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The combustion mode in a steady-flow propulsion system has a strong influence on the

overall efficiency of the system. In order to evaluate the relative merits of different modes, we

propose that it is most appropriate to keep the upstream stagnation state fixed and the wave

stationary within the combustor. Due to the variable wave speed and upstream stagnation

state, the conventional Hugoniot analysis of combustion waves is inappropriate for this pur-

pose. To remedy this situation, we propose a new formulation of the analysis of stationary

combustion waves for a fixed initial stagnation state, which we call the stagnation Hugoniot.

For a given stagnation enthalpy, we find that stationary detonation waves generate a higher

entropy rise than deflagration waves. The combustion process generating the lowest entropy

increment is found to be constant-pressure combustion. These results clearly demonstrate

that the minimum entropy property of detonations derived from the conventional Hugoniot

analysis does not imply superior performance in all propulsion systems. This finding recon-

ciles previous analysis of flow path performance analysis of detonation-based ramjets with the

thermodynamic cycle analysis of detonation-based propulsion systems. We conclude that the

thermodynamic analysis of propulsion systems based on stationary detonation waves must

be formulated differently than for propagating waves, and the two situations lead to very

different results.
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Nomenclature
af flow availability per unit mass

Cp specific heat capacity at constant pressure

F thrust

h enthalpy per unit mass

hr
0 enthalpy per unit mass of reactants at environment conditions

hp
0 enthalpy per unit mass of products at environment conditions

ht total enthalpy per unit mass

M Mach number

ṁ mass flow rate

P pressure

P0 pressure of the environment

Pt total pressure

Ṗs entropy generation per unit time

qc heat of combustion per unit mass of mixture

qin heat per unit mass input into the system during a cycle

qout heat per unit mass removed from the system during a cycle

R perfect gas constant

s entropy per unit mass

sr
0 entropy per unit mass of reactants at environment conditions

sp
0 entropy per unit mass of products at environment conditions

T temperature

T0 temperature of the environment

Tt total temperature

u flow velocity in fixed reference frame

u′ flow velocity in wave reference frame

v specific volume

w work per unit mass

ẇideal ideal work per unit time

γ specific heat ratio

∆sirr irreversible part of entropy rise

∆smin minimum part of entropy rise

∆srev reversible part of entropy rise

ρ density

ηth thermal efficiency

2 of 39



Introduction

A key issue in conceptual design and analysis of proposed propulsion systems is the role

of the combustion mode in determining the overall efficiency of the system. Because entropy

production is detrimental to the efficiency of propulsion systems,1 optimizing a propulsion

system means minimizing the overall entropy generation in the flow. The entropy increment

associated with the combustion process is often the largest of all increments through the

propulsion system. This is why the selection of the combustion mode is critical to engine

performance.

Chapman-Jouguet (CJ) detonation waves are of particular interest since they apparently

correspond to the minimum entropy generation2 of all combustion wave modes. This re-

sult, along with the similarities between detonation and constant-volume combustion, has

often been quoted in the literature as a motivation to explore detonation applications to

propulsion.3–5 On a thermodynamic basis, idealized unsteady propulsion systems based on

propagating detonations appear to have the potential for high efficiency. However, the sit-

uation appears to be the opposite for steady-flow propulsion systems based on stationary

detonation waves in spite of the apparent lower entropy rise generated by detonations as

compared with deflagrations. The performance6–8 of steady detonation-based engines is sys-

tematically and substantially lower than that of the deflagration-based engines.

These results are in agreement with the early work of Zel’dovich9 and Foa3,10 on steady-

flow propulsion. Looking at a detonation wave as a shock wave followed by a reaction zone,

Zel’dovich qualitatively argued that this process generates more entropy than a deflagration,

and estimated the thrust reduction associated with the use of a detonation wave instead

of a deflagration in an air-breathing jet engine.9 Foa concluded10 that, in a constant-area

burner, constant-pressure combustion is the optimal combustion mode using a polytropic

representation of the combustion process. He also recognized3 that, in steady-flow propul-

sion systems, the type of combustion mode is constrained by the requirement for a stationary

reaction front, and that combustion modes should be compared for a fixed stagnation tem-

perature. On this basis, Foa compared a subsonic-combustion ramjet and a detonation-based

ramjet and concluded that subsonic combustion produced a lower entropy rise than steady

detonation.3

The differing results for steady-flow and propagating detonation propulsion system analy-

sis lead us to re-examine the conventional Hugoniot analysis and the minimum entropy

property of the CJ point. In doing so, it is important to distinguish between using propagat-

ing detonation waves in an unsteady cycle, as in a pulse detonation engine, and stationary

waves in a steady cycle, as in a detonation ramjet or oblique detonation engine. Despite the

common feature of detonation, the boundary conditions for the combustor are completely
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different for the two applications, and the nature of the cycle is completely different. In

pulse detonation engines, an unsteady, cyclic thermodynamic analysis with a propagating

detonation wave is appropriate. In a detonation ramjet, a steady open-system thermody-

namic analysis with a stationary detonation wave is appropriate. In the present paper, we

focus exclusively on the steady-flow case with a stationary wave oriented normal to the flow.

