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ABSTRACT

The detonation driver is a device for generating the strong shock waves used in
high-enthalpy hypersonic flow research facilities. The dynamic production of high-
pressure and high-temperature driver gas has several advantages for shock-tube per-
formance, however the unsteady gas dynamics of detonation waves also introduces
several challenges. These are investigated here analytically and experimentally.

For forward-mode operation, where the detonation propagates into the shock-tube
diaphragm, the detonation Taylor wave attenuates the driven shock, and a model
is needed to predict the resulting shock dynamics. This is accomplished by first
analyzing the problem of plane shock decay generally. A new approximate solution
is formulated for the classic piston start-stop problem and shown to be a significant
advancement over predecessors. This result is applied to the shock decay from a
detonation driver, and a two-parameter model is fit to simulation data, yielding a
method for predicting shock trajectories from shock-tube initial conditions.

A small-scale shock tube is designed and constructed using a detonation driver that is
operable in both the forward and reverse mode. A transparent driven section is used
with large field-of-view shadowgraphy to perform novel time-resolved shock speed
measurements. These are used to calibrate the decay model for a forward-mode
driver and enable unique observations of shock-speed oscillations, resulting from
diaphragm rupture and detonation initiation processes. Results are also obtained for
shock tube operation with a conventional high-pressure helium driver.

The gradients and fluctuations in post-shock flows are characterized using a het-
erodyne focused laser interferometer, a new instrument with advanced capabilities
for measuring large phase changes with high resolution. As a development upon
the FLDI, spatial filtering characteristics are preserved, and both differential and
absolute phase data are acquired simultaneously, enabling a new technique for mea-
surement of gas densities. The instrument is developed, experimentally validated,
and then used to probe detonation-driven shock tube flows, achieving phase mea-
surements of over 100 radians with milliradian resolution in a 10 MHz bandwidth.
Results from forward-mode operation find that a hydrogen-oxygen driver produces
remarkably disturbance-free flows. For reverse-mode operation, the amplitude of
flow oscillations is found to be positively correlated with the contact-surface sound-
speed ratio, and frequencies are consistent with first-order lateral acoustic waves.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
The shock tube is a laboratory apparatus used to generate plane shock waves in gases.
Its basic construction and operation are simple: two coaxial pipes are separated by
a diaphragm, where one is filled with a desired test gas, and the other is pressurized
until the diaphragm ruptures. The high-pressure gas rapidly expands into the other
pipe section, compressing the test gas through a shock wave that is driven down the
length of the tube. The shock wave impulsively heats, compresses, and accelerates
the test gas, and this ability to rapidly do work gives the shock tube its unique utility.

Shock tubes find widespread application in fluid dynamics and chemical physics re-
search, and, in particular, shock-tube-based facilities are some of the only laboratory
methods capable of reproducing at scale the high flow velocities seen in hypersonic
flight. Relevant flows are characterized not only by high Mach numbers but also
by high total enthalpies, which produce a complex coupling between the flow and
molecular processes like chemical dissociation and vibrational relaxation. Ground
testing capabilities are essential for investigating these physics, and the impulsive
operation of a shock tube is leveraged in order to attain the enormous powers needed
to generate these flows. Advancing shock-tube technology for these applications is
therefore a major and continuing area for research.

1.1.1 Hypervelocity Flow Research Facilities
Hypervelocity flow research facilities build upon the basic shock tube with primarily
two designs (Hornung, 2010). In reflected shock tunnels, the primary shock wave is
reflected at the shock-tube end, generating a high-pressure high-temperature stagnant
gas volume that is subsequently accelerated in a steady expansion through a nozzle
to high velocities. The very high temperatures in the stagnated gas volume lead to
oxygen dissociation and the formation of nitric oxide. Subsequent expansion through
the nozzle causes the gas thermodynamic state to “freeze” at some composition
distinct from air. This is a facility-specific effect and can be significant (Olivier,
2016), illustrating the importance of experimental research in different types of
facilities.



2

These issues are substantially mitigated in an expansion tube because the shocked
test gas is never stagnated prior to reaching the test section. In an expansion tube, the
shock tube is connected to a third coaxial pipe section at an even lower pressure, so
that acceleration to hypervelocity is instead achieved through an unsteady expansion.

After its first development (Trimpi, 1962), widespread use of expansion tubes was
hampered by observations of noisy, unusable free-stream test flows (Norfleet et al.,
1966). Paull and Stalker (1992) analyzed the transmission and propagation of
acoustic perturbations in these flows and identified the importance of the primary
contact-surface sound-speed ratio, which gives guidance on how to tune facility op-
erating conditions. Conclusions from this work have been employed to successfully
operate several expansion tubes (Dufrene et al., 2007, Dufrene, 2013).

Paull and Stalker considered the acoustic wave perturbations to originate from the
driver, arguing that observations of structured test flow perturbations with dominant
frequencies are the result of frequency focusing from a possibly broadband noise
source. Other than originating from the driver, Paull and Stalker do not identify
the generating mechanism of acoustic waves, however this is essential in order to
develop engineering strategies for mitigating them.

Diaphragm techniques are an example of another important engineering trade when
designing and operating expansion tubes. Large diameter facilities require thick
metal diaphragms to withstand initial pressures. Rupture is violent and produces
a significant portion of the audible noise during facility operation, as discussed by
Erdos and Bakos (1994). Additionally, diaphragms are prone to shed particulate
into the flow during rupture. The particulate is accelerated to high velocities and
can be exceedingly damaging, leading to off-axis operation in some of the largest
facilities (Dufrene, 2013), which reduces the advantages of having a large area core
flow.

Free-stream noise and diaphragm considerations are tied to the shock-tube driver
technology employed. Different techniques exist to obtain the high performances
required for these research facilities.

1.1.2 Driver Technologies
Generation of strong shocks at relevant pressures requires a high-performance driver.
Shock-tube performance is almost entirely driven by the ratio of driver and test gas
sound speeds. Since the test gas is fixed by application, driver technologies endeavor
to maximize driver gas sound speeds. At any temperature, the gas with the highest
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sound speed is hydrogen. However, high-pressure hydrogen poses serious hazards
since it is highly flammable in air. Consequently, the vast majority of shock-tube
research employs helium.

The main strategy for increasing driver gas sound speeds is to heat the gas to raise its
temperature. Some facilities use helium or hydrogen and statically heat it (MacLean
et al., 2010). In free-piston-driven facilities, a piston is used to adiabatically com-
press the driver gas to high pressure and temperature (Stalker, 1967). A third
technique is to heat the gas via combustion.

To obtain the highest sound speeds, combustion-heated drivers employ hydrogen-
oxygen driver mixtures, however these are sensitive and prone to transition to deto-
nation. In early work on combustion drivers, Hertzberg and Smith (1954) observed
that when diaphragms were weak resulting shock waves were anomalously strong,
likely a consequence of incipient detonation. Nagamatsu and Martin (1959) highly
diluted their hydrogen-oxygen mixture with helium to suppress transition to det-
onation. However, instead of suppressing it, a detonation wave can intentionally
be initiated, and the very large pressures and temperatures generated can be taken
advantage of to drive strong shocks. This is the detonation driver.

Detonation drivers are attractive as a method for mitigating some of the nega-
tive diaphragm effects discussed above. Detonations are fast (2-3 km/s), and so
high pressures and temperatures are generated dynamically. Consequently, in the
detonation-driven facility, the shock-tube diaphragm only has to withstand the pres-
sure difference prior to initiation, approximately 3-5% of the detonation pressure.
This enables the use of thinner diaphragms.

Since the detonation driver only requires fuel and oxygen, dependence on helium
is eliminated. This is a major advantage since helium is a scarce resource with
growing demand and rising price (Kramer, 2023). Shock tube facilities typically
do not employ any methods for helium recapture, and so experiments using large
quantities can be prohibitively expensive.

Detonation driver gas is very hot (4000-5000 K), and only cools modestly through the
shock-tube isentropic expansion (2000 K). Consequently, sound-speed ratios across
detonation-driven shock tube contact surfaces are large (Lawson and Austin, 2018),
and so the theory by Paull and Stalker (1992) indicates the possibility for free-stream
noise issues in expansion tube applications. Operation of a large-scale detonation-
driven expansion tube has indeed shown significant test-flow unsteadiness (Jiang
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et al., 2015).

The motivation for this work is to investigate the detonation driver as a method for
generation of strong shocks in an expansion tube research facility. Expansion tube
technology is important for the research of hypervelocity flows, complementing
capabilities provided by other facilities to access different flow conditions but also
to cross-validate results and eliminate doubts from facility-specific effects. Use of
the detonation driver for an expansion tube is attractive for its high-performance
capabilities and possible elimination of some diaphragm concerns. However, the
quality of flows generated needs to be investigated given known challenges of
expansion tubes.

1.2 The Detonation-Driven Shock Tube
The phenomenology of gaseous detonation waves will be briefly presented first be-
fore returning to their application in shock-tube drivers. In a detonation driver, the
detonation wave is used as a tool to do work. Consequently, the following presen-
tation will be cursory. Key references to the historical development of detonation
theory are given by Fickett and Davis (1979) and Lee (2008).

A detonation wave is a coupled shock and combustion wave that can propagate
through a premixed volume of fuel and oxidizer. Energy release from exothermic
reactions in the shock-heated medium supplies the work required to push the shock
forward. The Chapman-Jouguet (CJ) condition states that the detonation wave will
propagate at the speed which drives the post-shock flow sonic in the shock-fixed
frame. From this condition and the medium’s energy release, a detonation wave
speed can be calculated that accurately models the behavior of real detonations.

Chemical reactions require a finite time to progress, and these establish the intrinsic
length scales of a detonation wave. For a steady theoretically one-dimensional
structure, the reaction zone formed behind a shock is described by the ZND model,
after Zel’dovich, von Neumann, and Döring. For a detonation propagating at the CJ
speed, the ZND structure terminates at the CJ state.

It was discovered experimentally that detonation waves in gases do not propagate as
predicted by one-dimensional theory, exhibiting a rich variety of different behaviors.
Chemical reaction rates are highly sensitive to post-shock temperatures, and this
coupling between reaction rates and detonation shock speed provides a mechanism
for instability. The effect of the unstable detonation structure is to give it a length
scale distinct from but correlated with predictions by one-dimensional theory.
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Detonation length scales become important when they are comparable to those
of geometric confinement, namely tube diameters. These length scales are often
quantified by a detonation cell size. This metric is imprecise, given the highly
variable detonation structure depending upon gas chemistry, thermodynamics, and
geometric confinement. However, for cell sizes much less than tube diameters, a
spanwise average of the detonation wave can be modeled again as approximately
one-dimensional.

The gas processed by a detonation wave exits the reaction zone with a high velocity.
In a closed tube, the end caps do not allow any gas flow and so establish zero-
velocity boundary conditions. In order to match this boundary condition, high
velocity detonation products must be brought to a halt. This is accomplished
by an unsteady expansion, known as the Taylor-Zel’dovich (TZ) wave, which is
approximately self-similar.

From the above elements, an ideal one-dimensional model can be formed for the
detonation wave propagating in tubes. Figure 1.1 illustrates this structure. The wave
propagating at the CJ speed is followed by a very small reaction zone that terminates
at the CJ state. The TZ wave expands detonation products and extends over roughly
half of the distance the wave has propagated.

0.0 0.2 0.4 0.6 0.8 1.0
x/L

0

10

20

30

40

50
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CJ state

reaction zone

TZ wave

CJ speed

Figure 1.1: Ideal one-dimensional structure of a plane detonation wave propagating
in a closed tube.

In a detonation driver, the detonation wave can be initiated to propagate either
forward into the shock-tube diaphragm, or in the reverse direction away from the
diaphragm. These distinguish the two operation modes, and space-time diagrams
for each illustrate the wave dynamics in Figure 1.2.
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(a)

(b)

Figure 1.2: Space-time diagrams of shock tube operation with an (a) forward-mode
and (b) reverse-mode detonation driver. Coordinates are nondimensionalized using
the driver length, 𝐿, and CJ speed,𝑈CJ.

In the forward mode, detonation reaction zone length scales are small, and so
transients from the finite reaction zone structure are confined to early time, which
is also substantially influenced by diaphragm rupture effects. Neglecting these
early-time effects, the shock-tube can be modeled as if it is driven by the CJ state.
However, the CJ state is the head of the TZ wave, which immediately transmits
through the contact surface and interacts with the driven shock, causing its strength
to decay from the beginning of its formation.

In the reverse-mode, the detonation is initiated at the diaphragm and propagates
upstream. The backwards propagating detonation drives the shock-tube by isentrop-
ically expanding the CJ state through an extended TZ wave to a positive velocity.
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Upon impact with the driver end wall, the detonation and TZ wave reflect a shock
that accelerates through the TZ wave and overtakes the primary shock at later time.
In this configuration, the driven shock is theoretically steady but of weaker strength
relative to the initial speed attained with the forward mode.

As with conventional shock-tube techniques, the initial shock speed can be obtained
from a pressure-velocity diagram. Figure 1.3 shows that the only difference between
the forward and reverse mode is the sign of the CJ gas velocity, i.e., it is positive for
a forward-mode driver and negative for a reverse-mode driver. For perfect gases,
this is shown by the detonation-driven shock tube equation,

𝑃42
𝑃1

=

1 + 2𝛾1
𝛾1 + 1

(𝑀2
s − 1)(

1 − 𝛾42 − 1
𝛾1 + 1

𝑎1
𝑎42

𝑀2
s − 1
𝑀s

± 𝛾42 − 1
2

𝑀42

)2𝛾42/(𝛾42−1) ,

+ forward, − reverse ,

(1.1)

where 𝛾 is the ratio of specific heat capacities, 𝑎 is the sound speed, and 𝑀s is the
driven shock Mach number. Subscript 1 denotes the driven gas, and subscript 42
denotes the CJ state, which is distinguished from the unburnt driver gas, denoted in
this work by subscript 41. Equation (1.1) is the same as for a typical shock tube with
the addition of the 𝑀42 term in the denominator, which is the local Mach number
of the flow, 𝑢42/𝑎42, where 𝑢 is the lab-frame gas velocity. Initial shock speeds
obtained from a detonation driver can be calculated for perfect gases from (1.1) and
for real gases from numerical calculation of the pressure-velocity diagram.

The detonation driver is not a new technique and has seen relatively recent widespread
adoption in several large-scale hypersonic flow research facilities. Next, the prior
work on detonation drivers will be reviewed.

1.3 Review of Prior Work on Detonation Drivers
The earliest work on the use of detonation waves in a shock-tube driver was by Bird
(1957). Bird identified each operation mode and highlighted some of the challenges
posed by the unsteady wave interactions.

Following Bird, there were a few experimental studies of detonation drivers. Wal-
dron (1958) spark ignited hydrogen-oxygen mixtures at the diaphragm and reported
measurements of large shock attenuation, despite using a form of reverse-mode
operation. Coates and Gaydon (1965) investigated a method for mitigating shock
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Figure 1.3: Pressure-velocity diagram for initial wave interactions in a detonation-
driven shock tube.

attenuation using an auxiliary light-gas driver to shock initiate detonation in forward-
mode operation. The contact surface from this auxiliary driver provides a means
of supporting the detonation and thereby shortening or eliminating the TZ wave.
Additionally, if the shock wave was sufficiently weak that the reactants did not ignite,
then upon impact with the secondary diaphragm a detonation was promptly initiated
and propagated upstream. This is a novel form of reverse-mode operation. Lee
(1967) also performed experiments with a reverse-mode detonation driver, instead
initiating the detonation using an exploding bridge wire at the diaphragm.

Attenuation by the TZ wave was a known problem for forward-mode operation,
however Balcerzak and Johnson (1966) recognized that the driver could be made
sufficiently long to reduce the significance of shock attenuation. They used the
method of characteristics to analyze forward-mode detonation-driven expansion
tube operation and concluded that the magnitude of unsteadiness during a facility’s
test flow could be made negligible.

Following this early work, there was little development on detonation drivers until
Yu et al. (1992) presented the first use of a detonation-driven reflected-shock tunnel,
TH2 at RWTH Aachen University. The facility employs a reverse-mode detonation
driver, where detonation is initiated in a separate tube that launches the wave trans-
versely into the diaphragm. They presented results for hydrogen-oxygen mixtures at
1 MPa, and discuss operation at higher pressure. Such significant detonation pres-
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sures posed serious structural concerns, and so a low-pressure damping section was
added to the upstream end of the driver. This damping section is now a common fea-
ture on other reverse-mode-driven facilities. Additional work on detonation-driven
TH2 is described by Grönig et al. (1998) and Olivier (2016).

After Bakos and Erdos (1995) investigated methods for improving the performance
of the 6-in diameter expansion tube HYPULSE at GASL,1 the facility was up-
graded for operation with a forward-mode detonation driver using shock-initiation
of hydrogen-oxygen-helium mixtures. Bakos et al. (1996) presented an experi-
mental and computational study of detonation-driven HYPULSE in expansion tube
mode. Instead of totally eliminating the TZ wave, they noted that it could be used to
compensate for the viscous pressure rise resulting from shock-tube boundary layers.
This study demonstrated the performance gain by transitioning from a traditional
light-gas driver to a detonation driver, enabling operation with higher test gas pres-
sures, greatly increasing the total pressures achievable in test flows. The facility was
later operated also as a detonation-driven reflected shock tunnel (Erdos et al., 1997).
Driver-gas contamination is important for reflected-shock tunnels, and detonation
driver considerations were studied by Chue et al. (2003).

Stuessy et al. (1998) presented a 6-in diameter detonation-driven reflected-shock
tunnel at the University of Texas at Arlington. After exploring spark initiation, they
modified the facility to use shock initation, also identifying the potential gain by
eliminating the TZ wave. They used hydrogen-oxygen with pressures up to 8 atm.
These results are combined with those from GASL by Lu et al. (2000) and further
expanded upon by Lu and Wilson (2003). Later, Peace and Lu (2018a) explored
the initial shock speed transmitted by a forward-mode detonation, and Jayamani and
Lu (2022) investigated attenuation by viscous effects and heat transfer in a small-
diameter (19 mm) shock tube. A variant on the shock-initiated detonation driver is
to use an auxiliary reverse-mode detonation driver. This was studied by Chen et al.
(2004).

Significant work on detonation drivers has been performed at the Chinese Academy
of Sciences (CAS), culminating in the construction of several large-scale research
facilities, all employing detonation driver techniques. Beginning with early work
at CAS, Hongru (1999) reviewed detonation driver techniques, and identified that
forward-mode decay could be reduced by increasing the driver length. Experiments
were presented for a driver-driven length ratio of 0.8 with an additional area con-

1The facility is now at Purdue University.
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traction at the diaphragm, and it was concluded that shock attenuation could be
sufficiently reduced for useful application of forward-mode operation. Jiang et al.
(2002) further investigated area-change geometries to mitigate TZ wave decay both
computationally and experimentally. They determined the optimal geometry to be
a cavity ring: a large divergence upstream of the diaphragm where the detonation
expands and reflects in upon itself, leading to a transient rise in pressure that reduces
the mean gradients behind the detonation. These results were discussed further by
Jiang et al. (2007) and Jiang et al. (2011) for application in the JF-10 reflected-shock
tunnel. The JF-10 driver implements the cavity ring with three sections of varied
diameter and length. The main driver is 150 mm in diameter, opens up to 300 mm in
the cavity ring, and then reduces to 100 mm prior to the primary diaphragm (Jiang
and Yu, 2016). The driver is over 6-m long and operated with 3 MPa pressures.

Jiang et al. (2015) applied the cavity ring concept to the expansion tube JF-16 using
hydrogen-oxygen mixtures up to 1.5 MPa. They found significant test flow noise
and attributed it to the contact-surface sound-speed ratio, referencing the theory by
Paull and Stalker (1992). JF-16 uses a large area ratio, reducing from 150-mm in
the driver to 68-mm in the driven section.

Jiang and Yu (2016) reviewed detonation driven facilities at the Chinese Academy
of Sciences including the huge JF-12 reflected-shock tunnel. JF-12 uses a 99-m
long reverse-mode detonation driver with a 400-mm inner diameter. They describe
operation using 3.0 MPa of acetylene-oxygen or 3.5 MPa of hydrogen-oxygen for
different shot conditions. A new facility, JF-22, with similar size and methods to
JF-12 has been built to access conditions at higher Mach numbers and flight altitudes
(Hu et al., 2025).

With large initial driver pressures, metal diaphragms are still required, and Zhao
et al. (2005) found forward-mode operation often led to diaphragm fragmentation.
This was controlled using a clever technique of initiating the detonation at the
diaphragm to open it just prior to arrival of the forward-running detonation, miti-
gating diaphragm fragmentation from detonation impact. Yamanaka et al. (2002)
used lower driver pressures and investigated different diaphragm materials includ-
ing scored copper. Mylar was found to perform the best, followed by deeply-scored
copper.

The detonation driver has now been in regular use for the operation of hypersonic
research facilities for over 30 years. Both the forward-mode and reverse-mode
driver are used, where shock attenuation from forward-mode operation has been
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mitigated with three strategies: large driver-to-driven section length ratios to stretch
the TZ wave, shock-initiation of the detonation with an auxiliary driver to shorten
the TZ wave, and a cavity-ring geometry upstream of the diaphragm to raise TZ
wave pressures from shock reflection. The majority of these facilities have been
reflected-shock tunnels, except for HYPULSE and JF-16, and in almost all cases
hydrogen is the driver fuel of choice due to its high sound speed. There are several
areas for further research to advance detonation driver technology particularly with
applications toward expansion tube facilities.

1.4 Areas for Further Research
1.4.1 Detonation-Driven Shock Decay
As is now well-established, the forward-mode detonation driver generates a decay-
ing shock wave. Prior work has focused on engineering strategies for reducing this
attenuation with an auxiliary driver or area-change geometry. Shock-initiation rein-
troduces many of the undesirable traits of light-gas drivers, like thick diaphragms
with particulate ejection. Performance of the facility is then limited to the per-
formance of the light-gas driver instead of the detonation driver. The area-change
geometries investigated by Jiang et al. (2002) pose a different challenge. The shock
reflection process produces significant strong transverse shocks in the driver gas.
Although Jiang et al. (2002) report that their reflected-shock tunnel flows were stable
and free from oscillations, their simulations do clearly show the strong perturbations
expected from intuition. These are a major concern for application to expansion
tubes.

Although there are engineering solutions and substantial facility calibrations, the
elementary gas dynamics of plane shock decay from these drivers has not been
modeled. Plane shock decay is a historic problem in gas dynamics and can be
reduced to the classic piston start-stop problem, where a piston impulsively drives
a shock, and then impulsively stops generating a centered expansion wave. These
waves interact, and the plane shock decays. This is a challenging analytical problem
for strong shocks because the flow is non-homentropic and non-self-similar. A
solution to this problem provides direct insight to the motion of plane shocks in a
detonation-driven facility. Although this is of interest purely as a novel problem
in fluid dynamics, an efficient analytical model has basic utility in the design and
operation of these facilities, e.g., in the consideration of alternative driver gas
mixtures. Developing these models is one objective of this thesis.
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1.4.2 Shock Speed Measurement
Models for shock motion need to be compared against experimental measurements.
Measurements of shock speed are a cornerstone of shock-tube techniques, since
shock speed is the critical quantity that characterizes a shock-tube’s performance.
All quantities that describe the post-shock flow can be calculated from knowledge
of the shock speed. Accurate measurement of shock speeds is therefore essential to
their use in shock tubes.

Ideal shock-tube theory predicts that shock waves are exactly steady, and so theoret-
ically only two measurements of the shock’s time-of-arrival at two known positions
are required to determine the shock speed. This has translated into the actual prac-
tice of using a small number of time-of-arrival gauges to discretely sample shock
position and estimate shock speed. A time-of-arrival gauge is anything with a
fast response to the shock arrival. Pressure transducers, ion gauges, and thin-film
gauges are common examples. From shock arrival times, a mean shock speed can
be measured for the position halfway between the gauges. This measurement can be
accurate even for a decaying shock wave, however measurement resolution is coarse.
Increased measurement resolution is important when considering a decaying shock
wave, since now the acceleration must be captured.

Over the history of shock-tube research, many sources of shock unsteadiness have
been identified, such as from shock-tube boundary layers (Mirels, 1957) and finite
diaphragm opening times (White, 1958). Consequently, it is common practice to
use a linear array of time-of-arrival gauges, from which the rate of shock attenuation
can be estimated. This has proven important for the calibration of many shock-
tube facilities (Petersen and Hanson, 2001). However, the decaying shock from
a detonation-driver is expected to exhibit stronger and time-varying attenuation,
slowing by 50% within a few driver lengths. To obtain accurate measurements of
these trajectories, improved resolution is required.

The only method known to the author for high-resolution shock-speed measure-
ments along the length of a shock tube is a microwave velocimeter. The technique
requires shocks of sufficient strength to ionize the gas. This produces a surface that
microwaves coupled into the shock tube can reflect from. Blum and Dunn (1966)
present an early example measuring the Doppler shift of reflected waves and give
references to earlier work. The technique has found recent use by Dufrene (2013)
and Straede et al. (2024) for measurements in expansion tubes. Haloua et al. (2000)
used the technique to observe galloping detonations, another reflective surface. For
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shock waves in inert gases with modest strengths, gases are not ionized and this
technique cannot be used. Indeed, an important virtue of the expansion tube is the
ability to preserve the gas composition, motivating use of reduced shock speeds.

High-resolution detonation speed measurements are made using streak cameras,
where a one-dimensional image is streaked across a photosensitive medium at high
speed. This is possible because detonation fronts are highly luminous, so streak
images show this emission on effectively a space-time diagram. In another technique,
Crane et al. (2022) were able to finely sample detonation position using an array of
fiber-coupled photodetectors mounted to a transparent detonation tube. Inert shocks
do not radiate strongly and so do not have this advantage.

Visualization techniques, like schlieren or shadowgraphy, can be employed to image
shock motion. High-resolution measurements of shock speed enabled Damazo and
Shepherd (2017) to make unique observations of unexpectedly high-speed shocks
from normal detonation reflection. Typical implementations of these techniques are
in facility test sections, which allow for optical transmission, and so some adaptation
is required to use visualization methods along the length of a shock tube.

With an application toward capturing the dynamics of detonation-driven shock
waves, another major objective for this thesis is to develop a technique to perform
high-resolution shock speed measurements.

1.4.3 Advanced Interferometric Techniques
Shock speeds only give information on the immediate post-shock flow. The gradients
and fluctuations in the flow following the shock are what is actually important
regarding a facility’s test flow, particularly with respect to the expansion tube.
Measurement of these quantities requires different techniques.

There are many different diagnostics used to characterize shock tube flows. Wall-
mounted pressure transducers are ubiquitous but often give low-fidelity results due
to facility vibrations. Pitot probes are essential to characterizing free-stream flows,
and there have been recent advances with static pressure probes (Yu et al., 2024).
Laser absorption spectroscopy techniques are uniquely capable of measuring gas
compositions, temperatures, pressures, and even velocities (Hanson et al., 2016).
However, interferometric techniques are uniquely sensitive to the acoustic perturba-
tions of interest in expansion tubes and in this work.

The Focused Laser Differential Interferometer (FLDI) is a laser diagnostic currently
in widespread use. First developed by Smeets and George (1973), it was popularized
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by Parziale et al. (2012), who used it to measure free-stream noise and boundary
layer disturbances in the T5 free-piston reflected-shock tunnel. The instrument is
easy to align and vibration insensitive, immediately setting it apart from many other
interferometric techniques. The focused beams provide a low-pass filtering effect
enabling improved sensitivity at the focus with some resistance to boundary layer
flows along test section walls. However, signal-to-noise ratios are limited by free-
stream densities, which can be low in expansion tubes. In these applications, Lawson
(2021) identified laser noise to be a major obstacle for improved measurements.

A powerful optical technique is to use heterodyne interferometry. Interference
between two beams with different frequencies produces a signal at the beat frequency,
the difference between the two optical frequencies. Detection of this heterodyne
signal can be performed in frequency bands free from laser noise, totally eliminating
this as an issue. Additionally, new signal processing methods are possible, enabling
direct phase measurement. This gives the potential for absolute phase measurements
instead of differential measurements. Advancing interferometric techniques by
employing heterodyne detection and applying the instrument for measurements of
detonation-driven shock tube flows is another major objective for this work.

1.5 Outline
In this chapter, the motivation, background, and objectives for this thesis were
detailed.

In Chapter 2, the problem of plane shock decay is analyzed generally. A new model
is formulated for this classic problem, validated against numerical simulations, and
shown to predict shock motion with accuracy much improved upon prior work.
These results are used in Chapter 3 to model the shock decay from forward-mode
detonation drivers. The decay model is formulated from perfect-gas simulations but
is shown to remain accurate for more general thermodynamics of real gases.

Chapter 4 presents the experimental facility and methods used to make time-resolved
shock-speed measurements. Chapter 5 presents measurements of shock speed from
forward-mode, reverse-mode, and helium-driven operation. Novel results include
the ability to perform frequency analysis of shock speeds and unique observations
of shock speed oscillations.

In Chapter 6, the theory and methods used to construct a heterodyne focused laser
interferometer are discussed, and the instrument’s response is validated against a
set of experiments. The heterodyne technique enables new high-resolution mea-
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surements of density perturbations, and results from interrogating detonation-driven
post-shock flows are presented in Chapter 7.

Finally, conclusions and areas for future work are given in Chapter 8.
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C h a p t e r 2

DECAY OF PLANE SHOCK WAVES IN EQUILIBRIUM FLOWS

Schoeffler, D. T. and Shepherd, J. E. (2024). Decay of plane shock waves in
equilibrium flows. Under consideration for J. Fluid Mech.

Shock decay is fundamental to numerous problems in fluid mechanics, resulting
from either the geometric or unsteady expansion of the post-shock flow. Geomet-
ric effects have been famously modeled by Whitham’s geometric shock dynamics
(Whitham, 1999, Chapter 8). However, predicting shock decay from the interaction
with an unsteady wave in a general medium remains a challenging problem to de-
scribe analytically because a shock’s motion is coupled with the post-shock flow.
Predictive models for this wave interaction are important because it is fundamental
to many problems in shock wave physics. In detonation physics, it is essential to the
unsteady shock front of gaseous detonations (Jackson and Short, 2013), to critical
phenomena like minimum ignition energy (Eckett et al., 2000), and to the operation
of detonation-driven shock tubes (Jiang et al., 2002). The interaction causes the
shock attenuation in experiments using flyer plates (Fowles, 1960) and laser-driven
shocks (Cottet and Romain, 1982). Application of geometric methods to problems
like spherical blast wave propagation is substantially complicated by the unsteady
wave interaction (Best, 1991). The interaction of an unsteady expansion with a
shock is isolated for plane shock waves in equilibrium flows, and so this problem is
the focus of this chapter. With modern computational methods it is straightforward
to directly simulate these one-dimensional shock dynamics, however, analytical
methods remain essential for physical insight, time-efficient solutions, and analysis
of experimental and computational data.

Many shock propagation theories have been developed over nearly a hundred years
of research. A common analytical approach is to specify the conservation equations
to the shock discontinuity and combine them with the Rankine-Hugoniot equations.
A single equation can be derived, and early formulations by Cassen and Stanton
(1948) and Chen and Gurtin (1971) showed how shock acceleration is determined
by the balance of the post-shock pressure gradient with geometric divergence or
chemical reaction, respectively. The resulting equation is often unnamed but some-
times referred to as the shock-change equation (Fickett and Davis, 1979) or as
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singular surface theory (Wright, 1976). A family of shock-change equations can be
derived that relate shock acceleration to a derivative of any post-shock flow variable
(Radulescu, 2020).

