an increase in specific impulse of up to 45%

with the addition of a converging-diverging nozzle.

5.9 Conclusions

We have developed a simple analytical model for predicting the performance of a

supersonic air-breathing pulse detonation engine with a single straight detonation

tube. This work is the first complete system-level analysis for an air-breathing pulse

detonation engine, which takes into account all components of the engine and models

their respective coupling. The performance calculation methodology, which is based

on gas dynamics and control volume methods, is openly described in complete de-

tail. Performance can be easily estimated for a wide range of flight and operating

conditions. We draw the following conclusions from our analysis:
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a) The filling process is characterized by a shock wave generated at valve opening

and propagating in the detonation tube and a combination of unsteady and

steady expansions between the plenum and the detonation tube.

b) The flow in the plenum and in the detonation tube is coupled, and its unsteadi-

ness causes average total pressure losses.

c) The flow in the plenum is characterized by density, temperature, and pressure

oscillations due to the opening and closing of the valve during a cycle. The

amplitude of these oscillations is critical to the study of the inlet response and

was found to be proportional to the ratio of the amount of mass added to the

plenum during the closed part of the cycle to the average mass of fluid in the

plenum.

d) The thrust of the engine was calculated using an unsteady open-system control

volume analysis. It was found to be the sum of three terms representing the

detonation tube impulse, the gas momentum, and the pressure at the valve

plane.

e) The detonation tube impulse was calculated by modifying our single-cycle im-

pulse model to take into account the effect of detonation propagation into a

moving flow generated by the filling process. The detonation tube impulse is

found to decrease sharply with increasing filling velocity.

f) Performance calculations for hydrogen- and JP10-fueled PDEs showed that the

specific impulse decreases quasi-linearly with increasing flight Mach number,

and that single-tube PDEs generate thrust up to a flight Mach number of about

4.

g) PDEs with a straight detonation tube have a higher specific impulse than the

ramjet below a flight Mach number of 1.35. PDE performance was found to be

very sensitive to the value of the filling velocity, and potential improvements

may be possible with a converging-diverging nozzle at the exit.
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Chapter 6

Conclusions

The present work investigates the applications of steady and unsteady detonation

waves to propulsion systems. For a fixed initial thermodynamic state and variable

flow speed, detonations generate the lowest entropy rise of all physically possible com-

bustion modes. Since thermodynamic cycle analysis shows that the thermal efficiency

is maximized when the entropy generation is minimized, detonation appears as an

attractive combustion mode for propulsion.

The efficiency of ideal detonation-based propulsion systems relative to conven-

tional systems based on low-speed flames is first investigated based on thermody-

namics. We observe that the conventional Hugoniot analysis for steady combustion

waves, which assumes a fixed initial state and a variable inflow velocity, does not

apply for steady-flow propulsion systems. Based on this observation, we reformu-

late this analysis to obtain a new set of solutions for a fixed initial stagnation state,

which we call the stagnation Hugoniot. The implications of the stagnation Hugo-

niot analysis are that detonations are less desirable than deflagrations for an ideal

steady air-breathing propulsion system since they entail a greater entropy rise at a

given flight condition. This important result reconciles thermodynamic cycle analy-

sis with past work on detonation-based ramjets, which has systematically concluded

that these engines had poorer performance than the ramjet. This leads us to con-

sider the situation for unsteady flow systems. We use a conceptual cycle, that we

call the Fickett-Jacobs cycle, to analyze unsteady detonation waves in a purely ther-

modynamic fashion. At fixed conditions before combustion, detonations are found
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to have the potential for generating more work than constant-pressure combustion.

We also find that the thermal efficiency of cycles based on unsteady detonation and

constant-volume combustion are very similar. Additional impulse calculations for a

straight tube showed that constant-volume combustion and detonation result in al-

most identical propulsive performance, and that constant-volume combustion can be

used as a convenient surrogate for detonation.