Although our results could be extended in a straightforward way to stationary oblique waves,

the main points of our investigation can most readily be seen for the simplest case of waves

normal to the flow. The thermodynamic analysis for the unsteady case is discussed else-

where.11 The present study is also restricted to considering idealized detonations that can

be treated through the jump conditions and thermodynamics. We recognize that chemical

kinetics, detonation wave structure, and instability are important features of detonations12

but, in the present study, we focus on the mean flow and thermodynamic aspects; some

considerations about stability and wave structure are given by Wintenberger.13

We start our discussion by reviewing standard thermodynamic cyclic analysis, focusing

on the role of entropy generation in determining efficiency. Next, we consider the conven-

tional Hugoniot analysis, and conclude that this approach is not appropriate for comparing

combustion modes for stationary combustion waves in propulsion systems. We propose that

in order to compare combustion modes on an equal basis in steady-flow, we need to fix the

upstream stagnation state and require that the combustion wave speed be determined so

that the wave is always stationary relative to the propulsion system. We reformulate the

conventional analysis of steady combustion waves to obtain solutions for a fixed initial stag-

nation state and conclude that steady detonation waves generate more entropy than steady

deflagrations at a given flight condition. In particular, focusing on the irreversible portion of

the entropy rise in the combustion process, we demonstrate that it is the irreversibility asso-

ciated with stationary detonation waves in steady-flow which causes the poor performance

of steady detonation-based propulsion.

Thermodynamic cycle analysis

The thermodynamic processes encountered in air-breathing propulsion involve sequential

compression, combustion, and expansion. This sequence is turned into a closed cycle through

a constant-pressure process during which the fluid exhausted into the atmosphere at the end

of the expansion process is converted into the inlet fluid by exchanging heat and work with

the surroundings. The thermal efficiency of an arbitrary cycle involving adiabatic combustion

can be defined as the ratio of the work done by the system to the heat of combustion of the
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fuel-air mixture (on a specific mass basis).

ηth =
w

qc

(1)

The meaning of work done and mixture heat of combustion can be clarified by considering

a thermodynamic cycle consisting of an arbitrary adiabatic process taking the system from

its initial state 1 to state 4, and ending with a constant-pressure process taking the system

back to state 1. In the present case, the system consists of a fixed mass of working fluid.

Between states 1 and 2, the working fluid is a fuel-air mixture. We suppose that an adiabatic

combustion process transforms the working fluid from reactants to products between states

2 and 3. The working fluid is combustion products between states 3 and 5. The sequence of

states 1-2-3-4 are shown with a dashed line since these processes may involve nonequilibrium

states and processes that cannot be represented uniquely in the pressure-volume plane.

Since processes 1-2-3-4 are adiabatic, the heat interactions exist only between states 4-

5-1. We will suppose that states 4 and 5 are in chemical and thermal equilibrium and state

1 is a mixture of fuel and air that is in thermal but not chemical equilibrium. As shown in

Fig. 1, there is an intermediate state 5 between 4 and 1 that divides the heat interaction into

a heat removal (4-5) step and heat addition (5-1) step. The heat interaction between steps

4 and 5 is required to remove an amount of thermal energy qout > 0 from the products of

combustion and cool the flow down from the exhaust temperature to the ambient conditions.

Since this process occurs at constant pressure, the First Law of Thermodynamics determines

the heat interaction from the enthalpy change

qout = h4 − h5 . (2)

The heat interaction between steps 5 and 1 is required to add an amount of thermal energy

qin > 0 in order to convert the combustion products back to reactants. The First Law

of Thermodynamics can again be used to compute the heat interaction from the enthalpy

change

qin = h1 − h5 . (3)

Note that this defines the quantity qc = qin in a fashion consistent with standard thermo-

chemical practice if the ambient conditions correspond to the thermodynamic standard state.

Applying the First Law of Thermodynamics around the cycle, the work done by the system

can be computed as the net heat interaction

w = qin − qout = h1 − h4 . (4)
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The thermal efficiency (Eq. 1) can, therefore, be rewritten as

ηth =
h1 − h4

h1 − h5

=
h1 − h4

qc

. (5)

For steady-flow engines, the cycle analysis based on a closed system (fixed mass of ma-

terial) is completely equivalent to the flow path analysis based on an open system, as long

as the mass and momentum contributions of the fuel are negligible and the exhaust flow is

fully expanded at the exit plane.3 Within these assumptions, we can make a correspondence

between states in the cyclic process of Fig. 1 and an open thermodynamic cycle. If the states

in the open and closed cycles are equivalent, then the thermal efficiencies are the same for

the two processes. The precise equivalence is based on the control volume analysis of the

energy balance in an open system whose inlet plane is at state 1 and exit plane is at state

4. For an adiabatic open system with no work interaction, the energy balance between the

inlet and exit for a quasi-one dimensional system14 yields

h1 + u2
1/2 = h4 + u2

4/2 . (6)

Using the cycle thermal efficiency as defined in Eq. 1, we find that

ηth =
u2

4 − u2
1

2qc

. (7)

Based on this equivalence, the thrust of a steady pressure-matched propulsion system can

be directly calculated from the thermal efficiency.3

F = ṁ1 (u4 − u1) = ṁ1

(√
u2

1 + 2ηthqc − u1

)
(8)

This is the key link between ideal steady-flow propulsion system performance and thermody-

namic cycle analysis. For steady flows, thermodynamic analysis of an idealized cycle is used

to compute the efficiency through Eq. 5 and then the thrust can be computed by equating

this to the efficiency defined by Eq. 7.

For an ideal (reversible) process, the heat removed during the constant-pressure process

4–5 can be expressed as

qout =

∫ s4

s5

Tds (9)

and the thermal efficiency is

ηth = 1−
∫ s4

s5
Tds

qc

. (10)
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For a given initial state 1 and a given mixture, state 5 is fixed and the value of the entropy

is determined by the specific heat of combustion and the product and reactant composition.

Thus, the heat removed qout increases and the thermal efficiency decreases with increasing

values of s4. In general, the thermal efficiency is maximized when the entropy rise during

process 1–4 is minimized.