For one-dimensional equilibrium flows, predicting a shock’s motion from these
equations requires an additional condition on the post-shock flow, and this condition
is typically what distinguishes different shock propagation theories and determines
their accuracy for a given problem. Taylor (1939) developed a first theory by
approximating the post-shock pressure gradient as constant. Chandrasekhar (1943)
obtained a solution for weak shock pulses by assuming the velocity and sound speed
to be spatially linear. Friedrichs (1948) first solved the problem of a weak plane
shock decayed by a centered expansion in a perfect gas. This specific problem has
seen significant attention since it is the simplest formulation for a shock decayed
by an unsteady wave. Burnside and Mackie (1965) specifically analyzed the initial
decay rate of the shock. Ardavan-Rhad (1970) and Sharma et al. (1987) developed
models also assuming linearity of the post-shock velocity distribution. Fowles
(1960) derives a similar theory to Friedrichs using a Murnaghan equation of state.
For general one-dimensional shocks (planar, cylindrical, and spherical), Brinkley
and Kirkwood (1947) derived a second-order shock propagation equation using a
condition on the similarity of shock energy over time. Many other theories have
come from efforts to model the non-self-similar motion of blast waves when the
shock strength is finite and the upstream pressure is nonzero. These theories are not
reviewed here but are described in monographs by Korobeinikov (1991), Sachdev
(2004), and Lee (2016), which also discuss some of the other theories above.

The shock-change equation formalism was also used by Chester (1954), Chisnell
(1957), and Whitham (1958) to model the effect of a nonuniform upstream medium
on a shock’s motion, particularly due to quasi-one-dimensional area changes. They
neglected the coupling between the shock’s motion and the post-shock flow, which
is equivalent to assuming that all incoming𝐶+ characteristics originate from a region
of uniform flow. Whitham developed the theory into his shock dynamics (Whitham,
1999, Chapter 8) and identified that the method’s fundamental assumption is

𝜕𝑡𝑃 + 𝜌𝑎𝜕𝑡𝑢 = 0 (2.1)

at the shock front, where 𝑃 is the pressure, 𝜌 is the density, 𝑎 is the sound speed, and
𝑢 is the particle velocity. The approximation has enabled expedient and reasonably
accurate estimation of shock motion for a wide range of problems. However,
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for problems with rapid geometric expansion, such as in blast waves and shock
diffraction (Skews, 1967), coupling with the post-shock flow cannot be ignored
and so the accuracy of (2.1) is worse. The effect of incoming disturbances on
Chester-Chisnell-Whitham (CCW) theory was studied by Rośaciszewski (1960),
Oshima et al. (1965), and Yousaf (1974, 1982), and ad hoc methods (Ridoux et al.,
2019) have been developed to remedy this issue for numerical implementations of
geometric shock dynamics (Henshaw et al., 1986). Best (1991) sought to include
the effect of incoming disturbances by extending the approximation (2.1) to higher
orders.

Shock propagation theories are not limited to approximations on first-order post-
shock derivatives but can be formulated for any higher-order derivative. If a shock-
change equation is derived for each term in the series expansion of a dependent
variable, then an infinite hierarchy of equations can be obtained, and truncation of
the series expansion provides a sufficient condition to solve all lower-order equations.
Friedlander (1958) presents this theory in detail for sound pulses, where higher-order
equations provide corrections to geometric acoustics. Similarly, since geometric
shock dynamics is obtained from (2.1), Best (1991) derived higher-order corrections
using a series expansion in terms of

𝜕𝑛−1
𝑡 (𝜕𝑡𝑃 + 𝜌𝑎𝜕𝑡𝑢) = 0. (2.2)

An alternative approach is given by Sharma and Radha (1994), who use a series
expansion in space of the post-shock pressure, so that truncation at order 𝑛 is given
by

𝜕𝑛𝑥 𝑃 = 0. (2.3)

Although arbitrarily higher-order shock propagation equations can be derived, en-
abling in principle arbitrarily accurate solutions, the utility of these methods is lim-
ited because higher-order equations become exceedingly cumbersome to derive and
the accuracy achievable at any given order is not clear. Additionally, higher-order
equations require initial conditions at every lower order. These initial conditions
cannot be arbitrary, since they must be compatible with a series expansion of a
solution to the governing equations. Obtaining these initial conditions is itself a
difficult problem.

The difficulty of these higher-order theories is highlighted for the problem of plane
shock decay. Plane shock waves in a uniform medium can only decay from the
interaction with a simple wave, which entirely determines the resulting shock motion.
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In the simplest case, the wave is self-similar and centered, and a space-time diagram
for the interaction with a shock is shown in Figure 2.1. The shock interaction
generates a wave propagating along 𝐶− characteristics, which perturbs the post-
shock flow from purely the incident simple wave. For an arbitrary flow variable, 𝑞,
the perturbed quantity in the post-shock flow can be written simply as

𝑞 = 𝑞 (0) + 𝑞 (1) , (2.4)

where 𝑞 (0) is given by the unperturbed incident simple wave and 𝑞 (1) is the pertur-
bation. An infinite hierarchy of shock-change equations can be obtained by a series
expansion of 𝑞 at the shock front. The series expansion can be truncated to solve
the system of equations, however this introduces truncation error not only from the
perturbation, but also the incident wave. Instead, if only the series expansion for the
perturbation is truncated,

𝜕𝑛𝑥 𝑞
(1) = 0, (2.5)

then the system of equations can be solved including the effect of the unperturbed
simple wave at all orders. The problem is then reduced to identifying the appropriate
variable to use for 𝑞 and obtaining initial conditions for the perturbed wave. The
subject of this chapter is the development, implementation, and validation of this
theory for the decay of plane shocks.
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Figure 2.1: Space-time diagram of a shock decayed by a centered expansion wave.
This diagram was generated from numerical simulation results presented later in
this work for a Mach 3 shock and isentropic exponent 𝛾 = 1.4. 𝑋0 is the shock’s
initial distance from the origin, and 𝑎1 is the upstream sound speed.
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Since shock wave phenomena are important in many diverse media, an important
point is that theories using the shock-change equation formalism can be derived for
a general equation of state. This has been used before by some authors. Brinkley
and Kirkwood (1947) derive their theory for a general equation of state, Best (1991)
implements a Tait equation of state, and Singh and Arora (2021) applied Sharma &
Radha’s theory to a van der Waals gas. However, most prior work only considers
a perfect gas model. The theory presented in this chapter is derived for a general
equation of state.

The structure of this chapter is as follows. In Section 2.1, the problem of a shock
decayed by an arbitrary simple wave is formulated. From analysis of the simple
wave motion, it will be shown that an optimal truncation term is the second gradient
of velocity, 𝑢𝑥𝑥 , which is identically zero throughout a centered expansion in a
perfect gas. The shock-change equation for 𝑢𝑥𝑥 is derived in Section 2.2. The
derivation is developed by defining coefficients for each first-order shock-change
equation, which enables a compact presentation of the second-order results. The
second-order ordinary differential equation and strong and weak shock solutions are
discussed in Section 2.3. In order to implement the shock decay model for any given
simple wave interaction, the initial shock decay rate is required. A solution for the
perturbed initial condition is given in Section 2.4. Finally, Section 2.5 presents the
major results of this chapter, where the present model is compared with numerical
simulations and several prior theories.

2.1 Formulation
An initially steady plane shock wave decays when overtaken by a simple expansion
wave. The properties of the expansion wave determine the rate of decay of the shock
over time. Any simple wave can be modeled as having originated from the motion
of some piston. If a piston impulsively accelerates to speed 𝑢2 and impulsively stops
after time 𝜏p, then a shock with speed 𝑈0 is driven ahead of a centered expansion
wave that overtakes the shock at later time. Figure 2.1 depicts the resulting space-
time diagram for a Mach 3 shock, where the time when the piston stops is 𝑡 = 0.
Coordinates are scaled by the shock position when the piston stops, which is given
by

𝑋0 = (𝑈0 − 𝑢2)𝜏p. (2.6)

The space-time diagram shows the 𝐶− characteristics of the reflected wave. The
particle path drawn intersects the point at which the shock begins decaying and
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so bounds the region of nonuniform entropy behind the shock. The nonuniform
entropy and reflected wave perturb the incident simple wave.

The theory of simple waves is discussed in many books, e.g., Thompson (1972) and
Landau and Lifshitz (1987). The equations describing any simple wave for a general
equation of state are

𝑥 = (𝑢 + 𝑎(𝑢))𝑡 + 𝑓 (𝑢), (2.7)

d𝑢 − d𝑎
Γ − 1

= 0 on 𝐶− characteristics, (2.8)

where 𝑓 (𝑢) is some function that satisfies the boundary conditions given by the
piston motion and Γ is the fundamental derivative of gas dynamics (Thompson,
1971).

If the piston is impulsively stopped, then all characteristics are centered at the
stopping point and (2.7) becomes

𝑥 = (𝑢 + 𝑎(𝑢))𝑡. (2.9)

Equation (2.9) is also obtained asymptotically from (2.7) as 𝑡 → ∞, because on
a given 𝐶+ characteristic 𝑓 (𝑢) is constant and so becomes much smaller than
(𝑢 + 𝑎(𝑢))𝑡. Using (2.8), the velocity gradient in the centered wave is given by

𝑢𝑥 =
1
Γ𝑡
, (2.10)

which shows that 𝑢𝑥 is spatially uniform, except for any variation in Γ. If the medium
is a perfect gas, then Γ = (𝛾 + 1)/2 is constant, where 𝛾 is the ratio of specific heat
capacities, and the first and second velocity gradients are

𝑢𝑥 =
2

(𝛾 + 1)𝑡 (2.11)

𝑢𝑥𝑥 = 0. (2.12)

The second gradient, 𝑢𝑥𝑥 , is exactly zero everywhere throughout the wave. From
(2.8), it is straightforward to show that the second gradient of sound speed, 𝑎𝑥𝑥 , is
also zero everywhere. Second order derivatives of all other dependent variables are
nonzero. The temperature, pressure, and density throughout the wave are given by

𝑇 = 𝑇0

(
𝑎

𝑎0

)2
,

𝑃 = 𝑃0

(
𝑎

𝑎0

) 2𝛾
𝛾−1

,

𝜌 = 𝜌0

(
𝑎

𝑎0

) 2
𝛾−1

,

(2.13)
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where the subscript 0 denotes a reference state in the isentropic flow. For values of
𝛾 where 𝑛 = 2𝛾/(𝛾 − 1) is an integer, then the lowest-order gradients of 𝑇 , 𝑃, and
𝜌 to vanish are

𝜕3
𝑥𝑇 = 0, (2.14)

𝜕𝑛+1
𝑥 𝑃 = 0, (2.15)

𝜕𝑛−1
𝑥 𝜌 = 0. (2.16)

For 𝛾 = 5/3, 𝑛 = 5, and for 𝛾 = 7/5, 𝑛 = 7. In Best’s truncation term (2.2), partial
derivatives with respect to time are used. For all second order derivatives, including
mixed partials, only 𝑢𝑥𝑥 and 𝑎𝑥𝑥 are zero. This can be seen by suitably differentiating
(2.9) and (2.13).

For a centered expansion in a perfect gas, 𝑢𝑥𝑥 and 𝑎𝑥𝑥 can only be nonzero behind
a decaying shock due to the perturbation by reflected waves. The proposed model
is to neglect this perturbation and apply 𝑢𝑥𝑥 = 0 at the shock, which is a sufficient
condition to obtain a second-order shock propagation equation. The term 𝑢𝑥𝑥 is
chosen over 𝑎𝑥𝑥 due to the simpler derivation and because it is continuous through
jumps in the entropy gradient, such as across the particle path in figure 1.2. Note
that this model is only applied in the limit approaching the shock position from
behind, and so it is independent of discontinuities in 𝑢𝑥𝑥 , e.g., at the head of the
reflected wave.

For an arbitrary simple wave in a general medium, 𝑢𝑥𝑥 ≠ 0, and so this variation
must be accounted for. If Γ is not constant, then

𝑢𝑥𝑥

𝑢2
𝑥

= −Γ − 1
Γ

𝜕𝑎Γ, (2.17)

where 𝜕𝑎Γ is the variation of Γ with the equilibrium sound speed at constant entropy.
For many cases, (2.17) may be sufficiently small that it can be neglected, for example,
this will be shown for equilibrium air. In cases where this approximation cannot
be made, then the 𝑢𝑥𝑥 in the unperturbed incident wave must be evaluated for each
characteristic.

If the piston slows to a halt monotonically but its motion is otherwise general, then
𝑢𝑥 and 𝑢𝑥𝑥 are given by

𝑢𝑥 =
1

Γ𝑡 + 𝑓 ′(𝑢) , (2.18)

𝑢𝑥𝑥 = −
(
𝜕Γ

𝜕𝑎

����
𝑠

(Γ − 1)𝑡 + 𝑓 ′′(𝑢)
)
𝑢3
𝑥 , (2.19)
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and, for a perfect gas,
𝑢𝑥𝑥

𝑢2
𝑥

= − 𝑓 ′′(𝑢)
(𝛾 + 1)𝑡/2 + 𝑓 ′(𝑢) . (2.20)

By neglecting only the perturbation to 𝑢𝑥𝑥 by reflected waves, the unperturbed
value given by (2.20) can still be used to evaluate 𝑢𝑥𝑥 at the shock. However, as
discussed previously, the simple wave from a general piston deceleration rapidly
approaches the self-similar centered expansion as time advances. So, an additional
approximation is to still apply 𝑢𝑥𝑥 = 0 at the shock and use (2.20) to estimate the
additional induced error. This is equivalent to approximating the incident simple
wave as a centered expansion with an equivalent initial velocity gradient 𝑢𝑥 , which
determines the initial shock decay rate.

The tendency toward a self-similar solution is a feature of many fluid mechanics
problems, including shock propagation. Strong decaying shocks over sufficiently
large time approach a self-similar limit described by Zel’dovich and Raizer (1967).
In this limit, 𝑢𝑥𝑥 again equals zero, including behind the decaying shock, even
if 𝑢𝑥𝑥 ≠ 0 initially from a general piston motion and the reflected perturbation.
Uniformity of the velocity gradient in self-similar flows is a property discussed by
Pert (1980) and motivated the work by Sharma et al. (1987). Indeed, Chandrasekhar
(1943) and Ardavan-Rhad (1970) both also use similar models. The difference here
is that 𝑢𝑥𝑥 is assumed to be zero only at the shock front, and no assumptions are
made about the flow further behind the shock.

This shock decay model will be compared with numerical simulations to test the
three factors that cause 𝑢𝑥𝑥 to deviate from zero. First, simulations of shocks
decayed by a centered expansion in a perfect gas will evaluate the magnitude of the
perturbation by the shock interaction, since 𝑢(0)𝑥𝑥 = 0 exactly. Second, simulations of
shocks decayed by a centered expansion in equilibrium air will provide one example
of a general equation of state that significantly departs from a perfect gas. Third,
simulations of shocks decayed by the simple wave generated from the constant
deceleration of the piston will examine the departure from 𝑢

(0)
𝑥𝑥 = 0.

2.2 Shock-Change Equations
The aim of the following derivation is to obtain the shock-change equation that relates
plane shock motion with post-shock values of 𝑢𝑥𝑥 . Aspects of the derivation appear
in many previous articles, including recent work (Radulescu, 2020). However, other
than the main results, a useful feature of the present derivation is the formulation
of coefficients for each shock-change equation. These coefficients can be evaluated
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independent of any problem and provide a substantially more compact approach for
deriving higher-order shock-change equations for a general equation of state. In this
work, equilibrium flow is specified throughout because nonequilibrium phenomena,
such as vibrational relaxation or exothermic chemical reaction, are also coupled
with the shock motion. These effects are included in many shock-change equation
derivations (Fickett and Davis, 1979, Sharma and Radha, 1994), however they are
beyond the scope of the present work. Equilibrium flow assumes that the time scale
of these phenomena is either much greater or smaller than characteristic flow time
scales. Vincenti and Kruger (1965) describe equilibrium flows in detail.

The equations of motion for equilibrium flow in one dimension, neglecting diffusion
of mass, momentum, and energy, are

D𝜌
D𝑡

+ 𝜌 𝜕𝑢
𝜕𝑥

= 0, (2.21)

D𝑢
D𝑡

+ 1
𝜌

𝜕𝑃

𝜕𝑥
= 0, (2.22)

D𝑃
D𝑡

− 𝑎2 D𝜌
D𝑡

= 0, (2.23)

where 𝑎 is the equilibrium sound speed. An equation of state closes the system and
can be specified generally, for example, as 𝑎 = 𝑎(𝑃, 𝜌). It is useful as a first step to
combine the continuity and energy equation, which gives

D𝑃
D𝑡

+ 𝜌𝑎2 𝜕𝑢

𝜕𝑥
= 0. (2.24)

Consider a shock propagating with speed 𝑈 (𝑡) and position 𝑋 (𝑡) into an otherwise
uniform flow with conditions given by 𝑢1, 𝑃1, and 𝜌1, where subscript 1 denotes the
upstream state. The derivation in the case of a nonuniform upstream flow is given by
Schoeffler and Shepherd (2023). Although the shock is unsteady, the discontinuous
jump in flow variables can still be found by control volume analysis and is given
instantaneously at all time by the Rankine-Hugoniot equations,

𝜌2𝑤2 = 𝜌1𝑤1, (2.25)

𝑃2 + 𝜌2𝑤
2
2 = 𝑃1 + 𝜌1𝑤

2
1, (2.26)

ℎ2 + 𝑤2
2/2 = ℎ1 + 𝑤2

1/2, (2.27)

where subscript 2 denotes the post-shock state, ℎ is the enthalpy, and 𝑤 is the flow
velocity in the shock-fixed frame, i.e., 𝑤 = 𝑈 − 𝑢. With an equation of state, the
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Rankine-Hugoniot equations can be solved for the post-shock state, where each
quantity can be written generally as

𝑤2 = 𝑤2(𝑤1, 𝑃1, 𝜌1),
𝑃2 = 𝑃2(𝑤1, 𝑃1, 𝜌1),
𝜌2 = 𝜌2(𝑤1, 𝑃1, 𝜌1),
𝑎2 = 𝑎2(𝑃2, 𝜌2),

= 𝑎2(𝑤1, 𝑃1, 𝜌1).

(2.28)

Assuming 𝑢1 = 0, then 𝑤1 = 𝑈 (𝑡). Since 𝑤1 = 𝑈 (𝑡) is not constant, the post-shock
quantities are varying with time, and so the flow is nonuniform. The resulting
gradients behind the shock are described by the conservation equations, (2.22) and
(2.24), evaluated at the shock discontinuity, i.e.,

D𝑢
D𝑡

����
2
+ 1
𝜌2

𝜕𝑃

𝜕𝑥

����
2
= 0,

D𝑃
D𝑡

����
2
+ 𝜌2𝑎

2
2
𝜕𝑢

𝜕𝑥

����
2
= 0.

(2.29)

The time-variation of any post-shock variable can be obtained by differentiating
(2.28), e.g., for the post-shock pressure,

d𝑃2
d𝑡

=
𝜕𝑃2
𝜕𝑤1

¤𝑈 (𝑡), (2.30)

where ¤𝑈 (𝑡) is the shock acceleration. The partial derivative coefficient is only a
function of the shock Hugoniot and instantaneous shock speed. The time derivative
of the post-shock quantity 𝑃2 is equivalent to a total derivative of the field variable
evaluated at the shock’s position, 𝑃(𝑋 (𝑡), 𝑡), i.e.,

d𝑃2
d𝑡

=
𝜕𝑃

𝜕𝑡

����
2
+𝑈 (𝑡) 𝜕𝑃

𝜕𝑥

����
2
. (2.31)

This derivative is analogous to the material derivative in the conservation equations
and so is referred to here as a shock derivative. Material derivatives can be expressed
in terms of shock derivatives by

D
D𝑡

����
2
=

d
d𝑡

+ (𝑢2 −𝑈)
𝜕

𝜕𝑥

����
2
. (2.32)

Applying (2.32) to the (2.29) gives
d𝑢2
d𝑡

+ (𝑢2 −𝑈)𝑢𝑥,2 +
𝑃𝑥,2

𝜌2
= 0,

d𝑃2
d𝑡

+ (𝑢2 −𝑈)𝑃𝑥,2 + 𝜌2𝑎
2
2𝑢𝑥,2 = 0,

(2.33)
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where subscript notation has been adopted for partial differentiation. The equa-
tions can now be combined to eliminate either the pressure or velocity gradient.
Eliminating the pressure gradient and simplifying gives

d𝑃2
d𝑡

+ 𝜌2𝑤2
d𝑢2
d𝑡

+ 𝜌2𝑎
2
2𝜂𝑢𝑥,2 = 0, (2.34)

where

𝜂 = 1 −
𝑤2

2

𝑎2
2
. (2.35)

The shock derivatives can be expanded in terms of the shock acceleration by differ-
entiating (2.28) as shown in (2.30). Equation (2.34) becomes

𝑢𝑥,2 = − 1
𝜌2𝑎

2
2𝜂

[
𝜕𝑃2
𝜕𝑤1

+ 𝜌2𝑤2
𝜕𝑢2
𝜕𝑤1

]
¤𝑈. (2.36)

This result can be expressed compactly as

𝑢𝑥,2 = 𝐹 ¤𝑀, (2.37)

where ¤𝑀 = ¤𝑈/𝑎1 and

𝐹 = − 𝑎1

𝜌2𝑎
2
2𝜂

[
𝜕𝑃2
𝜕𝑤1

+ 𝜌2𝑤2
𝜕𝑢2
𝜕𝑤1

]
. (2.38)

The coefficient 𝐹 is dimensionless and only a function of the shock Hugoniot.
Equation (2.37) represents one of a family of shock-change equations that relate
first-order derivatives of post-shock flow variables with the shock acceleration. All
first-order shock-change equations can be expressed similarly in terms of a coefficient
multiplying the shock acceleration to give any post-shock flow derivative.

Shock-change equations for all other post-shock flow derivatives can be derived using
(2.37). The equation for the pressure gradient can be derived from the momentum
equation (2.22),

1
𝜌1𝑎1

𝜕𝑃

𝜕𝑥

����
2
= − 𝜌2

𝜌1𝑎1

D𝑢
D𝑡

����
2
,

= − 𝜌2
𝜌1𝑎1

[
d𝑢2
d𝑡

− 𝑤2
𝜕𝑢

𝜕𝑥

����
2

]
,

= −𝜌2
𝜌1

[
𝜕𝑢2
𝜕𝑤1

− 𝑤2
𝑎1
𝐹

]
¤𝑀,

= 𝐺 ¤𝑀,

(2.39)

where𝐺 is the corresponding coefficient for the pressure gradient. The shock-change
equation for the density gradient can be obtained from (2.21) and is
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𝑎1
𝜌1

𝜕𝜌

𝜕𝑥

����
2
= 𝐻 ¤𝑀, (2.40)

𝐻 =
𝑎1
𝜌1𝑤2

(
𝑎1
𝜕𝜌2
𝜕𝑤1

+ 𝜌2𝐹

)
. (2.41)

With 𝐺 and 𝐻, coefficients for any other thermodynamic quantities can be derived
using the equation of state. For example, the sound speed gradient is given by

𝜕𝑎

𝜕𝑥

����
2
= 𝐸 ¤𝑀, (2.42)

𝐸 = 𝜌1𝑎1
𝜕𝑎

𝜕𝑃

����
2
𝐺 + 𝜌1

𝑎1

𝜕𝑎

𝜕𝜌

����
2
𝐻, (2.43)

where the partial derivative coefficients are thermodynamic functions.

All of the above are first-order shock-change equations. By differentiating the
conservation equations, a similar procedure of substitution can be used to obtain
higher-order shock-change equations. The gradients of (2.22) and (2.24) are

𝜕

𝜕𝑥

(
D𝑢
D𝑡

+ 1
𝜌

𝜕𝑃

𝜕𝑥

)
= 0, (2.44)

𝜕

𝜕𝑥

(
D𝑃
D𝑡

+ 𝜌𝑎2 𝜕𝑢

𝜕𝑥

)
= 0. (2.45)

Expanding the derivatives gives

𝑢𝑡𝑥 + 𝑢2
𝑥 + 𝑢𝑢𝑥𝑥 −

1
𝜌2 𝜌𝑥𝑃𝑥 +

1
𝜌
𝑃𝑥𝑥 = 0, (2.46)

𝑃𝑡𝑥 + 𝑢𝑥𝑃𝑥 + 𝑢𝑃𝑥𝑥 + 𝜌𝑥𝑎2𝑢𝑥 + 2𝜌𝑎𝑎𝑥𝑢𝑥 + 𝜌𝑎2𝑢𝑥𝑥 = 0, (2.47)

and by re-expressing time derivatives as shock derivatives we have

d𝑢𝑥
d𝑡

− 𝑤𝑢𝑥𝑥 + 𝑢2
𝑥 −

1
𝜌2 𝜌𝑥𝑃𝑥 +

1
𝜌
𝑃𝑥𝑥 = 0, (2.48)

d𝑃𝑥
d𝑡

− 𝑤𝑃𝑥𝑥 + 𝑢𝑥𝑃𝑥 + 𝜌𝑥𝑎2𝑢𝑥 + 2𝜌𝑎𝑎𝑥𝑢𝑥 + 𝜌𝑎2𝑢𝑥𝑥 = 0. (2.49)

Eliminating 𝑃𝑥𝑥 gives a single equation,

d𝑃𝑥
d𝑡

+ 𝜌𝑤d𝑢𝑥
d𝑡

+ 𝜌𝑤𝑢2
𝑥 −

𝑤

𝜌
𝜌𝑥𝑃𝑥 + 𝑢𝑥𝑃𝑥

+ 𝜌𝑥𝑎2𝑢𝑥 + 2𝜌𝑎𝑎𝑥𝑢𝑥 + (𝜌𝑎2 − 𝜌𝑤2)𝑢𝑥𝑥 = 0. (2.50)
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The shock derivatives of post-shock gradients can be found from differentiating the
first-order shock-change equations, i.e.,

1
𝜌1𝑎1

d𝑃𝑥,2
d𝑡

= 𝐺′ ¤𝑀2 + 𝐺 ¥𝑀, (2.51)

d𝑢𝑥,2
d𝑡

= 𝐹′ ¤𝑀2 + 𝐹 ¥𝑀, (2.52)

where ¥𝑀 is the second time derivative of the shock Mach number, and 𝐹′ and 𝐺′

are
𝐹′ =

d𝐹
d𝑀

, 𝐺′ =
d𝐺
d𝑀

. (2.53)

Therefore, by replacing all post-shock gradients with their corresponding shock-
change equation and grouping terms, equation (2.50) can be simply expressed as

¥𝑀 + 𝐾 ¤𝑀2 + 𝐿𝑎1𝑢𝑥𝑥,2 = 0, (2.54)

where 𝐾 and 𝐿 are second-order shock-change coefficients given by

𝐾 =

[
𝐺′ + 𝑀𝐹′ + 𝑀𝐹2 −

𝜌2
1

𝜌2
2
𝑀𝐺𝐻

+ 𝐹𝐺 +
𝑎2

2

𝑎2
1
𝐻𝐹 + 2

𝜌2𝑎2
𝜌1𝑎1

𝐸𝐹

]
(𝐺 + 𝑀𝐹)−1, (2.55)

𝐿 =
𝜌2𝑎

2
2

𝜌1𝑎
2
1
𝜂(𝐺 + 𝑀𝐹)−1. (2.56)

Similar to the first-order results, 𝐾 and 𝐿 are dimensionless and valid for an arbitrary
equation of state, where the only assumption has been that the flow is in thermo-
dynamic equilibrium. Equation (2.54) is the desired second-order shock-change
equation for 𝑢𝑥𝑥 .

Sharma and Radha (1994) instead formulate a second-order shock-change equation
in terms of 𝑃𝑥𝑥 , and Best (1991) uses 𝜕𝑡 (𝑃𝑡 + 𝜌𝑎𝑢𝑡). These equations can be derived
using (2.54). To obtain the equation for 𝑃𝑥𝑥,2, (2.54) is substituted into (2.48), which
gives upon simplification

¥𝑀 + 𝐽 ¤𝑀2 + 𝑁 𝑃𝑥𝑥,2
𝜌1

= 0, (2.57)
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where the coefficients are

𝐽 =

𝐹′ + 𝑀 𝜌1𝐾

𝜌2𝐿
+ 𝐹2 −

𝜌2
1

𝜌2
2
𝐺𝐻

𝐹 + 𝜌1𝑀

𝜌2𝐿

, (2.58)

𝑁 =
𝜌1
𝜌2

(
𝐹 + 𝜌1

𝜌2

𝑀

𝐿

)−1
. (2.59)

The coefficients for Best’s formulation are more complex and therefore derived
separately in Appendix A.2.5.

For a perfect gas, the equation of state is given by the ideal gas law, and the heat
capacities are constant. All of the shock-change coefficients can be re-expressed as
functions of only 𝑀 and 𝛾. Some of the coefficients are given here explicitly,

𝐹 = − 2
𝛾 + 1

3𝑀2 + 1
𝑀 (𝑀2 − 1)

, (2.60)

𝐺 = − 2(𝑀2 + 1)
(𝛾 − 1)𝑀2 + 2

− 2(3𝑀2 + 1)
(𝛾 + 1) (𝑀2 − 1)

, (2.61)

𝐻 = −2(𝛾 + 1)𝑀2(3(𝛾 − 1)𝑀4 − (𝛾 − 3)𝑀2 + 2(𝛾 + 2))
(𝑀2 − 1) ((𝛾 − 1)𝑀2 + 2)3 , (2.62)

𝐾 =
−3𝑀 ((9𝛾 − 7)𝑀4 + 10(𝛾 + 1)𝑀2 − 3𝛾 + 13)
(𝑀2 − 1) ((7𝛾 − 5)𝑀4 + 2(𝛾 + 5)𝑀2 − 𝛾 + 3)

, (2.63)

𝐿 = − (𝛾 + 1) (𝑀2 − 1)2((𝛾 − 1)𝑀2 + 2)
2(7𝛾 − 5)𝑀4 + 4(𝛾 + 5)𝑀2 − 2𝛾 + 6

. (2.64)

The coefficient for the sound speed gradient, 𝐸 , can be obtained from (2.43) using
the perfect gas equation of state,

𝑎 =
√︁
𝛾𝑃/𝜌. (2.65)

Using the above formulae, Figure 2.2 plots the coefficients for varying 𝑀 and 𝛾.
Except for 𝐸 , all of the coefficients are uniformly negative. 𝐸 crosses zero for
some value of 𝑀 and 𝛾, which means that when a shock decays through this Mach
number, the sound speed gradient changes sign from negative to positive. Except
for 𝐿, all of the coefficients exhibit an inverse dependence on 𝑀 , tending toward
negative infinity as 𝑀 → 1. This is, of course, partially a consequence of how we
have chosen to define the coefficients. They could have instead been defined so that
their product with the a flow gradient gives the shock acceleration. In Figure 2.2(e),
the inverse dependence of 𝐾 on 𝑀 is particularly striking, with curves for different 𝛾
nearly indistinguishable. To see this better, 𝐾−1 is plotted in Figure 2.3, illustrating
that it is nearly linear in its dependence on 𝑀 with slopes converging as 𝑀 → 1.
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Figure 2.2: Shock-change coefficients in a perfect gas for a range of 𝑀 and 𝛾.
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Figure 2.3: 𝐾−1 for a range of 𝑀 and 𝛾.

2.3 Shock Decay Model
For a known incident simple wave, the unperturbed second velocity gradient 𝑢(0)

𝑥𝑥,2
can be used to close the shock-change equation (2.54) and solve for the shock Mach
number time evolution. As discussed in Section 2.1, 𝑢(0)

𝑥𝑥,2 = 0 exactly for centered
expansion waves in a perfect gas and can be applied as a model for arbitrary simple
waves with a general equation of state. By applying this to (2.54), then the following
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shock propagation equation is obtained

¥𝑀 + 𝐾 ¤𝑀2 = 0,

𝑀 (0) = 𝑀0,

¤𝑀 (0) = ¤𝑀0,

(2.66)

where 𝐾 = 𝐾 (𝑀) is given by (2.55) for a general equation of state and (2.63) for
a perfect gas. The system of equations (2.66) describes an initial value problem,
which can be numerically integrated for known initial conditions and equation of
state to obtain the solution 𝑀 (𝑡).

