
Impulse Generation by an Open

Shock Tube

J. Kasahara∗

University of Tsukuba, Tsukuba 305-8573, Japan

Z. Liang†, S.T. Browne‡, and J.E. Shepherd§

Aeronautics, California Institute of Technology, Pasadena, CA 91125

Submitted August 23, 2006 – Revised February 28, 2008

Abstract

We perform experimental and numerical studies of a shock tube with an open end. The

purpose is to investigate the impulse due to the exhaust of gases through the open end of

the tube as a model for a partially-filled detonation tube as used in pulse detonation engine

testing. We study the effects of the pressure ratio (varied from 3 to 9.2) and volume ratio

(expressed as fill fraction) between the driver and driven section. Two different driver gases,

helium and nitrogen, and fill fractions between 5 and 100% are studied; the driven section

is filled with air. For both driver gases, increasing the pressure ratio leads to larger specific

impulses. The specific impulse increases for decreasing fill fraction for the helium driver but

the impulse is almost independent of fill fraction for the nitrogen driver. Two-dimensional

(axi-symmetric) numerical simulations are carried out for both driver gases. The simulation

results show reasonable agreement with experimental measurements at high pressure ratios

or small fill fractions but there are substantial discrepancies for the smallest pressure ratios

studied. Empirical models for the impulse in the limits of large and small fill fractions are

also compared to the data. Reasonable agreement is found for the trends with fill fraction

using the Gurney or Sato et al. model at large fill fractions but only the bubble model of

Cooper is able to predict the small fill fraction limit. Computations of acoustic impedance

and numerical simulations of unsteady gas dynamics indicate that the interaction of waves

with the driver-driven gas interface and propagation of waves in the driven gas play an

essential role in the partial fill effect.
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Introduction

Motivated by recent interest in pulse detonation engines,1 the impulse from a partially-

filled detonation tube has been studied by a number of researchers.2–12 In these experiments

and analyses, a portion of the detonation tube near the closed end (thrust surface) contains

the combustible mixture while the remaining portion of the tube up to the open end contains

an inert gas mixture, e.g. air. The general conclusion of these studies is that an inert section

will increase the specific impulse (impulse per unit mass of combustible mixture) although the

total impulse decreases. Based on these studies, the use of partially-filled detonation tubes

has been proposed as a technique for improving specific performance. A number of simple

models have been proposed to account for the partial-fill effect but there is no consensus

regarding the best way to model this effect and correlate performance. Comparisons between

experiments and models only cover a limited range of fill fractions which prevents crucial

tests of the models. It is not possible to generate an ideal detonation in an extremely short

tube section and if sufficiently long detonation sections are used, the inert portion of the tube

would be of an impracticable length for the smallest fill fractions of interest. In addition,

non-ideal processes such as heat transfer losses may be significant13,14 in detonation tubes.

In order to better understand the physical mechanisms behind the partial-fill enhance-

ment of specific performance, we are motivated to examine the simpler case of a shock tube

with an open end. Experimentally, we can more readily vary parameters including the fill

fraction and the initial pressure ratio than is possible in detonation experiments. Numer-

ically, the non-reacting gas dynamics of the shock tube can be accurately simulated using

the perfect gas models for the driver and driven section. We can examine the limiting value

of specific impulse as the fill fraction approaches zero and compare the results with models

proposed for this case. Cooper6 predicted that the specific impulse will approach a limiting

value on the basis of a simple model, but it is experimentally difficult to approach this limit

in the detonation case. Other approximate models5,8, 11–13 have also been proposed to pre-

dict specific impulse dependence on the fill fraction when the fill fraction is close to one. We

examine both limits experimentally, carry out detailed numerical simulations, and compare

the results to the approximate analytical models.

The design of our experiments is motivated by the simulations of Li and Kailasanath8 and

considerations of the fundamental gas dynamic processes associated with wave propagation in

shock and detonation tubes. Their simulations show that main differences between partially

and fully-filled tubes can be understood by focusing on the interaction of detonation and

expansion waves with the interface between the fueled and inert sections, in addition to the

reflection of waves at the open end of the tube. The pressure history at the ignition (closed)

end of the detonation tube is controlled by arrival time of the expansion waves generated
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by these interactions and the subsequent rate of pressure decay. The increase in specific

impulse associated with partial filling is shown to be a consequence of the lower rate of

decay associated with the weaker expansion waves from the detonation interaction with the

interface as compared to the interaction with the open end of the tube. The wave interaction

processes at the interface between fueled and inert sections is determined for weak waves15 by

the ratio of acoustic impedances (the product of density ρ and sound speed a) for the states

on each side of the interface. In the case of detonation tubes, this ratio can be computed16

by using one-dimensional wave interaction diagrams15 to find the state of the gas on each

side of the interface immediately after the detonation passes through the interface.