This general result can be computed explicitly if we consider a perfect gas and take s5

= s1, which is approximately satisfied for real mixtures and exactly so for the simple model

discussed later in this paper. The integral of Eq. 9 is calculated explicitly as a function of

the entropy rise between states 1 and 4, and the thermal efficiency becomes

ηth = 1− CpT1

qc

[
exp

(
s4 − s1

Cp

)
− 1

]
. (11)

Another approach highlighting the role of entropy generation in a steady-flow system is

to consider the flow availability. The flow availability per unit mass is defined relative to the

environment at pressure P0 and temperature T0 as the maximum theoretical work obtainable

as the flow is brought to equilibrium with the environment.

af = h− h0 − T0(s− s0) + u2/2 (12)

Note that the values of h0 and s0 are different for reactants and products. The availability

balance between the inlet and exit planes of a single-stream, steady-flow, adiabatic system

is

ṁ(af4 − af1) = ẇideal − T0Ṗs (13)

where ẇideal = ṁ [hr
0 − hp

0 − T0(s
r
0 − sp

0)] is the ideal work per unit time that can be obtained

from the conversion of reactants into products at environment conditions. The Second Law

of Thermodynamics states that the entropy generation per unit time Ṗs = ṁ(s4 − s1) ≥ 0.

Thus, it is clear from Eq. 13 that the entropy generation between states 1 and 4 reduces the

increase in flow availability from its maximum value and, therefore, the propulsive power.15

The overall entropy rise is the sum of the entropy rise generated by combustion and

of the entropy increments generated by irreversible processes such as shocks, friction, heat

transfer, Rayleigh losses (combustion or equivalent heat addition at finite Mach number), or

fuel-air mixing.3 A portion of the entropy increment generated by the combustion process is

associated with the fact that the temperature increases significantly in combustion, analogous

to the entropy increase that is produced by a reversible addition of heat to a non-flowing

system. However, this entropy increment also has an irreversible component, which depends

on the combustion mode.
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The thermodynamic cycle analysis of this section points to the key role of entropy gener-

ation in determining cycle efficiency and propulsion performance. In the following sections,

we will focus on determining the entropy generation involved in various combustion modes.

Once the entropy change in the combustion process is computed, we can use either Eq. 10

or 11 to determine the efficiency from the entropy change and Eq. 8 to find the propulsion

system performance. Applications of this method to model systems involving detonation

and deflagration combustion modes are given by Wintenberger.8,13

Entropy variation along the Hugoniot

In this section, we supply the well-known and basic facts regarding the elementary gas

dynamics and thermodynamics of detonation waves considered as discontinuities. The dif-

ferent steady combustion modes that can be obtained are usually analyzed using a control

volume surrounding the combustion wave, such as that of Fig. 2. The mass, momentum,

and energy conservation equations14 for an idealized, one-dimensional wave with no storage

in the control volume and or diffusive transport at the control volume boundaries are

ρ1u
′
1 = ρ2u

′
2 , (14)

P1 + ρ1u
′
1
2

= P2 + ρ2u
′
2
2

, (15)

h1 + u′
1
2
/2 = h2 + u′

2
2
/2 . (16)

States 1 and 2 correspond respectively to the reactants upstream of the wave and the products

downstream of the wave. The upstream state composition is specified and the downstream

state composition is determined by requiring that the products are in chemical equilibrium.

The equation of state for the products must also be specified to complete the description. For

the cases we consider, the ideal gas equation of state and tabulated thermodynamic properties

are the appropriate level of description. The usual analysis considers fixed thermodynamic

conditions upstream (P1, ρ1, h1) and a variable inflow velocity u′
1. Although this is the

conventional approach, as we will see later, it is not the most appropriate approach for

optimizing steady, air-breathing propulsion systems.

The Hugoniot curve determines the locus of the possible solutions for state 2 from a given

state 1 and a given energy release qc. In particular, it is instructive to plot the Hugoniot

on a pressure-specific volume diagram (Fig. 3). The dashed portion of the curve labeled

“forbidden” is physically impossible for Rayleigh processes.2 The solutions located in the

upper branch of the Hugoniot are supersonic waves (detonations), whereas the solutions

located in the lower branch are subsonic waves (deflagrations).

The points where the Rayleigh line is tangent to the Hugoniot curve are called the
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Chapman-Jouguet (CJ) points.2 The CJ points are characterized by sonic flow downstream

of the combustion wave and correspond to entropy extrema of the burned gases. It is possible

to show, based on the curvature of the Hugoniot curve,2 that the entropy is minimum at

the upper CJ point and maximum at the lower CJ point (Fig. 4). The CJ points divide the

possible locus of solutions into four regions, corresponding to strong detonations (supersonic

flow to subsonic), weak detonations (supersonic to supersonic), weak deflagrations (subsonic

to subsonic), and strong deflagrations (subsonic to supersonic). Strong deflagrations and

weak detonations can be ruled out except in extraordinary situations by considering the

reaction zone structure.2 The physically acceptable and observed solutions for steady waves

are weak deflagrations and strong detonations. The solution to Eqs. 14–16 is uniquely

determined only with some additional considerations. For deflagrations, the structure of

the combustion wave and turbulent and diffusive transport processes determine the actual

propagation speed. For detonations, gas dynamic considerations are apparently sufficient to

determine the propagation speed (corresponding to the CJU solution), independent of the

actual structure of the wave.2 Strong detonations are observed only in the transient state or

if there is an “effective” piston created by the flow following the wave.

We now consider the case of the perfect gas P = ρRT in order to numerically illustrate

the previous points. We will assume equal specific heat capacities for reactants and products

Cp =
γ

γ − 1
R (17)

and the enthalpy in the reactants and products can be expressed as

h1 = CpT1 h2 = CpT2 − qc . (18)

The set of Eqs. 14–16 can be rewritten for a perfect gas as a function of the Mach numbers

upstream and downstream of the wave.