For a perfect gas, the near linear behavior of 𝐾−1 in Figure 2.3 suggests approxi-
mating it as

𝐾 ≈ 𝐾 (𝑀0)
𝑀0 − 1
𝑀 − 1

, (2.67)

where 𝐾 (𝑀0) is the value of 𝐾 at the initial condition. With this approximation,
(2.66) can be integrated analytically, and the solution is

𝛿(𝑡) = 1
(1 + 𝛽𝑡/𝛼)𝛼 ,

𝛿(𝑡) = 𝑀 (𝑡) − 1
𝑀0 − 1

, 𝛽 =
− ¤𝑀0
𝑀0 − 1

, 𝛼 = − 1
𝐾 (𝑀0) (𝑀0 − 1) + 1

.

(2.68)

The solution has the functional form of a power law, where the exponent 𝛼 is
determined by the function 𝐾 . 𝛽 is the initial shock decay rate and provides the time
scale for the shock’s evolution.

The shock decay model (2.66) was integrated for a range of initial shock Mach
numbers and 𝛾 using a fourth order Runge-Kutta scheme. The results are shown
in Figure 2.4 with the power-law approximation (2.68), where the time coordinate
is scaled by the initial shock acceleration. Compared with numerically integrating
(2.66), the approximate solution (2.68) is reasonably accurate with errors larger
for increasing 𝛾 and 𝑀0. For 𝑀0 = 10 and 1 ≤ 𝛾 ≤ 5/3, the error given by the
approximate solution when 𝛿 = 0.4 is less than 1.4%, and when 𝛿 = 0.2 it is less
than 4.7%. Values for the power law exponent, 𝛼, are plotted in Figure 2.5.

The shock acceleration can be obtained by differentiating (2.68) and is

¤𝑀
𝑀0 − 1

=
−𝛽

(1 + 𝛽𝑡/𝛼)𝛼+1 (2.69)

𝜏d =

(
− ¤𝑀
𝑀 − 1

)−1

=
1
𝛽
+ 𝑡

𝛼
. (2.70)
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Figure 2.4: Shock decay model and its power-law approximate solution for a perfect
gas with (a) 𝛾 = 1.2, (b) 𝛾 = 1.4, and (c) 𝛾 = 1.6.
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Figure 2.5: Variation in 𝛼 with 𝑀 and 𝛾.

The time scale of local unsteadiness for a particle processed by the decaying shock
is given by 𝜏d. Equation (2.70) shows that 𝜏d increases linearly with time as the
shock decays.

The weak shock limit for 𝛼 is obtained from a series expansion about 𝑀0 = 1 and is

𝛼 =
1
2
+𝑂 ((𝑀0 − 1)4). (2.71)

The leading-order term is the 1/2 power that is well known to be the solution for
weak shock decay from Friedrichs (1948). Notably, this approximation is good to
four orders in (𝑀0 − 1) and independent of 𝛾.

The strong shock limit, 1/𝑀0 → 0, gives

𝛼 =
7𝛾 − 5

4(5𝛾 − 4) +𝑂 (𝑀−2
0 ), (2.72)
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where in this case 𝛿 = 𝑀/𝑀0 and 𝛽 = − ¤𝑀0/𝑀0.

The power-law approximation has important correspondence with self-similar the-
ories. Self-similar solutions typically apply in some asymptotic limit for a given
problem (Barenblatt and Zel’dovich, 1972). For strong shocks, in the limit of large
time, when 𝛽𝑡/𝛼 ≫ 1, the typical formulation of self-similar shock propagation is
obtained,

𝑀 ∼ 𝐴𝑡−𝛼, (2.73)

where 𝐴 = 𝑀0(𝛽/𝛼)−𝛼 and 𝛼 is interpreted as the similarity exponent. In our model,
𝛼 for strong shocks is given by (2.72), which provides a good approximation for the
similarity exponents reported by Zel’dovich and Raizer (1967) for the problem of an
impulsive load (note that the exponent is defined differently here). The agreement is
not surprising since the self-similar solution results in 𝑢𝑥𝑥 = 0, so the assumptions
of the present model will yield exact results for such cases. This suggests that the
general formulation for 𝐾 could be used to obtain similarity exponents for other
equations of state by examining the limit of 𝑀 → ∞.

2.4 Initial Shock Decay Rate
When a simple wave first overtakes an initially steady shock, then the initial shock
acceleration, ¤𝑀0, is required to implement the shock decay model (2.66). This
quantity is not generally known and must be estimated. Rough estimates can be
obtained by using a first-order shock-change equation with a gradient in the incident
simple wave, however the first-order gradient is instantaneously perturbed by the
interaction. A clear illustration of this is to compare the velocity and pressure
gradients for a given shock acceleration, which cannot simultaneously match the
gradients in the simple wave. The ratio of the pressure gradient to the velocity
gradient in the incident simple wave is

1
𝜌1𝑎1

𝑃𝑥

𝑢𝑥
=
𝜌2𝑎2
𝜌1𝑎1

, (2.74)

and the ratio behind a shock is

1
𝜌1𝑎1

𝑃𝑥

𝑢𝑥
=
𝐺

𝐹
. (2.75)

These two quantities are generally not equal. For moderate strength shocks in gases
with 1 ≤ 𝛾 ≤ 5/3, then

𝐺

𝐹

𝜌1𝑎1
𝜌2𝑎2

> 1, (2.76)
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which increases for greater 𝑀 and smaller 𝛾. Clearly, both the pressure and velocity
gradients behind a decaying shock wave cannot be simultaneously matched to the
incident gradients of a simple wave. The wave reflected by the interaction is
necessary to match flow gradients with the values given by shock-change equations.
The initial gradients are perturbations of the incident values.

The perturbed post-shock state can be modeled as

𝑢 = 𝑢(0) + 𝑢(1) ,
𝑃 = 𝑃(0) + 𝑃(1) ,

(2.77)

where superscript (0) terms describe the incident simple wave, and superscript (1)
terms describe the perturbation by the reflected wave. 𝑢 and 𝑃 are the flow variables
in the general region behind the shock. The approximation is that 𝑢(0) ≫ 𝑢(1) and
𝑃(0) ≫ 𝑃(1) . Then, to leading order, the 𝐶+ characteristic equation is (Landau and
Lifshitz, 1987, §104)[

𝜕

𝜕𝑡
+ (𝑢(0) + 𝑎 (0)) 𝜕

𝜕𝑥

] (
𝑢(1) + 𝑃(1)

𝜌(0)𝑎 (0)

)
= 0, (2.78)

and so gradients along 𝐶+ characteristics are given by

𝑢
(1)
𝑥 + 𝑃

(1)
𝑥

𝜌(0)𝑎 (0)
− 𝑃(1)

(𝜌(0)𝑎 (0))2
𝜕𝜌(0)𝑎 (0)

𝜕𝑥
= 0. (2.79)

When the simple wave initially overtakes the shock, the reflected wave only perturbs
the derivatives of post-shock flow variables, so that at the shock

𝑢
(1)
2 = 0,

𝑃
(1)
2 = 0,

(2.80)

and (2.79) becomes

𝑢
(1)
𝑥,2 +

𝑃
(1)
𝑥,2

𝜌2𝑎2
= 0. (2.81)

The perturbation (2.77) can be applied to the shock-change equations, giving

𝐹 ¤𝑀 = 𝑢
(0)
𝑥,2 + 𝑢

(1)
𝑥,2 , (2.82)

𝜌1𝑎1𝐺 ¤𝑀 = 𝑃
(0)
𝑥,2 + 𝑃(1)

𝑥,2 . (2.83)

From a 𝐶− characteristic through the simple wave, the unperturbed gradients are
related by

𝑢
(0)
𝑥,2 −

𝑃
(0)
𝑥,2

𝜌2𝑎2
= 0 . (2.84)
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Equations (2.81) and (2.84) can be used to eliminate the pressure gradient terms
from (2.83), which gives

𝜌1𝑎1𝐺 ¤𝑀 = 𝜌2𝑎2(𝑢(0)𝑥,2 − 𝑢
(1)
𝑥,2), (2.85)

and (2.85) can be combined with (2.82) to eliminate the perturbation term, 𝑢(1)
𝑥,2 . The

result is
1
2

(
𝐹 + 𝜌1𝑎1

𝜌2𝑎2
𝐺

)
¤𝑀 = 𝑢

(0)
𝑥,2 . (2.86)

For a given simple wave incident upon a shock with initial velocity gradient 𝑢(0)
𝑥,2 , the

shock-change equation (2.86) can be used to compute the initial shock acceleration,
where the resulting velocity and pressure gradients are consistent with an acoustic
perturbation to the incident simple wave. It is convenient to express (2.86) with a
new coefficient,

𝐵 =
1
2

(
𝐹 + 𝜌1𝑎1

𝜌2𝑎2
𝐺

)
, (2.87)

the inverse of which is plotted in figure 2.6 for a perfect gas with various 𝛾.
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Figure 2.6: 𝐵−1 for a range of 𝑀 and 𝛾.

Equation (2.86) can be used to calculate the initial shock decay rate, 𝛽, defined by
(2.68). For a centered wave in a perfect gas, 𝑢(0)

𝑥,2 is given by (2.11), where 𝑡 is the
time when the wave first intersects the shock. Figure 2.7 plots 𝛽 for various 𝛾.

2.5 Numerical Simulations
2.5.1 Methods
Numerical simulations were performed using the open-source finite-volume CFD
toolbox OpenFOAM-9 (Greenshields, 2021) and the solvers implemented in the
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Figure 2.7: Variation in 𝛽 with 𝑀 and 𝛾, where 𝛽 is given by (2.68).

library blastFoam-5 (Heylmun et al., 2021). The equations of motion are solved in
conservative form, so that the tracked variables are {𝜌, 𝑢, 𝑒}. Fluxes are interpolated
using the scheme by Kurganov et al. (2001) and limited using the functions by
van Albada et al. (1997) and van Leer (1974). Second-order Runge-Kutta time
integration was used. Various validation cases are included in the blastFoam library,
including the relevant test problem of interacting blast waves from Woodward and
Colella (1984).

For simulations of centered expansion waves, the initial condition corresponds with
the time when the piston impulsively stops, 𝑡 = 0, as described in section 2.1. At
this time, post-shock conditions for 𝑃, 𝑇 , and 𝑢 are uniform from the left domain
boundary, 𝑥 = 0, up to the shock position at 𝑥 = 1. A zero velocity boundary
condition at 𝑥 = 0 causes a centered expansion to form as time advances.

For all simulations, the grid resolution was 2.5 · 103 cells per unit length, i.e., the
initial distance of the shock from the left boundary. Time steps were adjusted to
preserve a maximum Courant number of 0.25. Time steps were written to file at a
rate adjusted based on the expected initial shock acceleration. The criterion chosen
was 𝛽Δ𝑡 = 0.001, where Δ𝑡 is the sampling interval. Simulations were run until
shocks had decayed to approximately 𝛿 = 0.4. The domain lengths were adjusted
accordingly. Typical simulation domains were 5 · 104 cells with 3 · 103 time steps
written to file. A grid-resolution study including post-processing methods was
performed for 𝑀 = 10 and 𝛾 = 1.4 for resolutions up to 104 per unit length and
confirmed grid independence of the results.

Shock speeds were measured from simulation results using a cross-correlation al-
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gorithm. For every pair of sampled time steps, the cross-correlation of the pressure
gradient was computed, and the resulting correlation peak provides an estimate for
the shock displacement. Because the numerical shock profile approximates an error
function, pressure gradients and their cross correlation are accurately modeled by
a Gaussian. Hence, the computed cross-correlations were fit to a Gaussian of the
form

𝑓 (𝑥) = 𝑎e𝑏(𝑥−𝑥0)2
, (2.88)

where 𝑎, 𝑏, and 𝑥0 are fit parameters. 𝑥0 provides a sub-grid-resolution estimate
for the shock displacement. This algorithm was chosen for giving much less noisy
data than, for example, computing the shock speed from the post-shock pressure or
directly differentiating shock position data. Figure 2.8 illustrates the algorithm. In
(a), two pressure gradients are shown, and their cross-correlation is fit to a Gaussian
in (b).
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Figure 2.8: Example of shock displacement calculation using cross correlation of
pressure gradients.

In order to quantify residual terms in the second-order shock-change equation (2.54),
it was necessary to compute ¥𝑀 , which requires numerically differentiating 𝑀 twice.
This is prone to significant noise, so a smoothing algorithm was employed. Data for
𝑀 were smoothed using the Whitaker smoother as described by Eilers (2003). This
algorithm was chosen because it does not require interpolation at domain boundaries
and so distortion is reduced when compared to other common smoothers. Distortion
is nonetheless nonzero, so for estimation of the initial shock acceleration, ¤𝑀0, a cubic
polynomial was fit to the first 100 points of 𝑀 , and its derivative was evaluated at
the time when the shock begins decaying.



38

The decay model (2.66) was solved numerically using a fourth-order Runge-Kutta
integrator, where ¤𝑀0 was computed using (2.86). For perfect gas calculations, 𝐾
is given by (2.63). For calculations of strong shock waves in equilibrium air, 𝐾
is given by (2.55), and all shock-change coefficients were computed using Cantera
(Goodwin et al., 2021) and the Shock and Detonation Toolbox (Kao et al., 2020).
This was done by computing the equilibrium post-shock state for a range of shock
speeds, and numerically differentiating the resulting data.

Thermodynamics for equilibrium air composed of 21% O2 and 79% N2 were com-
puted with Cantera using the ninth-order polynomials given by McBride et al. (2002)
including ionic species. For implementation of equilibrium air in OpenFOAM, the
equation of state was specified using tabular look-up methods available in blast-
Foam, where 𝑃 and 𝑇 are given in terms of tabular data of 𝜌 and 𝑒. The data tables
were generated using Cantera.

2.5.2 Centered Expansion in a Perfect Gas
The time evolution of velocity, pressure, and their gradients is shown in figure 2.9
for a representative case with 𝑀0 = 7 and 𝛾 = 1.4. Artifacts in the gradients
at the shock front were eliminated by downsampling the data by a factor of five
before computing the gradient. The leftmost contour corresponds to a time just
before the expansion wave is incident upon the shock, and subsequent contours are
after the shock has begun decaying. The interaction reflects a left-propagating wave
along𝐶− characteristics, which introduces kinks in the velocity and pressure profiles.
Although not obvious from (a) and (c), they are apparent in the velocity and pressure
gradients in (b) and (d) as step discontinuities. This discontinuity propagates along
the leading characteristic of the reflected wave and in (b) is not to be mistaken for a
small numerical artifact that is apparent in early profiles. The pressure gradient in (d)
shows a kink between the step discontinuity and the shock front, which corresponds
to the particle path that bounds the region of nonuniform entropy. These features in
both the velocity and pressure profiles are clearly weak compared with the gradients
introduced by the incident centered wave, which is consistent with the claim made
in section 2.4 that they can be modeled as perturbations.

The initial shock acceleration, ¤𝑀0, was measured from simulation results and com-
pared with the value predicted using three estimates. The relative error of these
three estimates is shown in figure 2.10 for three values of 𝛾 and 𝑀0 ranging from
1.5 to 10, where the relative error is given by ¤𝑀0,est/ ¤𝑀0,sim − 1. As discussed in
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Figure 2.9: Early evolution of velocity, pressure, and their gradients for 𝑀0 = 7
and 𝛾 = 1.4. The leftmost profile corresponds to 𝑡 = 0.381√𝛾, just prior to wave
incidence, and Δ𝑡 = 0.127√𝛾 between each subsequent profile.

section 2.4, 𝑢(0)
𝑥,2 and 𝑃(0)

𝑥,2 are the velocity and pressure gradients in the incident
centered expansion, unperturbed by the reflected wave from the interaction with the
shock. Using these quantities and their shock-change equations directly introduces
significant error for small 𝛾 and large 𝑀0. The method described in section 2.4 uses
the shock-change coefficient, 𝐵, that takes into account the effect of a weak acoustic
perturbation and is effectively an average of the two other methods. The result is
that 𝑢(0)

𝑥,2/𝐵 is a consistently more accurate prediction of ¤𝑀0. The average error is
uniformly 0.5%, and this is attributed in part to the numerical methods.

In Figure 2.11 results from a simulation for 𝑀0 = 3 and 𝛾 = 1.4 are used to evaluate
the accuracy of various theories from prior work including the new model given
by (2.66). Solutions by Chandrasekhar (1943), Brinkley and Kirkwood (1947),
Friedrichs (1948), Sharma et al. (1987), Best (1991), and Sharma and Radha (1994)
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Figure 2.10: Estimates of ¤𝑀0 using shock-change equations with unperturbed gra-
dients in incident simple wave compared with values measured from numerical
simulations.

are plotted. Details on implementation of these theories are described in Appendix
A.2. It is important to note that, except for Friedrichs (1948) and Sharma et al.
(1987), all theories require the initial shock acceleration to be known, so the solu-
tion (2.86) was used for this. Clearly, the present model is most accurate, nearly
indistinguishable from the simulation results. Theories by Chandrasekhar (1943)
and Brinkley and Kirkwood (1947) are both also quite accurate, and so they are com-
pared with the present model and simulation results for a stronger shock, 𝑀0 = 7,
in Figure 2.12. In this case, the other models begin to diverge from the simulation
results, but the present model still closely agrees.

The present model is compared to three simulation cases in Figure 2.13 with𝑀0 = 3,
𝑀0 = 6, and 𝑀0 = 9 for 𝛾 = 1.4. The time-evolution of the relative error between
the model and simulation, given by 𝑀model/𝑀sim − 1, is shown in (b). Shock decay
is slightly faster for the model, such that errors are uniformly negative. For 𝑀0 = 3,
it appears that the error approaches a constant value, but for 𝑀0 = 6 and 𝑀0 = 9 it
is still increasing in magnitude. Although the duration in time of each simulation is
not the same, they capture the same amount of shock decay, 𝛿 = 0.4.

Since errors are largest at final simulation time, they are plotted in Figure 2.14 for all
simulated cases. The dependence on 𝛾 is shown with additional data for 𝑀0 = 7 in
(b). Error is larger for smaller 𝛾 and increasing 𝑀0. For shock decay up to 𝛿 = 0.4,
error for 𝛾 = 1.2 is less than 3%, error for 𝛾 = 1.4 is less than 2%, and error for
𝛾 = 1.6 is less than 1%. For 𝑀0 = 7, error is nearly 7% for 𝛾 = 1.01.

Other than the estimate for ¤𝑀0, the only assumption in the model is that 𝑢𝑥𝑥,2 = 0, and
so the nonzero errors in Figure 2.14 illustrate that this is not exactly true. Although
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Figure 2.11: Comparison of various theories for the decay of a 𝑀0 = 3 and 𝛾 = 1.4
shock with simulation results and our model.
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Figure 2.12: Comparison for the decay of a 𝑀0 = 7 and 𝛾 = 1.4 shock.

𝑢𝑥𝑥,2 = 0 in the initial centered expansion, the interaction with the shock generates
a perturbation to the flow resulting in a nonzero value for 𝑢𝑥𝑥,2. The shock-change
equation for 𝑢𝑥𝑥,2 (2.54) is analytically exact, and so can be used to compute the
magnitude of the perturbation from simulation data. In Figure 2.15, the terms of
(2.54) are plotted for the simulation case 𝑀0 = 7 and 𝛾 = 1.4, where 𝐾 is computed
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Figure 2.13: Time-evolution of (a) 𝑀 from numerical simulations and model pre-
dictions and (b) model error. All cases are for 𝛾 = 1.4.
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Figure 2.14: Relative error in model prediction for 𝑀 at end of simulated time,
corresponding to 𝛿 = 0.4. Dependence on 𝛾 is shown with more data in (b) for
𝑀0 = 7.

using the simulated 𝑀 . In (a), ¥𝑀 and −𝐾 ¤𝑀2 are nearly indistinguishable. From
(2.54), their difference is the residual term 𝑎1𝐿𝑢𝑥𝑥,2, which is plotted in (b) and
shows a small nonzero value initially, before rapidly decreasing to near zero. The
initial magnitude of the terms in (a) is roughly twenty times greater than the initial
value in (b), which shows that the perturbation is small compared to the terms in (a)
and illustrates why the approximation 𝑢𝑥𝑥,2 = 0 produces such accurate predictions
of the shock propagation.

The exact shock-change equation (2.54) can be reformulated to obtain a small



43

0 1 2 3 4
t

0

2

4

6

8
(a)

M̈
−KṀ2
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Figure 2.15: Terms from second-order shock-change equation (2.54) evaluated from
simulation data for 𝑀0 = 7 𝛾 = 1.4, where quantities are nondimensionalized using
time scale 𝑋0/𝑎1.

parameter in terms of 𝑢𝑥𝑥,2,

¥𝑀 + 𝐾 ¤𝑀2 (1 + 𝜖) = 0, (2.89)

𝜖 = 𝑎1
𝐿𝑢𝑥𝑥,2

𝐾 ¤𝑀2 . (2.90)

Now, the model 𝑢𝑥𝑥,2 = 0 can be considered the limit of 𝜖 ≪ 1. The maximum
value for 𝜖 is at time 𝑡 = 0 when the perturbation is strongest. This is estimated
from simulation data and plotted in Figure 2.16, which shows that 𝜖 is largest for
decreasing 𝛾 and increasing 𝑀0, consistent with the errors in Figure 2.14.
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Figure 2.16: Maximum value of 𝜖 , which quantifies the perturbation by the reflected
wave.

In contrast, for the analogous formulations used by Best (1991) and Sharma and
Radha (1994), where the equivalent residual term is defined by 𝜕𝑡 (𝑃𝑡 + 𝜌𝑎𝑢𝑡) and
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𝑃𝑥𝑥 , respectively, the residual term is never small because the gradients are never
small in the incident simple wave, regardless of the reflected perturbation. For
example, the equation for 𝑃𝑥𝑥,2 is

¥𝑀 + 𝐽 ¤𝑀2 (1 + 𝜖) = 0 (2.91)

𝜖 =
𝑁𝐹2

𝐽

𝑃𝑥𝑥,2

𝜌1𝑢
2
𝑥,2
. (2.92)

In a centered expansion in a perfect gas, 𝑃𝑥𝑥,2 at the head of the wave is given by

𝑃𝑥𝑥,2

𝜌1
=
𝛾 + 1

2
𝜌2
𝜌1
𝑢2
𝑥,2. (2.93)

Neglecting the perturbation by the reflected wave, then for 𝛾 = 7/5 and 𝑀 = 5,
𝜖 = 5.37, whereas for the 𝑢𝑥𝑥,2 formulation 𝜖 = 0, exactly.

2.5.3 Centered Expansion in Equilibrium Air
Figure 2.17 shows calculations of the shock-change coefficients relevant to the decay
model, 𝐾 and 𝐵, for 𝑀 up to 20. In (a) 𝐾−1 remains roughly linear. In (b), 𝐵−1

diverges significantly from 𝛾 = 1.4, indicating that for a given 𝑢(0)𝑥 , the initial shock
decay rate is greater in equilibrium air.
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Figure 2.17: Shock-change coefficients 𝐾−1 and 𝐵−1 for shock Mach numbers up to
20 in a 𝛾 = 1.4 gas and in equilibrium air initially at 50 kPa, 300 K air (21% O2 and
79% N2).

Simulations were performed for three shock Mach numbers (5, 10, and 15) in air
initially at 50 kPa and 300 K. In Figure 2.18(a), the shock Hugoniot and isentrope are
plotted. Also shown is the chemically frozen Hugoniot. Figure 2.18(b) shows the
tabular data for 𝑃(𝜌, 𝑒), where 𝑃 is normalized by the chemically frozen pressure,
𝑃fr, at the same 𝜌 and 𝑒. The shock Hugoniot and isentropes are also plotted in
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Figure 2.18(b), where the area bounded by the curves contains all thermodynamic
states accessed by the simulated flow.
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Figure 2.18: Thermodynamics for simulations of shocks in equilibrium air. (a)
shock Hugoniots and isentropes, (b) contours of tabular data for 𝑃 = 𝑃(𝜌, 𝑒).
Abbreviations “fr” and “eq” denote chemically frozen and equilibrium, respectively.

Results from numerical simulations are compared with model predictions in Figure
2.19. The time-evolution of the shock Mach number is shown in (a), (b), and (c),
and the relative error is shown in (d). The model accuracy is excellent with error
less than 1% for both 𝑀0 = 5 and 𝑀0 = 10 cases and less than 2% for 𝑀0 = 15. This
clearly shows that the model is effective even for equations of state very different
from a perfect gas. Results for 𝛾 = 1.4 are also shown for comparison. The large
error can be attributed to the discrepancy in 𝐵−1 shown in 2.17(b).

The power-law approximation can also be applied for problems with general equa-
tions of state, where 𝐾 (𝑀0) is computed accordingly. Figure 2.20 shows 𝛼 and 𝛽
for 𝑀 up to 20. The non-monotonic behavior of 𝛼 as 𝑀0 increases is due to the
sequential effects of vibrational excitation, chemical dissociation, and ionization in
equilibrium air. Similar behavior can be observed from plots of 𝛾 (Henderson and
Menart, 2008).

The interaction with the centered wave for equilibrium air did not introduce a larger
perturbation to the incoming simple wave than for a perfect gas. As discussed in
2.1, the other source for nonzero 𝑢𝑥𝑥,2 is in variation of Γ on𝐶+ characteristics in the
simple wave. Γ and 𝑎1𝜕𝑎Γ are plotted in figure 2.21 along the post-shock isentrope
of the 𝑀0 = 15 case. These values can be used with (2.54) to estimate the maximum
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Figure 2.19: Comparison between numerical simulations and model predictions for
strong shocks in equilibrium air initially at 50 kPa and 300 K.
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𝜖 , where 𝜖 is given by
𝜖 = 𝑎1

𝐿𝑢𝑥𝑥,2

𝐾 ¤𝑀2 ,

= −𝑎1
𝐿𝐹2

𝐾

Γ − 1
Γ

𝜕𝑎Γ.

(2.94)
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For 𝑀0 = 15, 𝐿𝐹2/𝐾 = 2.16. Then, using the maximum values shown in figure
2.21 for Γ and 𝑎1𝜕𝑎Γ gives 𝜖 ≤ .014. So, for equilibrium air at these conditions,
the effect of nonconstant Γ is negligible, and the model assumption that 𝑢𝑥𝑥,2 ≈ 0
holds.
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Figure 2.21: Variation of (a) Γ and (b) 𝑎1𝜕𝑎Γ along 𝑀0 = 15 post-shock isentrope,
where 𝑣2 is the post-shock specific volume.

2.5.4 Simple Wave from the Constant Deceleration of a Piston in a Perfect
Gas

If the piston does not impulsively stop, but instead slows at a gradual rate, then
a non-self-similar simple wave is generated. If the piston slows with a constant
acceleration to a halt, then the piston velocity, 𝑣, and position, 𝑋p, over time are
given by the piecewise expressions

𝑣 =


𝑢2(1 − 𝑡/𝜏s) 0 ≤ 𝑡 ≤ 𝜏s

0 𝑡 ≥ 𝜏s
, 𝑋p =


𝑢2𝑡

(
1 − 𝑡

2𝜏s

)
0 ≤ 𝑡 ≤ 𝜏s

𝑢2𝜏s
2

𝑡 ≥ 𝜏s

, (2.95)

where 𝜏s is the time when the piston is fully stopped. The solution for the simple
wave is given by (2.7), where 𝑓 (𝑢) is obtained from the piston path. The procedure
is demonstrated for an exponential piston by Zel’dovich and Raizer (1967), however
in that case the result is implicit. For a constant-deceleration piston, all quantities
can be found explicitly throughout the wave. At the piston face, 𝑢 = 𝑣 and so

𝑓 (𝑣) = 𝑋 (𝑡 (𝑣)) − (𝑣 + 𝑎(𝑣))𝑡 (𝑣), (2.96)

where time is expressed in terms of the piston speed, i.e., 𝑡 = 𝜏s(1 − 𝑣/𝑢2). For a
perfect gas, the sound speed is given by

𝑎(𝑢) = 𝛾 − 1
2

(𝑢 − 𝑢2) + 𝑎2, (2.97)
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and so (2.96) can be simplified to obtain the general expression for 𝑓 (𝑢) in the
simple wave,

𝑓 (𝑢) = 𝑢2𝜏s
2

(
1 −

(
𝑢

𝑢2

)2
)
−

[
𝛾 + 1

2
𝑢 − 𝛾 − 1

2
𝑢2 + 𝑎2

] (
1 − 𝑢

𝑢2

)
𝜏s. (2.98)

With 𝑓 (𝑢), 𝑢(𝑥, 𝑡) throughout the simple wave can be obtained from (2.7),

𝑢

𝑢2
= 1 − 𝑎2

𝛾𝑢2
− 𝛾 + 1

2𝛾
𝑡

𝜏s

+1
𝛾

√︄(
𝛾 + 1

2
𝑡

𝜏s

)2
+ 2𝛾

(
𝑥

𝑢2𝜏s
− 𝑡

𝜏s

)
− (𝛾 − 1) 𝑎2

𝑢2

𝑡

𝜏s
+

(
𝑎2
𝑢2

)2
. (2.99)

The sound speed can be obtained from (2.97), and other quantities follow from
isentropic relations.

The velocity gradients, 𝑢𝑥 and 𝑢𝑥𝑥 , are found by differentiating (2.99). The result
for 𝑢𝑥𝑥 can be simply expressed as

𝑢2𝑢𝑥𝑥 = −𝛾𝜏s𝑢
3
𝑥 , (2.100)

which is valid throughout the wave.

With the additional time scale, 𝜏s, a single additional dimensionless variable dis-
tinguishes resulting shock motions given by 𝜎 = 𝜏s/𝜏p, where 𝜏p is the duration of
the constant velocity phase of the piston motion. For 𝜎 → 0, a centered expansion
wave is obtained. For 𝜎 → ∞, there is no initial steady phase of the piston motion,
and the shock is formed decaying at the piston face. In this limit, the maximum
value for 𝑢𝑥𝑥 at the shock is at 𝑡 = 0 and given by

𝑎1𝑢𝑥𝑥,2

𝑢2
𝑥,2

= −𝛾 𝑎1
𝑎2
, (2.101)

which can be used to estimate 𝜖 from the exact shock-change equation and is equal
to

𝜖 = −𝛾 𝐿𝐹
2

𝐾

𝑎1
𝑎2
. (2.102)

For 𝑀0 = 7 and 𝛾 = 1.4, 𝜖 = −0.61, which is clearly not small and shows that the
general piston motion introduces a significant deviation from the 𝑢𝑥𝑥,2 = 0 model.

For decreasing 𝜎, there is more time for the simple wave to approach the linear-
velocity profile of a centered expansion, and so the 𝑢𝑥𝑥,2 = 0 model accuracy is
expected to increase. For larger 𝜎, where 𝑢𝑥𝑥,2 is non-negligible, we can still use
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the value in the unperturbed wave and neglect the disturbance by reflected waves.
In this case, (2.100) is used in the shock-change equation (2.54). Instead of directly
computing the velocity gradient, it is estimated using its shock-change equation and
the value for the shock acceleration. 𝑢𝑥𝑥,2 is then approximated by

𝑢𝑥𝑥,2 = −𝛾𝜏s(𝐹 ¤𝑀)3/𝑢2, (2.103)

which enables (2.54) to be solved as a second-order initial value problem. The
initial shock acceleration is still given by (2.86), where the velocity gradient at the
head of the unperturbed wave is

𝑢
(0)
𝑥,2 =

[
𝛾 + 1

2
𝑡0 +

𝑎2
𝑢2
𝜏s

]−1
. (2.104)

In order to numerically simulate the shock decay by these simple waves, three cases
for a shock with 𝑀0 = 7 and 𝛾 = 1.4 were considered with values of 𝜎 = 0.25,
𝜎 = 0.5, and 𝜎 = 1.0. The simulation was initialized using data computed from
the above formulae. For all cases, the initial condition was chosen for a time before
the wave is incident upon the shock. The initial conditions are shown in figure 2.22.
For 𝜎 = 0.5 and 𝜎 = 0.25, the piston velocity is not zero at the beginning of the
simulation. For these cases, the left boundary condition is set to the constant piston
velocity at the beginning of the simulation, so that the piston is no longer slowing.
Characteristics from the wall do not reach the shock within simulation time.