The initial interaction of the detonation wave with the interface results in a transmitted

shock and reflected expansion in almost all cases.16 For example, in the case of a detonation

propagating in stoichiometric ethylene-oxygen section (initial state 1′) bounded by air (initial

state 1), a shock of Mach number 4.73 is transmitted into the air (postshock state 2).

An expansion wave (pressure decrease of 0.63 MPa) propagates back into the detonation

products at state CJ, creating a state 2′ in the detonation products next to the interface, see

the x-t diagram of Fig. 1. Numerical computation17 using realistic thermochemistry gives the

result that the ratio of acoustic impedance across interface just following the wave interaction

is (ρa)2/(ρa)2′ = 1.96. With flow out of the detonation tube, the products depressurize in

a nearly isentropic manner,16 which results in the density and sound speed on both sides

of the interface decreasing as the pressure drops. Numerical computation reveals that the

the ratio of acoustic impedance across the interface is practically independent of pressure

so that we can take the ratio to be approximately constant (≈ 2) throughout the pulse

detonation tube cycle of operation. Although the detonation products are hotter than the

shocked air, the detonation products have a smaller density so the acoustic impedance of

the shocked air is higher than the detonation products. An acoustic wave originating in

the detonation products and incident on the interface 2′-2 will reflect with an increase of

amplitude15 of approximately 4/3 and when those waves subsequently reflect from the end

wall, the amplitude will double. This leads to the trapping of acoustic waves between the

end wall and interface, which we believe is a key physical process in the partial fill effect.

In ideal shock tube operation, Fig. 2, a contact surface is created by the rupture of the

diaphragm separating state 4 (driver gas) from state 1 (driven section gas). The analog of

the interface 2′-2 in the detonation case is the contact surface 2-3, which separates driven

section gas that has been shocked (state 2) and driver section gas that has been expanded

(state 3) The impedance ratio (ρa)2/(ρa)3 will be a function of the properties (molar mass

and specific heat ratio) of both driver and driven gases as well as the operating conditions

of the shock tube P4/P1 and T4/T1. To examine the influence of the impedance ratio on
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impulse generation, we carry out shock tube experiments and simulations with two sets of

driver and driven gas combinations. By using a helium driver and an air driven section,

we can produce acoustic impedance ratios at the helium/air interface that are very similar

(see Table 1) to those obtained in the detonation case. On the other hand, by using a

nitrogen driver and an air driven section, the impedance ratio is slightly less than one, see

Table 1. When the acoustic impedance ratio is unity, acoustic disturbances pass through

the interface unmodified in amplitude and no reflected waves are created. Therefore in the

case of a nitrogen driver, we can essentially eliminate all wave interaction effects at the

driver/driven gas interface. By comparing the He and N2 driver cases, we can discriminate

between the effect of acoustic impedance ratio (wave trapping) and inertial confinement. If

the partial fill effect is primarily associated with wave trapping, helium and nitrogen drivers

should show dramatically different results as a function of the fill fraction. On the other

hand, if the partial fill effect is primarily due to inertial confinement, then we expect to

observe much less difference in the two cases.

Experiments

As shown in Fig. 3, the experimental apparatus is a partially-filled shock tube. This

conventional shock tube consists of a cylindrical driver of fixed length (101 mm) to which

cylindrical extensions (the driven section) of various lengths (12.7-1814 mm) are added. The

driver section is filled with pressurized gas (helium or nitrogen) and initially sealed by a

thin polyethylene-terephthalate plastic diaphragm separating the driver and driven section.

The driven section is open to the atmosphere. The initial conditions in the driven section

matched those of the room, nominally 22◦C and Pa = 1 atm. In the driver section, the initial

temperature is also room temperature, but the initial pressure is varied from P0/Pa = 9.2

to 2.0.

To start the experiment, the diaphragm is ruptured using a pneumatically-activated

cutter. A cutter is used in order to minimize the diaphragm rupture time, make the opening

process as ideal as possible, and ensure rupture took place at specified and reproducible driver

pressures. The pressurized driver gas expands into the driven section, creating a shock in

the driven section which propagates to the open end of the driven section and diffracts into

the surrounding atmosphere. This resulting wave system, illustrated in Fig. 4, is similar to

that observed in detonation tube experiments and models.13,16 An expansion wave (E1),

centered at the initial location of the diaphragm, propagates toward the thrust surface, the

closed end wall of the driver section. Initially, the pressure on the closed end surface is equal

to the initial pressure of the driver P0 and remains constant in the interval t0-t1. During

the initial reflection of the expansion wave the pressure decreases during the time interval
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t1-t2 and remains constant again during the interval t2-t3. After sufficient time has elapsed,

3-4 ms, the pressure inside the tube reaches the ambient value Pa. As shown in Fig. 5, the

impulse is measured mechanically using the ballistic pendulum apparatus detailed in Cooper

et al.18 and the pressure history on the closed end is measured with a piezoelectric pressure

transducer. The partially-filled shock tube is suspended by four stainless steel wires from the

ceiling of the experimental room. The effective wire length of the pendulum ` is 1987 mm.