The application of steady detonation waves to propulsion is then considered, based

on flow path analysis. The practical difficulties associated with stabilizing a det-

onation wave are highlighted. The requirement on the freesteam total enthalpy is

considered in parallel with effects such as auto-ignition of the fuel-air mixture. Ad-

ditional limitations associated with condensation and fuel sensitivity to detonation,

which have not been considered before, are taken into account for detonation stabi-

lization. An analytical performance model is formulated for the detonation ramjet

and the detonation turbojet, which places a limitation on the total temperature at

the combustor outlet, unlike previous work. The results show that steady detonation

engines have a small thrust-producing range (5.6 < M0 < 6 for a hydrogen-fueled

detonation ramjet at 10,000 m altitude) due to the requirements for detonation sta-

bilization. The performance of steady detonation-based engines is always lower than

that of the conventional ramjet and turbojet. This result is the direct consequence

of the higher entropy rise and the corresponding total pressure loss across the steady

detonation wave. Additional problems associated with supersonic mixing and deto-

nation stabilization severely limit the range of useful performance to the extent that

these engines do not appear to be practical.

These conclusions lead us to consider propulsion systems based on unsteady det-

onations, i.e., pulse detonation engines. We first focus on the simplest version of a

PDE, consisting of a straight detonation tube. An analytical model for the impulse of

a single-cycle pulse detonation tube is developed based on gas dynamics, dimensional

analysis, and empirical observations. The model is based on the pressure history at

the thrust surface of the detonation tube. The model predictions are in reasonable

agreement (within ±15% in most cases) with direct experimental measurements of
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impulse per unit volume, specific impulse, and thrust. This model is one of the first

tools available to the propulsion community to quickly and reliably estimate the im-

pulse of a pulse detonation tube. It is used to investigate the dependence of the

impulse on a wide range of initial conditions. Based on a scaling analysis, we show

that the impulse of a detonation tube scales directly with the mass of explosive in the

tube and the square root of the effective energy release per unit mass of the mixture.

We also observe, based on equilibrium computations, that at fixed composition and

sufficiently high initial pressure, the specific impulse is approximately independent of

initial pressure and initial temperature. The predicted values of the mixture-based

specific impulse are on the order of 155 to 165 s for hydrocarbon-oxygen mixtures,

190 s for hydrogen-oxygen, and on the order of 115 to 125 s for fuel-air mixtures at

conditions of 1 bar and 300 K.

Our next step is to build on these results to develop the first complete system-level

analysis for an air-breathing pulse detonation engine. Our analytical performance

model for a supersonic air-breathing PDE with a single straight tube is based on

gas dynamics and control volume methods. The behavior of the flow in the various

components of the engine and their respective coupling is modeled for the first time.

We show that the flow in the plenum oscillates due to valve opening and closing, and

that this unsteadiness results in total pressure losses. We highlight the influence of the

interaction between the detonation process and the filling process, which generates a

moving flow into which the detonation has to initiate and propagate. Our single-cycle

impulse model is extended to include the effect of filling velocity on detonation tube

impulse. Based on this, the engine thrust is calculated using an open-system control

volume analysis. It is found to be the sum of the contributions of detonation tube

impulse, momentum, and pressure terms. Performance calculations for hydrogen- and

JP10-fueled PDEs show that thrust is generated up to a flight Mach number of 4 and

that the specific impulse decreases quasi-linearly with increasing flight Mach number.

We find that PDEs with a straight detonation tube have a higher specific impulse

than the ramjet below a flight Mach number of 1.35. PDE performance was found

to be very sensitive to the value of the filling velocity, and potential improvements
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may be possible with a converging-diverging nozzle at the exit if the pressure in

the surrounding atmosphere is low enough so that significant conversion of chemical

energy into kinetic energy in the nozzle is possible.
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Appendix A

Steady detonation engine
performance computation

A.1 Formulas for steady detonation engine perfor-

mance

The performance of ideal steady detonation engines can be expressed as a function of

key non-dimensional parameters: γ, M0, qf/RTt0, Tmax/Tt0. The main performance

parameters for the dramjet are given subsequently.

f =
γ
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The performance parameters for the turbodet are the following.
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A.2 Realistic thermodynamic cycle

The performance study of the steady detonation engines has been carried out so far

considering ideal models for the detonation. It is, however, possible to calculate the

thermodynamic cycle for these devices using state variables with a general equation

of state and using realistic thermochemical properties. The following set of equations

present, in a general way, the conservation equations required to analyze the cycle,

assuming that all the processes are adiabatic. The conditions across the detonation

wave can be evaluated by doing equilibrium computations based on realistic thermo-

chemical properties using a code such as STANJAN (Reynolds, 1986), for example.