ρ2

ρ1

=
M2

1 (1 + γM2
2 )

M2
2 (1 + γM2

1 )
(19)

P2

P1

=
1 + γM2

1

1 + γM2
2

(20)

qc

CpT1

+ 1 +
γ − 1

2
M2

1 =
M2

2 (1 + γM2
1 )2

M2
1 (1 + γM2

2 )2

(
1 +

γ − 1

2
M2

2

)
(21)

This set of equations can be solved analytically for a given qc and initial state and the

resulting Hugoniot for the perfect gas is given in Fig. 3. Note that the solution curves shown

in Figs. 3 and 4 are paramaterized by M1. Each point on the curve corresponds to a different
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combustion wave speed and requirements for combustor design.

The entropy rise associated with the combustion process can be computed from Eqs. 19

and 20.
s2 − s1

R
=

γ

γ − 1
ln

(
T2

T1

)
− ln

(
P2

P1

)
(22)

The entropy rise is plotted in Fig. 4 as a function of the specific volume. The different

solution regions are shown and the entropy rise has a global minimum at the CJ detonation

point and a global maximum at the CJ deflagration point. Thus, from Eq. 11, it appears as

if a cycle using detonation combustion will yield the highest thermal efficiency since it has

the lowest entropy rise.

The role of irreversibility in steady-flow propulsion

The fact that the entropy rise is minimum at the CJ detonation point, in conjunction with

the result of Eq. 10, has motivated several efforts to explore stationary detonation applica-

tions to steady-flow propulsion.6–8 However, these studies concluded that the performance of

steady detonation-based engines is always substantially lower than that of the ramjet. The

explanation of this apparent contradiction lies in considering the role of entropy generation

and irreversible processes in the combustor. It is a general conclusion of thermodynamics

and can be explicitly shown using availability arguments15 (Eq. 13) that the work obtained

is maximized when the irreversibility is minimized. When portions of the propulsion sys-

tem involve losses and irreversible generation of entropy, the efficiency is reduced and the

reduction in performance (specific thrust) can be directly related to the irreversible entropy

increase.1

The entropy rise occurring during premixed combustion in a flowing gas has a minimum

component due to the energy release and the chemical reactions, and an additional, irre-

versible, component due to the finite velocity and, in the case of a detonation, the leading

shock wave.

s2 − s1 = ∆smin + ∆sirr (23)

For a combustion wave such as that in Fig. 2, we propose that the minimum entropy rise (for

a fixed upstream state and velocity) can be computed by considering the ideal stagnation or

total state.∗ The total properties at a point in the flow are defined as the values obtained

∗This conjecture is easy to demonstrate for a perfect gas with an effective heat addition model of com-
bustion.16 We also demonstrate the correctness of this idea explicitly in subsequent computations for the
one-γ detonation model and numerical solutions with realistic thermochemistry.
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by isentropically bringing the flow to rest. For example, the total enthalpy is

ht = h +
u2

2
(24)

and the total pressure and temperature are defined by

h(Pt, s) = ht h(Tt, s) = ht , (25)

where by definition st = s. The process of computing the stagnation state is illustrated

graphically in the (h,s) or Mollier diagram of Fig. 5. Differentiating Eq. 25 yields

dht = Ttds +
1

ρt

dPt . (26)

At fixed total enthalpy, the total pressure decreases with increasing entropy

dPt = −ρtTtds (27)

so that the minimum entropy rise is associated with the highest total pressure, which is the

upstream value Pt1. This is illustrated graphically in Fig. 5, showing the additional entropy

increment ∆sirr associated with a total pressure decrement Pt1 − Pt2.

For a given stagnation state, the minimum entropy rise can be determined for gas mix-

tures with realistic thermochemistry by considering an ideal constant-pressure (zero velocity)

combustion process. The first step is to determine the total temperature in the products

from the energy balance equation

h2(Tt2) = h1(Tt1) , (28)

where the species in state 2 are determined by carrying out a chemical equilibrium com-

putation. The second step is to determine the entropy rise across the combustion wave by

using the stagnation pressures, temperatures, and compositions to evaluate the entropy for

reactants and products

∆smin = s2(Tt2, Pt1)− s1(Tt1, Pt1) . (29)

The total entropy jump across the wave is

s2 − s1 = s2(T2, P2)− s1(T1, P1) , (30)

where state 2 in the products is determined by solving the jump conditions. The irreversible
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component can then be computed by using Eq. 23.

For a perfect gas model, the entropy change can be explicitly computed as

s2 − s1 = Cp ln

(
Tt2

Tt1

)
−R ln

(
Pt2

Pt1

)
. (31)

From Eq. 29, the minimum entropy rise is

∆smin = Cp ln

(
Tt2

Tt1

)
(32)

and the irreversible component is

∆sirr = −R ln

(
Pt2

Pt1

)
. (33)

The minimum component can be identified as the amount of entropy increase that would

occur with an equivalent reversible addition of heat

ds =
dq

T
(34)

at constant pressure, for which

dq = dh = CpdT . (35)

Substituting and integrating from stagnation state 1 to 2, we find that

∆srev = Cp ln

(
Tt2

Tt1

)
, (36)

which is identical to the expression for the minimum entropy rise found from evaluating

the entropy change using the prescription given above. Using these definitions, we show in

Fig. 6 the partition of the entropy into these two portions for the perfect gas case considered

earlier.

Although the total entropy rise is lower for the detonation branch than the deflagration

branch, a much larger portion (greater than 50%) of the entropy rise is irreversible for

detonations than for deflagrations (less than 5%). Separate computations show that the

majority of the irreversible portion of the entropy rise for detonations is due to the entropy

jump across the shock front, which can be obtained directly from the total pressure decrease

across the shock wave and Eq. 31. This loss in total pressure is orders of magnitude larger

for detonation than for deflagration solutions and has been shown6 to be responsible for the

lower performance of detonation-based engines relative to the ramjet. Hence, the paradox
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mentioned earlier can be resolved by considering not just the total entropy rise, but by

determining what part of this is irreversible. An alternative way to look at this issue is given

in the next section, where we reformulate the jump conditions so that the role of irreversible

entropy rise in the calculation of the thermal efficiency can be demonstrated explicitly.