Results from numerical simulations are plotted with the model prediction in figure
2.23. Subplots (a), (b), and (c) show that, as expected, as 𝜎 increases the agreement
with the 𝑢𝑥𝑥,2 = 0 model decreases. Accordingly, subplots (d), (e), and (f) show
that the error increases. Also plotted in figure 2.23 are the model results from using
the unperturbed value of 𝑢𝑥𝑥,2 in the incident simple wave, which was approximated
using (2.103). This achieves less than 2% error for all cases, which is similar to
the error in section 2.5.2 for 𝑀0 = 7 and 𝛾 = 1.4. These results show that even for
non-self-similar simple waves, the shock-propagation model obtained by neglecting
only perturbations to the incident second velocity gradient remains accurate.

2.6 Summary
A model for the decay of plane shock waves in equilibrium flows with an arbitrary
equation of state was formulated using a shock-change equation for the second
velocity gradient behind the shock, 𝑢𝑥𝑥 . In contrast to prior work, instead of
neglecting all higher-order gradients, only the perturbation to those gradients by
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Figure 2.22: Initial (a) particle velocity and (b) pressure for simulations of shock
decay by the simple wave from a constant-deceleration piston for 𝑀0 = 7 and
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Figure 2.23: Time evolution of (a,b,c) shock speed and (d,e,f) model error for𝑀0 = 7
and 𝛾 = 1.4 shocks decayed by the simple wave from a constant-deceleration piston
for three values of the scale parameter, 𝜎.

the shock interaction is neglected. For centered expansion waves in a perfect gas,
𝑢𝑥𝑥 = 0 exactly throughout the wave, and therefore also behind a decaying shock
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if the perturbation is neglected. Comparison with numerical simulations showed
that these perturbations are indeed sufficiently small to obtain accurate solutions
for the shock trajectory. For a general equation of state, 𝑢𝑥𝑥 ≠ 0 in the incident
simple wave due to variation in the fundamental derivative of gas dynamics, Γ. For
a centered wave in equilibrium air, it was shown that this variation is small, and
𝑢𝑥𝑥 = 0 remains an accurate model even for a Mach 15 shock. For an arbitrary
simple wave, 𝑢𝑥𝑥 ≠ 0 and must be accounted for. This can still be accomplished
by neglecting the perturbation from the shock interaction, which was shown to be
effective for the simple wave generated by the constant deceleration of a piston in
a perfect gas. Since simple waves converge to a self-similar solution, then in some
cases 𝑢𝑥𝑥 = 0 can still be used for arbitrary simple waves and remains a good initial
estimate.

The value of the analytical results obtained in this chapter is in their generality
and simple formulation. The model can be readily implemented through numerical
solution of a simple ordinary differential equation (2.66), where 𝐾 is given for an
arbitrary equation of state in (2.55) and for a perfect gas in (2.63). The initial shock
acceleration can be computed from (2.86), where 𝑢(0)𝑥 is the velocity gradient in the
incident simple wave, which is given by (2.10). A useful result from this analysis is
an approximate power-law formulation, which remains accurate even for cases with
strong shocks in equilibrium air. Although not detailed in this article, the model can
be used for shocks in media with irreversible endothermic or exothermic reactions,
such as overdriven detonation waves. An example of this is described in Appendix
A.
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C h a p t e r 3

MODELING FORWARD-MODE DETONATION-DRIVEN
SHOCK DECAY

Schoeffler, D. T. and Shepherd, J. E. (2023). Decay of shock waves in detonation-
driven shock tubes. In 34th International Symposium on Shock Waves, Volume 2:
Applications 1. Springer Singapore.

An essential characteristic of forward-mode detonation drivers is that the nonuni-
form driver gas causes the driven shock wave to decay from the beginning of its
formation. Prediction of shock decay is important not only to properly choose the
shock’s strength for processing the test gas, but also because the decaying shock
introduces unsteadiness in the post-shock flow, which can pose serious limitations
for facilities where the test gas is meant to simulate some steady, hypervelocity
flow. Nonetheless, unsteady shock waves may be used if the time scale of their
unsteadiness is sufficiently large compared to a facility’s test time. This is deter-
mined in practice by experimentally characterizing a given facility or by numerical
simulation. Expedient methods for estimating performance are important, and so a
model is needed to predict detonation-driven shock decay.

In Chapter 2 it was shown that the motion of plane shock waves acted upon by
simple waves can be accurately approximated by a power law. In this chapter, this
result will be applied to the problem of shock decay from a forward-mode detonation
driver. A model problem will be formulated, and numerically simulated for a range
of independent variables. The problem is first simulated assuming both driver and
test gases are perfect, i.e., with constant heat capacities. This will be shown to
be accurate for modeling detonation products, however the approximation is not so
good for shocks in air. These inaccuracies will be addressed using simulations with
thermally equilibrated air including a finite-rate reaction model.

3.1 Problem Formulation
The intrinsically multidimensional cellular detonation structure can be modeled as
a one-dimensional reaction zone in a spanwise mean, terminating in the equilibrium
Chapman-Jouguet (CJ) state. Behind the CJ state is an unsteady expansion wave,
known as the Taylor-Zel’dovich (TZ) wave when self-similar. Two length scales are



53

present in this formulation of the one-dimensional detonation wave: the reaction
zone width and the detonation propagation distance, i.e., the driver length. The
reaction zone width scales with some characteristic detonation cell size, which
is typically small compared to the driver length for all pressures and mixtures of
interest here. So, the reaction zone may be neglected from analysis, and the CJ-TZ
detonation structure remains. Additionally, wall effects like viscous attenuation
and heat transfer are neglected, which is appropriate for sufficiently small driver
length-to-diameter ratios (Radulescu and Hanson, 2005).

The initial condition for the detonation-driven shock tube, as modeled here, is when
the CJ state is incident with the contact surface separating shock tube sections, as
shown in Figure 3.1. The typical enumeration of shock tube gas states is used here
with a modification to also describe relevant states in the detonation driver, which
are the initial, unreacted gas state 41, the CJ state 42, and the TZ wave plateau state
43. These subscripts are used throughout, particularly for the CJ state. The strategy
taken in this work is to numerically simulate the evolution of this initial condition.
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Figure 3.1: Initial conditions for the simplified model in terms of pressure, tempera-
ture, velocity, and mole fractions for detonation driver gas, 𝑋det, and inert shock tube
gas, 𝑋inert, where enumeration 42 and 43 identifies the CJ and TZ-plateau states,
respectively.

The problem will first be modeled assuming the detonation products and inert
driven-section test gas to be perfect gases. The temperatures are so high in fuel-
oxygen detonation products that chemical reactions remain much faster than fluid
mechanic length scales, such that flows can be accurately modeled as in chemical
equilibrium (Cooper, 2004). The specific heat capacity ratio for the detonation
products can therefore be defined using the equilibrium conditions of the CJ state
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Figure 3.2: (a) rarefaction wave curves and (b) isentropes for detonation products
from stoichiometric mixtures of ethylene-oxygen initially at 300 K and two initial
pressures of 50 and 100 kPa.

and is calculated here by
𝛾42 = 𝜌42𝑎

2
42/𝑃42 , (3.1)

where 𝑎42 is the equilibrium sound speed. A single value for 𝛾42 remains accurate
throughout subsequent isentropic expansion of the CJ state. Rarefaction wave
curves and isentropes are plotted in Figure 3.2 for equilibrium and perfect gas
calculations and show that (3.1) is accurate. All calculations are performed using
the Shock and Detonation Toolbox (Kao et al., 2020). Note that the mean molecular
weight of the gas changes as equilibrium is maintained through the expansion.
Consequently, temperatures calculated using the perfect-gas model are incorrect.
However, since density and pressure are accurately modeled on the isentrope and
chemical equilibrium is assumed, the fluid dynamics are unaffected.

Strong shocks in air and other non-monatomic gases produce significant relaxation of
internal energy modes and possibly dissociation, and so the perfect-gas model is not
generally reliable. Nonetheless, the perfect-gas model is simple, facilitates analysis
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with a reduced number of independent variables, and provides essential insight into
the gas dynamics. Results from perfect-gas simulations will be analyzed first, then
evaluated against those with non-constant heat capacities and a finite-rate reaction
model.

The simplified model problem has six independent, dimensionless variables de-
scribing all conditions. They are

𝑃42
𝑃1
,

𝑎42
𝑎1
, 𝑀42, 𝛾42, 𝛾1,

𝑊42
𝑊1

, (3.2)

which are, respectively, the pressure ratio, the sound speed ratio, the local CJ Mach
number in the lab-frame, the CJ gas specific heat ratio, the driven gas specific heat
ratio, and the ratio of molecular weights. The only additional variable not present in
typical shock tube analysis is𝑀42 = 𝑢42/𝑎42, which quantifies the driver gas velocity
in the lab-frame. The molecular weight ratio is only included as it is necessary to
compute the temperature, which is unimportant for the present problem. Because
of the self-similar TZ wave, all length scales can be normalized by the driver length.
The nonuniformity from the TZ wave is a result of the boundary conditions and does
not require any additional variables to describe.

All quantities in (3.2) were independently investigated here. A base parameter set
is used throughout the study to vary parameters about. Quantities for the base case
are

𝑃42
𝑃1

= 200,
𝑎42
𝑎1

= 3.7, 𝑀42 = 0.85,

𝛾42 = 1.14, 𝛾1 = 1.4,
𝑊42
𝑊1

= 0.79 ,
(3.3)

which were chosen to be values typical for stoichiometric ethylene-oxygen at stan-
dard temperature and pressure and air driven gas, although they are typical for other
mixtures as well. The initial condition given by the base case is shown in Figure 3.1.
The primary variables considered for shock tube operation were the pressure ratio
and sound speed ratio. Quantities 𝑀42 and 𝛾42 are only determined by the detona-
tion gas mixture, and typical values for many mixtures are 𝑀42 ∈ [0.8, 0.85] and
𝛾42 ∈ [1.1, 1.2]. To illustrate this, Table 3.1 lists values for 𝑀42 and 𝛾42 calculated
for various mixtures. The only parameter for the inert shock tube gas is 𝛾1.

Although the evolution of the initial condition is numerically simulated, the initial
speed of the driven shock can be directly computed using a pressure-velocity dia-
gram. Because of the nonzero gas velocity, either a rarefaction or shock may be
reflected from the contact surface interaction, determined by the position of the CJ
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Table 3.1: Examples of perfect gas parameters for equilibrium detonation products

mixture 𝑀42 𝛾42
C2H4 + 3O2 0.85 1.14

C2H4 + 3O2 + 4Ar 0.83 1.16
2H2+O2 0.84 1.13
4H2+O2 0.82 1.15

state relative to the shock curve. The boundary dividing these wave reflections is
defined by when 𝑃42 = 𝑃2 and 𝑢42 = 𝑢2. For the present independent variables, this
occurs when the following is satisfied

𝑀42
𝑎42
𝑎1

=
1
𝛾1

𝑃42/𝑃1 − 1√︂
𝛾1 + 1
2𝛾1

(𝑃42/𝑃1 − 1) + 1
. (3.4)

All simulation cases were chosen to be on the side of the boundary where an
expansion is reflected. Cases used to examine the effect of only pressure and sound
speed ratios are plotted with the wave-reflection boundary in Figure 3.3. The initial
shock Mach number, 𝑀0, is given by the detonation-driven shock-tube equation
(1.1).
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Figure 3.3: Map of variables for simulation cases examining the combined effects
of pressure and sound speed ratios. All are located to the right of the boundary
defining reflection of expansion or shock waves at the diaphragm for 𝑀42 = 0.85,
𝛾42 = 1.14, and 𝛾1 = 1.4.

In order to characterize the decaying shock wave, the power law formulation derived
in Chapter 2 for the strong shock limit is used. Therefore, the decay parameter, 𝛿,
is defined by the time-varying shock Mach number, 𝑀 (𝑡), normalized by its initial
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speed, 𝑀0, i.e.,

𝛿 =
𝑀 (𝑡)
𝑀0

. (3.5)

The weak shock formulation is more accurate for some conditions, however subse-
quent model formulae are more complicated.

The shock propagation law is

𝛿 =
1

(1 + 𝛽𝑡/𝛼)𝛼 , (3.6)

where 𝛽 is the positive initial decay rate, 𝛽 = − ¤𝛿0, and normalizes the time variable.
The exponent, 𝛼, characterizes the shape of the trajectory. Larger values of 𝛼
correspond with faster decay for a given value of 𝛽. Both parameters determine
the rate of shock decay and hence the magnitude of unsteadiness generated in the
post-shock flow.

In Chapter 2, the power law (3.6) was derived for the strong shock limit of (2.66),
where 𝛽 was defined by the incident simple wave and 𝛼 was defined only by the
shock Mach number. This model arose from neglecting perturbations to the second
velocity gradient, 𝑢𝑥𝑥,2, which is zero for centered waves. When considering non-
self-similar waves, 𝑢𝑥𝑥,2 ≠ 0, and so the decay model was modified to incorporate
this nonzero term. The simple wave that decays the forward-mode detonation-driven
shock is not centered due to the interaction with the left-propagating wave generated
at the diaphragm. The shock is decayed immediately upon formation, and so there
is no time for the transmitted simple wave to propagate and approach self-similarity
again. Therefore, analytical treatment of this problem requires incorporating the
effect of 𝑢𝑥𝑥,2 ≠ 0. The strategy taken in this work is to instead use (3.6) to fit
simulation data.

3.2 Simulation Methods
Evolution of the detonation-driven shock tube initial condition was directly simu-
lated using the same methods as those described in Chapter 2 with minor differences.
Perfect gas simulations used OpenFOAM-7 and blastFoam-4, whereas reactive cal-
culations used OpenFOAM-9 and blastFoam-5.

3.2.1 Perfect Gas
Simulations were performed using variables normalized by the inert shock tube gas
initial state, i.e.,

𝑃 =
�̃�

�̃�1
, 𝑇 =

𝑇

𝑇1
, 𝑢 =

�̃�

�̃�ref
, 𝑊 =

�̃�

�̃�1
, 𝑡 =

𝑡�̃�ref

�̃�
, 𝑥 =

𝑥

�̃�
, (3.7)
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where �̃�ref =
√︁
�̃�𝑇1/𝑊1, �̃� is the universal gas constant, �̃� is the driver length, and

the tilde identifies dimensional quantities. Simulation results are reported below
using the same normalizations except for the reference velocity, where the sound
speed, 𝑎1, is used instead. The sound speed and �̃�ref are related by �̃�1/�̃�ref =

√
𝛾1,

hence simulation time is reported with a square-root 𝛾1 factor.

For a given set of shock tube variables, the initial condition was computed separately,
discretely sampled, and mapped onto a uniform simulation grid, from which the
simulation was initiated. All simulation cases were run until the major features
of the shock evolution were developed, typically 𝑡sim ≥ 3.0√𝛾1. Time steps were
sampled every Δ𝑡 = 0.001√𝛾1.

The driven shock Mach number was computed in post-processing at each sampled
time step using the post-shock pressure and the perfect gas shock jump equation.
Numerically differentiating discrete simulation data is prone to introducing large
errors and then necessitates substantial use of smoothing algorithms. For perfect-gas
calculations, the post-shock pressure was used to calculate the shock Mach number,
a repeatable technique that minimizes use of smoothing methods and reduces the
error introduced into computed quantities. The time evolution of the shock velocity
exhibits several kinks, which were identified using the large spikes in the second
derivative of shock velocity after smoothing the data with a Savitzky-Golay filter.
No smoothing is otherwise applied to the shock Mach number results presented
below.

Numerical simulations and post-processing algorithms were both verified for grid
independence using the base case with grid resolutions of 1 · 103, 2 · 103, and 4 · 103

cells per driver length. All simulations presented here used 2 · 103 cells per driver
length, and the shock tube length was varied depending on the case so that all shocks
reached similar points in their evolution. Total cell count for each case ranged from
4 · 104 to 8 · 104.

Results from thirty six simulations are described below, which examined the in-
fluence of all independent variables. Primary focus was on the effect of pres-
sure and sound speed ratios, and the twenty seven pertaining simulation variables
are shown in Figure 3.3. Sensitivity of the base case to other variables was ex-
amined with cases where 𝛾42 ∈ {1.1, 1.14, 1.2}, 𝑀42 ∈ {0.8, 0.825, 0.85}, and
𝛾1 ∈ {1.2, 1.3, 1.4, 1.5, 1.66}.
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3.2.2 Reacting Gas
As shown above in Section 3.1, the perfect-gas model remains accurate for fuel-
oxygen detonation products. Simulations are therefore simplified by only consider-
ing real gas effects in the shocked driven section test gas.

Chemical reaction introduces additional length scales, and so results are not as
readily nondimensionalized. For these problems, a driver length of 0.5 m is used,
which is similar to the driver length used in experiments discussed later in this work.
The perfect-gas study is general, while reacting gas calculations are performed to
check model accuracy for conditions relevant to later experiments. As such, typical
driver conditions are calculated for 50 or 100 kPa of stoichiometric ethylene-oxygen.

In this work, shocks up to roughly 𝑀s = 8 are considered, where dissociation time
scales become small relative to those of a typical shock tube. The initial detonation-
driven shock speed can still be calculated for equilibrium flows by solving for
the pressure and velocity equilibrium condition numerically using, e.g., the Shock
and Detonation Toolbox. This is sufficient to calculate the initial shock speed for
forward-mode operation.

To prepare initial conditions, all thermodynamic and shock wave calculations are
performed using Cantera (Goodwin et al., 2021) and the Shock and Detonation
Toolbox (Kao et al., 2020). Both Cantera calculations and OpenFOAM simulations
use the NASA-7 polynomial data (McBride et al., 1993). For shocks in air (21% O2,
79% N2), finite-rate kinetics tabulated by Johnston and Brandis (2014) are used.

Using NASA-7 polynomials to compute heat capacities assumes the gas to be in
vibrational equilibrium. No calculations were performed that modeled finite-rate
relaxation of these modes.

3.3 Results: Shock Decay
3.3.1 Perfect Gas
The time evolution of the driven shock Mach number for the base set of independent
variables (3.3) is shown in Figure 3.4. The Mach number continuously decays from
the initial speed to an apparently quasi-steady plateau period, after which the shock
continues to decay further. These three periods of the shock Mach number evolution
were obtained in all simulations.

A space-time diagram of the base simulation case was computed by directly in-
tegrating along the characteristics. The result is shown in Figure 3.5, where the
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Figure 3.4: Time evolution of driven shock Mach number for simulation of base
case.

reflection of characteristics at the end wall and shock front are tracked. Charac-
teristic reflections at the contact surface are important but not included here. The
space-time diagram illustrates the origin of the three regions of the shock Mach
number evolution shown in Figure 3.4. The shock initially decays from attenuation
by the transmitted TZ wave. However, since the TZ wave is finite, once the final
characteristic intersects the shock, a region of approximately steady propagation is
reached. After sufficient time, the centered expansion wave from the initial contact
surface interaction reflects from the driver end wall and catches up with the shock
wave, which causes it to decay further.
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Figure 3.5: Space-time diagram generated from integration along characteristics of
simulation data for the base parameter set.

The shock Mach number is only approximately steady during the plateau period
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between the first and second phases of decay. The variation that does occur is
substantially smaller than the variation during periods of shock decay, such that the
plateau period is comparably steady. Unsteadiness in this period results from wave
interaction with the contact surface. The shock Mach number in this period can
be accurately approximated using the detonation-driven shock tube equation for the
reverse-mode driver. This is because the plateau propagation period is driven by the
TZ wave plateau state. Isentropic expansion of the TZ-wave gas is just a continuation
of the isentropic expansion from the CJ state. This is only an approximate solution
for the forward-mode plateau state because derivation of requires that the post-
shock state is homentropic, which is not true due to the prior wave decay. The 𝐶+

characteristic drawn from the contact surface to the plateau-state shock does not
have a constant Riemann invariant. Pressure and velocity are also not necessarily
uniform in this region due to the compression wave reflected by a decaying shock.
These effects are nonetheless weak, and Figure 3.6 shows that the approximation
provides an accurate prediction for the mean shock Mach number in this region for
all simulation cases.
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Figure 3.6: (a) Comparison of the mean shock Mach number in the plateau region
from numerical simulations, ⟨�̂�p⟩, with the result from the model, 𝑀p, given by
(1.1) for the reverse-mode driver. Residuals are shown in (b).

Even for moderate pressure ratios, the quasi-steady plateau period is only reached
after the shock has traveled several driver lengths. Reverse-mode detonation drivers
utilize this condition by initiating the detonation at the diaphragm and reducing the
effective TZ wave or driver length. It is unrealistic to access this plateau period
in forward-mode operation without using shock initiation to shorten the TZ wave
(Bakos et al., 1996). Therefore, in order to otherwise use the forward-mode driver,
the driven shock wave during its initial period of decay must be exploited, which
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requires a characterization of its decay properties.

The shock decay parameter (3.5) in the first period of shock decay was fit to the
propagation law (3.6) for all simulation cases, and both the fit and its residuals are
shown in Figure 3.7. The root-mean-square error between data and fit across all
simulations is 7 · 10−4, proving the propagation law to describe the shock decay
exceptionally well. The conclusions from this are several-fold. Foremost, the
decaying shock propagates according to a power law in time as formulated by (3.6)
to within some negligible error. There are only two properties of this propagation:
the power-law exponent, 𝛼, and the time scale or initial decay rate, 𝛽. The fitting of
simulation data to (3.6) therefore provides measurements of these quantities, 𝛼 and
𝛽, which may be used to examine effects of independent variables on the resulting
shock decay.
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Figure 3.7: (a) The shock decay parameter (3.5) for all simulation cases is plotted
against a fit to the propagation law (3.6) with corresponding residuals plotted in (b),
where residuals are 𝛿 − (1 + 𝛽𝑡/𝛼)−𝛼.

The shock decay properties, 𝛼 and 𝛽, for simulations where the pressure and sound
speed ratios were varied together are plotted against multivariate correlations in
Figure 3.8. The fits are

𝛽 = 0.814
(
𝑃42
𝑃1

)−.337 (
𝑎42
𝑎1

)1.75
(3.8)

𝛼 =

(
log (𝑃42/𝑃1) − 15.2

42.16

)2
log (𝑃42/𝑃1) +

𝑎42/𝑎1 − 2.15
63.17

, (3.9)

The power-law exponent, 𝛼, could be separated into a linear combination of in-
dependent functions of the pressure and sound speed ratios. Dependence on the
sound speed ratio could be linearly fit, but a more complicated dependence on the



63

pressure ratio required a cubic fit to the logarithm. Although cumbersome and not
theoretically motivated, the functional form was chosen because it effectively fits
the data. The pressure ratio dependence exhibits a maximum at 𝑃42/𝑃1 ≈ 160.
Increasing the pressure ratio further decreases 𝛼. Decreasing the sound speed ratio
decreases 𝛼.

The correlation for 𝛽 in Figure 3.8(b) shows that the initial decay rate increases
strongly with increasing the sound speed ratio and decreases with increasing the
pressure ratio. This is important for facility operation. In order to reduce unsteadi-
ness in the test gas it is desired to reduce the decay rate of the shock wave. This can
be done by increasing the pressure ratio and decreasing the sound speed ratio, which
has the double effect of reducing the exponent, 𝛼, and decreasing the initial decay
rate, 𝛽. Dependence of 𝛽 on the sound speed ratio is particularly strong, nearly
quadratic. For example, a reduction of sound speed ratio from 3.7 to 3 reduces the
initial decay rate by 30%. Since the shock Mach number is directly proportional to
both the pressure and sound speed ratios, the ratios can be varied to preserve the
same shock Mach number while decreasing the shock unsteadiness.
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Figure 3.8: Shock decay properties plotted against multivariate correlations with
pressure and sound speed ratios, where 𝑃r = log(𝑃42/𝑃1).

The other three independent variables of interest are 𝛾1, 𝛾42, and 𝑀42. Figure 3.9
plots 𝛼 and 𝛽 for simulation cases where the base case is perturbed about these three
variables independently. For all, the variation in both 𝛼 and 𝛽 is small, less than 3%
for the variable ranges tested, which confirms that the effects of pressure and sound
speed ratios are primary. A single simulation case with unity molecular weight
ratio was performed to confirm its irrelevance to the present problem. Results were
identical to the base case, except in the temperature variable, as expected.
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Figure 3.9: Decay properties from sensitivity study of secondary independent vari-
ables, where each quantity was varied individually about the base case.

Since the shock speed in the plateau period can be predicted using (1.1), then the
decay model can be used to estimate the time or position when the decaying shock
reaches the plateau period. A comparison between results using model formulae
and simulations is shown in Figure 3.10, illustrating that for the majority of cases
the model is accurate. Note that distance is normalized by the driver length.
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Figure 3.10: Comparison of distance along driven section when shock reaches
plateau period calculated using model formulae and from simulations.

3.3.2 Reacting Gas
The decay model above can now be compared against calculations for air with a
non-constant heat capacity and finite-rate reactions. Results from simulations are
shown in Figure 3.11 for four shot conditions, where the air pressure is varied
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Figure 3.11: Comparison of shock decay model with numerical simulations includ-
ing finite-rate dissociation in the air test gas. The decay model assumes chemically
frozen flow.

and 𝑃41 = 50 kPa for all cases. Also shown in Figure 3.11 are predictions from
the shock decay model described above, where the initial shock speed is computed
using the chemically-frozen shock Hugoniot (vibrational equilibrium), and the decay
parameters 𝛽 and 𝛼 are evaluated using the perfect-gas correlations (3.9). Relative
model errors, given by 𝑀s,model/𝑀s,sim − 1, are shown in (b).

These results show that the decay model remains accurate, even for shocks in real
gases for the conditions examined here. The chemically-frozen initial shock speed
and Hugoniot were chosen because they were more accurate than if chemical-
equilibrium was assumed. Consequently, the chemically-frozen Hugoniot is used
for all shock decay calculations below. For stronger shocks, dissociation effects
likely become more significant and may need to be incorporated.

3.4 Results: Post-Shock Flow
The bulk of this work has so far focused exclusively on the shock propagation
itself. However, the flow behind the shock is what is of interest for all shock-tube
applications. An important consequence of using a decaying shock is that the post-
shock flow has nonuniform temperature and density even in the plateau period. To
show these effects, results from a single simulation are considered here for 𝑃41 = 50
kPa ethylene-oxygen and 𝑃1 = 5 kPa air. Based on above results, these calculations
were performed assuming air to be chemically frozen (vibrationally equilibrated).

Figure 3.12 shows a space-time diagram with color map corresponding to log(𝜌/𝜌1).
The shock is easily identifiable as the crisp diagonal boundary. The contact surface is
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visible following the shock as a negative jump in density. Four red lines are plotted,
which correspond to the axial position where pressure and density are plotted in
Figure 3.13(a) and (b), respectively.
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Figure 3.12: Space-time diagram with color corresponding with log(𝜌/𝜌1) for
simulation with 𝑃41 = 50 kPa ethylene-oxygen, 𝑃1 = 5 kPa air.

Pressure and density profiles show the post-shock flow as the shock decays toward
the plateau period. The plateau is evident from the pressure data as a region of
constant pressure that is overtaking the shock. The contact surface lies within this
plateau period. As shown in (b), shocked air in this plateau period does not have
uniform density, because each particle path was processed by a shock with different
strength. The kink in the 𝑥 = 3.0 profile shows the boundary defined by the last
TZ wave characteristic. These results are relevant to designs using shock-initiated
detonation, which attempt to shorten or eliminate the TZ wave. If there is any shock
decay, then there will be a region of nonuniform entropy, regardless of whether the
shock subsequently reaches a period of steady propagation.

3.5 Implications of Shock Decay Model
From comparison with simulation results, the shock decay model, in particular the
power-law formulation, has been shown to be highly useful for predicting the time
evolution of shock speed. There are several implications from these results that will
be discussed below.



67

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (ms)

0

20

40

60

P/
P 1

(a)
x= 1.0 m x= 2.0 m x= 3.0 m x= 4.0 m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (ms)

2

4

6

ρ/
ρ 1

(b)

Figure 3.13: Pressure and density profiles at various axial positions for simulation
with 𝑃41 = 50 kPa ethylene-oxygen, 𝑃1 = 5 kPa air.

3.5.1 Shock Decay Formulae
At this point, it is useful to present some formulae that result from the shock decay
model. The shock acceleration is given by

¤𝑀
𝑀0

=
−𝛽

(1 + 𝛽𝑡/𝛼)𝛼+1 =
−𝛽𝛿

1 + 𝛽𝑡/𝛼 ,

¤𝑀
𝑀

=
−𝛽

1 + 𝛽𝑡/𝛼 = −𝛽𝛿1/𝛼 ,

(3.10)

which gives the interesting result that the time scale defined by the local decay rate,
𝜏𝑑 = (− ¤𝑀/𝑀)−1, increases with time as

𝜏𝑑 =
1
𝛽
+ 𝑡

𝛼
. (3.11)

Many shock-change coefficients vary linearly with 𝑀 for strong shocks, hence (3.11)
indicates that the corresponding gradients are decreasing like ∼ 𝑡−1. Equation (3.11)
provides the time scale for the post-shock unsteadiness when the shock has processed
the relevant region of the test gas.
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The model relates shock speed with time, but it can be integrated to be reformulated
in terms of shock position, 𝑋 ,

𝛿 =

(
1 + 1 − 𝛼

𝛼

𝛽

𝑀0
𝑋

)−𝛼/(1−𝛼)
, (3.12)

which shows that the spatial decay rate is scaled by 𝑀0.

Shock tubes are calibrated based on the shock wave that ultimately processes the
test gas. In expansion tubes and shock tunnels, this is only a small volume of gas at
the end of the shock tube. Hence, it is useful to consider the shock properties at this
position. For a shock-tube with length 𝐿𝑠 and driver length 𝐿𝑑 , the shock wave at
the output of the shock tube is described by

𝑀 = 𝑀0

(
1 + 1 − 𝛼

𝛼

𝛽

𝑀0

𝐿𝑠

𝐿𝑑

)−𝛼/(1−𝛼)
. (3.13)

Equation (3.13) can be used to calculate ¤𝑀 from (3.10).

3.5.2 Reducing the Decay Rate
Shock unsteadiness is directly proportional to 𝛽. The time scale of the initial decay
rate scales with the driver length. So, the simplest strategy for reducing shock decay
is to use a driver as long as possible.

As mentioned above, another method for reducing 𝛽 is to reduce 𝑎42/𝑎1. Since
the test gas is fixed, this requires reducing the CJ state sound speed. This can be
accomplished in practice by diluting the driver mixture with a heavy gas. However,
the detonation reaction zone is highly sensitive to post-shock temperatures, and
dilution with a gas that has even a modest heat capacity can significantly impact
detonation stability. Lower detonation temperatures lead to increased reaction zone
lengths and larger detonation cells. Hence, significant dilution with, e.g., N2 or
CO2 could render the mixture undetonable. Noble gases can be used to dilute driver
mixtures since they are monatomic and so have minimal heat capacity. Contenders
are argon, krypton, and xenon.