The calculation for the stabilized detonation wave then has to be iterated before

the appropriate solution for T4 is found. Realistic thermochemical calculations will

include the effects of endothermic dissociation reactions that will increase the fuel
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consumption necessary to maintain the combustor outlet temperature at the given

value Tmax. The enthalpy per unit mass of the flow at a given station i in the en-

gine depends on the mass fractions and respective enthalpies of the species j at the

corresponding conditions.

hi =
k∑

j=1

Yjh(Ti) (A.9)

If the components (inlet, compressor, turbine, nozzle) are assumed to be ideal, the

corresponding thermodynamic processes are isentropic, and the entropy s = s(T, P )

is assumed to be constant. The equation of state and the constant entropy conditions

can then be used to obtain a relationship between the pressure and temperature

ratios. However, aerodynamic losses also occur in realistic engine components. The

compression and expansion processes are not isentropic and the stagnation pressure

at the end of the process is lower than for an isentropic process. The typical approach

to model aerodynamic losses (Hill and Peterson, 1992, Chap. 5) is to define empirical

adiabatic efficiencies for diffusers, compressors, and nozzles. The adiabatic efficiency

of an engine component is defined as the ratio of the ideal (isentropic) to the actual

enthalpy change during the process across the engine component for the same given

pressure ratio (Hill and Peterson, 1992, p. 170). A more specific study of each engine

component at the given conditions enables the determination of these coefficients.

Finally, the exit plane assumption is that the flow be pressure-matched, i.e. P9 = P0.

If the exit is not pressure-matched, the thrust equation, Eq. 5.47, has to be rewritten

taking into account the pressure differential terms in the control volume analysis. The

set of equations for the dramjet are given below. The specified parameters are P0, T0,

M0, Tmax, εd, and εn. The solution for state 4 is found by iterating steps a. and b.

a. freestream (0) - combustor inlet (4):

h0 + u2
0/2 = h4 + u2

4/2 ; s0 = s4 ; εd = (ht4is − h0)/(ht4 − h0)

b. combustor inlet (4) - combustor outlet (5):

h4 + u2
4/2 + fhtf = (1 + f)(h5 + c2

5/2) ; Tt5 = Tmax

c. combustor outlet (5) - nozzle exit (9):
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h5 + c2
5/2 = h9 + u2

9/2 ; s5 = s9 ; εn = (ht5 − h9)/(ht5 − h9is) ; P9 = P0

The set of equations for the turbodet has to include the work supplied by the com-

pressor and the energy balance across the turbine. The specified parameters are P0,

T0, M0, πc, Tmax, εd, εc, εn1, εn2, εt, and εn. The solution for state 4 is found by

iterating steps c. and d.

a. freestream (0) - compressor inlet (2):

h0 + u2
0/2 = h2 ; s0 = s2 ; εd = (ht2is − h0)/(ht2 − h0)

b. compressor inlet (2) - compressor outlet (3):

h2 + ẇ = h3 ; P3/P2 = πc ; s2 = s3 ; εc = (h3is − h2)/(h3 − h2)

c. compressor outlet (3) - combustor inlet (4):

h3 = h4 + u2
4/2 ; s3 = s4 ; εn1 = (h3 − ht4)/(h3 − ht4is)

d. combustor inlet (4) - combustor outlet (5):

h4 + u2
4/2 + fhtf = (1 + f)(h5 + c2

5/2) ; Tt5 = Tmax

e. combustor outlet (5) - turbine inlet (6):

h5 + c2
5/2 = h6 ; s5 = s6 ; εn2 = (h6is − ht5)/(h6 − ht5)

f. turbine inlet (6) - turbine outlet (8):

(1 + f)(h8 − h6) = h3 − h2 = ẇ ; s6 = s8 ; εt = (h6 − h8)/(h6 − h8is)

g. turbine outlet (8) - nozzle exit (9):

h8 = h9 + u2
9/2 ; s8 = s9 ; εn = (h8 − h9)/(h8 − h9is) ; P9 = P0



285

Appendix B

Influence of non-equilibrium flow
on detonation tube impulse

The competition between the rate of pressure change along a particle path in the

Taylor wave and the chemical reaction rates in the dissociating gases has a strong

influence on the properties in the stagnant region behind the Taylor wave (state 3)

and the specific impulse generated by the detonation of the gaseous mixture. The

self-similarity of the flow in the Taylor wave (Section 1.1.4) implies that the rate of

pressure change along a particle path depends on the initial location of this particle.