Irreversible entropy rise and thermal efficiency

The role of the irreversible part of the entropy rise can be explored further by considering

Eq. 10. In order to compare objectively different combustion modes, the engine has to be

studied in a given flight situation for a fixed amount of energy release during the combustion,

as shown in Fig. 7. Our conceptual engine consists of an inlet, a combustion chamber with

a steady combustion wave, and a nozzle. State 0 corresponds to the freestream conditions,

while state 1 denotes the state of the flow just upstream of the combustion wave; state 2 is

the state just downstream of the combustion wave, and state e corresponds to the conditions

at the exit plane of the engine. The conditions for combustion wave stabilization are not

considered in our thermodynamic analysis. We only require that the wave be stationary,

i.e., the flow Mach number just upstream of the combustion wave has to equal the wave

propagation Mach number.

From a reference frame fixed relative to the engine, the boundary conditions upstream of

the engine consist of air at fixed outside conditions (pressure P0 and temperature T0) flowing

into the engine at a fixed velocity equal to the flight velocity u0, as depicted in Fig. 7. These

boundary conditions correspond to a single value of the total enthalpy ht0 = h(T0, P0)+u2
0/2

and of the entropy s0 = s(T0, P0). Thus, they determine a single freestream stagnation

state defined by the set of stagnation properties ht0 and Pt0 = P (ht0, s0). However, the

static conditions just upstream of the combustion wave vary with the combustion mode

and its associated propagation Mach number. Hence, fixed static conditions upstream of

the combustion wave are not representative of actual flight situations and the conventional

Hugoniot analysis, which is based on this assumption, can be misleading when trying to

compare the relative merits of various combustion modes. At a given flight condition, the

static conditions ahead of a stationary wave will be different for different combustion modes

and the common factor will instead be the freestream stagnation state (ht0, Pt0).

The entropy rise between the inlet and exit planes is the sum of the entropy rise through

the combustion and the irreversible entropy increments through the inlet and nozzle. Group-

ing together the irreversible entropy increments through the inlet, the combustion chamber,

and the nozzle,

se − s0 = ∆smin + ∆sirr . (37)

The minimum part of the entropy rise during combustion is constant for a fixed energy
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release and a fixed stagnation state upstream of the wave. From the general principles

of thermodynamics and consistent with Eq. 10, the highest efficiency is obtained with the

minimum irreversibility for a given chemical energy release qc.

This general statement can be shown explicitly for the case of the perfect gas. Using the

one-γ model of detonations,14 the energy equation is expressed as

CpTt2 = CpTt1 + qc . (38)

Combining Eq. 32 with the previous expression, the minimum component of the entropy rise

for the one-γ model of detonations14 is

∆smin = Cp ln

(
1 +

qc

CpTt1

)
. (39)

Substituting Eq. 37 into Eq. 11, and using the result of Eq. 39, the thermal efficiency can

be expressed as a function of the irreversible entropy rise

ηth = 1− CpT0

qc

[(
1 +

qc

CpTt1

)
exp

(
∆sirr

Cp

)
− 1

]
. (40)

Note that T0 in this expression corresponds to T1 used in Eq. 11 since in the present section

we are using T1 for the variable state just upstream of the wave. From Eq. 40, the highest

efficiency is obtained for ∆sirr = 0

ηth < ηth(∆sirr = 0) = 1− T0

Tt1

, (41)

which is the classical expression for the ideal Brayton cycle.

Consider an idealized version of our conceptual engine, for which the thermal efficiency

is determined only by the irreversible entropy rise during combustion. In order to compare

different combustion modes, we need to calculate the irreversible entropy rise for all the

possible solutions to Eqs. 14–16. However, the result of Fig. 4 does not apply directly because

the velocity of the initial state and, consequently, the total enthalpy are not constant for the

conventional Hugoniot analysis. Instead, it is necessary to compute another solution curve

corresponding to a fixed freestream stagnation state, which we will refer to as the stagnation

Hugoniot.

The stagnation Hugoniot

The stagnation Hugoniot is the locus of the solutions to the conservation equations

(Eqs. 14-16) for a given stagnation state upstream of the combustion wave. The stagna-
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tion Hugoniot analysis considers fixed total enthalpy ht1 and entropy s1. The flow properties

upstream of the combustion wave vary with inflow velocity u′
1.

h1 = ht1 − u′
1
2
/2 (42)

P1 = P (h1, s1) (43)

v1 = v(h1, s1) (44)

All the solution states to the stagnation Hugoniot can be found by varying the inflow velocity.

Varying the inflow velocity modifies the state 1 just upstream of the combustion wave. We

will refer to the local Hugoniot analysis as the conventional Hugoniot analysis for a given

constant state 1 defined by a value of the inflow velocity along the stagnation Hugoniot. The

general properties of the stagnation Hugoniot can be deduced from the classical results for

the conventional Hugoniot.2

Like in the conventional Hugoniot analysis, the inflow velocity has a minimum value

along the detonation branch and a maximum value along the deflagration branch (Fig. 8).

We show that these points correspond to the CJ conditions. The inflow velocity is related to

the pressure and volume across the combustion wave through the Rayleigh line relationship.

u′
1
2

= −v2
1 ·

P2 − P1

v2 − v1

(45)

Differentiating this equation, and keeping in mind that the properties at state 1 also vary,

du′
1
2

= − v2
1

(v2 − v1)2
[(2v2/v1 − 1)(P2 − P1)dv1 − (v2 − v1)dP1 + (v2 − v1)dP2 − (P2 − P1)dv2] .