The maximum displacement of the shock tube in the horizontal direction xm is measured by

using a video camera. When ` >> xm, the impulse I is given by elementary mechanics to

be

I = Mxm

√
g

`
, (1)

where M is the mass of the partially-filled shock tube, and g is gravitational acceleration.

The specific impulse is

Isp =
I

m0g
=
Mxm
ρ0V0

√
1

g`
, (2)

where m0, ρ0, and V0 are the mass, initial density, and initial volume of the driver gas (helium

or nitrogen) respectively.

Numerical Model

The computational domain is shown in Fig. 6. Since the geometry is symmetric, only half

of the domain is computed. The tube diameter, d = 39.5 mm, and driver section length, L0

= 101 mm, are constant. The driven section varies between 0 m and 1.84 m. The fill fraction,

α, is defined as α = L0/L, where L is the total shock tube length. The total computational

domain size is 3L (length) by 4d (width). An outflow boundary condition is implemented

on the top, left (except at the closed end of the shock tube), and right sides. The bottom

side is the symmetry boundary. The corresponding gas parameters are listed in Table 2.

The problem is modeled using the two-dimensional (axi-symmetric), inviscid, non-reactive

Euler equations with the perfect gas equation of state. For the temperature range of interest

for the present tests, the gases can be adequately represented by a constant heat capacity

computed from the appropriate ratio of specific heats γ1 and γ2, for the driver and driven

gases.

cpi =
γiR

γi − 1
. (3)

The specific heat for the mixture is then given by

cp =
∑
i=1,2

Yicpi (4)
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where Yi is the mass fraction of gases. Away from the interface region where some nu-

merical diffusion takes place, the mass fractions are either one or zero. The details of the

implementation of the mixture model are given in Deiterding.19

The equations are solved with an explicit second order Godunov-type numerical scheme

incorporating a hybrid Roe-solver-based method. A block-structured adaptive mesh refine-

ment technique is utilized to supply the required resolution locally.20 This adaptive method

uses a hierarchy of spatially-refined subgrids which are integrated recursively with reduced

time steps.

In the numerical simulations, the impulse is computed by first finding the spatial average

of the pressure on the closed end to determine the net force on the tube as a function of

time. The force is then numerically integrated in time to find the total impulse.

I =

∫
Fdt =

∫ tfinal

0

(P (t)− Pa)A0dt (5)

where P (t) is the spatial average of the pressure on the thrust surface, Pa is the ambient

pressure, A0 is the cross-sectional area of the driver section, and tfinal is the final time reached

in the simulation. The simulation is carried out until P (t) is reasonably close to Pa. The

trapezoidal rule is used to perform the integration and in the current computations, tfinal =

4 ms for helium and tfinal = 8 ms for nitrogen.

The specific impulse based on the total driver mixture mass is defined as

Isp =
I

ρ0V0g
=

∫ tfinal

0

(P (t)− Pa)
ρ0L0g

dt (6)

Approximate Models

A number of approximate models have been proposed for correlating impulse with the

fill fraction and the thermodynamic properties of the mixture. We have examined three of

these in the present study: the Gurney model based on energy conservation, a “bubble”

model based on acoustic analysis, and an empirical model by Sato et al.11 The Gurney and

Sato models are useful for large fill fractions while the “bubble” model is designed to deal

with the limiting case of a very small fill fraction.

Gurney model

The Gurney model was originally developed to predict the acceleration of metal by

detonation of explosives.21,22 The model is based on energy conservation and a simple

approximation of the velocity in the detonation products. The Gurney model for explo-

sives suggests a simple approach for predicting the value of the impulse for pulse detonation
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tubes5,6 and can be extended to the present case by analogy. The results of the Gurney

model can be expressed in terms of the mass M of the shock tube, mass C of the pressurized

driver gas, and mass N of the air in the driven section which is referred to as the “tamping”

mass in the case of explosives. The impulse predicted5 by the Gurney model is

I = M
√

2e

(√
1 + A3

3(1 + A)
+ A2

N

C
+
M

C

)−1

(7)

where

A =
1 + 2M

C

1 + 2N
C

(8)

and e is the Gurney energy of the explosive, in this case, the pressurized driver gas. The