A fluid particle located near the closed end of the tube spends a very short time

in the Taylor wave, whereas another particle located further downstream from the

closed end will spend more time in the Taylor wave. This means that particles located

near the closed end of the tube will undergo a more rapid expansion than particles

located further away. Hence, fluid particles located very close to the closed end of the

tube will expand along the frozen isentrope, since the rate of pressure change is much

higher than the chemical reaction rates. On the other hand, fluid particles located

very far downstream of the closed end expand along the equilibrium isentrope, since

the expansion is slower than the chemical reaction rates. These limiting cases bound

the range of possible behaviors for the dissociating gas.

The chemical reaction rates for dissociation and recombination reactions strongly

depend on temperature. Dissociation reactions are favored in the detonation prod-

ucts of fuel-oxygen mixtures, which are characterized by high CJ temperatures (on
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the order of 3800 K). The degree of dissociation is lower in the products of fuel-air

mixtures, which are characterized by much lower CJ temperatures, on the order of

2900 K. Thus, the difference between the frozen and the equilibrium isentropes is

much larger in the case of fuel-oxygen mixtures than for fuel-air mixtures. In prac-

tice, a fluid particle expanding behind a CJ detonation will initially be in chemical

equilibrium, because of the fast chemical reaction rates caused by the high CJ tem-

perature. However, as the particle expands, its temperature drops and the chemical

reaction rates slow down. Below a certain temperature, the particle cannot be con-

sidered in chemical equilibrium any more, and the effect of chemical kinetics becomes

dominant. If the particle expands even further, as for example would be the case in

an exit nozzle, its temperature will drop below a critical temperature under which

its composition can essentially be considered as frozen, because the chemical reaction

rates are too slow to compete with the expansion process.
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Figure B.1: Influence of non-equilibrium flow in the Taylor wave on the plateau pres-
sure P3 and the specific impulse for stoichiometric ethylene-oxygen mixtures diluted
with nitrogen at 1 bar and 300 K initial conditions.

The influence of non-equilibrium flow on the pressure behind the Taylor wave and

the specific impulse is illustrated in Fig. B.1 for ethylene-oxygen mixtures diluted with

nitrogen. The frozen flow calculation fits the frozen isentrope with a constant value

of γfr calculated at the CJ point. The equilibrium flow calculation numerically inte-
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grates the equilibrium isentrope to solve the Riemann invariant equation (Eq. 4.20).

The equilibrium calculation yields higher pressure values than the frozen calculation

because of the additional energy released by exothermic recombination reactions dur-

ing the expansion process. The difference increases with decreasing nitrogen dilution,

due to the increasing CJ temperature and the corresponding increased dissociation.

In particular, the pressure P3 for stoichiometric ethylene-oxygen is 10% lower when

assuming frozen flow rather than equilibrium flow. This translates into a predicted

specific impulse being about 8% lower for frozen flow than for equilibrium flow. Fig-

ure B.1 shows that as the amount of nitrogen dilution increases, the pressure values

get closer because of the decreasing CJ temperatures and chemical reaction rates. For

ethylene-air mixtures, the pressure P3 obtained from the frozen calculation is within

0.7% of that obtained from the equilibrium calculation and the specific impulse values

are within 0.4%. As discussed in Section 4.3.4, the equilibrium calculation is more

representative of typical detonation tube laboratory experiments. In conclusion, for

fuel-air mixtures at standard conditions, the assumption made for the behavior of

the dissociating gas during the expansion in the Taylor wave has little influence on

the specific impulse. However, for fuel-oxygen mixtures, this assumption can result in

significant differences for the specific impulse. I am grateful to Radulescu and Hanson

(2004) for initially pointing out this issue and commenting on the incorrect value of

the isentropic exponent used in Wintenberger et al. (2003).
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Appendix C