(46)

At the inflow velocity extrema (i.e., du′
1 = 0), we have from Eq. 42 that dh1 = −u′

1du′
1 = 0

and since the entropy at state 1 is given, dP1 = dh1/v1 = 0 and dv1 = 0. Thus, these points

also correspond to extrema of enthalpy, pressure, and specific volume at state 1. Simplifying

all the differentials vanishing at the inflow velocity extrema, Eq. 46 holds only if

∂P2

∂v2

=
P2 − P1

v2 − v1

, (47)

which means that, for the upstream states corresponding to inflow velocity extrema, the local

Hugoniot and the Rayleigh line are tangent. Thus, the points at which the inflow velocity

has an extremum are CJ points.

From the conventional Hugoniot analysis, we know that the entropy along the local

Hugoniot has an extremum at the CJ points,2 i.e. ∂s2/∂v2 = 0. This result is straightforward
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to extend to the stagnation Hugoniot.

∂s2

∂u′
1

=
∂s2

∂v2

· ∂v2

∂u′
1

= 0 (48)

Additionally, it can be shown that

∂2s2

∂u′
1
2 =

∂2s2

∂v2
2

(
∂v2

∂u′
1

)2

. (49)

Based on the local Hugoniot analysis,2 we know that ∂2s2/∂v2
2 ≥ 0 at the CJ detonation

point. Thus, the entropy along the stagnation Hugoniot is minimum at the CJ detonation

point, and, conversely, maximum at the CJ deflagration point. Because the detonation and

deflagration branches are disjoint, as we will see next, these are only local extrema. We now

calculate the stagnation Hugoniot for the perfect gas case and carry numerical solutions for

a case with realistic thermochemistry.

Stagnation Hugoniot for the perfect gas

We compute the stagnation Hugoniot for a perfect gas, based on Eqs. 19–21. Equation 21

has to be rewritten as a function of the parameter qc/CpTt1, which has a fixed value for a

given freestream condition.

1 +
qc

CpTt1

=
M2

2 (1 + γM2
1 )2(1 + γ−1

2
M2

2 )

M2
1 (1 + γM2

2 )2(1 + γ−1
2

M2
1 )

(50)

This equation can be solved analytically for M2 as a function of M1. The solution curves

shown in Figs. 9 and 10 can be obtained by parametric (M1 being the parameter) evaluation

of Eqs. 19–21 or else as shown in the Appendix, as explicit solutions in terms of v2/v1.

Detonation solutions are found to be possible only for

qc

CpTt1

<
1

γ2 − 1
. (51)

This condition is imposed by the requirement that T1 > 0 and is in agreement with our

results on detonation ramjets8 using a simple one-γ detonation model.14 For higher values

of qc/CpTt1, the total enthalpy is not high enough to enable a steady detonation in the

combustor for the given value of the heat release, and no steady solutions exist.

For the conventional Hugoniot (Fig. 3), the entropy, pressure, and temperature at state

2 are finite for a constant-volume (v2 = v1) explosion process even though, in this limit,

M1 → ∞. However, in the stagnation Hugoniot representation, the pressure ratio along
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the weak detonation branch becomes infinite as this limit is approached. As M1 → ∞, M2

asymptotes to a constant value instead of becoming infinite as for the conventional Hugoniot.

M2 →

√√√√√1− (γ − 1) qc

CpTt1
+

√
1− (γ2 − 1) qc

CpTt1

γ(γ − 1) qc

CpTt1

(52)

This is due to the fact that the stagnation conditions at state 2 are fixed by the stagnation

conditions at state 1 and the heat release. As M1 → ∞, the static pressure at state 1

decreases towards zero because the total pressure is fixed, but the static pressure at state

2 remains finite due to the finite value of M2. This explains the unusual shape of the

stagnation Hugoniot, which is plotted in the pressure-specific volume plane for γ = 1.4 and

qc/CpTt1 = 0.8 in Fig. 9. Just as for the conventional Hugoniot, there is no solution in the

positive quadrant of the pressure-specific volume plane for Rayleigh processes. However,

unlike the conventional Hugoniot, the stagnation Hugoniot curve is not continuous across

this forbidden region. This means that the detonation and deflagration branches are disjoint.

The total entropy rise along the stagnation Hugoniot is shown in Fig. 10 as a function of

the specific volume ratio. For a fixed heat release and initial stagnation state, the minimum

entropy rise is constant (Eq. 39) and the variation of the total entropy rise is caused by

the change in irreversible entropy rise associated with the combustion mode. As in the

conventional Hugoniot, the CJ points correspond to extrema of the entropy. However, they

are only local extrema because of the discontinuity of the solution curve in the pressure-

specific volume plane. The CJ detonation point corresponds to a minimum in entropy along

the detonation branch, while the CJ deflagration point corresponds to a maximum in entropy

along the deflagration branch. However, the entropy rise associated with the CJ detonation

point is much larger than that associated with the CJ deflagration point for all possible

values of qc/CpTt1. In general, the irreversible entropy rise associated with any physical

solution on the deflagration branch is much lower than that for any detonation solution. Of

all physically possible steady combustion modes, constant-pressure (CP) combustion at zero

Mach number is the process with the smallest entropy rise for a fixed stagnation condition.

The result of Figs. 10 shows explicitly that steady combustion waves with a finite (non-

zero) velocity generate irreversible entropy. For deflagrations, this irreversible entropy rise is

due to combustion at finite velocity and is responsible for the total pressure losses classically

observed for steady combustion at finite Mach number,16 for example, in ramjets. This effect

is also present for detonations, but the presence of the shock wave in detonations contributes

to the majority of the irreversible entropy rise.
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Stagnation Hugoniot for a gas with realistic thermochemistry

We carried out numerical computations to verify that the results obtained for the perfect

gas case extend to the case of a gas with realistic thermochemistry. We developed an numer-

ical procedure using Stanjan17 to compute the stagnation Hugoniot. The procedure iterates

on the wave inflow velocity u′
1. For a given wave inflow velocity, Stanjan is used to compute

a constant-entropy, frozen-composition solution from the stagnation conditions to state 1,

whose enthalpy is determined by Eq. 42. Once state 1 is determined, Stanjan is used to com-

pute the equilibrium solutions to the jump conditions (Eqs. 14–16). The procedure consists

of using trial values of specific volume for detonation cases and the pressure for deflagration

cases, and calculating the other variable using Eq. 45. Based on the trial values upstream

of the wave, Stanjan solves for the downstream equilibrium state using a specified pressure,

specific volume equilibrium option. The enthalpy obtained from the equilibrium solution

is then compared with the enthalpy calculated from the jump conditions (Eq. 16), and the

process is iterated until these two values are within a specified tolerance. Convergence is

obtained using the bisection method.