Gurney energy is taken to be a percentage of the ideal amount of specific energy available

to do mechanical work

e = ηei (9)

η is the empirically determined energy efficiency (see the subsequent section “Energy effi-

ciency”). Assuming isentropic expansion of the pressurized gas,

ei =
P0

(γ − 1)ρ0

[
1−

(
P0

Pa

)1/γ−1
]

(10)

Typically, M/C →∞, and we can rewrite Eq. 7 in term of the specific impulse

Isp =
I

Cg
=

√
2e

g

N
C

+ 1
2√

N
C

+ 1
3

(11)

The mass of the pressurized gas C and the mass of the air N can be related to the partial

fill fraction α

α =

C
ρ0

C
ρ0

+ N
ρa

=
1

1 + ρ0
ρa

N
C

(12)

where ρa is the density of the air and ρ0 is the initial density of the driver gas.

For a fully-filled tube, i.e. without any tamping gas (N = 0), α = 1.0, and the specific

impulse Isp(α = 1) is

Isp(α = 1) =

√
1.5e

g
(13)

7 of 41



Then the ratio of Isp/Isp(α = 1) is

Isp
Isp(α = 1)

=

√
4

3

N
C

+ 1
2√

N
C

+ 1
3

, (14)

which only depends on the ratio of N/C.

Table 3 shows the specific impulse Isp(α = 1) computed with Eq. 11. For explosives, the

Gurney energy is some fraction of the heat of combustion of the explosive and we expect in

the present case that it will be some fixed fraction η of the ideal energy given by Eq. 10.

For detonation tubes, a value of η = 0.3 was determined.5,6 For the present case, we have

determined the efficiency by fitting the Gurney model results to either the experimental data

or computation results with a least-squares method.

The Gurney model is clearly dependent only on the mass ratios of driver and driven gas

for a given value of the Gurney energy. Acoustic impedance and other properties of the

gases do not enter into the result. If inertia plays the dominant role in the partial fill effect

and the Gurney model is valid, then we would expect to have the same qualitative behavior

of both N2 and He drivers and the quantitative differences will be predicted by the scaling

with mass ratio as in Eq. 11. We will test this against the experiment data in the Results

Section.

Bubble model

The expanding “bubble” model of detonation hot products6 predicts the specific impulse

in the limit of α→ 0. It is useful because unlike the Gurney model, the bubble model predicts

a finite value of specific impulse in the limiting case of small α, and the numerical value is

consistent6 with the available experimental data. Here we use the same idea to analyze the

shock tube. The essential notions are that 1) the acoustic transit time across the driver is

small in comparison to the duration of the interface motion and, 2) the reverberation of the

acoustic waves inside the driver creates an approximately spatially uniform condition that

can be modeled as isentropic expansion. Although the acoustic impedance ratio does not

appear explicitly in the model, it is essential to have trapping of acoustic waves in the driver

region to create the ”bubble” of driver gas that is isentropically expanding. The acoustic

impedance in the driver gas does explicitly enter the model and links the interface speed to

the pressure in the bubble, which is also an essential ingredient in the bubble model. The

bubble model relies on wave motion to determine the dynamics rather than the energy and

inertia considerations of the Gurney model.

Assuming that the pressurized driver gas expands isentropically and there is no significant

spatial variations within the driver gas, the change in pressure, P (t), can be related to the
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length of the driver as a function of time

P (t) = P0

(
L0

x(t)

)γ0
(15)

where x(t) is the location of the contact surface that separates the driver and driven gas in

an ideal one-dimensional shock tube model. The idea behind the bubble model is that the

contact surface velocity induces a flow and pressure drop in the driver gas which, for small

velocities, can be computed using the method of characteristics or in a linearized version,

acoustic theory. This yields6 an ordinary differential equation for contact surface velocity

dx

dt
=

2co
γa − 1

(
x

L0

) γo
2γa

(1−γa)(P0

Pa

) 1
2γa

(γa−1)−1

(16)

where γo and γa represent the specific heat ratio of the driver gas and the air. Equation 16

can be numerically integrated until the contact surface reaches the final position. Time

integration of the pressure history at the closed end yields the predicted impulse. Figure 7a

shows an x-t diagram of the contact surface trajectories for several cases. The pressure

histories for several pressure ratios are plotted in Fig. 7b. The pressure decays faster for

higher initial pressure ratios and larger specific heat ratios, γ, in the driver gas.

Table 4 lists the specific impulse in the limit of α→ 0 or L→∞, Isp(α→ 0), computed

with Eq. 16 for each driver case. Note the dramatic differences in the values predicted for

He and N2, this will provide a very clear cut test when compared against the experimental

data.