Figure 3.14 shows calculations for ethylene-oxygen detonations with various amounts
of these diluents. As expected, CO2 and N2 cause a rapid increase in induction-zone
length, whereas it is only modestly affected by noble gas dilution. Krypton and
xenon are by far the most effective at reducing sound speeds. Unfortunately, these
gases are quite rare and expensive. This leaves only argon as a viable diluent. 50%
argon dilution of ethylene-oxygen results in a modest 15% reduction of the CJ sound
speed. If krypton could be used, then 50% dilution would result in a 34% reduction.
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Figure 3.14: Calculations of ZND induction zone length and CJ sound speed for 1
bar of C2H4 + 3O2 with various diluents. Sound speed data in (b) are normalized
by the undiluted CJ value, 𝑎0.

3.5.3 Driver Mixture Effects
The performance of different driver mixtures can be investigated using the decay
model. Prior work has largely focused only on the initial condition. This is inaccurate
because it does not capture the rate at which a given shock will decay. These
calculations were performed for four mixtures: C2H4 + 3O2, 2H2 + O2, C2H4 +
3O2 +4Ar, and C2H4 +3O2 +4Kr. Pressures were varied to examine several effects.
Results from these calculations are shown in Figure 3.15, where trajectories are
calculated up to the predicted plateau-state shock speed and are plotted against the
spatial coordinate. Note that the normalization by 𝐿𝑑 is included explicitly in the
axis label for clarity, but this is no different from the dimensionless 𝑋 variable used
above. All cases use a constant 𝑃1 pressure of 10 kPa air. The 𝑃41 pressure is
adjusted for each set of calculations. These pressures are listed in Table 3.2.

In (a), initial driver pressures are constant and equal to 100 kPa. Undiluted ethylene-
oxygen produces the strongest shock. Dilution reduces the CJ sound speed and
pressure and therefore shocks are initially weaker. The shock for the hydrogen case
decays rapidly, crossing trajectories for both diluted ethylene cases. 𝑃41 pressures
are important to consider as they determine the diaphragms required to stand off
initial pressure differences. Thinner diaphragms are possible for ethylene mixtures
over hydrogen mixtures, because initial pressures are lower.

In (b), initial driver pressures are adjusted so that the CJ pressure, 𝑃42, is the same
for each mixture, approximately 3.31 MPa. This is most relevant to considering a
given facility’s peak operating pressure, since structural loading to determined by
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Figure 3.15: Calculations of forward-mode detonation-driven shock decay for four
driver mixtures. Each subplot shows calculations for different 𝑃41 pressures.

the CJ pressure and not initial pressures. With its greater sound speed, the hydrogen
mixtures drives a notably stronger shock, but it decays toward the undiluted ethylene
trajectory.

In (c), driver pressures are adjusted so that the initial shock Mach number, 𝑀0, is
the same for each. This was approximately 𝑀0 = 8.5. This comparison shows
clearly the effects of different values for 𝛽. The hydrogen case decays more rapidly
than the diluted-ethylene cases. What is also striking about these calculations is the
enormous increase in gas required to compensate for dilution. From Table 3.2, the
argon-diluted pressure must be more than doubled to obtain the same initial shock
speed. However, this is compensated for by the reduced decay.

In (d), driver pressures are adjusted so that the decayed shock Mach number at a
position 𝑋/𝐿𝑑 = 2 is the same for each case. This is meant to model a shock tube
with a driven-to-driver length ratio of 2. Hence, these calculations are the ones most
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relevant to real shock-tube operation.

Table 3.2: Values of 𝑃41 corresponding with calculations in Figure 3.15

mixture (a) 𝑃41 (kPa) (b) 𝑃41 (kPa) (c) 𝑃41 (kPa) (d) 𝑃41 (kPa)
C2H4 + 3O2 100 100 100 100

2H2 + O2 100 174 118 151
C2H4 + 3O2 + 4Ar 100 126 205 162
C2H4 + 3O2 + 4Kr 100 126 445 247

3.6 Summary & Conclusions
In this chapter, the strong-shock power law formulation derived previously was
applied to empirically fit perfect-gas numerical simulation data. Exceptional agree-
ment was found for all conditions simulated. Multivariate correlations were used
to relate the propagation law fit parameters to key independent variables, namely
the pressure and sound speed ratios. This model was shown to remain accurate for
simulations including air with a non-constant heat capacity and finite-rate reactions.

The decay model was used to investigate various driver mixtures. Hydrogen mixtures
with their elevated sound speed produce the highest initial performance for a forward-
mode detonation driver. However, the subsequent shock decay must be taken into
account, since the high sound speed results in more rapid decay.

Driver dilution with a heavy gas was considered to reduce sound speeds and thereby
reduce expected decay rates. Argon is the only realistic contender, unless krypton
or xenon can be obtained affordably. Calculations show that heavy gas dilution does
reduce decay rates, however, at the cost of requiring increased 𝑃41 pressures.

An important consideration is to minimize the initial pressure difference across the
diaphragm. For lower pressures, thinner diaphragms can be used, and this could
possibly be advantageous. In these cases, hydrocarbon mixtures are preferred over
hydrogen, as was demonstrated here with ethylene. Minimally, this shows the utility
of using driver gases other than hydrogen, which has been the focus of prior work
almost exclusively. For laboratory experiments, it is convenient to use lower 𝑃41

pressures because of typical instrumentation ranges and safety. Consequently, the
majority of experiments in this work used ethylene as the driver fuel.
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C h a p t e r 4

TIME-RESOLVED SHOCK SPEED MEASUREMENTS:
METHODS

A small-scale shock tube was constructed to experimentally characterize the shock
waves generated by a detonation driver in both forward-mode and reverse-mode
operation. The shock tube was constructed to also enable operation with a con-
ventional high-pressure helium driver for comparison with the detonation driver.
This chapter presents the facility and the methods used to perform time-resolved
shock speed measurements. These new techniques were employed so that the shock
acceleration behavior could be confidently compared with shock decay modeling.
Additionally, the method is able to resolve frequency behavior in the shock motion,
providing new insight into these dynamics in shock tubes. Results from this study
are presented in the next chapter.

4.1 GALCIT Unsteady Shock Tube (GUST)
The shock tube constructed for the present experiments is diagrammed in Figure
4.1. The shock tube has a continuous 76.2-mm inner diameter with a driver length
of 438.6 mm and driven-section length just over 2 m. The driven section uses
a transparent off-the-shelf polycarbonate tube with a 6.35-mm wall thickness and
0.76-mm internal diameter tolerance. The extruded plastic surface was sufficiently
smooth to directly seal against with O-rings. The detonation driver and diaphragm
closure were rigidly mounted to an I-beam, so that detonation thrust forces were not
transmitted to the polycarbonate tube.

Figure 4.1 shows the position of two pressure transducers on either side of the
diaphragm. These sensors (PCB piezotronics 113B26) were digitized at 14 bit and
2.5 MS/s (NI PXI-6133). The driver-side transducer was used for timing and to
characterize the incident detonation wave.

The driver initiates detonation in the main tube by implosion of an annular wave
formed in outer channels. This detonation imploder was built and extensively
characterized in several previous studies (Grunthaner et al., 2001, Jackson, 2005,
Jackson and Shepherd, 2007). Diagrammed in Figure 4.2, the driver is composed
of concentric aluminum tubes with channels milled on the outer surface of the
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detonation driver polycarbonate driven section

driver platform

latch clamps

 76.2 mm 

 438.6 mm  2029.5 mm  22.9 mm 

 38.1 mm 

diaphragm location

pressure
sensors

wall

I-beam

(a)

(b)
(c)

Figure 4.1: Diagram of detonation-driven shock tube with transparent polycarbonate
driven section.

inner tube. The detonable mixture is ignited in the outer channels where obstacles
facilitate transition to detonation, and the channels uniformly spread the wave into
an annular detonation. Figure 4.2(c) shows the inner sleeve unwrapped. At one end,
the detonation exits the outer channels and is redirected into the inner core where the
detonation implodes, transitions to a plane wave, and propagates down the length
of the driver. The driver could be flipped so that the detonation imploded either at
the upstream end wall or at the shock tube diaphragm, enabling either forward or
reverse-mode operation.

After evacuating to less than 100 mTorr, the driver mixture was prepared using the
method of partial pressures and mixed with a recirculating pump for 2 minutes.
Three driver mixtures were used in the present work: stoichiometric ethylene-
oxygen, hydrogen-oxygen, and ethylene-oxygen diluted with 50% argon. High-
purity synthetic air (20.91% O2) was used as the driven section test gas for the
majority of shots. For other test gases, an additional recirculating pump was used
to mix the driven section for 2 minutes.

Static fill pressures were measured using transducers with 0.5% reading accuracy
and nominal variation typically within 10 Pa of the set point. Temperatures in
the driver and driven section were recorded using K-type thermocouples. Driver
temperature typically rose a few degrees over the course of several shots, so that
the mean temperature was 23.5◦C with standard deviation 0.7◦C. Driven-section
temperatures were typically 22.5◦C.
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inner sleeve
outer sleeve gas ports

(a)

(b)

(c)

spark ignition

DDT obstacles

implosion onset

Figure 4.2: Diagram of detonation driver. Detonation is initiated and shaped in
channels of inner sleeve, which is shown unwrapped in (c).

Mylar diaphragms were used for all detonation driver experiments. Three diaphragm
thicknesses were used: 12.7, 25.4, and 50.8 𝜇m. The driver was also operated as a
high-pressure helium driver, where it was pressurized with helium until diaphragm
rupture. 1100-O aluminum was used for these diaphragms with 0.15-mm and 0.30-
mm thicknesses. Diaphragms were not scored and a knife-blade cutter was not used,
however good shot-to-shot repeatability was still obtained. A Heise 300 psig dial
gauge was used to measure driver pressure for these experiments.

Over the course of the several hundred shots performed in GUST, a regular ob-
servation has been the significance of damage from Mylar diaphragm particulate.
Although diaphragms were thin, significant particulate is generated by diaphragm
rupture, and particulate is accelerated to high velocities. The stainless-steel plug at
the shock-tube end is significantly pitted from impact of this particulate.

In Appendix G, all engineering drawings for this facility and other components are
included. A schematic of the facility’s gas supply system is also included.
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4.2 Detonation Speed Measurement
The detonation driver design included a component to make detonation speed mea-
surements. A pair of fiber-coupled optical ports, spaced by 25.4 mm, viewed the
inside diameter through 1-mm diameter apertures. Fibers routed detonation lumi-
nosity to a pair of photodetectors, the signals from which were used to estimate
detonation time-of-flight. Figure 4.3 illustrates the setup.

The 1-mm apertures were made from center drilling set screws that could be ad-
vanced flush with the tube inside diameter. It was found that covering the aperture
with Kapton tape was sufficient to prevent the detonation from propagating through
the 1-mm hole. This was important for obtaining crisp signals. Usually, the tape had
to be replaced every few shots especially for higher pressure conditions. Multimode
fibers with a 1-mm core (Thorlabs M35L01) were used to improve transmission to
the two amplified photodetectors (Thorlabs PDA100A).

 25.4 mm 

 1.0 mm 

SMA905 adapter

quartz window
Kapton tape

Figure 4.3: Diagram of closely-spaced fiber-coupled optical ports for measuring
detonation time-of-arrival.

Photodetector signals were passed through an analog 20 kHz 8th-order Bessel high-
pass filter (Krohn-Hite 3384) to effectively differentiate the signal, giving sharper
pulses. The pulses were then digitized (LeCroy 44Xs-A). Detonation time-of-arrival
was identified from 50% of the pulse rise time. Figure 4.4 shows an example of
these signals. The ringing after the pulse is from the filter’s step response as well as
fluctuations in luminosity.

Figure 4.5 shows examples of detonation speed measurements for the driver mixtures
considered. Detonations were typically observed to propagate within 2% of the CJ
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Figure 4.4: Example of photodetector (PD) signals in (a) and filtered signal pulses
in (b) used to measure detonation speed.

speed. There is greater scatter for hydrogen data. This is partly suspected to be from
the greater CJ speed (2.8 km/s for hydrogen-oxygen vs 2.3 km/s for ethylene-oxygen).
Shots where a larger deviation from CJ speed was observed were repeated. In all
experiments performed in GUST, no sensitivity to variations in detonation speed
was observed. These measurements nonetheless provided a useful verification of
detonation driver operation.
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Figure 4.5: Detonation speed measurements for three driver mixtures.
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4.3 Shadowgraphy Methods
4.3.1 Optical Setup
Shock propagation along the tube was recorded using high-speed shadowgraphy
with a field-of-view (FOV) just over 500-mm wide. Shadowgraphy was chosen for
its high sensitivity to shock waves and its modest requirements for optical quality,
which was important for visualization through the polycarbonate tube. The setup,
diagrammed in Figure 4.6, was built on rails so that it could be translated along the
tube length.

Fresnel lens

f=609.6 mm

viewing 

screen

magnifier

f=50 mm
high-speed cameraflash lamp

polycarbonate 

driven section

aperture

Ø6.35 mm

Ø150 mm 

mirror 

Figure 4.6: Diagram of large field-of-view shadowgraphy setup.

The light sources used were a pair of flash lamps (Elinchrom D-Lite 4) which
generated approximately 1 ms of broadband white light in a 400 J flash. Only
a small section of the ring-shaped flash tube was used by positioning a 6.35-mm
diameter aperture directly in front of a portion of the tube. Light from the rest of
the flash tube was obstructed from entering the system.

Each flash lamp was collimated by a 279.4-mm square Fresnel lens with 609.6-mm
focal lengths (Edmund Optics 32-691). Just after the 6.35-mm aperture, a 50-mm
focal length lens was used to increase the system’s numerical aperture and increase
throughput. Collimated light was transmitted through the polycarbonate tube and
was incident on a viewing screen located less than 15 mm from the tube. The
viewing screen was a 220-grit sandblasted acrylic panel.

The viewing screen was recorded by a high-speed camera (Phantom v2512) using
an 85-mm Nikon lens. The camera was configured to use a 1280×16 pixel FOV
along the tube centerline with a 830 kfps framing rate and a 265 ns exposure. Figure
4.7 shows a large FOV image of the polycarbonate tube and a 450-mm scale, used
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for spatial calibration. The narrow FOV used for high-speed imaging along the
tube centerline is highlighted. The dark vertical band down the middle is due to
non-focusing margins of the Fresnel lenses. More details regarding the calibration
of this optical setup are described in Appendix B.

FOV: 523.6 x 6.5 mm

0.41 mm/px

450 mm 

calibration scale
polycarbonate tube

Figure 4.7: Example full field-of-view shadowgraph, showing width of polycarbon-
ate tube and narrow measurement FOV.

Optical throughput was found to be important for competing with the luminosity
of detonation products, which otherwise worsened shadowgraph contrast. Filtering
this emission was not an option because the spectrum emitted by luminous detona-
tion products and diaphragm material substantially overlapped with the flash lamp
spectrum. Spectra were acquired for both the flash lamps and detonation products
using an Ocean Optics FX spectrometer and are given in Appendix B.

Some issues were encountered with electrical pickup from the high-frequency circuit
used to ionize and flash the flash tube. This issue was eliminated by using G-10
optical posts for the aperture and 50-mm lens.

Geometric distortion is a known challenge of quantitative shadowgraphy (Settles,
2001). The construction implemented here minimizes distortion by locating the
viewing screen directly adjacent to the tube. Due to the finite source size and
collimation by Fresnel lenses, which exhibit strong chromatic aberration, the depth
of field is small with resolution decreasing from 2.0 lp/mm on the near side of
the tube to 0.9 lp/mm on the far side of the tube, relative to the screen. This was
measured with a USAF 1951 target without the polycarbonate tube in place. With
the polycarbonate tube, resolution is decreased further to 0.5 lp/mm and varies
along the tube length and degree of degradation. The polycarbonate tube required
replacement roughly every 100 shots due to optical degradation. Mylar diaphragm
debris would either scratch or stick to the inner surface, and the high temperatures
from shock reflection blackened the end of the tube over time.
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4.3.2 Post-Processing Algorithm
The shadowgraphy videos were post-processed to obtain measurements of shock
position and speed. Each frame was background subtracted and vertically averaged.
The signals were then filtered in space and time to eliminate signal from detonation-
product luminosity and diaphragm fragments. Inter-frame displacements of the
shock shadow signal were measured using the peak from signal cross-correlation.
Sub-pixel correlation peaks were estimated using the three-point-Gaussian fit, com-
monly used in digital particle-image velocimetry (Willert and Gharib, 1991). The
above post-processing steps are illustrated in Figure 4.8 and the code used to imple-
ment this algorithm is reproduced in Appendix B.

The resulting displacements for each frame pair give the shock speed over time in
units of pixels per frame. These were transformed to laboratory coordinates using
a spatial calibration of the viewing screen and the camera framing rate. After the
algorithm was applied, data were resampled to a uniform grid. The signals showed
significant high-frequency noise, and so time-series data are Savitzky-Golay filtered
with fourth-order polynomials and 25 points per window, effectively a 55 kHz low-
pass filter (Schafer, 2011). Figure 4.9 shows an example of raw and filtered signals
obtained from one shot using the above post-processing algorithm. Uncertainty
bounds are also shown which are described in the next section.

4.3.3 Uncertainty Analysis
Shock speed measurement uncertainty comes from two sources: geometric accuracy
of shadowgraphs and the post-processing algorithm.

Shock shadowgraphs are assumed to be one-to-one between their position on the
viewing screen and the shock’s actual position in the shock tube. Geometric accuracy
is limited by the optical components, including distortion by the polycarbonate tube,
and their alignment. A calibration plate with 37 1.27-mm wide vertical grid lines,
spaced 6.35-mm apart, was placed in the narrow measurement FOV, and the position
of grid line shadows was compared with the true geometric positions on the plate.
This was used to align the optical setup so that the average magnification was unity,
however there was some variation across each lens with a maximum deviation of
roughly 1%. This also includes uncertainty in the screen’s spatial calibration.

Processing shock shadowgraph movies into speed measurements introduces error
from the signal-to-noise ratio, the finite resolution, and variability in the signal
shape. This was estimated by simulating the signal processing algorithm.
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Figure 4.8: Post-processing steps to obtain frame-to-frame shock displacement. (a)
shows exemplary pair of shock shadowgraph frames. (b) shows the signals from
vertically averaging and filtering the frames. (c) shows the signals’ cross-correlation
and sub-pixel peak estimate.
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Figure 4.9: Example of raw and low-pass filtered shock speed signal obtained from
post-processing algorithm. Uncertainty bounds are also shown.

A simulated shock is assumed to propagate through the shadowgraph field of view
at a constant speed 𝑈s. The shock shadowgraph image was modeled as the first
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derivative of a Gaussian,

𝐺 (𝑥, 𝑠, 𝑥0) = −𝐴 (𝑥 − 𝑥0)
𝑠

exp
(
− (𝑥 − 𝑥0)2 + 𝑠2

2𝑠2

)
, (4.1)

normalized so that𝐺 (𝑥0+ 𝑠, 𝑠, 𝑥0) = −𝐴, where 𝐴 is the amplitude and 𝑠 determines
the signal width. The function 𝐺 is evaluated on a 1280 pixel grid. As the shock
travels through the tube with speed 𝑈s, the position of the shadowgraph translates
as 𝑥0 = 𝑈s𝑡. The parameter 𝑠 determines the width of the signal, where the average
from experimental data was 2.4 pixels, ranging from 1.2 to 3.6. Measurement
signals were normalized by the bit depth and background subtracted, resulting in
signal amplitudes ranging from 0.02 to 0.08.1 Noise in each pixel was experimentally
measured and is modeled as additive white Gaussian noise with a variance of 0.0015.

The post-processing algorithm was simulated for a range of constant shock speeds,
where variation in the signal amplitude and width was modeled by sampling from
a uniform distribution for each simulated frame. The initial sub-pixel position of
the shock was also varied for each iteration. For each speed, 5 · 104 iterations were
performed. Resulting histograms of algorithm error were not normally distributed,
so empirical cumulative distribution functions (eCDFs) were generated for each
shock speed, and a 95% algorithm uncertainty bound was chosen. Figure 4.10
shows example eCDFs in (a) and values of the uncertainty bound for each simulated
shock speed in (b), ranging from 0.5 km/s to 3 km/s. There is variability, so the
algorithm uncertainty is bounded at 20 m/s for all shock speeds.

The combination of the above sources of uncertainty gives the following expression
for error in reported shock speed measurements

𝜖 = 0.01𝑈s + 20 m/s , (4.2)

where deviations from the true shock speeds in 95% of measurements are expected
to lie within this bound. Other sources of uncertainty like variation in detonation
speed are negligible in comparison and so are neglected.

Measurement error in facility pressures and temperatures also contributes uncer-
tainty to predictions using the ideal one-dimensional model described above. Due
to generally small variation in the model exponent, 𝛼, only error in 𝑀s,0 and 𝛽 was
considered. The net effect on these quantities was calculated to be less than 0.5%
for the conditions tested here.

1This shows the shock shadowgraph contrasts achieved with this technique.



82

0 10 20 30 40
algorithm error (m/s)

0.00

0.25

0.50

0.75

1.00

eC
DF

(a)

Us = 675 m/s
Us = 2250 m/s
95% probability

0.5 1.0 1.5 2.0 2.5 3.0
shock speed (km/s)

10
12
14
16
18
20

er
ro

r b
ou

nd
 (m

/s
) (b)

Figure 4.10: (a) eCDFs for two shock speeds. (b) 95% algorithm error bound from
eCDFs.

4.4 Verification
4.4.1 Repeatability
In order to investigate many shot conditions, results from only one experiment for a
given condition and tube axial position are used. This was found to be acceptable
because of good shot-to-shot repeatability. From a set of six shots at the same con-
dition and axial position, a standard deviation of 10 m/s was obtained. This includes
the algorithm error described above. Since 2𝜎 is within the algorithm bound, shot-
to-shot variation is within known uncertainty. Repeatability was regularly verified
for other shot conditions during the progression of experiments.

4.4.2 Increased Spatial Resolution
The nominal shadowgraphy configuration used a wide FOV with 0.41 mm/px reso-
lution. The example shadowgraphs in Figure 4.8 show that the shock is imaged on
only a small number of pixels. To verify the shock structure was being sufficiently
resolved, data were acquired for a narrow FOV configuration with 0.15 mm/px res-
olution. Figure 4.12 shows a comparison between shadowgraph signals obtained
using the nominal wide FOV and a narrow FOV. The lower spatial resolution result-
ing from the wide FOV is shown to be sufficient at resolving the signals.
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Figure 4.11: Shock speed measurements from six shots at the same condition.
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Figure 4.12: Shock shadowgraph signals from wide and narrow fields of view.

4.4.3 Shock Shape & Motion
The measurement examples above show fluctuating shadowgraph signals and shock
speeds, which were features of all experimental data. Shadowgraph signals regu-
larly bifurcated, showing two dark or bright bands, instead of the typical Gaussian-
derivative shape associated with shock shadowgraphs. The cross-correlation algo-
rithm accurately measures displacement of a static signal, but it must be considered
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how these signal shape fluctuations affect shock speed measurements. This will be
addressed in this section.

Figure 1.2 shows these signal fluctuations in detail from one shot. (a) and (c) are
constructed as space-time diagrams with signals incremented vertically with time.
Data in (c) follow directly after data in (a). The unfiltered shock speed measurements
using the cross-correlation algorithm for the selection of frames in (a) and (c) are
shown in (b) and (d), respectively, as the black line on top of shock speed from
the entire record in red. The shadowgraph signals in (a) initially show two positive
peaks, where one peak propagates to the right through the signal. By the last frame
in (a), the typical Gaussian-derivative shape is attained again, which persists until
roughly 94 𝜇s in (c). Over this time period, the shock speed measurement shows
a phase of acceleration and deceleration superimposed on the background shock
decay.

The shock-speed oscillations are not merely a consequence of using the cross-
correlation algorithm on a varying signal. Figure 4.14 shows a comparison with
shock speed measured by tracking the signal minimum. The signal minimum, or
the darkest position of the shadow, can be used to identify a single position for
the shock. The peak-tracking method gives a noisier measurement, however both
algorithms capture the same oscillatory behavior with a period of roughly 75 𝜇s.

The fine motion in the shock shadow signals is believed to be from fluctuations
in the shock shape. Figure 4.16 shows large FOV shadowgraphs that captured the
full tube diameter. The shadowgraphs are background subtracted and have their
contrast stretched (the saturation is from the luminous detonation products). The
shock shadow is curved, most clearly seen in (b), and this curvature varies with time.

A curved shock can produce the shadowgraph signal fluctuations observed above.
Shadowgraphy is sensitive to the second derivative of changes in the medium’s
refractive index 𝑛, and the resulting change in optical intensity 𝐼 can be approximated
as (Merzkirch, 1987)

Δ𝐼

𝐼
∝

∫ (
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)
(log 𝑛) d𝑧 , (4.3)

where 𝑥 and 𝑦 define the plane normal to the ray path, which propagates along the
𝑧-axis for small deflections. Since 𝑛 ∝ 𝜌, the shadowgraph obtained from a density
field can be simulated by taking the second derivative normal to the optical axis and
then integrating along the optical axis. This was done for some simple shock shapes
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Figure 4.13: Shadowgraph frames are plotted as space-time diagrams in (a) and (c)
with speed measurements from corresponding frames in (b) and (d), respectively.
Shock speed from the entire record is plotted in red and from the frame selection in
black.

shown in Figure 4.16. The domain of high density 𝜌 is defined using a constant
radius of curvature, and, in order to give the shock a finite thickness, the density
fields were passed through a Gaussian filter. The shadowgraphs obtained from these
density fields are shown in (d-f). The expected Gaussian derivative appears in (d),
however the signal is distorted in (e) and (f) from the shock curvature. The convex
shock in (c) is most similar to the shock’s appearance in Figure 4.15. As the shock
curvature deviates from zero, the shock shadow signal therefore appears to split and
recombine. Whether the two peaks are positive or negative also indicates if the
shock is concave (negative) or convex (positive).
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Figure 4.14: Comparison of shock-speed measurement using two post-processing
algorithms.
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Figure 4.15: Large FOV frames showing curved shock.

It is believed that the shadow signal fluctuations are a consequence of these variations
in shock shape, and the fluctuations introduce some structure to the shock speed
measurements using the cross-correlation algorithm. To assess the impact on mea-
surements, the cross-correlation algorithm was applied to simulated shadowgraph
signals from a shock with constant mean speed and oscillatory curvature. Figure
4.17(a) compares a simulated and experimental shadowgraph signal for a time with
peak shock curvature, illustrating that the simulation provides a reasonable model
for the observed shadowgraph signals. The curvature was simulated to oscillate
sinusoidally with a period of 75 𝜇s, similar to what is shown in Figure 4.13, and the
simulated signal was propagated with a constant speed of 2 km/s. Figure 4.17(b)
shows the resulting simulated shock speed measurement plotted with the speed of
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Figure 4.16: Simulated shadowgraphs of flat and curved shocks. Density color map
in (a-c) with corresponding shadowgraphs in (d-f).

the curved shock’s apex. Clearly, the sinusoidal variation in shock curvature, and
therefore oscillations in the shadowgraph signal, introduces a perturbation to the
measured shock speed. The perturbation is in-phase with the curvature oscillation,
however it is not sinusoidal and does not show the same amplitude as the apex
speed. This illustrates that frequency analysis of shock speed measurements gives
useful insight into the shock dynamics, however care must be taken in interpreting
the amplitude of these oscillations.

These simulations show the limitations of identifying a single shock speed for the
dynamics of real shocks in a shock tube. A single shock speed only completely
defines the dynamics for a shock with constant curvature. Real shocks, however,
may exhibit more complicated dynamics with surfaces that change shape over time,
and so a single shock speed is an incomplete description. The present experimental
methods are capable of capturing the temporal variation of shock speeds, enabling
new insight into these dynamics.
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Figure 4.17: (a) Comparison between simulated and experimental shadowgraph sig-
nals. (b) Shock-speed measurement using cross-correlation algorithm for simulated
shadowgraph signals with sinusoidal variation in shock curvature.

4.5 Summary
In order to make high-resolution shock speed measurements, a shadowgraphy tech-
nique was devised for shock visualization through the transparent driven section of
a shock-tube. The facility, GUST, and the technique were presented in this chapter,
and shock-speed measurement accuracy was quantified. Some representative data
were used to verify methods. In particular, measurements for a single shot con-
dition were shown to be highly repeatable. Wide FOV shadowgraph signals were
compared with those with increased spatial resolution, illustrating that the imag-
ing resolution used is sufficient. Finally, perturbations to the shadowgraph signal
were shown to be consistent with a time-varying shock curvature, and simulated
signals were used to show that these signal perturbations introduce corresponding
perturbations to shock-speed measurements. These results illustrate the challenge
of identifying a single shock speed for the dynamics of a shock with time-varying
curvature, however the present techniques may still be used to make measurements
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of the periodicity of these shock oscillations.

In the next chapter, results from applying this technique toward the measurement of
detonation-driven shock waves will be presented.
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C h a p t e r 5

TIME-RESOLVED SHOCK SPEED MEASUREMENTS:
RESULTS & ANALYSIS

In this chapter, time-resolved shock speed measurements using the shadowgraphy
technique described in Chapter 4 are presented. Shot conditions used for these exper-
iments are tabulated in Appendix B. Experiments were performed using a forward-
mode detonation driver, reverse-mode detonation driver, and a high-pressure helium
driver. Results are from a total of 132 individual experiments, comprising 39 distinct
shot conditions. Pressures, diaphragm thicknesses, and driver mixtures were varied.
Three mixtures were used for the detonation driver corresponding to a nominal mix-
ture (C2H4+3O2), a high-sound-speed mixture (2H2+O2), and a low-sound-speed
mixture (C2H4+3O2+4Ar).

Experimental results are compared throughout this chapter with model predictions.
For forward-mode results, calculations use the decay model presented in Chapter 3.
For reverse-mode and helium-driven conditions, only the initial shock Mach number
is calculated. For all of these, the test gas is assumed chemically frozen. Model
parameters are given with tabulated shot conditions in Appendix B.

5.1 Results: Forward-Mode Detonation Driver
5.1.1 Diaphragm Rupture
In the forward-mode driver, the detonation propagates downstream and strikes the
shock tube diaphragm, which ruptures and leads to shock formation. The resulting
unsteady shock motion is established by the initial condition of the detonation at
the diaphragm. This condition is important to examine, so pressure measurements
from the transducer directly upstream of the diaphragm in the driver are first briefly
presented.

The pressure measurements are shown in Figure 5.1 for three diaphragm thicknesses
and compared with the TZ wave at the transducer position, which is annotated in
Figure 4.1. The first jump in pressure is from the incident detonation, followed by
decay from the TZ wave, and then there is a second jump in pressure. This second
jump is consistent with a shock reflected from the diaphragm when the detonation
makes impact. The density of the solid material is greater than the CJ state by two
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to three orders of magnitude, so that a shock is always reflected.
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Figure 5.1: Pressure measurements showing detonation striking diaphragm. Tran-
sucer is 38.1-mm upstream of the diaphragm. Conditions are 50 kPa of C2H4 +3O2.

The high pressures from the shocked detonation products cause diaphragm fragmen-
tation, and the forces accelerate the diaphragm downstream. Thinner diaphragms
are lighter and accelerate faster, resulting in a more rapid expansion of the driver gas
and so a faster attenuation of the reflected shock. Therefore, for thinner diaphragms,
the reflected shock is observed later in time at a weaker magnitude, as shown in
Figure 5.1. Additionally, pressure data are clearly consistent with the TZ wave prior
to arrival of the reflected shock, which indicates that over this time scale boundary
layer effects are negligible. This is important because is means that the isentropic
detonation profile can be used to compute shock-tube initial conditions, neglecting
diaphragm effects.