The stagnation Hugoniot is plotted in the pressure-specific volume plane of Fig. 11 for

a stoichiometric propane-air mixture. The stagnation conditions considered were chosen so

that detonation solutions exist (see Eq. 51). The solution curve is similar to that obtained

in the perfect gas case and has two disjoint branches corresponding to deflagration and

detonation solutions. The total entropy increment, normalized with the initial entropy value,

is shown in Fig. 12 as a function of the specific volume ratio. The entropy rise has a local

maximum at the CJ deflagration point and a local minimum at the CJ detonation point,

but the increment associated with this local minimum is about 40% higher than the value

corresponding to the local maximum. Thus, we find that, in the case of a gas with realistic

thermochemistry, steady detonation waves generate more entropy than steady deflagrations.

We also find that the minimum entropy rise for physically possible solutions is generated by

constant-pressure combustion.

Application to steady-flow propulsion systems

We now use the result of Eq. 10 to compare the thermal efficiency of ideal steady propul-

sion systems as a function of the combustion mode selected. Losses associated with shock

waves, friction, mixing, or heat transfer are neglected, and the compression and expansion

processes are assumed to be isentropic. The thermal efficiency for an ideal steady propulsion

system flying at a Mach number of 5 is plotted in Fig. 13 for a perfect gas. The irreversible

entropy rise in detonations strongly penalizes the efficiency of ideal steady detonation-based

engines compared to the conventional ideal ramjet. Thus, this approach reconciles flow path
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analysis and thermodynamic cycle analysis for detonation-based ramjets. Note that our ther-

modynamic cycle analysis yields identical results to the flow-path performance analysis of an

ideal hydrocarbon-fueled detonation ramjet.8 However, the values of the thermal efficiency

of Fig. 13 are not representative of practical propulsion systems at a flight Mach number

M0 = 5 because the total temperature at the combustor outlet is too high to be sustained

by the chamber walls. More realistic studies limit the total temperature at the combustor

outlet based on material considerations8 and account for additional losses, whose net effect

is to significantly decrease the thermal efficiency.6

For our ideal propulsion system, the constant-pressure (CP) combustion process yields

the highest thermal efficiency of all physical solutions to the conservation equations. Foa10

concluded that CP combustion was always the optimum solution for steady flow using an

argument based on a polytropic approximation of the combustion mode for the perfect gas.

We have now extended this result to all physically possible steady combustion modes for the

perfect gas and the case of a gas with realistic thermochemistry.

However, in order to compare practical propulsion systems based on different combustion

modes, one also has to compute the irreversible entropy rise through the other components

of the engine. The entropy rise associated with other irreversible processes such as shocks,

friction, mixing, or heat transfer may become significant1 and dominate the results, particu-

larly at high supersonic flight Mach numbers. These points are important to consider when

attempting to compare the merits of a detonation ramjet with a conventional ramjet. In

particular, it is not obvious how a detonation ramjet flying near the CJ Mach number (with a

minimal entropy rise through the inlet) would compare with a practical ramjet handicapped

by a substantial entropy rise caused by the flow deceleration from supersonic to low sub-

sonic velocities through the inlet. However, supersonic mixing in a detonation ramjet will

entail an additional entropy rise much larger than that generated by subsonic mixing in the

ramjet. Furthermore, the detonation ramjet is limited by condensation and auto-ignition

of the fuel-air mixture.8 The issues of detonation wave stabilization and its stability in the

combustor are still open questions,8 and one can speculate that the detonation ramjet might

suffer from problems similar to those associated with combustion instabilities in the ramjet.

Conclusions

We have used thermodynamic considerations to investigate the choice of the combustion

mode for steady-flow propulsion and its consequence on propulsive performance. We reached

the following conclusions:

1. The conventional Hugoniot analysis alone is inappropriate for analyzing the relative

merits of steady combustion modes for propulsion.
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2. For a given flight condition, the minimum entropy rise associated with combustion is

fixed and it is the irreversible component of the overall entropy rise in the system that

determines the performance.

3. We reformulated the conventional analysis of steady combustion waves to obtain so-

lutions for a fixed initial stagnation state. We propose that the stagnation Hugoniot

analysis is the appropriate method for comparing combustion modes for a given flight

condition.

4. For a given upstream stagnation state, steady detonation waves generate a higher

entropy rise along the stagnation Hugoniot than deflagration waves, which makes them

less desirable for propulsion applications. These findings reconcile thermodynamic

cycle analysis with flow path performance analysis of detonation-based ramjets.6–8

5. For a given upstream stagnation state, the combustion process generating the low-

est entropy increment on the stagnation Hugoniot is constant-pressure combustion,

corresponding to the ideal Brayton cycle.

This paper provides a framework under which all steady combustion modes can be directly

compared for propulsion applications. In order to determine the overall performance of a

system, one has to perform a detailed engineering analysis taking into account the entropy

increments associated with combustion, shocks, mixing, viscous effects, and heat transfer.