Sato model

Sato et al.11 proposed a simple empirical formula for predicting Isp/Isp(α = 1),

Isp/Isp(α = 1) =
1√
Z

(17)

where Z is related to the fill fraction α by

Z =
αρ0

αρ0 + (1− α)ρa
, (18)

Z can also be related to the mass ratio of N/C by substituting Eq. 12 into Eq. 18,

Z =
1

1 +N/C
. (19)
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Now Eq. 17 becomes

Isp
Isp(α = 1)

=

√
1 +

N

C
(20)

Like the Gurney model, the Sato model only depends on the inertia of the driver and driven

gases. The Sato model shares the defect of the Gurney model of predicting an infinite specific

impulse in the limit of zero fill fraction. This is also true of the homogeneous dilution model

recently put forward by Endo et al.12

Simulation and Experimental Results

Pressure and impulse history

Figure 8 shows simulation results of the average pressure time histories on the thrust

surface and the specific impulse for two fill fractions with helium as the driver gas. Since

the length of the driver is fixed, the time t1 (Fig. 4), when the head of the expansion fan

(E1) radiating from the location of the diaphragm reaches the thrust surface only varies with

driver gas. This is because the speed of the expansion fan is determined by the sound speed

in the driver gas. The sound speed in helium is 1008 m/s, so t1 is ≈ 0.1 ms. For the maximum

fill fraction, α = 1.0 (Fig. 8a), the pressure on the thrust surface, P (t), decays below the

ambient pressure Pa at between 0.1−0.12 ms depending on the pressure ratio. Then it begins

to oscillate, but all oscillations are damped out by 4 ms for all pressure ratios. In each case,

the specific impulse reaches its maximum value when P (t) = Pa and then decreases to its

minimum value due to the negative impulse generated when P (t) < Pa. For higher pressure

ratios, the ratio of the final average specific impulse Isp to the maximum specific impulse

Isp,max is close to one, but in the low pressure ratio case (P0/Pa = 3), Isp/Isp,max is almost

0.7. The same features in the pressure signals was observed in the experiments, shown in

Fig. 9. In the experiments, t = 0 corresponds to when the data acquisition system was

triggered and the negative time period (t < 0) represents the pre-trigger signals. Impulse

values were not computed from the pressure signals since we cannot assign a time to the

onset of diaphragm rupture.

In the computations, before P (t) decays below Pa in the lower fill fraction case, α = 0.6

(Fig. 8b), there exists a second plateau. In this case, the expansion wave (E3) (Fig. 4),

which is radiating toward the thrust surface from the interaction of the reflected expansion

fan (E2) and the contact surface, must travel farther as the length of the driven section is

longer. The reflection of the expansion waves and the second plateau region are also observed

in the simulations of Kailasanath8 and Endo et al.12 In the α = 0.6 case, E3 reaches the

thrust surface later than in the α = 1.0 case. Hence the specific impulse is larger than the

α = 1.0 case at the same pressure ratio. The pressure oscillations are also damped more
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quickly than in the α = 1.0 case.

The pressure and specific impulse histories for nitrogen are shown in Fig. 10. Since

the sound speed in nitrogen (350 m/s) is lower than in helium, the initial pressure starts

decreasing at a later time, t1 ≈ 0.29 ms. The second constant-pressure stage in nitrogen

starts when the pressure has dropped below atmospheric pressure. The specific impulse

reaches a maximum before this second stage starts; therefore, the final specific impulse for

nitrogen is smaller than for helium at the same fill fraction. For smaller fill fractions, the

second-constant-pressure stage lasts longer so that the specific impulse has a larger decrease,

i.e. Isp ≈ 20 s at t = 1 ms for P0/Pa = 3 and drops down to ≈ 8 s at 4 ms. For this reason,

longer integration time periods are necessary for nitrogen mixtures at lower fill fractions.

We observe that the helium and nitrogen cases are fundamentally different due to the

wave interaction processes at the contact surface. The reflection of the expansion wave in

the helium case leads to the development of the second pressure plateau in the driver end

wall pressure history while in the nitrogen case no reflection occurs and the second plateau

does not exist. This can be clearly observed by comparing the space-time diagrams for the

case of a helium driver, Fig. 11a, and a nitrogen driver, Fig. 11b, both for α = 0.1. A distinct

sequence of reflected and transmitted expansion waves can be observed in the helium case

and the air-helium interface is quickly brought to a stop while much weaker reflected waves

are observed in the nitrogen case and the interface expands to a much larger distance then

rebounds. The second pressure plateau results in a higher specific impulse for the helium

cases compared to the nitrogen. This points directly to the strong role of impedance ratio

at the interface and wave interaction processes in the partial fill effect.