5.1.2 Pressure Ratio
Shock-tube performance is typically tuned by adjusting the pressure ratio. For the
forward-mode detonation driver, both the initial shock speed and decay rate are
affected. Shock speed measurements for six pressure ratios are shown in Figure
5.2, increasing from (a) to (f), where the driver pressure was a constant 50 kPa for
all cases and the driven section pressure was varied. Also plotted are predictions
from the decay model. As expected, significant shock decay is observed in all cases.
Generally good agreement with the model is obtained for lower pressure ratios,
however agreement worsens as the pressure ratio increases.

The mean ratio of shock speed measurements with model calculations, given by

𝑐 =

〈
𝑈s,exp

𝑈s,model

〉
, (5.1)
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Figure 5.2: Forward-mode detonation-driven shock speed measurements for various
pressure ratios, where unburnt driver pressure is 𝑃41 = 50 kPa for all cases and driven
section pressure, 𝑃1, is varied. All cases use a C2H4 + 3O2 driver mixture and 12.7
𝜇m Mylar diaphragm. The ideal shock decay model is shown by the black line in
each subplot.

quantifies deviations from the ideal theory. This is calculated only for data in the
initial decay period, i.e., with velocities above the predicted steady shock speed in
the plateau period. Note that (5.1) is calculated using the time-series data, since this
is more consistent with the decay model. Values for 𝑐 for each pressure ratio above
are plotted in Figure 5.3, where uncertainty in both measurements and model are
combined. Clearly, the deviation from the ideal model cannot be accounted for by
measurement uncertainty. The fit shown is

𝑐 ≈ 0.059
(
𝑃41
𝑃1

)−1
+ 0.927 . (5.2)

Although mean error in the model is not negligible, it predicts the shock decay rate
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Figure 5.3: Mean ratio of shock speed measurement to ideal model, 𝑐, for each
pressure ratio in Figure 5.2.

reasonably well, so 𝑐 can be used as a correction to the shock decay model,

𝑈s,exp ≈ 𝑐𝑈s,0(
1 + 𝛽

𝛼

𝑎1𝑡

𝐿𝑑

)𝛼 , (5.3)

𝑈s,exp ≈ 𝑐𝑈s,0(
1 + 1 − 𝛼

𝛼

𝛽

𝑐𝑈𝑠,0

𝑎1𝑋

𝐿𝑑

)𝛼/(1−𝛼) , (5.4)

where (5.4) is the decay model in spatial coordinates from (3.12). Figure 5.4 shows
the experimental data replotted with the calibrated model using (5.4).

5.1.3 Diaphragm Effects
Figure 5.5 shows the effect of Mylar diaphragm thickness on shock speed measure-
ments in (a) and on the space-time diagram in (b). As the diaphragm thickness
increases, the measured shock speeds are uniformly reduced, deviating further from
the ideal model. The space-time diagram shows that the increased diaphragm thick-
ness results in a delay in shock arrival time, indicating that the thicker diaphragms
increase the shock formation time.

Similar results were obtained for two other pressure ratios, and the ratio 𝑐 for
these conditions is shown in Figure 5.6. As the diaphragm thickness increases,
𝑐 deviates further from unity for all three pressure ratios. Data for each pressure
ratio are fit to lines and extrapolated to zero diaphragm thickness. The nonzero
intercepts indicate that there is potentially an additional effect responsible for the
model discrepancy. The intercepts are not much greater than the values for 12.7 𝜇m
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Figure 5.4: Forward-mode detonation-driven shock speed measurements compared
with calibrated model.
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Figure 5.5: Effect of diaphragm thickness on (a) shock speed and (b) space-time
diagram. All conditions use 𝑃41 = 50 kPa C2H4 + 3O2 driver gas and 𝑃1 = 6.5 kPa
air driven-section gas.

diaphragms, suggesting that insignificant improvement is obtained from using even
thinner diaphragms.
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Figure 5.6: Effect of diaphragm thickness on 𝑐 for three pressure ratios. Dashed
curves are linear fits.

Non-ideal diaphragm effects are due to its shape, mass, and strength. Diaphragm
opening times are typically related to its mass. Figure 5.7 shows shock speed
measurements for six shot conditions, where three pressure ratios are tested at higher
absolute pressures. The diaphragm thickness is also scaled, so that the expected
force per diaphragm mass is constant. The results for each pressure ratio are on top
of each other, indicating that for conditions with matched diaphragm dynamics the
model discrepancy is the same.
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Figure 5.7: Effect of absolute pressure with scaled diaphragm thickness.
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5.1.4 Driver Mixture
Figure 5.8 compares shock speed measurements in (a) and space-time diagrams in
(b) for three driver mixtures, where the driver pressure and shock tube pressure
ratios were chosen to produce the same CJ pressure and initial shock Mach number,
and hence similar diaphragm dynamics. Since the initial shock speed should be
similar, the subsequent shock motion shows the effect of the driver gas sound speed.
The hydrogen-oxygen mixture has a high sound speed and so a larger initial decay
rate, 𝛽, resulting in more rapid decay overall. In contrast, the argon-diluted mixture
has a lower sound speed and so lower overall shock decay. These observations are
consistent with model predictions.
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Figure 5.8: Effect of driver gas mixture on forward-mode detonation-driven (a)
shock speeds and (b) space-time diagrams. Conditions are chosen so that ideal
initial shock speed and CJ pressure are the same for the three cases. Conditions are
numbers 13, 19, and 22 from Table B.1.

Because of the faster shock decay generated by the hydrogen-oxygen mixture, the
ideal model predicts that the shock should reach the steady speed phase much earlier
in the measurement region. This is shown in Figure 5.9. The experimental shock
decay follows the model decay until the model reaches the steady shock speed, where
the experiment shows that the shock continues decaying well below the steady shock
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speed. The steady shock speed in this region is determined by the TZ wave plateau
state, which is not influenced by diaphragm effects. Shock decay below this speed
indicates other effects, namely wall heat transfer and viscous attenuation.
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Figure 5.9: Comparison of experiment and model for hydrogen-oxygen driver, where
𝑃41 = 87 kPa, 𝑃1 = 32.12 kPa, and diaphragm thickness is 25.4 𝜇m.

5.1.5 Time-Frequency Analysis
The time-resolved shock speed measurements in this work enable observations of
higher-frequency shock motion. In many of the above plots there is clearly an
oscillatory component to the shock speed, particularly for the higher pressure ratios
in Figure 5.2.

To analyze these frequencies, the shock speed measurements are high-pass filtered
(HPF) using a Savitzky-Golay filter with a 4 kHz cut-off (4th order polynomials
with a window of 325 samples). High frequencies were passed by subtracting the
Savitzky-Golay filtered signal from the unfiltered signal. This is not necessary for
spectral analysis, but useful for visualizing the time-series oscillations.

Signals exhibit time-varying frequencies and amplitudes, so a coarse time-frequency
analysis is implemented. For the condition in Figure 5.2(d), the signal record
is segmented into thirds, and a periodogram is computed for each third using a
Hann window. Periodograms are estimates of the power spectrum (Oppenheim and
Schafer, 2010), and here they are computed using SciPy (Virtanen et al., 2020).
Record lengths are too short to afford any useful averaging.

The segmented signal and corresponding estimates of power spectral density (PSD)
are plotted in Figure 5.10(a) and (b), respectively. There is a prominent peak
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frequency that decreases with time, which is plotted in (c). The discrete Fourier
transform (DFT) resolution is used for the peak frequency error bounds. Also plotted
in (c) is the characteristic frequency of an acoustic plane wave propagating along
the tube diameter in the post-shock flow. This frequency is 𝑎2/𝑑, where 𝑎2 is the
post-shock sound speed and 𝑑 is the tube diameter. Figure 5.10(c) shows that the
measured frequencies are consistently higher than this acoustic frequency.
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Figure 5.10: Time-frequency analysis of data from Figure 5.2(d). (a) shows high-
pass filtered signal, segmented into thirds. (b) shows periodograms of these seg-
ments using a Hann window. (c) shows PSD peak frequency over time, and (d)
shows signal amplitude in 50 kHz bandwidth over time.

The signal amplitude is evaluated by integrating Figure 5.10(b) up to 50 kHz. Signal
above 50 kHz was averaged to obtain a noise spectral density. This calculation
is performed on the signal without the low-pass filtering used for plots of time
variation. The root-mean square (RMS) signal amplitudes are plotted over time in
Figure 5.10(d). The signal in (a) is not sinusoidal and more closely resembles a
sawtooth waveform, for which the peak amplitude is related to the RMS value by a
factor of

√
3. Applying this factor to (d) gives peak shock oscillation amplitudes of

nearly 100 m/s, as observed in (a).

If the periodogram is calculated instead for the entire record, then the peak frequency
obtained is an average of those in (c). This is useful for comparing oscillation
frequencies between shot conditions. Figure 5.11 shows these peak frequencies for
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the different pressure ratio conditions. Periodograms for these conditions are given
in Appendix B. The peak frequency clearly increases as the pressure ratio increases,
and the trend follows that of the reference frequencies given by 𝑎2/𝑑, illustrating
the dependence on post-shock sound speed.
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Figure 5.11: Peak frequencies from periodograms computed for entire shock speed
records.

5.1.6 Diaphragm Bulge
A principal source for the shock speed oscillations in the above results was identified
to be the bulging of plastic diaphragms. This was first identified by observing that
oscillation amplitude is reduced by using thicker diaphragms for the same shot
condition. However, if the thicker diaphragm was statically pre-loaded to a much
higher initial pressure difference and therefore plastically stretched, then the initial
diaphragm bulge was increased and higher oscillations in the shock speed were
observed again.

A straight-forward remedy for this issue is to mechanically support the diaphragm
with a rigid cross of thin flat plates. A photograph of this is shown in Figure 5.12,
where the plates are 1.27-mm thick stainless steel. Unlike diaphragm cutters, these
plates must be sufficiently blunt to not prematurely tear the diaphragm.

The effect of mechanically supporting the diaphragm is shown in Figure 5.13. The
spectra in (b) are computed only for the first third of each record. The RMS signal
amplitude in the first third of the record is 53.3 ± 13.1 m/s and 22.5 ± 14.0 m/s
for the unsupported and supported diaphragms respectively. Clearly, mechanically
supporting the diaphragm substantially reduces the large amplitude oscillations in
shock speed. An additional advantage of supporting the diaphragm is that it reduces
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Figure 5.12: Photograph of rigid cross of thin flat plates used to mechanically
support plastic diaphragms to prevent bulging.

the initial static diaphragm loading and hence enables even thinner diaphragms to
be used.
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Figure 5.13: Effect of mechanically supporting diaphragm on (a) high-pass filtered
shock speed signals and (b) power spectra computed from first third of signals in
(a).

Diaphragms were found to bulge quite substantially. This was measured by removing
the driven section and pressurizing the driver with a diaphragm in place. The
diaphragm deflection was measured with a laser tape measure, and the results are
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shown in Figure 5.14. For most typical shock-tube conditions, the diaphragm is
bulging 10-15 mm, roughly 30% of the tube radius.
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Figure 5.14: Deflection of Mylar diaphragms with varied thicknesses from driver
pressurization.

5.2 Results: Reverse-Mode Detonation Driver
In the reverse-mode driver, the detonation is initiated at the diaphragm and prop-
agates upstream, driving an ideally steady shock in the test gas. In this work, the
detonation is initiated at the diaphragm by imploding an annular detonation formed
in channels external to the main tube inner diameter.

5.2.1 Pressure Ratio
Results for six pressure ratios are shown in Figure 5.15, where the driver pressure
is constant and the driven-section pressure is varied. As expected, the shocks are
approximately steady, exhibiting substantially less decay than from the forward-
mode driver. A new feature of these measurements seen in (a) through (d) is a jump
in shock speed resulting from the arrival of the shock reflected by the detonation
when it impacts the upstream driver end wall. The TZ wave also reflects and
attenuates the reflected shock. So after being overtaken by the reflected shock, the
primary shock is also decaying.

For lower pressure ratios in Figure 5.15(a) and (b), agreement with predictions
given by ideal theory is excellent. As the pressure ratio increases, the shocks are
observed to be slower than as predicted and there is nonzero shock attenuation. The
effective shock attenuation is calculated by fitting the data with a line that intersects
the ideal value at the diaphragm position. The slope of this line is normalized by
the calculated shock speed and plotted in Figure 5.16. Attenuation per meter shows
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Figure 5.15: Reverse-mode detonation-driven shock speed measurements for vari-
ous pressure ratios. Driver gas is C2H4 + 3O2 and diaphragm thickness is 25.4 𝜇m
for all cases.

an inverse dependence with pressure ratio, increasing rapidly for lower values and
slower for larger values, approaching nearly 5% per meter. This attenuation likely
illustrates wall boundary layer effects.

Similar to results from the forward-mode driver, significant oscillation is observed
in shock speed measurements, particularly for higher pressure ratios. By inspection,
oscillation amplitudes are larger at early time, but analysis shows that peak frequen-
cies are constant throughout the measurement record. The dominant frequency is
therefore estimated using periodograms with a Hann window of the entire record
length prior to reflected shock arrival. The dominant frequency from Figure 5.15(b)
through (f) is plotted in Figure 5.17. The characteristic transverse acoustic fre-
quency, 𝑎2/𝑑, is also plotted. The observed frequencies are uniformly much higher
than 𝑎2/𝑑 with a ratio varying from 1.2 to 1.4.
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Figure 5.16: Shock speed fractional attenuation per unit meter calculated from slope
of measurement fits.

0 5 10 15 20 25
P41/P1

8

10

12

14

pe
ak

 fr
eq

ue
nc

y 
(k

Hz
) a2/d

Figure 5.17: Peak frequencies obtained from power spectra of pressure-ratio data.

5.2.2 Diaphragm Effects
Diaphragm effects are shown in Figure 5.18, where the nominal pressure ratio is
constant but the diaphragm-inertia conditions are varied. Although the frequency
content appears qualitatively different, the overall shock speed and attenuation per
meter is approximately the same for the four conditions. In (d), the diaphragm is
mechanically supported as described for the forward-mode driver. Interestingly,
the oscillatory component appears to be improved by this, indicating that for the
reverse-mode the shock oscillations are not originating from the diaphragm bulge.
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Figure 5.18: Diaphragm effects on shock speed for constant pressure ratio. All cases
use a C2H4 + 3O2 driver mixture.

5.2.3 Driver Mixture
Driver mixture effects are shown in Figure 5.19 for one pressure ratio. The reflected
shock is seen to arrive earlier for the hydrogen-oxygen mixture and later for the
argon-diluted mixture, as expected from the different detonation speeds and driver
gas sound speeds. For the hydrogen-oxygen case, the shock appears to be slower
than expected from ideal theory with more rapid attenuation.

Periodograms for the three cases are shown in Figure 5.20 with 𝑎2/𝑑 plotted as a
vertical line. The variation in 𝑎2/𝑑 between the three cases is small enough to lie
within the thickness of the single plotted line. The spectra show that as the driver
gas sound speed increases, the oscillation frequency increases, departing further
from 𝑎2/𝑑. The ratio of the dominant frequency with 𝑎2/𝑑 is plotted in Figure
5.21 against the sound speed ratio 𝑎42/𝑎1 for two pressure ratios, illustrating the
frequency-dependence on driver gas sound speed.
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Figure 5.19: Effect of driver mixture on driven shock speed, where each case uses
100 kPa driver gas and 10 kPa air driven-section gas.
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Figure 5.20: Periodograms from driver-mixture data in Figure 5.19.

Since shock speed oscillation frequency is increased for greater driver gas sound
speeds, but otherwise not affected by diaphragm conditions, the oscillations in
reverse-mode shocks are suspected to originate from the detonation initiation pro-
cess. Jackson (2005) showed that very high peak pressures are obtained from
detonation implosion. Some component of the reflected shocks inevitably transmit
into the driven gas. The dependence on driver gas sound speed indicates either that
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Figure 5.21: Ratio of peak frequencies from shock speed power spectra with char-
acteristic transverse frequency, 𝑎2/𝑑. Data are shown for three driver mixtures and
two pressure ratios, where driver mixtures are plotted using the sound speed ratio,
𝑎42/𝑎1. 𝑎42 is the CJ state sound speed.

the speed of the implosion process affects the transmitted disturbance frequency or
that the higher sound speed transmits a stronger wave.

5.2.4 Test Gas
Figure 5.22 shows the effect of varied test gas composition, where argon and an
argon-helium mixture were examined. Argon has a lower sound speed than air,
however its high post-shock temperatures give it a higher sound speed than for air.
The nominal post-shock sound speeds are 718 m/s for air, 910 m/s for argon, and
1,120 m/s for 0.5Ar+0.5He. The peak frequency from periodograms is shown to
trend toward 𝑎2/𝑑 as 𝑎2 increases.

5.3 Results: Helium Driver
Observations of shock oscillations from both forward and reverse-mode detonation
driver operation motivated investigation of the typical unheated high-pressure he-
lium driver. Shock speed measurements, predicted shock speeds, and correspond-
ing power spectra are plotted in Figure 5.23 for the two shot conditions studied.
Shock speed measurements in (a) show that the shock accelerates from early time,
overshoots the predicted shock speed, then decays below it. These dynamics are
consistent with the classic analysis of diaphragm-opening effects by White (1958).

Data are noisier than for the detonation driver, so power spectra are estimated using
Welch’s method (Welch, 1967) with a Hann window, where each averaged segment



107

0.0 0.5 1.0 1.5 2.0
distance (m)

1.50

1.75

2.00

2.25

sp
ee

d 
(k

m
/s

)

(a)  air

0 10 20 30 40 50
frequency (kHz)

0.00

0.25

0.50

0.75

1.00

PS
D 

(m
/s

/H
z1/

2 )

(d)  air

0.0 0.5 1.0 1.5 2.0
distance (m)

1.50

1.75

2.00

2.25

sp
ee

d 
(k

m
/s

)

(b)  Ar

0 10 20 30 40 50
frequency (kHz)

0.00

0.25

0.50

0.75

1.00

PS
D 

(m
/s

/H
z1/

2 )

(e)  Ar

0.0 0.5 1.0 1.5 2.0
distance (m)

1.50

1.75

2.00

2.25

sp
ee

d 
(k

m
/s

)

(c)  0.5He+0.5Ar

0 10 20 30 40 50
frequency (kHz)

0.00

0.25

0.50

0.75

1.00
PS

D 
(m

/s
/H

z1/
2 )

(f)  0.5He+0.5Ar

Figure 5.22: Shock speed measurements and power spectral densities for various
test gases. The black line in (d-f) corresponds with 𝑎2/𝑑.

is half the record length. The power spectra in Figure 5.23(b) show some frequency
content around the transverse acoustic frequency, 𝑎2/𝑑, but the amplitudes are
much smaller than any observed from the detonation driver. RMS signal amplitudes
are computed by integrating the PSD up to 50 kHz and are 14.9 ± 11.8 m/s and
19.8 ± 12.7 m/s for 𝑃4/𝑃1 = 106.2 and 219.2, respectively. The uncertainty value
is the RMS noise amplitude over the signal bandwidth, which shows that the RMS
signal amplitudes are only slightly greater than the measurement noise.

5.4 Discussion
Comparison between experimental shock speed measurements and predictions from
ideal one-dimensional inviscid shock tube theory showed that theory overpredicts
shock speeds for larger pressure ratios in both the forward and reverse-mode driver.
Interpretation of forward-mode results are complicated by interactions with the
TZ wave. In particular, diaphragm thickness effects were shown to be significant.
However, extrapolation to zero diaphragm thickness showed a residual discrepancy
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Figure 5.23: Measurements of shock speed using unheated high-pressure helium
driver for two pressure ratios in (a). Both cases use 𝑃1 = 5 kPa, and the black lines
denote predicted shock speeds. (b) shows power spectra estimates using Welch’s
method, where the black lines are the acoustic frequencies, 𝑎2/𝑑, corresponding
with the lines in (a).

with the ideal model that was larger for increasing pressure ratios. For reverse-mode
drivers, steady attenuation per meter also increased with increasing pressure ratio,
which is a well-known effect from wall boundary layers. Although the experimental
TZ wave was shown to be consistent with an isentropic expansion, wall effects
becomes more significant with increasing time. Attenuation from wall effects may
not be separable from experimental results due to the much greater decay by the
transmitted TZ wave. The variable that was not studied in this investigation was the
driver length-to-diameter ratio, which would help uncouple sources of shock decay.

Large oscillations in the shock speed were observed for both the forward and reverse
mode driver. Shock oscillations are significant because they are directly related
to acoustic perturbations behind the shock and hence acoustic noise in a facility’s
test flow. The amplitude of these oscillations decreased as the shock propagated
away from the diaphragm, indicating some attenuation. However, for larger pressure
ratios where oscillations are more significant the attenuation is reduced.

Acoustic disturbances behind primary shocks are particularly important for expan-
sion tubes, which motivated the study by Paull and Stalker (1992). They concluded
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that transverse or lateral acoustic waves were the culprit of test flow noise, and
examined the transmission of these waves into the test gas from an undefined source
in the driver. The ratio of sound speeds across the contact surface, 𝑎3/𝑎2, was iden-
tified as a controlling factor for transmission. The high-temperatures of detonation
products results in large sound speeds, even after isentropic expansion to the contact
surface state. For all shot conditions in this chapter, 𝑎3/𝑎2 > 1.

The origin of the shock oscillations observed in this work cannot be unambiguously
identified. However, they were shown to be substantially affected by the bulging
diaphragm for the forward-mode driver, which could be mitigated by mechanically
supporting the diaphragm to prevent it from bulging. Post-shock flow perturbations
from diaphragm bulge have been investigated before (Daru and Damion, 1995).
Hornung and Quirk (1998) showed that another effect is to distort the contact
surface.

Diaphragm bulge was not found to be important for the reverse-mode. Instead,
a likely source for these oscillations is the detonation initiation process. For the
reverse-mode operation, the detonation is imploded directly at the diaphragm plane,
generating very large transverse pressure transients (Jackson and Shepherd, 2007).
It was shown that the frequency of shock oscillation normalized by 𝑎2/𝑑 increased
for increasing CJ sound speed (or the CJ speed, itself). Normalization by 𝑎2/𝑑 takes
into account variation in the post-shock sound speed, so these trends illustrate the
dependence of measured frequencies on driver conditions.

No remedy was identified for the reverse-mode driver, since initiation at the di-
aphragm is fundamental to the driver’s operation. Detonation wave implosion is
possibly especially prone to exciting these shock oscillations. However, the trans-
verse detonation tubes used for initiation in other facilities (Yu et al., 1992, Zhao
et al., 2005) likely also introduce transverse waves. It is important to note that these
shock oscillations are only observable in the present shock tube due to the high-
frequency shock speed measurement technique employed. In other facilities, these
oscillations may be present and go unobserved due to typically coarse measurements
using time-of-arrival gauges.

Conventional shock tubes with high-pressure helium drivers also have bulging di-
aphragms, and so shock oscillations for this driver operation were also investigated.
It was found that the oscillation amplitude was comparable to measurement noise.
To compare this with detonation drivers, RMS shock speed oscillation amplitudes
are collected below in Table 5.1 for conditions with roughly 1.45 km/s shock speeds.
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These results show that the forward-mode driver with supported diaphragm is nearly
as “quiet” as the conventional high-pressure helium driver.

Table 5.1: Comparison of RMS shock speed oscillation amplitudes between driver
techniques

driver technique RMS shock oscillation (m/s)
forward-mode detonation driver 53.3 ± 13.1
forward-mode detonation driver

with diaphragm support 22.5 ± 14.0

reverse-mode detonation driver 32.3 ± 16.6
helium driver 19.8 ± 12.7

A final point is to consider the spacing of time-of-arrival gauges necessary to
resolve the frequencies observed here. For a steady shock with speed 𝑈𝑠, the
effective sampling rate obtained by an array of sensors with spacing Δ𝑥 is 𝑈𝑠/Δ𝑥.
In one representative shot, a roughly 1.6 km/s shock was observed to have 12 kHz
oscillations. Consider this to be at the Nyquist frequency of the sensor array. Then,
Δ𝑥 must be less than 6.6 cm in order to resolve these oscillations. Sensors spaced
2-cm apart would give roughly six samples per period of oscillation. Over a 1.5-m
long measurement region, this would require 75 sensors.

5.5 Conclusions
A unique method of using shadowgraphy through a polycarbonate shock tube enabled
high-resolution measurements of shock speeds along the entire driven section length.
Diaphragm effects were identified, and overall performance could be calibrated
against model calculations. With a correction factor, the forward-mode shock decay
model presented in Chapter 3 was shown to be accurate. An important consequence
of this is that it can be used to estimate shock unsteadiness for a given facility and
shot condition.

Time-resolved shock speed measurements enabled original observations of shock
speed frequency content. Conventional time-of-arrival shock speed measurements
only coarsely sample shock position, and so the present work’s ability to perform
spectral analysis of shock speed is unique. Shock speed oscillations are important
considerations for assessing the quality of flows generated by a shock tube, and
perturbations from these oscillations should be observable in the post-shock flow.
Methods for interrogating the post-shock flow is the subject of the next chapter.
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C h a p t e r 6

HETERODYNE FOCUSED LASER INTERFEROMETER:
THEORY, METHODS, AND VALIDATION

Optical interferometry is an exceptionally sensitive method for interrogating trans-
parent media. When coherent light transmits through a variable density gas flow,
the light wave is phase modulated. By interfering this signal beam with a refer-
ence beam, the phase modulation of the electric field is converted to amplitude
modulation of the optical intensity, something measurable with a photosensitive
detector.

Like shadowgraphy and schlieren, interferometry is a historic method for inves-
tigating shock-tubes flows. Although earlier applications to compressible flows
exist, Bleakney et al. (1949) provide one of the first uses of an interferometer in
a shock tube. Interferometric measurement of density jumps across shock waves
is particularly challenging due to the very large density gradients in shocks caus-
ing apparently discrete fringe shifts in interferograms. The pioneering work by
Bleakney et al. (1949) included a method of overcoming this by transmitting the
signal beam obliquely through the test section so that the resulting fringes remained
continuous through the widened shock front. This technique was extensively used
by Blackman (1956), Matthews (1959), and Alpher and White (1959a,b) to measure
relaxation and reaction rates behind shock waves. Interferometric measurements
make up a large portion of the empirical data used in the famous study of relaxation
rates by Millikan and White (1963). Results from White’s shock-tube interferometry
also include the first observations of the cellular and turbulent structure of gaseous
detonations (White, 1961).

Early uses of shock-tube interferometry employed simple constructions with only the
requisite optical components: beam splitting elements, mirrors, lenses, a spatially-
filtered light source, and film. Experimental applications of the basic technique
have grown enormously with the advent of new technologies like the laser, digital
electronics, and fiber optics. Advances in electronics have enabled a new kind of
interferometry where beams are not imaged but rather focused onto a single detector,
the optical power is converted to electrical current, and the signal is digitized at high
speed with modern oscilloscopes. Phase modulation is measured as a time-varying
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signal instead of from the spatial modulation of fringes in an image. This application
extends far beyond scientific research and makes up many of the sensors used in
modern technologies, where it is often no longer referred to as interferometry but
rather coherent detection. Telecommunications technologies make up a significant
portion of these applications. In fluid dynamics applications, the great advantage of
this technique is the improved bandwidth and signal-to-noise ratio over photography
of finite fringe diagrams. Additionally, tightly focused laser beams can enable much
greater spatial resolution or at least spatial selectivity. However, the challenge is
that the temporal signal cannot be phase unwrapped as with a finite fringe diagram.
Shock-tube flows often generate very large fringe shifts, making an interferometer
signal nearly useless in these cases as the ability to invert the signal to density is
completely lost by rapid phase wrapping.

The challenge of phase wrapping is greatly reduced in the case of a differential laser
interferometer. If the signal and reference beams instead both transmit through the
shock-tube flow and are spatially displaced by a length scale that is small compared
to those of the flow, then the rapid phase change from large density gradients occurs
in both beams, so that only their difference is detected. This is the technique
employed in the Focused Laser Differential Interferometer (FLDI), which has found
recent widespread use in hypersonic flow research facilities. The instrument was
developed by Smeets and George (1973) but was only recently popularized by
Parziale et al. (2012). The operation of FLDI was analyzed in greater detail by
Schmidt and Shepherd (2015) and then extensively by Lawson and Austin (2023).
Lenses are used to focus the beam at a desired position in the test flow and then
refocus the beam onto a photodetector. By locating a pair of Wollaston prisms
at the focal planes of each focusing lens, the transmitted beam is split into two
closely-spaced parallel beams and then recombined. Wollaston prisms are a kind of
polarizing beam splitter, and so the phase modulation in each signal beam is carried
by orthogonal polarizations. Subsequent transmission of the recombined beams
through a linear polarizer causes the two signal beams to interfere, so that the beam
optical intensity is now modulated by the differential phase signal.

FLDI is a powerful technique with several advantages. The common beam paths
eliminate a significant amount of common-mode noise such as from vibration but
also low-frequency fluid motion such as from ambient air currents. Construction
and alignment is much simpler than with other interferometers, which has certainly
aided its widespread adoption. The differential signal enables use of high-speed
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photodetectors and therefore measurements of signals with large bandwidths. By
focusing the beams, the frequency response of the interferometer is spatially dis-
tributed, so that high frequencies are passed at the focus while being suppressed
at boundaries. The typical use for FLDI is to make measurements of density fluc-
tuations in some test flow. High bandwidths enable spectral techniques, allowing
both measurements of signal amplitude and frequency. A common adaptation to the
instrument is to incorporate additional beam splitting elements to create additional
foci pairs and therefore additional measurement locations (Gillespie et al., 2022,
Hameed et al., 2020).

As a laboratory instrument using coherent detection the theoretical signal-to-noise
ratio of FLDI is limited only by shot noise from the photocurrent. Laser power is
typically not a restriction, so shot noise can be made to greatly exceed thermal John-
son noise in detection circuits. To the author’s knowledge, there are no documented
examples of this being accomplished due to nearly all implementations of FLDI
containing a significant degree of laser intensity noise. This limitation was iden-
tified by Lawson (2021) as an important avenue for future improvements to FLDI.
Overcoming this challenge is especially important for applications in low-density
flows, such as those generated in expansion tubes, where signals are weak.

An alternative method of coherent detection is to interfere the signal beam with
one at a different optical frequency, known as optical heterodyne detection, distin-
guished from homodyne detection where signal and references frequencies are the
same. If the optical frequency difference is in radio-frequency (RF) or microwave
bandwidths, then detection of the optical intensity returns an alternating current at
this frequency difference. This is the phenomenon of beat formation from mixing
two frequencies. Information contained in the phase modulation of the optical signal
beam is converted to phase modulation of the heterodyne signal. This is a key dif-
ference from prior interferometric techniques: phase information is not converted to
amplitude modulation. Instead, the phase signal can be measured directly, enabling
powerful signal processing techniques to unwrap large phase changes. Additionally,
the beat frequency can be chosen so that heterodyne detection is performed in a
quiet band far from amplitude noise sources. Since typical laser noise is less than
10 MHz, heterodyne detection in RF bandwidths provides a possible method for
eliminating SNR limitations of FLDI. These advantages motivated the present work
to apply heterodyne detection to FLDI.

Optical heterodyne detection grew out of the heterodyne techniques used for RF
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communication and is merely the same principles applied to optical frequencies.
Beat formation from optical frequencies was first reported by Forrester et al. (1955),
but McMurtry and Siegman (1962) were the first to use a laser. As examples,
early work used the technique to investigate atmospheric turbulence (Fried, 1967,
Goldstein et al., 1965), measure surface vibrations (Massey, 1968, Whitman et al.,
1968), and probe plasmas (Jacobson and Call, 1978, Kristal and Peterson, 1976).
See NASA (1980) for a history and other early work. In condensed shock physics,
the VISAR technique employs heterodyne detection using the beat formed by mix-
ing with a doppler-shifted reflected beam (Strand et al., 2006). In Laser-Induced
Thermal Acoustics (LITA) (Cummings, 1995) and similar techniques (Jakobs et al.,
2023, Sander et al., 2022) the signal beam is scattered from an opto-acoustic grating,
incurring a Doppler frequency shift. By interfering the Doppler-shifted signal beam
with a reference beam, coherent heterodyne detection is used to also obtain flow
velocity measurements. Frequency-modulated spectroscopy (Lenth, 1983, Philippe
and Hanson, 1993) generates alternating signals that can be demodulated using RF
techniques, however this is not coherent heterodyne detection.