Our analysis singles out the entropy component associated with the combustion wave and can

be used to estimate the contribution of the combustion process to the propulsive performance.
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Appendix - Explicit Solutions for the Perfect Gas Model

Solutions for the stagnation Hugoniot that are explicit in specific volume can be obtained

by algebraic manipulation of the conservation relations (Eqs. 14-16) in the case of a perfect

gas with constant specific heats and a fixed heat release as specified in Eqs. 17 and 18. This

model can not accurately approximate both reactants and products with common values

of γ and R, but is often used to illustrate the qualitative behavior of real gases. In this
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spirit, we have provided explicit solutions for this model. We emphasize that for the case of

propane-air mixtures (Figs. 8, 11, 12) we have not relied on these solutions but have used

numerical solutions of the conservation relations with realistic thermochemical states and

species to compute equilibrium in the products.

The perfect gas version of the velocity-volume relationship shown graphically in Fig. 8 is

analytically expressed as

u′2
1

2CpTt1

=

1 +
qc

2CpTt1

− v2

v1

γ + 1

γ − 1

(
1− v2

v1

)
v2

v1

. (53)

There are some limitations on the values that the specific volume ratio can assume due to

the physical constraints on the conditions upstream of the wave. The temperature upstream

of the wave is given by the stagnation enthalpy relationship (Eq. 42) as

T1

Tt1

= 1− u′2
1

2CpTt1

. (54)

The temperature must be positive and by definition, the kinetic energy of the flow must also

be positive so that

0 ≤ u′
1√

2CpTt1

≤ 1 (55)

which limits the range of v2/v1 to

0 < (v2/v1)1 ≤ v2/v1 ≤ (v2/v1)2 < 1 Detonation branch , (56)

1 < (v2/v1)3 ≤ v2/v1 < ∞ Deflagration branch . (57)

The limiting volume ratios (v2/v1)1 and (v2/v1)2 on the detonation branch can be found by

setting the velocity in Eq. 53 to the maximum value u′
1 =

√
2CpTt1. Solving the resulting

quadratic equation, we find that

(v2/v1)1
2

=
γ

γ + 1
∓

√(
γ

γ + 1

)2

− γ − 1

γ + 1

(
1 +

qc

CpTt1

)
. (58)

The lower limit on the deflagration branch (v2/v1)3 can be found by setting u′
1 = 0.

(v2/v1)3 = 1 +
qc

CpTt1

(59)

The CJ points can also be determined by finding the minimum (detonation branch) and

maximum (deflagration branch) velocity points on each branch of the solution. The location
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of the CJ points is given by

(v2/v1)U
L

=

(
1 +

qc

CpTt1

)
∓

√(
1 +

qc

CpTt1

)2

−
(

1 +
qc

CpTt1

)
(60)

where U indicates the upper (detonation) and L is the lower (deflagration) CJ point. For

the case shown in Figs. 9 and 10 the computed values of the critical volume ratios are given

in Table 1.

The pressure-volume relationship shown in Fig. 9 can be obtained as an analytic ex-

pression by substituting the velocity-volume relationship given above into the analog of the

Rayleigh line (resulting from combining momentum and mass conservation) to obtain

P2

P1

= 1 +
2γ

γ − 1

(
1− v2

v1

)  1 +
qc

CpTt1

− v2

v1

γ + 1

γ − 1

(
1− v2

v1

)
v2

v1

+
v2

v1

−
(

1 +
qc

CpTt1

)
 . (61)

This is the analog of the usual detonation Hugoniot or detonation adiabat.

The entropy-volume relationship shown in Fig. 10 can be obtained as an analytic ex-

pression from Eq. 22 where the pressure ratio is given by Eq. 61 and the temperature ratio

can be computed explicitly as a function of volume from T2/T1 = P2/P1 · v2/v1. The en-

tropy change predicted by this relationship actually becomes negative on the deflagration

branch at sufficiently large specific volumes, v2/v1 > (v2/v1)max ≈ 9.25 for the case shown in

Fig. 10. This results in a further limitation on the admissible values of v2/v1. As mentioned

previously, deflagration solutions with v2/v1 > (v2/v1)CJ, L and detonation solutions with

v2/v1 > (v2/v1)CJ, U are considered2 nonphysical in nature. For this reason, the physically

acceptable ranges of volumes v2/v1 in the stagnation Hugoniot analysis are smaller than

given by Eqs. 56-57 and are restricted to

(v2/v1)1 ≤ v2/v1 ≤ (v2/v1)CJ, U Detonation branch , (62)

(v2/v1)3 ≤ v2/v1 < (v2/v1)CJ, L Deflagration branch . (63)
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Table 1: Numerical values corresponding to critical volume ratios for perfect gas
stagnation Hugoniot with γ = 1.4 and qc/Cp1Tt1 = 0.8

(v2/v1)1 0.3826
(v2/v1)CJ, U 0.6000

(v2/v1)2 0.7840
(v2/v1)3 1.8000

(v2/v1)CJ, L 3.000
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Figure 9: Stagnation Hugoniot in the pressure-specific volume plane for a perfect
gas with γ = 1.4 and qc/CpTt1 = 0.8.
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Figure 10: Total entropy rise along the stagnation Hugoniot for a perfect gas. The
minimum component of the entropy rise is fixed along the stagnation Hugoniot and
is shown as the straight line. The total entropy variation is due to the irreversible
component only. γ = 1.4, qc/CpTt1 = 0.8.
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Figure 11: Stagnation Hugoniot for a stoichiometric propane-air mixture. Pt1 = 100
atm, Tt1 = 2000 K, ht1 = 2.113 MJ/kg.
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Figure 12: Total entropy rise along the stagnation Hugoniot for a stoichiometric
propane-air mixture. Pt1 = 100 atm, Tt1 = 2000 K, ht1 = 2.113 MJ/kg, s1 = 7.967 kJ/kgK.
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Figure 13: Thermal efficiency of an ideal engine flying at M0 = 5 as a function of the
combustion mode selected for a perfect gas, γ = 1.4, qc/CpTt1 = 0.8.
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