Specific impulse

The specific impulse computed from numerical simulations, analytical models, and ex-

perimental measurements are compared in Figs. 12-15.

Effect of fill fraction

The general trend shown in Fig. 12-14 is the same for all pressure ratios examined. For

helium, the Isp increases as α decreases until α < 0.2 where the Isp reaches a maximum value.

For nitrogen, the Isp remains almost constant and independent of α over the entire range of

values examined. No partial fill enhancement effect is observed for the nitrogen driver and

a very strong partial fill effect is observed with the helium driver. This is consistent with

our conjecture about the role of acoustic impedance ratio at the driver-air interface and the

values given in Table 1. The range of driven-to-driver mass ratios (N/C) in Eq. 12 is a factor

of seven smaller for the nitrogen driver rather than the helium due to the molecular weight

difference. However, just comparing over the same range of N/C values, it is quite clear that

11 of 41



the qualitative behavior of impulse as a function of α is fundamentally different for helium

than for nitrogen.

As expected, the Gurney and bubble models are useful only over restricted ranges of the

fill fraction. For small fill fractions, α < 0.2, the bubble model shows reasonable agreement

with experiments and simulations for both gases. The disagreement between model and

data is largest for the lower pressure ratio P0/Pa = 3.0. In the limit of zero fill fraction, the

bubble model gives finite specific impulse values that are consistent with the experiments

while the Gurney model predicts totally unrealistic values that diverge to infinity as α →
0. This is sensible since the dynamics must be determined by wave propagation when the

driven section becomes sufficiently long compared to the driver. For larger fill fractions, α >

0.3, the Gurney model has the same trends as the experiments and simulations for helium.

It is possible to obtain quantitative agreement only over a limited range of α by selecting a

particular value of energy efficiency but there is no universal value for this parameter that

matches all the data. The partial agreement of Gurney model for helium is clearly fortuitous

and the disagreement with the nitrogen data rules out a mass-ratio based (inertial) model

of the partial-fill effect.

Simulation and experimental results are in reasonable agreement (within 20%) for the

two higher pressure ratios, P0/Pa = 9.2 and 6.0, but for P0/Pa = 3.0 (Fig. 14), simulation

results are higher than experiments by up to 100%. We believe that this is due to two factors.

First, on the basis of past experience, we expect that the speed of diaphragm rupture will

depend on the initial pressure ratio. If this is the case, then this explains why at P0/Pa = 3.0,

the experimental decay time (Fig. 9) at the thrust wall becomes longer than the computed

values (Fig. 8a). Second, if the extension tube becomes longer (α decreases), the ratio of

diaphragm rupture time to pressure wave propagation time in the tube will become smaller.

Therefore, we expect that at high initial pressure ratio or low fill fractions, the experiments

will have the best agreement with computations.

Effect of initial pressure

For both gases, Fig. 15, Isp increases as the pressure ratio increases for fixed α = 0.89.

A constant energy efficiency, η = 0.30, was used for the Gurney model solution. This

choice results in reasonable agreement (within 5%) with simulation when P0/Pa > 4.0, but

overpredicts at lower pressure ratios. The increase of specific impulse with initial pressure

is consistent with the scaling Isp ∼
√
e (Eqn. 11) and the dependence of energy on initial

pressure, Eqn. 10. For the case shown in Fig. 15, the value of α is sufficiently close to one

that the ratio N/C is small enough to be negligible. The scaling with the square-root of

energy content is a straightforward consequence of dimensional analysis and a similar result
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was obtained previously16 for pulse detonation tubes.

The simulation results are systematically and substantially higher than the experimental

data. For helium, the computational results are larger than the experimental measurements

by a factor of 1.5 − 1.7 when 2.0 < P0/Pa < 8.0. For nitrogen, the computational results

are larger than the experimental measurements by a factor of ≈ 2.0 when P0/Pa = 2.0.

The difference is smaller at high pressure ratio, computational results are larger than the

experimental measurements by a factor of ≈ 1.2 at P0/Pa = 9.2. As shown in Fig. 14, the

difference between experiments and simulations is large at α = 0.8.

Model comparison

The ratios of Isp/Isp(α = 1) computed from the Gurney model, Sato model, and simula-

tion results are shown in Fig. 16 for He/Air at three different pressure ratios. Note that this

method of comparison eliminates the efficiency factor η dependence from the Gurney model.