Examples of heterodyne interferometry used to make direct phase measurements in
fluid dynamics are sparse. Authors at Bethel University implemented a heterodyne
interferometer to investigate the gas dynamics in a “Ping-Pong Cannon” (Olson
et al., 2006, Peterson et al., 2005) and in an under-expanded jet (Fredrick et al.,
2015). Recently, Choudhary et al. (2024) applied heterodyne techniques to a focused
interferometer, where signal beams were imaged on a high-speed detector.

In this work, a heterodyne focused laser interferometer is constructed, validated, and
employed to interrogate the post-shock flow in a detonation-driven shock tube. The
instrument uses the same construction as the FLDI, however heterodyne detection
enables both differential and absolute phase measurements. With some caveats, the
instrument overcomes limitations of phase wrapping with some measurements in
this work spanning nearly 100𝜋 radians. Differential signal-to-noise ratios were not
improved beyond the conventional FLDI, however, while developing the heterodyne
instrument, an alternative method for improving FLDI SNR was investigated using
balanced detection. Described in Appendix C, this simple method is shown to
produce shot-noise limited measurements with an astounding 30 dB increase in
SNR.

In this chapter, essential background is established before the heterodyne focused
laser interferometer is presented. A set of experiments were performed to validate
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its operation, and these are discussed here. Results are reported from using the
interferometer in GUST in the next chapter.

6.1 Theory
6.1.1 Governing Equations
Interference of two beams of coherent light with a common polarization is a conse-
quence of the wave nature of light. If the wavefronts, identified by spatial contours
of constant phase, are not exactly coincident, then regions of constructive and de-
structive interference produce fringes, and the resulting fringe pattern encodes this
wavefront variation.

Wavefront perturbations result from spatial variation of the wave speed. The speed
of light, 𝑣, propagating through a dielectric medium is reduced from its vacuum
speed, 𝑐, by a factor 𝑛, i.e.,

𝑣 =
𝑐

𝑛
. (6.1)

𝑛 is known as the index of refraction and is an intrinsic property of the medium.
Since 𝑐 is a constant, optical wavefronts are perturbed when they propagate through
variations in 𝑛.

The propagation of light is described by Maxwell’s equations (Born and Wolf,
1999). In a homogeneous dielectric medium, free of charge and currents, Maxwell’s
equations can be combined to obtain the wave equation,

∇2E − 1
𝑣2 𝜕

2
𝑡 E = 0 , (6.2)

where E is the vector electric field. For linearly-polarized monochromatic light with
frequency 𝜔, the scalar electric field can be given as

𝐸 (x, 𝑡) = E(x)𝑒− 𝑗𝜔𝑡 . (6.3)

Substitution into the wave equation gives

(∇2 + 𝑘2)E = 0 , (6.4)

where 𝑘 = 2𝜋/𝜆 and 𝜆 is the wavelength of light in the medium. Equation (6.4) is
the Helmholtz equation.

6.1.2 Gaussian Beam Propagation
Real laser beams are often modeled as Gaussian beams, an important solution to
the Helmholtz equation. Milonni and Eberly (2010) give a derivation, however the



116

key steps and assumptions are simple and will be summarized here. Consider a
“beamlike” solution to the Helmholtz equation

E(x) = E0(x)𝑒 𝑗 𝑘𝑧 , (6.5)

where the beam propagates along the 𝑧 axis. Substituting (6.5) into (6.4) and
applying the paraxial approximation, then the paraxial wave equation is obtained,(

𝜕2
𝑥 + 𝜕2

𝑦 + 2 𝑗 𝑘𝜕𝑧
)
E0(x) = 0 . (6.6)

The Gaussian beam parameters can be derived by assuming a Gaussian intensity
profile for E0, i.e., consider

E0(x) = 𝐴𝑒 𝑗 𝑘 (𝑥
2+𝑦2)/2𝑞(𝑧)𝑒 𝑗 𝑝(𝑧) , (6.7)

where 𝐴 is the field amplitude. The required functions 𝑞(𝑧) and 𝑝(𝑧) are to be
determined by substitution into (6.6). The results are

𝑞(𝑧) =
(

1
𝑅(𝑧) +

𝑗𝜆

𝜋𝑤(𝑧)2

)−1
, (6.8)

𝑒 𝑗 𝑝(𝑧) =
𝑤0
𝑤(𝑧) 𝑒

− 𝑗𝜑(𝑧) , (6.9)

where 𝑅(𝑧) is the radius of curvature of the wavefront, 𝑤(𝑧) is the beam radius, 𝑤0

is the beam waist radius where 𝑅 → ∞, and 𝜑(𝑧) is the Guoy phase, given by

𝜑(𝑧) = tan−1(𝑧/𝑧0) . (6.10)

𝑧0 is the Rayleigh range,

𝑧0 =
𝜋𝑤2

0
𝜆

, (6.11)

and the beam radius is given by

𝑤(𝑧) = 𝑤0

√︃
1 + 𝑧2/𝑧2

0 . (6.12)

So, putting it all together, the scalar electric field for a Gaussian beam is given by

𝐸 (x, 𝑡) = 𝐴 𝑤0
𝑤(𝑧) 𝑒

𝑗 𝑘 (𝑥2+𝑦2)/2𝑅(𝑧)𝑒−(𝑥
2+𝑦2)/𝑤(𝑧)2

𝑒− 𝑗𝜑(𝑧)𝑒 𝑗 𝑘𝑧𝑒− 𝑗𝜔𝑡 . (6.13)

Photosensitive detectors respond to the optical intensity. For a paraxial beam, the
optical intensity is given by

𝐼 =
𝑛𝑐𝜖0

2
⟨|𝐸 |2⟩ , (6.14)



117

where 𝜖0 is the permittivity of free space. All detectors have some finite response
time, and so the angled brackets denote a short-time average over a period large
compared to the period of the optical oscillation. In other words, the theoretical
optical intensity is convolved with the impulse response of the detector (Hobbs,
2008). Then, the intensity of a Gaussian beam is

𝐼 (x) =
𝐼0𝑤

2
0

𝑤(𝑧)2 𝑒
−2(𝑥2+𝑦2)/𝑤(𝑧)2

, (6.15)

where 𝐼0 = 𝑛𝑐𝜖0 |𝐴|2/2.

As a solution to the wave equation, the Gaussian beam scalar field equation includes
the essential effects of diffraction, which is responsible for the expanding beam
radius.

The Gaussian beam is paraxial, however focused laser interferometers often operate
at larger numerical apertures, so it is worth verifying this remains a reasonable
approximation. This was studied by Nemoto (1990), who showed that for 𝑤0𝑘 > 4
the paraxial Gaussian beam remains a good approximation. For 𝜆 = 532 nm, then
this gives a minimum beam waist radius of 0.34 𝜇m. In the present work, the
minimum radius used was 5.7 𝜇m, which is much more than this limit.

The Gaussian beam is merely the lowest-order mode of a more general solution
to the paraxial wave equation. Real lasers rarely propagate as perfect Gaussian
beams because some energy occupies higher-order modes, leading them to diffract
at steeper angles than pure Gaussian beams. There are many beam quality metrics
that quantify this, but a simple one is the 𝑀2, defined by

𝜃 = 𝑀2𝜆/𝜋𝑤0 , (6.16)

where 𝜃 is the measured beam divergence and 𝜆/𝜋𝑤0 is the diffraction-limited
beam divergence. If 𝑀2 = 1 then the beam is perfectly Gaussian. In modern
interferometry, high-quality lasers are typically used with small, near unity 𝑀2

values. For example, a common specification is 𝑀2 < 1.1. However, even a
𝑀2 = 1.1 can lead to a much wider beam than expected. If need be, the 𝑀2 can be
incorporated into beam propagation calculations by using it to scale the wavelength.
This was not necessary in the present work as the laser used was measured to have
an 𝑀2 ≈ 1.02.

The signal beam of an interferometer transmits through a region of nonuniform
index. If these index perturbations are large, then the nonhomogeneous Helmholtz
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equation must be solved to obtain the 𝐸 field propagation. Powerful and simple
computational methods exist for performing these beam propagation calculations
(Feit and Fleck, 1978). However, for this work, index perturbations are considered
sufficiently small that wavefront propagation is negligibly affected, and therefore the
Gaussian beam may be used. This is appropriate for many gas dynamics applications,
but not for cases with strong density gradients such as in shock waves.

6.1.3 Phase, Index, and Density
Phase perturbations are accumulated continuously as the wavefront propagates.
In a homogeneous medium, wavefronts propagate along trajectories everywhere
orthogonal to the wavefront surface. These paths provide an interpretation for
the “rays” of a Gaussian beam. Rays are typically an artifice of geometric optics
where the optical wavelength is assumed to be infinitesimal. The result is that
in a homogeneous medium, rays are straight lines. However, Gaussian beams, as
solutions to the Helmholtz equation, include the essential physics of diffraction,
which causes focused beams to form waists, something not described by ray optics.

Integration along ray paths is often used to formulate the accumulated phase change
from propagation through a nonuniform index field. For a ray path with arc length
parametrized by 𝑠, the accumulated phase change from an index perturbation is

𝜙 − 𝜙0 =
2𝜋
𝜆

∫ 𝐿

0
Δ𝑛(x) d𝑠 , (6.17)

where 𝐿 is the total arc length, 𝜙0 is the initial phase, and 𝜆 is the wavelength of
light in the ambient medium.

For the Gaussian beam, the same formalism can be used where instead of considering
straight rays, the integration paths are contours that are everywhere perpendicular
to wavefront surfaces (Born and Wolf, 1999). Near the optical axis, these contours
are hyperbolas given by

𝑟 (𝑧) = 𝑟0
𝑤(𝑧)
𝑤0

. (6.18)

For small angles, 𝑠 ≈ 𝑧, and (6.17) becomes

𝜙(𝑟 (𝑙), 𝜃, 𝑙) − 𝜙0 =
2𝜋
𝜆

∫ 𝑙

−𝑙
Δ𝑛(𝑟 (𝑧), 𝜃, 𝑧) d𝑧 , (6.19)

where cylindrical coordinates are now used, and 𝑟 (𝑙) and 𝑙 define the coordinates of
the detector plane.
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The phenomenon of image inversion through a focus, a result from geometric optics,
is not accounted for by assuming hyperbolic ray paths. Lawson (2021) included
image inversion in a numerical solution by artificially rotating the domain in 𝜃 for
𝑧 > 0. In the present work, only index fields that are symmetric about the 𝑧 = 0
plane are considered. Since the index perturbations are assumed weak enough to
not deflects rays and there are no apertures to clip the beam, there is no effect on the
result by neglecting image inversion. Hence, (6.19) can be used to compute phase
changes along Gaussian beam “ray” paths.

The refractive index of a dielectric medium is determined by intrinsic material
properties and its density. In gases, the refractive index is small, 𝑛 − 1 ≪ 1, and is
accurately modeled as directly proportional to the gas density,

𝑛 − 1 = 𝐾𝜌 , (6.20)

where 𝐾 is the Gladstone-Dale constant. 𝐾 is particular to a given molecule, and so
the index of a gas mixture with 𝑁 constituents is given by

𝑛 − 1 =

𝑁∑︁
𝑖

𝐾𝑖𝜌𝑖 . (6.21)

It is useful to define a single Gladstone-Dale constant for a given mixture. From
(6.20) and (6.21) this is

𝐾mix =

𝑁∑︁
𝑖

𝐾𝑖𝑌𝑖 , (6.22)

where 𝑌𝑖 is the constituent’s mass fraction and 𝐾𝑖 is defined in terms of the mass
density. Tabulated data for many gases are given by Gardiner et al. (1981), which
was used in this work with Cantera and Shock and Detonation Toolbox calculations
to determine values for 𝐾mix.

The variable gas density in a shock-tube flow causes a nonuniform index field. As
a Gaussian beam propagates through this nonhomegenous medium, its wavefront
incurs an integral phase change given by (6.19). The key assumption is that density
and therefore index changes are sufficiently small that ray paths remain unperturbed.

The action of an interferometer is to convert the phase modulation of the wavefront
into amplitude modulation of intensity. This is coherent detection.
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6.1.4 Coherent Detection
In an interferometer, the signal beam is combined with a reference beam by linear
superposition,

𝐸sig + 𝐸ref = Esig(x, 𝑡)𝑒 𝑗 (𝜔sig𝑡+𝜙sig (x,𝑡)) + Eref (x, 𝑡)𝑒 𝑗 (𝜔ref 𝑡+𝜙ref (x,𝑡)) , (6.23)

where 𝜙sig(x, 𝑡) and 𝜙ref (x, 𝑡) are each given by (6.19).

Photosensitive detectors, like film, photodiodes, and the retina, respond to optical
intensity. Assuming the incident beam is nearly normal to the detector face and the
numerical aperture of the beam is small (Hobbs, 2008), then the optical intensity is
given by (6.14). The intensity of the interfering electric fields (6.23) is

𝐼 (x, 𝑡) = 𝑛𝑐𝜖0
2

⟨|𝐸sig + 𝐸ref |2⟩ ,

=
𝑛𝑐𝜖0

2
[
|Esig |2 + |Eref |2 + 2|Esig | |Eref | cos (Δ𝜔𝑡 + Δ𝜙(x, 𝑡))

]
,

= 𝐼2
sig + 𝐼

2
ref + 2

√︁
𝐼sig𝐼ref cos(Δ𝜔𝑡 + Δ𝜙(x, 𝑡)) .

(6.24)

Equation (6.24) shows how phase modulation of the electric field is converted to
amplitude modulation of the optical intensity, where x describes detector plane
coordinates.

The electrical current produced by a photodetector is proportional to the total optical
power, 𝑃, obtained from integrating intensity over the detector area, i.e.,

𝑖(𝑡) ∝ 𝑃(𝑡) =
∫

det
𝐼 (x, 𝑡) d𝐴 . (6.25)

𝑖(𝑡) is the current resulting from photon conversion, often referred to as the pho-
tocurrent. The proportionality constant is referred to as the detector’s responsitivity,
R, so that 𝑖(𝑡) = R𝑃(𝑡). Responsivity is a figure of merit for a specific photodetector
construction and is a function of wavelength. For reference, the silicon photodiodes
used throughout this work have a typical responsivity of 0.25 A/W at 532 nm, where
the power here refers to incident optical power.

In most interferometers, the two beams have the same frequency and Δ𝜔 = 0. This
is referred to as homodyne detection. If the phase is spatially modulated, then
the intensity field displays fringes. Phase unwrapping requires capturing the fringe
pattern, so if these fringes are integrated over the detector plane, then this information
is lost. When using photodetectors to record the total optical power, interferometers
are aligned for infinite fringe so that the resting phase field is spatially uniform.
Additionally, beams are typically assumed much smaller than fluid perturbations,
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so that fringes are not formed and Δ𝜙(x, 𝑡) = Δ𝜙(𝑡). Considering phase spatial
variation is important for determining an instrument’s exact response and will be
revisted later.

Therefore, applying (6.25) to (6.24) for homodyne detection gives the alternating
current (AC) signal,

𝑖AC(𝑡) = 2
√︁
𝑖sig𝑖ref cos (Δ𝜙(𝑡)) . (6.26)

Current is then converted to voltage with a transimpedance amplifier or terminating
resistance. Δ𝜙 can be obtained by inverting (6.26). This is accomplished in practice
by calibrating the instrument, so that the voltage signal is given by

𝑣AC(𝑡) = 𝐴 cos (Δ𝜙(𝑡)) (6.27)

where 𝐴 is a calibration factor. Thus, the inverted phase change is

ˆΔ𝜙(𝑡) = cos−1
(
𝑣AC(𝑡)
𝐴

)
, (6.28)

where 𝑣AC/𝐴 ∈ [0, 𝜋]. Clearly, if |Δ𝜙 | > 𝜋, then this information is lost and cannot
be recovered by the inversion (6.28). This is referred to as phase wrapping. Further-
more, since near the phase-wrapping boundaries the signal derivative goes to zero,
the phase signal-to-noise ratio becomes poor. This constrains a homodyne measure-
ment to an even smaller acceptable range of phase changes. Another consequence
of the phase-to-amplitude signal conversion is that the phase signal is inseparable
from other variations in amplitude such as from laser noise.

If instead the two interferometer beams have different optical frequencies, then the
signal photocurrent has a constant frequency given by their difference, Δ𝜔. This
is heterodyne detection. The phase information Δ𝜙(𝑡) now modulates this new
frequency, referred to as the carrier frequency. There are several advantages. First,
Δ𝜔 can be chosen to enable detection in more desirable, less-noisy bandwidths.
More importantly, the phase of the heterodyne signal can be measured directly
without any inversion.

6.1.5 Frequnecy Down Conversion
For a heterodyne signal in an RF bandwidth, consider a reference signal with
the same carrier frequency, 𝜔.1 This reference signal is referred to as the Local
Oscillator (LO).

1The Δ denoting optical frequency difference is dropped here.
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The most simple phase-measurement system is mix the RF signal with the LO.
Mixers are circuit elements and perform the function of signal multiplication. The
output is referred to as the Intermediate Frequency (IF) and is

𝑆IF = 𝑆RF𝑆LO ,

= 𝐴(𝑡) cos(𝜔𝑡 + 𝜙(𝑡)) cos(𝜔𝑡) ,
(6.29)

where 𝐴(𝑡) and 𝜙(𝑡) are the amplitude and phase modulation of 𝑆RF. The LO is
assumed to have unity amplitude and zero phase. From trigonometry,

𝑆IF =
1
2
𝐴(𝑡) cos (𝜙(𝑡)) + 1

2
𝐴(𝑡) cos (2𝜔𝑡 + 𝜙(𝑡) . (6.30)

So, the effect of an ideal mixer is to generate two signals with frequencies given by
the sum and difference of the RF and LO frequencies. If 𝑆IF is now low-pass filtered
with cutoff frequency 𝜔𝑐 < 2𝜔, then the resulting signal is

𝑆IF,LPF =
1
2
𝐴(𝑡) cos (𝜙(𝑡)) . (6.31)

This signal processing architecture is often illustrated in block diagrams as shown
in Figure 6.1.

RF

LO

OUT

LPFMIXER

IF

Figure 6.1: Block diagram of frequency down converter.

The above example illustrates frequency down conversion to baseband, the frequency
band containing the phase modulation. Mixer down conversion is ubiquitous in
RF engineering applications, e.g., it is the technique used to convert frequency-
modulated radio to audible frequencies. The RF and LO frequencies do not need
to be the same, and the system is often used in receivers to down convert very high
frequencies to lower bandwidths that are still RF. Likewise, the mixer is often used
for up conversion, necessary for transmission.

If 𝑆RF is the signal obtained from a heterodyne interferometer, then frequency down
conversion can be used to obtain the signal phase in the form of (6.31). However,
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all of the same issues of phase wrapping and amplitude discrimination are present
in this output. Heterodyne detection can be performed in quiet bandwidths, but
with only this signal processing system the advantages are limited. With only a
slightly more complicated system, much more information can be extracted from
the heterodyne signal. This is known as IQ demodulation.

6.1.6 IQ Demodulation
IQ demodulation is a signal processing method used to obtain the in-phase (I)
and quadrature (Q) components of a signal. The signal acquired using only down
conversion is merely the in-phase component. With an additional signal path,
the signal quadrature component can be obtained, enabling powerful and simple
methods for extracting the desired signal information like phase and amplitude
modulation.

To obtain the signal quadrature component, the key additional step is to phase delay
the LO by one quadrature, i.e., 90◦, before frequency down conversion. To see how
this works, consider the simple example above again, where now the LO has a phase
delay. Then, the mixer output is

𝑆IF = 𝑆RF𝑆LO ,

= 𝐴(𝑡) cos(𝜔𝑡 + 𝜙(𝑡)) cos(𝜔𝑡 − 𝜋/2) ,
= −𝐴(𝑡) cos(𝜔𝑡 + 𝜙(𝑡)) sin(𝜔𝑡) ,

=
1
2
𝐴(𝑡) sin (𝜙(𝑡)) − 1

2
𝐴(𝑡) sin (2𝜔𝑡 + 𝜙(𝑡)) .

(6.32)

After low-pass filtering, the quadrature component is obtained,

𝑄(𝑡) = 1
2
𝐴(𝑡) sin (𝜙(𝑡)) . (6.33)

Clearly, the quadrature component is merely the in-phase component with a quadra-
ture phase difference. If both the in-phase and quadrature components are extracted,
then the signal can now be constructed as

𝑆(𝑡) = 𝐼 (𝑡) + 𝑗𝑄(𝑡) , (6.34)

= 𝐴(𝑡)𝑒 𝑗𝜙(𝑡) . (6.35)

The phasor representation in (6.35) illustrates how the IQ data enable the amplitude
and phase modulation to be separated and independently measured. They are given
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simply by

𝜙(𝑡) = tan−1(𝑄(𝑡)/𝐼 (𝑡)) , (6.36)

𝐴(𝑡) =
√︁
𝐼 (𝑡)2 +𝑄(𝑡)2 . (6.37)

It is in this sense that heterodyne detection and subsequent IQ demodulation enables
direct phase measurement. The block diagram illustrating this system is shown in
Figure 6.2.

RF LO

I

LPFMIXER

Q

90°

Figure 6.2: Block diagram of IQ demodulator.

Typically in interferometry phase wrapping occurs every 𝜋 radians. Equation (6.36)
increases this limit to 2𝜋 because, although tan (𝑥) is defined for 𝑥 ∈ (−𝜋/2, 𝜋/2),
the sign of 𝑄(𝑡) can be used to identify the quadrant on the phase plane. This
signed inverse tangent is implemented in a variety of computational tools as the
arctan2 function, and the NumPy version is used in this work (Harris et al., 2020).
An essential consequence of these phase data is that wrapping at 2𝜋 increments
results in discrete jumps in the signal, identification of which is simple, and since
the direction of phase change is known, the wrapped signal can be unwrapped using
only a simple algorithm. In this work, the NumPy algorithm unwrap is used. Figure
6.3 illustrates how this works. The true signal is

𝜙(𝑡) = 3𝜋 cos(𝜔𝑡) . (6.38)

The amplitude is uniformly unity. The in-phase and quadrature components are then
given by

𝐼 (𝑡) = ℜ(𝑒 𝑗𝜙(𝑡)) ,
𝑄(𝑡) = ℑ(𝑒 𝑗𝜙(𝑡)) .

(6.39)
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Figure 6.3 shows true phase variation, the inverted in-phase component, the inverted
phase using arctan2, and the unwrapped signal. The distinct jumps in the inverted
IQ data are apparent, enabling the unwrapping algorithm. The phase information
clearly cannot be recovered using only the in-phase component. An additional
important point seen from Figure 6.3 is that the unwrapped IQ data cannot recover
the initial phase, and so the unwrapped phase signal is displaced. So some additional
information is required to correct for this shift, such as the phase signal amplitude
or initial condition.
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Figure 6.3: Illustration of phase unwrapping using IQ data.

Heterodyne detection enables using IQ demodulation to obtain IQ data, however IQ
data can also be obtained using other methods. A clever technique is to introduce
the quadrature delay optically in the reference beam of an interferometer. One way
to do this is to use a quarter wave plate, which delays one polarization component
of the reference beam by one quadrature. Interference in a polarizing beam splitter
generates two signals, the in-phase and quadrature components. An interferometer
of this type is described by Hogenboom and DiMarzio (1998). Another approach is
to use an imaging interferometer and introduce the quadrature delay spatially in the
reference beam. This is the approach used recently by Wang and Mazumdar (2021)
to make index measurements through shock waves.

6.1.7 Amplitude and Phase Noise
Given an RF signal measured with some noise power spectral density, an important
question is how does this signal noise determine the noise of the IQ demodulated
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signal and the phase and amplitude data.

By mixing the RF and LO signals, a process of ideal multiplication, the power
spectra of each signal are convolved. For simplicity, assume that the SNR of the RF
signal is much worse than the SNR of the LO, such that the LO noise power can be
neglected and the noise characteristics of the in-phase and quadrature components
are driven by the RF signal. Then the SNR of the IQ data is the same as that of the
incoming RF signal.

Given IQ data with some SNR, the objective is to determine the SNR of the phase
and amplitude data. Goodman (2015) presents a solution using concepts of random
phasor sums, and this analysis is repeated here. Consider 𝐼 and 𝑄 to be Gaussian
random variables with means 𝜇𝐼 and 𝜇𝑄 and a common variance 𝜎2. The phasor
defined by 𝐼 and 𝑄,

𝐼 + 𝑗𝑄 = 𝐴𝑒 𝑗𝜙 , (6.40)

can be separated into the sum of a constant phasor and a random phasor,

𝐼 + 𝑗𝑄 = 𝑠 + 𝑎𝑒 𝑗𝜃 , (6.41)

where 𝑠 is the constant phasor with amplitude
√︃
𝜇2
𝐼
+ 𝜇2

𝑄
and phase tan−1(𝜇𝑄/𝜇𝐼).

Without loss of generality, the constant phasor phase can be set to zero by taking
𝜇𝑄 = 0. The joint probability density function for 𝑎 and 𝜃 is (Goodman, 2015)

𝑝𝐴Θ(𝑎, 𝜃) =
𝑎

2𝜋𝜎2 exp
(
− (𝑎 cos 𝜃 − 𝑠)2 + (𝑎 sin 𝜃)2

2𝜎2

)
, (6.42)

assuming 𝜃 ∈ (−𝜋, 𝜋] and 𝑎 > 0. Goodman (2015) gives the marginal densities for
𝑎 and 𝜃, which are complicated for general values of 𝑠. Worth noting is that the
marginal density for 𝑎 is known as the Rician distribution, often discussed in other
relevant applications (Papoulis and Pillai, 2002). In the limit 𝑠 ≫ 𝜎, the marginal
distributions can approximated as

𝑝𝐴 (𝑎) ≈
1

√
2𝜋

exp
(
− (𝑎 − 𝑠)2

2𝜎2

)
, (6.43)

𝑝Θ(𝜃) ≈
𝑘

√
2𝜋

exp
(
− 𝑘

2𝜃2

2

)
, (6.44)

where 𝑘 = 𝑠/𝜎. Thus, the essential result is that for IQ data with a sufficiently large
SNR, 𝑠 ≫ 𝜎, the marginal densities for the amplitude and phase data are normally
distributed around the constant phasor that is given by the mean IQ data. The
amplitude variance is equal to the variance of the IQ data, and the phase variance
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is equal to 𝜎2/𝑠2, i.e., the phase-noise floor is equal to 1/SNR of the IQ data. For
example, if a heterodyne signal is measured with an SNR of 100 dB/Hz, then the
phase-noise floor is 10−10 rad2/Hz. To obtain microradian resolution in a 1 MHz
bandwidth requires IQ data, and therefore photodector signals, with an SNR of more
than 180 dB.

This was simulated by generating synthetic signals with white band-limited Gaussian
noise. A bandwidth 𝑓BW, center frequency 𝑓𝑐, RMS carrier power 𝑃c, record length
𝑁 , sampling rate 𝑓𝑠, and signal-to-noise ratio SNR were chosen. For digital signals,
the resolution bandwidth (RBW) is given by 1/𝑇 where 𝑇 is the sampling period.
Welch’s method is used to compute the power spectral density, so the RBW is instead
given by the size of each averaging segment, 𝑁seg, i.e., RBW = 1/𝑁seg.

The root-mean-square noise amplitude is

𝜎𝑁 =

√︂
𝑓BW

SNR
. (6.45)

The noise-free signal is given by

𝑆[𝑛] =
√︁

2𝑃𝑐 sin(2𝜋 𝑓𝑐𝑛/ 𝑓𝑠) . (6.46)

White Gaussian noise, �̂� [𝑛], is generated by drawing 𝑁 samples from a zero-mean
normal distribution with arbitrary variance. 𝑆[𝑛] and �̂� [𝑛] are band-pass filtered
with -3 dB cutoff frequencies given by 𝑓𝑐 − 𝑓BW and 𝑓𝑐 + 𝑓BW. The band-limited
Gaussian noise is now scaled to obtain the correct noise power,

𝐺BL =
𝜎𝑁√︃

Var[ĜBL]
�̂�BL . (6.47)

The noised signal is now obtained by the sum,

𝑆[𝑛] = 𝑆BL [𝑛] + 𝐺BL [𝑛] . (6.48)

The resulting PSD for the noised signal is shown in Figure 6.4 using the following
parameters: 𝑓𝑐 = 200 MHz, 𝑁 = 12.5 Mpts, 𝑓BW = 40 MHz, 𝑓𝑠 = 6.25 GS/s, and
SNR = 80 dB/Hz. The PSD is shown in dBc, which is

dBc = 10 log10

(
𝑃

𝑃c

)
. (6.49)

Using the above procedure, synthetic IQ data were generated for a range of SNRs.
The resulting histograms are scaled and plotted together in Figure 6.5. This shows
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Figure 6.4: Power spectral density of synthetic signal with band-limited Gaussian
noise and 80 dB SNR.

that the amplitude noise in IQ data results in a point “cloud” in the IQ-plane.
Resolution of amplitude and phase measurements is determined by the diameter of
the cloud. Figure 6.6 compares phase noise measured from simulated signals with
the value expected from the random phasor analysis above.

Figure 6.5: Histograms of IQ data calculated from simulated signals with four
different SNRs.

The above results assume that IQ data only contain band-limited additive Gaussian
white noise. This models noise in real band-limited circuits, such as shot noise.
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Figure 6.6: Phase noise from IQ data with band-limited additive Gaussian noise.

However, other noise sources may not be additive, Gaussian, or white. Therefore,
the above results provide estimates for only the minimum expected measurement
noise. A particular challenge for the heterodyne system that does not exist for the
typical homodyne interferometer is sensitivity of LO phase noise.

6.1.8 Small-Signal Response
Previously, when analyzing the conversion of phase modulation to optical intensity,
it was assumed that spatial variation in the phase field is sufficiently small as to
be neglected. Including these effects are essential for understanding aspects of the
focused laser interferometer used in this work. Here, index perturbations are still
assumed sufficiently small that Gaussian beam propagation is preserved. Hence,
this analysis gives the small-signal response of the interferometer.

Settles and Fulghum (2016), Schmidt and Shepherd (2015), and Lawson (2021) all
analyze the optical response of an FLDI, with Lawson (2021) providing the most
comprehensive investigation. The result from this work is a transfer function that
relates harmonic plane waves in the refractive index,

𝑛(𝑥, 𝑡) = 𝐴 cos(𝑘𝑥 − 𝜔𝑡 + 𝜑) , (6.50)

to the integrated optical phase signal,

ΔΦ = 𝐴ℎ(𝑘) sin(𝜔𝑡 − 𝜑) . (6.51)

𝑘 and 𝜔 are the wavenumber and frequency describing the index plane wave and are
related by

𝑘 =
𝜔

𝑣
, (6.52)
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where 𝑣 is the plane wave speed. The function, ℎ(𝑘), can then be used to invert mea-
surements of phase into units of refractive index or density, using the Gladstone-Dale
constant. For plane waves in fluid flows, there are three families of characteristics
on which the signal can travel, 𝐶−, 𝐶0, and 𝐶+. The wave speeds for these cases are
𝑢 − 𝑎, 𝑢, and 𝑢 + 𝑎.

With heterodyne detection and IQ demodulation, the absolute phase response can be
measured, and therefore a corresponding small-signal transfer function is required.
Derivation of this is a simple variation on the work by Lawson (2021), and so
will not be detailed here. Lawson’s analysis is more general, including plane wave
propagation at angles relative to the beam axis and foci orientation. These effects
are not considered here, and plane waves are assumed to propagate perpendicular to
the beam axis and perpendicular to the plane defined by the FLDI foci.