Impulse model prediction tables

The following tables give the CJ properties and the predicted values for the impulse

per unit volume, the mixture-based and the fuel-based specific impulse, calculated

with the impulse model described in Chapter 4. The calculations cover a range

of fuels including ethylene, propane, acetylene, hydrogen, Jet A and JP10. The

CJ properties were calculated using thermochemical equilibrium computations with

STANJAN (Reynolds, 1986). The speed of sound c2 and the value of γ reported in

the tables are those corresponding to equilibrium flow. The properties at state 3 were

calculated by numerically integrating Eq. 4.20 along the equilibrium isentrope. The

impulse is calculated based on Eqs. 4.8 and 4.16 with β = 0.53.
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Appendix D

Iterative method for air-breathing
PDE performance model

The general equations and iterative method used in the air-breathing PDE model of

Chapter 5 to calculate performance are described in this section.

1. Input parameters: M0, Tt0, Pt0, γ, R, Cp, A0, A2, AV , tclose.

2. Inlet

Tt2 = Tt0

Pt2 = Pt0

(
1− 0.075(M0 − 1)1.35

)
3. Plenum

TC = Tt2

Guess the value of cf and γb. Solve the following system of equations for MS:

PC = Pt2 −
ṁ0u

o
V

A2

+
ṁ0RTC

A2uo
V

(
1− uo

V
2

2CpTC

)− 1
γ−1

[
1−

(
1− uo

V
2

2CpTC

) γ
γ−1

]

PC = P0

1 + 2γb

γb+1
(M2

S − 1)[
1− 2(γ−1)

(γb+1)2

(
cf

cC

)2

(MS − 1/MS)2

] γb
γb−1

Ufill = uo
V =

2cf

γb + 1

(
MS −

1

MS

)
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Calculate the Mach number of the flow at the valve plane: MV = uo
V /cV =

uo
V /
√

γRTV . If MV < 1, go to step 5. If MV ≥ 1, go to step 4.

4. If the flow at the valve plane is choked (MV = 1), the previous system of

equations (step 3) is not valid. Start by calculating the velocity at the valve

plane:

uo
V = c∗ =

√
2γ

γ + 1
RTC

Deduce the average plenum pressure:

PC = Pt2 −
ṁ0c

∗

γA2

[
γ + 1−

(
γ + 1

2

) γ
γ−1

]

Knowing PC , solve the following equation implicitly for MS:

PC

P0

=
1 + 2γb

γb+1
(M2

S − 1)[√
γ+1

2
− γ−1

γb+1

cf

cC
(MS − 1/MS)

] 2γ
γ−1

Once MS is known, calculate the filling velocity:

Ufill =
2cf

γb + 1

(
MS −

1

MS

)

5. Valve plane

Calculate the properties at the valve plane during the open part of the cycle:

T o
V = TC −

uo
V

2

2Cp

P o
V = PC

(
T o

V

TC

) γ
γ−1

6. Calculate the value of the open time and the cycle time:

topen =
tclose

ṁo
V

ṁ0
− 1
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τ = tclose + topen = tclose + tfill + tpurge = tclose + tfill(1 + π)

7. Detonation tube

Calculate the initial conditions before detonation as those just behind the con-

tact surface:

Pi =

(
1 +

2γb

γb + 1
(M2

S − 1)

)
P0

Ti =

(
Pi

PC

) γ−1
γ

TC

Calculate CJ detonation parameters, including γb, using realistic thermochem-

istry (Reynolds, 1986). Calculate state 3 parameters using the modified Taylor

wave solution and cf using isentropic expansion to atmospheric pressure.

8. Iterate steps 3-7 until the assumed values of cf and γb match those obtained

from the detonation properties. Once these values match, go to step 9.

9. Detonation tube impulse

Idt = Vdt∆P3

[
1

UCJ + Ufill

+ (α + β)
1

c3

]

Vdt =

(
1 + f

1 + π

)
τṁ0

ρi

α =
c3

UCJ + Ufill

[
2

(
γb − 1

γb + 1

(
c3 − uCJ

cCJ

+
2

γb − 1

))− γb+1

2(γb−1)

− 1

]
β = 0.53

10. Thrust

F =
1

τ
Idt + ṁ0(u

o
V − u0) +

topen

τ
AV (P o

V − P0)

11. Specific impulse

ISPF = ISPFdt −
1 + π

fg

[
(u0 − uo

V )− AV (P o
V − P0)

ṁo
V

]
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