Both models show the correct trend for α > 0.4 but are completely incorrect for α < 0.4,

as noted previously. The model predictions at the two highest pressure ratios increasingly

overestimate the normalized specific impulse with decreasing values of α. The Gurney model

prediction is larger than the Sato’s model prediction at all fill fractions and initial pressure

ratios. Simulation results also show that the maximum ratio of Isp/Isp(α = 1) at α < 0.2 is

larger for lower pressure ratios, i.e. Isp/Isp(α = 1) ≈ 2.7 for P0/Pa = 3, ≈ 1.8 for P0/Pa = 6,

and ≈ 1.5 for P0/Pa = 9.2.

Energy efficiency

The ideal energy computed in Eq. 10 represents the maximum stored energy in the

pressurized gas. In reality, only a fraction η of the stored energy is converted into mechanical

energy of the surrounding tube. Cooper and Shepherd5 computed energy efficiency values

for gaseous detonations based on predicted specific impulse values for several mixtures at

initial conditions of 100 kPa and 300 K. Their work shows that efficiency values range between

0.124 and 0.305 for gaseous fuel-oxygen-nitrogen mixtures, which are slightly less than typical

propellant efficiency values of 0.2− 0.3 and significantly less than typical efficiency values of

0.6− 0.7 for high explosives.

The value of energy efficiency for a pressurized gas release will be different from either

gaseous detonation or high explosives and must be determined from comparison of the model

with experimental data. Table 5 gives the estimated values of η that give the best fit to either

the simulations or experimental data for both helium and nitrogen at different pressure ratios.

The value of η ranges between 0.056 and 0.256 and is an increasing function of pressure ratio,

Fig. 17, for both experiments and simulations.
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Discussion and Conclusions

We use a shock tube with an open end to study the analog of the partial-fill effect observed

in detonation tubes. We carry out experiments and two-dimensional numerical simulations

with a range of shock tube parameters. The specific impulse is measured and computed for

two gases, helium and nitrogen, in the driver section with air in the driven section. The

initial pressure ratio ranges from P0/Pa = 2.0 to 9.2, and the fill fraction varies from α =

0.05 to 1.0. For both helium and nitrogen drivers, increasing the pressure ratio with a fixed

fill fraction causes the specific impulse to increase. For helium, the specific impulse increases

as the fill fraction decreases; reaching a maximum value when α < 0.2. For nitrogen, no

systematic dependence of specific impulse on fill fraction is observed.

We also compare specific impulse results from numerical simulations, experimental mea-

surements, and analytical models. The numerical simulation results match reasonably well

with experimental measurements for high pressure ratios (P0/Pa > 6) over a large range of

fill fractions (α = 0.05−0.8), but a systematic difference exists when α > 0.8 for all pressure

ratios.

When the fill fraction is small (α < 0.2), the analytical “bubble” model predicts a

maximum specific impulse. The estimated value shows good agreement (with 5%) with

both numerical computations and experiments for helium at pressure ratios of 6.0 and 9.2,

and is 20% higher than the experimental value at a pressure ratio of 3.0. The bubble model

slightly under-predicts the impulse for nitrogen at high pressure ratios. When the fill fraction

is sufficiently large (α > 0.2), the Gurney model predicts the correct trends but the effective

energy is much lower than the ideal value and varies with the pressure ratio. Therefore,

energy efficiencies must be determined empirically. The computed efficiencies range between

5% and 25% depending on the driver gas and fill fraction. By matching the specific impulse

computed from the Gurney model with experimental data, we find the energy efficiency is

much lower at smaller pressure ratios (P0/Pa = 3: η = 5.6% for helium, η = 7.3% for

nitrogen) than at larger pressure ratios (P0/Pa = 9.2: η = 17.8% for helium, η = 24.5% for

nitrogen). The Sato model and Gurney model yield very similar results and a comparable

level of agreement with the experiments or numerical simulations.

The dramatic differences between using nitrogen and helium for the driver shows that

the partial-fill effect (increase in specific impulse with decreasing fill fraction) is primarily

associated with wave processes and is not just due to inertia alone. The differences in density

and sound speed between helium and air results in a sharp acoustic impedance discontinuity

at the contract surface between the driver and driven section, this traps acoustic waves

within the driver and results in the large increase in specific impulse observed in the helium

cases (see Fig. 11a). No such trapping occurs in the case of nitrogen and for this reason,
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see Fig. 11b, and the partial fill effect is not observed in this case. The acoustic analysis

of the “bubble model” captures the difference between helium and nitrogen quantitatively

at small fill fractions despite the nonlinear nature of the actual experiments. As the fill

fraction approaches one, the specific impulse decreases with increasing fill fraction. This is in

agreement with the Gurney model for helium but not for nitrogen drivers. The disagreement

of the Gurney and Sato empirical models with the nitrogen cases indicates that energy

conservation methods and mass ratios are insufficient to explain the partial-fill effect although

these models show the correct trends for helium case for values of α > 0.2. As the results

for nitrogen show, the apparent agreement is fortuitous and gas dynamic effects associated

with the difference in sound speed between driver and driven sections must be included in

order to explain the partial-fill effect.

The present study is not intended to provide quantitative estimates for pulse detonation

engine performance. Pulse detonation tubes or engines have significantly greater complexity

than a shock tube and many other aspects such as flow nonuniformity, heat transfer, valve

operation, and fuel mixing must be considered to make quantitative performance estimates.

We believe that the real value of our study is to give qualitative guidance about what physical

processes and parameters are important in modeling the partial fill effect. Our study shows

clearly that wave propagation processes are essential to realistic evaluation of the partial fill

effect and models based on mass or energy conservation alone are inadequate.
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Table 1: Shock tube solutions, states, and interface impedance ratios. All gases are
initially at 295 K and the air is at 100 kPa.

P4/P1 Ms P2/P1 T2/T1 T3/T4 (ρa)2/(ρa)3

He driver and air driven section
1.0 1.0 1.0 1.0 1.0 2.468
3.0 1.405 2.14 1.26 0.863 2.025
6.0 1.74 3.35 1.49 0.771 1.737
9.2 1.971 4.37 1.66 0.714 1.565

N2 driver and air driven section
1.0 1.0 1.0 1.0 1.0 1.018
3.0 1.265 1.70 1.17 0.837 0.851
6.0 1.460 2.32 1.29 0.731 0.742
9.2 1.589 2.78 1.38 0.667 0.667
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Table 2: Gas parameters.

Gas γ W (g/mol) ρ @ 1atm (kg/m3)
He 1.66 4.0 0.1787
N2 1.406 28.0 1.2506
Air 1.40 29.0 1.2250
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Table 3: Specific impulse Isp(α = 1) computed from the Gurney model, assuming an
energy efficiency η = 30%.

Gas P0/Pa ei (MJ/kg) Isp(α = 1) (s)
3.0 0.509 48.83

He 6.0 0.965 67.25
9.2 1.333 79.04
3.0 0.081 19.42

N2 6.0 0.146 26.17
9.2 0.196 30.30

21 of 41



Table 4: Specific impulse Isp(α→ 0) computed with the bubble model.

Gas P0/Pa Isp(α→ 0) (s)
3.0 105.04

He 6.0 124.97
9.2 128.57
3.0 18.79

N2 6.0 23.26
9.2 24.61
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Table 5: Energy efficiency η.

Gas P0/Pa simulations experiments
3.0 0.161 0.056

He 6.0 0.197 0.153
9.2 0.222 0.178
3.0 0.168 0.073

N2 6.0 0.229 0.229
9.2 0.256 0.245
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Figure 5: Experimental setup of the partially-filled shock tube.
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Figure 7: Results of numerical integration of the bubble model, Eq. 16. (a) x-
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pressure decay as a function of time for three initial pressure ratios and the two driver
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Figure 8: Results of numerical simulation for normalized pressure and specific im-
pulse vs. time for (a) α = 1.0 and (b) α = 0.6 in He/Air.
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Figure 10: Results of numerical simulation for normalized pressure and specific
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(a) (b)

Figure 11: Computed space-time diagrams (the gray scale simulates a schlieren
effect) showing the wave processes for two cases, both with α = 0.1 and P4/P1 = 10.
a) He driver. b) N2 driver.
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Figure 12: Specific impulse vs. α for (a) He/Air and (b) N2/Air. P0/Pa = 9.2 for
both simulations (sim.) and experiments (exp.). Gurney model energy efficiencies
were: η = 0.178 for He/Air and η = 0.245 for N2/Air.
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Figure 13: Specific impulse vs. α for (a) He/Air and (b) N2/Air. P0/Pa = 6.0 for
simulations (sim.) and P0/Pa = 6.1 for experiments (exp.). Gurney model energy
efficiencies were: η = 0.153 for He/Air and η = 0.229 for N2/Air.
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Figure 14: Specific impulse vs. α for (a) He/Air and (b) N2/Air. P0/Pa = 3.0 for
simulations (sim.) and P0/Pa = 3.1 for experiments (exp.). Gurney model energy
efficiencies were: η = 0.056 (solid) and η = 0.161 (dotted) for He/Air and η = 0.073
(solid) and η = 0.168 (dotted) for N2/Air.
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Figure 15: Specific impulse vs. pressure ratio for α = 0.89 and (a) He/Air and (b)
N2/Air. The Gurney model energy efficiency was η = 30%.
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