The transfer functions for differential and absolute signals are

ℎdiff (𝑘) =
8
√

2𝜋5/2𝑤0

𝑘𝜆2
𝐿

exp

(
−
𝑤2

0𝑘
2

8

)
erf

(
𝑘𝑙𝜆𝐿

2
√

2𝜋𝑤0

)
sin

(
𝑘Δ𝑥

2

)
, (6.53)

ℎabs(𝑘) =
1
2
· 8

√
2𝜋5/2𝑤0

𝑘𝜆2
𝐿

exp

(
−
𝑤2

0𝑘
2

8

)
erf

(
𝑘𝑙𝜆𝐿

2
√

2𝜋𝑤0

)
, (6.54)

where 𝜆𝐿 is the optical wavelength and 𝑙 is the domain half length, i.e., 𝐿 = 2𝑙. The
correspondence between (6.53) and (6.54) is obvious, and we find that

ℎdiff
ℎabs

= 2 sin
(
𝑘Δ𝑥

2

)
. (6.55)

For high wavenumbers, the sine term in ℎdiff causes signal aliasing and the expo-
nential term causes the signal amplitude to roll off. This is not a useful region of
bandwidth. We can consider small wavenumbers in the following limits,

𝑘Δ𝑥

2
≪ 1 ,

𝑤2
0𝑘

2

8
≪ 1 ,

𝑘𝑙𝜆𝐿

2
√

2𝜋𝑤0
≪ 1 . (6.56)

If these limits are satisfied, then the transfer functions can be given to first order as

ℎdiff =
2𝜋
𝜆𝐿
𝐿 · 𝑘Δ𝑥 , (6.57)

ℎabs =
2𝜋
𝜆𝐿
𝐿 . (6.58)

These are, of course, only equal when 𝑘Δ𝑥 = 1.
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Figure 6.7 plots the full transfer functions, (6.53) and (6.54), with the first-order
limits, (6.57) and (6.58). The absolute response has a uniform pass band, while the
differential response shows low frequency roll off. This roll-off is a consequence
of the differentiation. If the differential signal is instead compared with the phase
derivative, then the transfer function shows a flat pass band (Schmidt and Shepherd,
2015). The FLDI gives a measurement of the spatial index gradients. Gradients are,
of course, directly proportional to frequencies. So, differential signal amplitudes
are reduced for longer frequencies. This is the behavior shown in Figure 6.7 and by
(6.57).
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Figure 6.7: Comparison of absolute and differential focused laser interferometer
transfer functions, using parameters Δ𝑥 = 90 𝜇m, 𝑤0 = 6 𝜇m, 𝜆𝐿 = 532 nm, and
𝑙 = 38.1 mm.

The absolute signal transfer function illustrates that the interferometer response is a
low-pass filter. A -3 dB cutoff can be derived by solving

−3 dB = 20 log10

(
ℎabs(𝑘𝑐)
2𝜋𝐿/𝜆𝐿

)
. (6.59)

Note that decibels are typically defined for signal powers, and so the logarithm
is multiplied by 20 instead of 10. 𝑘𝑐 was solved numerically for relevant optical
parameters (𝑤0 = 6 𝜇m, 𝜆𝐿 = 532 nm, 𝐿 = 76.2 mm, and Δ𝑥 = 90 𝜇m) and
converted to frequency 𝑓𝑐 using the dispersion relation (6.52). In this work, shock
Mach numbers of interest range are 𝑀𝑠 ∈ [2, 10]. For simplicity, consider only air
shocks with 𝛾 = 1.4 and 𝑎1 = 345 m/s. Assume index plane waves are traveling on
incoming 𝐶+ characteristics. Since 𝑢2 + 𝑎2 varies approximately linearly with 𝑀𝑠,
the interferometer response -3 dB cut-off frequency can be approximated by

𝑓𝑐 ≈ 0.2𝑀𝑠 (MHz) . (6.60)
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So, for a 𝑀𝑠 = 5 shock, 𝑓𝑐 = 1 MHz. The cut-off frequency can be increased
by using a less focused beam. For example, for a 24 𝜇m beam waist, the cut-off
frequency is approximately 0.8𝑀𝑠 MHz.

The above transfer functions do not describe the spatial selectivity of a focused
interferometer, since the index perturbation is assumed to uniformly span 𝐿. If the
perturbation is instead confined to a small region along the 𝑧 axis, then the response
depends upon the local beam diameter. This effect was examined by Schmidt and
Shepherd (2015) by considering the index field perturbation to be

𝑛(𝑥, 𝑧, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡 + 𝜑)𝛿(𝑧 − 𝑧0) , (6.61)

where 𝛿 is the Dirac delta function and 𝑧0 is the index perturbation’s position. The
relevant transfer function is

𝐻𝑤 (𝑘) = exp
(
− 𝑘

2𝑤2

8

)
, (6.62)

where 𝑤 is the local beam radius. 𝐻𝑤 (𝑘) behaves as a first-order low-pass filter with
-3 dB cut-off given by

𝑘𝑐𝑤 =

√︄
1.2

log10 𝑒
≈ 1.66 . (6.63)

If 𝜆 is the wavelength of the index plane wave, then 𝜆𝑐 ≈ 3.8𝑤. Put simply, beam
focusing only begins significantly rolling off higher frequencies when wavelengths
are less than 50% of the beam diameter. Therefore, for index perturbations local to
the focus, by reducing the beam waist the cut-off frequency increases. It is in this
manner that the focused interferometer achieves spatial selectivity.

Throughout the following work it will be assumed that phase signals are uniformly
distributed spanwise, so that the response functions (6.53) and (6.54) may be used.

A final point is that, for a significant portion of the bandwidth of interest, the absolute
phase signal has a response orders of magnitude greater than the differential signal.
There is fundamentally no additional information obtained from using the differential
signal. The advantages come from implementation with real optics where, for
example, vibration sensitivity can be a major challenge. Since the differential signal
is only redundant with a weaker response, all of the work in the following chapter
employs only the absolute phase signal.
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6.2 Methods
6.2.1 Electro-Optical System
The complete heterodyne focused laser interferometer (HFLI) is diagrammed in
Figure 6.8, where all components are labeled except for three mirrors. Optical and
electrical components are tabulated in Appendix D.

BS L1
L2b

L3
L4

L7

L6

L5

WP2WP1

QWP1

QWP2

PBS
HWP

RF source splitter attenuator

AOM

PM fiber
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D2
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LNA
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LP1

LP2

oscilloscope

laser

L2a

Figure 6.8: Diagram of heterodyne focused laser interferometer.

The overall construction is one of a Mach-Zehnder interferometer, where the refer-
ence beam is fiber coupled. The signal beam path is transmitted through a typical
FLDI, where the only missing component is a linear polarizer at the output of WP2.
The FLDI beams carry phase modulation in orthogonal polarization states. These
signals are subsequently split again by a polarizing beam splitter (PBS) and coher-
ently detected by interfering them with the reference beam. The reference beam is
frequency shifted by 200 MHz by a fiber-coupled acousto-optic modulator (AOM),
so that the coherent detection is heterodyne. The detector signals are high-pass
filtered (HPF), amplified using Low-Noise Amplifiers (LNA), and finally digitized
by the oscilloscope.

The AOM is driven by a 1 W, 200 MHz RF source. The RF power is split, sending
roughly 0.5 W to the AOM. The other half is attenuated (-23 dB) and then also
digitized by the oscilloscope. The measured insertion loss of the AOM is minimized
in the 0.5 W range, so splitting the source power leads to no loss in performance.

Three signals are acquired: two signals from heterodyne detection of the signal
beams and an LO reference signal. Any pair of these signals can be IQ demodulated
to measure the phase and amplitude modulation of the optical signals. It must be
emphasized that the FLDI beams are not interfered, rather each is detected separately.
The signal of the FLDI, i.e., the differential phase, is recovered by IQ demodulating
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the heterodyne signals with each other. If the heterodyne signal is demodulated with
the LO, then the absolute phase and amplitude modulations are measured.

There are many details to the electro-optical system and its final performance that
required significant effort to make it all work. Throughout this process, Hobbs
(2008) proved an indispensable resource. Some of the instrument details will be
described here, but additional information is given in Appendix D.

By far, the most troublesome subsystem was coupling the reference beam into the
polarization-maintaining (PM) fiber. A Thorlabs FiberPort (PAF2-A4A) was used
for this, which has five degrees of freedom for adjustment. The L7 is a 300 mm
plano-convex lens and was necessary to collimate the laser, or at least place the
beam waist behind the FiberPort, in order to achieve good coupling efficiency. The
beam splitter was mounted on a tip-tilt kinematic and one translation stage. From
an initially unfocused FiberPort, alignment was performed in stages beginning with
a 105 𝜇m multimode fiber, stepping down to a 25 𝜇m fiber, and finally the single-
mode PM fiber (Thorlabs P3-488PM-FC). Not including fiber insertion losses,
typical alignment could achieve 80-90% coupling efficiency.

PM fiber does not polarize the input beam, instead polarization modes are uncoupled
by large stress-induced birefringence in the fiber core. If light is coupled into both
axes of a PM fiber, then each polarization rapidly loses phase coherence, and if any
light jumps modes, e.g., from vibration, then there is interference. Since there is
only a single mode for the electric field to propagate in the fiber, then there is perfect
spatial coherence between any beams combined in the fiber, and so immediate
interference. This leads to significant conversion of phase modulation to amplitude
modulation, and therefore effectively noise in the output beam. It is important to
ensure that the input beam is linearly polarized and accurately aligned with the PM
fiber axis to mitigate some of these effects. Hobbs (2008) gives a procedure for this
using a half-wave plate (HWP) to rotate the input polarization, while monitoring
the output with a detector and linear polarizer, aligned perpendicular to the fiber
axis. The HWP and output polarizer are iteratively adjusted to minimize the output
power. For much of the present work, an additional linear polarizer was located after
the beam splitter (BS). Polarizers are lossy and so to increase signal level during
shock-tube experiments it was later removed.

At some point during the development of the instrument it was identified that
the AOM was damaged, leading to a much greater insertion loss than given by the
specification sheet. The maximum insertion loss was measured to be 7.2 dB, whereas
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the calibration data sheet reported a 1.74 dB insertion loss. Some of this loss is from
the fiber connectors, but this is at most 2 dB. The most likely source for damage is
the AOM fiber itself. Given the time constraints of completing development of this
instrument and employing it for shock-tube measurements, work proceeded with the
damaged unit.

Another challenge from using a fiber-coupled reference beam was that the reference
signal phase was not steady, and instead drifted quite significantly over time. This
was identified to be from the fiber itself by realigning the system as a homodyne
free-space Mach-Zehnder interferometer. Using a fiber for the reference beam path
was in part motivated by the success of the finite-fringe interferometer built by
Jones (2021). A partial explanation for the present instrument’s comparatively large
drift is that operating an interferometer at zero-fringe with coherent detection is
inherently much more sensitive.

A significant advantage from using a fiber-coupled reference beam was that the AOM
could be easily “short circuited” by just directly connecting the input and output PM
fibers and thereby converting the instrument into a homodyne interferometer. This
proved essential for alignment, since fringes are only visible by eye with a homodyne
system. When heterodyne, fringes are flickering at 200 MHz, and so the output beam
appears uniform. Fringes significantly reduce the signal amplitude, so even if the
instrument is only slightly out of alignment a signal might not be observable on the
oscilloscope. There is then no way to know whether PBS adjustment is improving
alignment, and adjustments are performed blind. By short-circuiting the AOM and
operating the instrument as a homodyne system, fringes are observable by eye. A
flip mirror located before L5 was used to redirect a portion of the beam and monitor
alignment. Furthermore, it was only in this homodyne configuration that beam
aberrations became apparent.

As a homodyne interferometer, it was identified that the beams transmitted through
the FLDI optics incur significant spherical aberration. FLDI uses a focused beam,
so the larger numerical apertures cause greater sensitivity to effects of real optics
like abberations. Spherical aberrations were reduced by replacing the FLDI lenses
with achromatic doublets. L2a and L2b are a pair of 300 mm doublets, and the lens
system they form has a focal length of 150 mm with near zero spherical aberration.
Appendix D gives more details on this.

The pair of linear polarizers, LP1 and LP2, serve an essential function. Polarizing
beam splitters reflect s- and transmit p-polarization components, regardless of the
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beam input plane. Therefore, the reference beam and signal beam polarizations are
orthogonal at the output of the PBS. The linear polarizers, LP1 and LP2, are aligned
at 45◦ to rotate the polarizations and cause interference. Without the polarizers,
fringes might still be observable but with terrible contrast.

The two detectors used in this work are reverse-biased photodiodes (Thorlabs
DET10A). The BNC output of the detectors is terminated at 50 Ω to convert the
photocurrent to a voltage and impedance match the input of the RG58 coaxial ca-
ble. Because of the DC component from coherent detection, the 200 MHz RF
signals are sitting on a positive constant DC value, which is eliminated by the HPFs.
The LNAs amplify the signal with minimal reduction in SNR. Initially, amplified
high-bandwidth detectors (Thorlabs PDA015A2) were employed. However, these
detectors were found to be remarkably noisy. Additionally, the photodiode active
area was very small, requiring an extremely sensitive alignment. Using a pair of
DET10A detectors with external RF amplification was found to be superior in every
way. Some issues were encountered with RF pickup from the 200 MHz source. A
possible remedy for this would be to build the detectors and bring the 50 Ω termi-
nation closer to the photodiode. When the system was operated in homodyne, the
detector signals were amplified using a baseband low-noise preamplifier (Stanford
Research SR560).

The AOM and RF system are designed for 200 MHz, which is a sufficiently low
frequency that the signals could be directly digitized using a high-speed oscilloscope.
This work used a Tek MSO44B with a maximum sample rate of 6.25 GS/s and
bandwidth of 500 MHz. The oscilloscope was run at its maximum sample rate, so
the main limitation of this approach is record length and file sizes. With a maximum
record length of 62.5 Mpts, the maximum measurement duration was 10 ms. For
four signals (three RF signals and the trigger), this generates roughly 5 GB of data.
Significant subsequent digital signal processing is required, so minimizing the file
size was important for efficiency. Fortunately, shock-tube experiments are short, so
only 2-ms record lengths were used for almost all experiments. If the AOM and
RF system were operating at a higher frequency, then direct digitization and signal
processing may not be viable, and an analog system would have to be used for IQ
demodulation.

A final point is that the interferometer can be quickly converted to a conventional
FLDI by installing a linear polarizer at the output of WP2 and a detector at the
focus of L3. This does not require any alignment adjustment except translation of
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WP2 so that the FLDI is resting at a half fringe. Conventional FLDI measurements
were performed for the validation experiments presented in this chapter using this
technique.

6.2.2 Digital Signal Processing
Phase measurements were performed by implementing IQ demodulation digitally
as a software algorithm. In digital IQ demodulation, there is no power loss from
splitting a signal (it is literally copied), and there is no additional noise added from
subsequent electronics. Analog electronics all have a Noise Figure (NF), which is
the magnitude the SNR is reduced. The NF of digital IQ demodulation is zero.
Signal multiplication is achieved by straightforward multiplication of the discrete
signals at each sampled time. The important steps in digital IQ demodulation are
the algorithms chosen to implement a quadrature phase delay in the LO and the
low-pass filter employed.

Since the center frequency of the RF signal and the sampling rate of the digitizer are
not necessarily even multiples of each other, the signal cannot be truncated by some
number of samples to achieve a quadrature delay. One possibility is that the signal
is linearly interpolated to a new time base with the correct shift. The method chosen
in this work is to construct a linear-time-invariant phase-delay filter and apply it
to the Fourier transform of the signal. Inversion of the signal back to the time
domain returns a signal with the desired phase delay. Pei and Lai (2012) present the
phase-delay filter employed in this work. The filter is

𝐻 [𝑘] =



1 , 𝑘 = 0

𝑒− 𝑗𝐷 (2𝜋/𝑁)𝑘 , 𝑘 = 1, 2, . . . , 𝑁/2 − 1

cos (𝐷𝜋) , 𝑘 = 𝑁/2

𝑒 𝑗𝐷 (2𝜋/𝑁) (𝑁−𝑘) , 𝑘 = 𝑁/2 + 1, . . . , 𝑁 − 1

(6.64)

where 𝐷 is the fractional sample delay. For sampling rate 𝑓𝑠, and time delay 𝜏, then
𝐷 = 𝑓𝑠𝜏. For input signal, 𝑆[𝑛], then the delayed output is

𝑆[𝑛 − 𝐷] = F −1{𝐻 [𝑘]F {𝑆[𝑛]}} (6.65)

where F and F −1 denote the discrete-Fourier transform (DFT) and inverse DFT,
respectively. This algorithm preserves the amplitude spectrum exactly, and only
changes the phase data of the signal.

After frequency multiplication, the frequency sum component must be filtered.
Many algorithms exist for low-passing filtering digital signals. The method cho-
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sen here is to use an infinite-impulse response (IIR) Butterworth filter in cas-
caded second-order sections, implemented forward and backward. These filters are
straightforward to employ using SciPy (Virtanen et al., 2020). The cascaded second-
order sections construction enables stable high-order filters to be used. Applying the
filter forward and then to the reversed signal is a clever technique of digital signal
processing that cancels the phase delay of IIR filters. Hence, unlike analog filters,
these filters give signals with a zero phase change. These methods are discussed in
common digital signal processing textbooks (Oppenheim and Schafer, 2010). The
Python program used to implement these signal-processing steps is reproduced in
Appendix D.

The disadvantage of using digital techniques is that the entire signal and carrier must
be digitized. The 200 MHz carrier frequency itself contains no useful information,
but the digitizer dynamic range must be filled by the carrier instead of the small
signal. As a consequence, the effective number of bits available to acquire the
desired signal is reduced, and loss of resolution can reduce SNR. Because of these
considerations, an analog IQ demodulation system was constructed and tested. This
work is discussed in Appendix D. For the present signals and electronics, no SNR
improvement was found by using analog techniques, since the noise figure of analog
components is much more significant. However, an important benefit of using an
analog system is that the digitizer can be operated at a lower sampling rate, so that
longer duration measurements can be performed. The present system was limited
to milliseconds, which is appropriate for shock-tube applications.

6.2.3 Noise Performance
The noise floor of the instrument is illustrated in Figure 6.9 by two sets of power
spectra. In (a), the spectrum of the heterodyne signal from detector D1 is compared
with background signals from shuttering the laser and the oscilloscope. The oscil-
loscope noise floor is measured by terminating the input externally at 50 Ω, which
is the output impedance of the LNAs. (a) shows that the signal noise is signifi-
cantly greater than the limitations of the oscilloscope digitizer. The small difference
between the oscilloscope and the “laser off” signal is from the noise output from
the detectors and LNAs. The noise source in the heterodyne signal is apparent by
comparison with the LO in (b). The LO is the reference 200 MHz signal split from
the AOM RF driver. In order to compare these signals, their spectra are plotted in
dBc units, which properly scales each signal relative to the carrier power. (b) shows
that the power spectra of the detector signal and LO are approximately the same,
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indicating that the noise is coming from the 200 MHz RF source itself. This is
particularly true for 𝑓BW ≤ 1 MHz. For higher bandwidths, there is additional noise
apparent in the detector signal. The origin is unclear, but the author suspects this
comes from RF pickup in the detectors or RF reflections between the photodiode
and 50 Ω termination. For most of the spectrum the LO appears to be the primary
contributor. Although not shown in Figure 6.9, if the resolution is increased, it is
clear that LO noise is not so significant for low frequencies, less than 10 kHz. This
is consistent with the unstable signals discussed above, which are suspected to come
from the fiber.
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Figure 6.9: Power spectra compare heterodyne signal from detector D1 with back-
ground signals in (a) and the local oscillator (LO) in (b).

An important question is how does measurement noise depend upon the sampling
rate. This was tested with results plotted in Figure 6.10, showing that the minimum
phase noise is obtained with the highest sampling rate possible. It is possible that
an even greater sampling rate could further reduce signal noise.

The ultimate noise floor obtained with the instrument varied depending upon align-
ment. In particular loss of fringe visiblity due to spherical aberration when using
smaller beam waists (higher NA) reduced detector SNR and therefore increased the
phase noise floor. For the measurements presented in this chapter, typical values
for the noise floor in the 10 kHz to 10 MHz band was 1 mrad or 10−13 rad2/Hz.
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Figure 6.10: RMS phase noise measurements in 10 kHz to 10 MHz band for various
sampling rates. 6.25 GS/s is the maximum speed of the Tek MSO44B.

The data in Figure 6.10 show an example where the noise floor was 0.9 mrad. For
comparison, the FLDI using balanced detection described in Appendix C achieved
a noise floor of 6 · 10−17 rad2/Hz in a 1 MHz bandwidth.2

Figure 6.11 shows typical absolute and differential signals, both the time series in
(a) and spectrum in (b). A 10 MHz low-pass filter was used to process these data.
Most significant to observe is the behavior of the absolute signal: it is not steady.
This was acquired with the interferometer at rest on an vibration-isolating optical
table and room air conditioning off. Unfortunately this is the typical behavior of the
instrument. The reference fiber seems to be a leading contributor to this signal drift.
The drift was random, and analysis over long time records shows 1/ 𝑓 frequency
dependence. In the present work, this is not a significant limitation because shock-
tube signals are O(102) rad and data are analyzed over less than 200 𝜇s, where drift
is expected to be about 20 mrad.

6.3 Validation
6.3.1 Small-Signal Response
The small-signal response of the HFLI was tested using an ultrasonic transducer to
generate a constant source of weak acoustic waves. The methods and equipment
used are the same as those used by Lawson (2021).

Figure 6.12 shows measurements of the ultrasonic source operated at 100 kHz. The
2In terms of RMS resolution, the HFLI achieves about 0.3 mrad in a 1 MHz bandwidth versus 8

𝜇rad with balanced detection.
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Figure 6.11: Typical phase signals for resting interferometer.

HFLI signals are demodulated to obtain differential and absolute phase signals,
and these measurements are compared with those from a conventional FLDI. The
time-series signals are shown in (a) and the power-spectral densities in (b). Clearly,
the differential HFLI and the conventional FLDI produce the same signals with
slightly different noise characteristics. This confirms that digitally demodulating
heterodyne signals is equivalent to directly interfering the optical signals. In contrast,
the absolute HFLI signal has a much greater magnitude and is 90◦ out of phase with
the differential signals. This is consistent with the small-signal response functions
discussed above.

The ultrasonic source was swept over a range of frequencies from 30 kHz to 100
kHz, and the absolute and differential signal amplitudes were ratioed. Amplitudes
were measured from the power spectral densities using a “flat-top” window. The
results are plotted in Figure 6.13 and compared with the analytical expression. Good
agreement is obtained. Deviations are possibly from wave propagation components
along the beam axis.

6.3.2 Dynamic Response
The dynamic response of the interferometer to a large index gradients was tested by
sending weak shocks through the signal beam pair using an open-ended shock tube.
The shock tube was constructed from 0.75-inch diameter iron pipe. The driver was
built from an 8-inch nipple and a tee, in which a 100-psi dial pressure gauge was
installed. The driven section was built from a 12-inch nipple, where the end pipe
threads were cut off and the end was squared. The diaphragm was clamped between
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Figure 6.12: Comparison of measurements of 100 kHz ultrasonic waves using a
conventional FLDI, the differential HFLI, and absolute HFLI.

30 40 50 60 70 80 90 100
frequency (kHz)

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

hdiff
habs

analytical
measurement

Figure 6.13: Ratio of differential to absolute phase signals comparing measurements
with analytical result (6.55).

the tapered faces of a pipe union. Two thicknesses of 1100-O aluminum sheet were
used for diaphragms to generate two shot conditions: 0.7 mil and 2.0 mil, which
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ruptured at 16 psi and 54 psi, respectively. Nitrogen was used as the driver gas.
Data were collected for two positions of the interferometer beam pairs relative to
the shock-tube exit: 2.5 mm and 10 mm. Figure 6.14 shows a diagram of the setup.
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driven section
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gauge
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beam pair
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Figure 6.14: Diagram of open-ended shock-tube experimental setup for validating
HFLI dynamic response.

First, differential phase measurements using a conventional FLDI and the HFLI are
compared in Figure 6.15. All data are for the 54-psi shot condition. (b) and (d) show
detail of the shock response in (a) and (c), respectively. The long-time small-signal
response of the FLDI and HFLI measurements are consistent, as expected. There
is clearly discrepancy in the shock response. There are two factors causing this
difference. First, large phase changes, such as the peaks above 6 radians, cause
phase wrapping which can only be recovered by the HFLI but not the FLDI. Second,
the large density gradients in the shock distort the signal beam. Signals obtained
from interfering these distorted beams together, as with the conventional FLDI, are
likely different than those obtained from subtracting the two signals obtained from
interfering the distorted beams with undistorted reference beams, as with the HFLI.

Absolute phase measurements from four shots at the 54-psi condition are shown in
Figure 6.16. The signals range over 50 radians illustrating the unwrapping capability
of the heterodyne technique. (a) shows the signals unwrapped and zeroed based on
their initial value before the shock arrives. (b) zooms in on the shock arrival in these
signals. There is clearly inconsistency between these shots, but more significantly
the theoretical shock speed should produce a roughly 50 radian jump in phase.
This is not observed, providing a first indication of the interferometer’s inability to
measure phase change through shocks. Assuming that the remainder of the signal
is viable, (c) shows them zeroed by the maximum signal value. In this case, the
signals collapse and show good repeatability.
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Figure 6.15: Comparison between differential phase measurements from a con-
ventional and heterodyne FLDI for 54-psi condition. (a) and (b) correspond with
𝑑 = 2.5 mm, (c) and (d) correspond with 𝑑 = 10 mm.

A partial explanation for the interferometer’s apparent inability to track phase
changes through shocks is found from inspecting the signal amplitudes. Figure
6.17 shows heterodyne signal amplitudes over 1 ms in (a) and the 1 𝜇s shock re-
sponse in (b). Amplitude is normalized by the pre-shock stationary value. When the
shock arrives, a sharp downward spike is observed in the amplitude data, showing
that the shock causes the signal amplitude to decrease near zero. This amplitude
reduction indicates some distortion to the signal beams. Recall from Chapter 4 the
image obtained from a shock propagating through a beam of collimated light. Strong
refractive effects produce a shadow and focused band of light. When transmitting
through a focused laser beam, the wavefront is distorted and the beam path could be
steered out of alignment with the reference beam producing fringes. Fringes aver-
aged over the detector significantly reduce heterodyne signal amplitudes. It appears
then that the present interferometer cannot be used to measure phase continuously
through large jumps in refractive index.

In order to validate the absolute phase signals, numerical simulations were performed
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Figure 6.16: Unwrapped phase signals from four shots at 54-psi condition and
𝑑 = 2.5 mm. Each subplot show the same data, however in (a) the phase signals are
zeroed by their initial values, the shock response is shown in (b), and (c) shows the
phase signals zeroed by the maximum.

to model the two shot conditions. The same simulation methods as those used in
Chapters 2 and 3 are employed here: OpenFOAM-9 (Greenshields, 2021) and
blastFoam-5 (Heylmun et al., 2021). A coarse grid was generated based on the
measured inner and outer diameters of the pipe: 21.9 mm and 27.2 mm, respectively.
The domain was axisymmetric with the pipe protruding 43.8 mm and with a 87.6-
mm high clear area above the pipe. The domain radius was 87.6 mm. The initial grid
contained uniformly 1.825 mm cells. BlastFoam’s adaptive mesh refinement with
four levels of refined was used to obtain a minimum cell size of 0.11 mm. Only the
shock in air was modeled without any driver gas or contact surface. Air was modeled
as inviscid and a perfect gas. Representative time steps from the two simulations
are shown in Figure 6.18. The primary features are the shock, which diffracts out
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Figure 6.17: Signal amplitudes from IQ data for four shots at 54-psi condition and
𝑑 = 2.5 mm.

of the open shock-tube end, and the shear layer that roles up into a vortex ring.
Kelvin-Helmholtz instability in the shear layer generates fine eddies, particularly in
the 54-psi case. These eddies cause noise in the simulated measurements.

Interferometer measurements of the simulation data were modeled by extracting
density along horizontal lines located 2.5 mm and 10 mm from the shock tube exit.
Density was converted to index using the Gladstone-Dale constant for ambient air.
Index changes were line integrated to obtain the phase changes. The beam shapes
were not simulated for simplicity, but (6.58) shows this is accurate in the transfer
function pass band.

Figure 6.19 compares experimental and simulated phase measurements for the two
shot conditions and two measurement locations tested. All measurements are zeroed
by the phase maximum. Experimental measurements from at least four shots are
averaged and used to generate 95% confidence intervals. After the shock, experi-
mental and simulation phase measurements show good agreement, particularly for
cases (a), (b), and (c). As mentioned above, shear layer eddies cause the apparent
noise in the simulated measurements for the 54-psi shot condition.
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Figure 6.18: Representative time steps of density profiles from numerical simula-
tions of open-ended shock-tube validation experiment.

Agreement could possibly be improved with higher-fidelity fluid dynamics simula-
tion including viscosity and heat transfer. Additionally, the shock tube used here had
a crude construction and approximate alignment. The iron pipes were very rough
internally with a large weld bead that ran the length of the pipe. Given these consid-
erations, the above results reasonably validate the use of the HFLI for measurements
in post-shock flows.

6.4 Conclusions
Optical heterodyne interferometry provides a powerful technique for density mea-
surements in shock-tube experiments. Based on the highly successful design of the
FLDI, a heterodyne focused laser interferometer (HFLI) was constructed. There are
two major novelties of this instrument that are made possible by heterodyne detec-
tion. First, detection at 200 MHz enables theoretically improved SNR by elimination
of laser noise. This is important for FLDI applications, where signal levels can be
low, especially in low-density flows. Second, heterodyne detection enables direct
phase measurement by IQ demodulation, so that arbitrarily large phase changes can
be measured. Success on both of these fronts was mixed.

Signal-to-noise ratio was not improved beyond what is possible with a conventional
FLDI because of limitations of the RF driver. It should be noted that a particularly
quiet laser was employed for this work, and so effects of eliminating laser noise were



148

Figure 6.19: Comparison between experimental measurements of absolute phase
change using heterodyne interferometer and phase signals modeled from numerical
simulations for four cases. Experimental data from several shots are averaged, and
the plots show both the mean signal and 95% confidence intervals (CI). (a) 54 psi
𝑑 = 2.5 mm, (b) 54 psi 𝑑 = 10 mm, (c) 16 psi 𝑑 = 2.5 mm, and (d) 16 psi 𝑑 = 10
mm.

potentially minimized. In the course of this work, a method for achieving excellent
SNR was investigated. Use of balanced detection and differential amplification was
demonstrated to increase SNR of FLDI measurements by 30 dB, an astounding
improvement from a simple modification to the typical FLDI construction. If ultra-
sensitive FLDI measurements are required for an application, then this technique is
recommended. See Appendix C for details.

Validation experiments showed that large phase signals are measurable using IQ
demodulation of the heterodyne signals. However, it was shown that phase changes
could not be tracked through shock waves. For large phase gradients, such as those
in shocks, optical rays can no longer be considered straight, and refraction should
be expected. Refraction distorts the signal beam so that subsequent coherent de-
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tection no longer gives meaningful phase signals. Nonetheless, it was shown that
large amplitude phase signals could be successfully measured in the post-shock
flow. In particular, it was shown that heterodyne detection enables measurement
of absolute phase changes and thereby a new method for directly probing gas den-
sities. Differential measurements via FLDI require a priori knowledge of acoustic
wave velocities to invert phase to index coordinates. Additionally, FLDI signals
significantly attenuate lower wavenumbers. These challenges are not present for
absolute phase measurements, and so the advantages of FLDI are retained while
greatly extending measurement ranges.
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C h a p t e r 7

HETERODYNE FOCUSED LASER INTERFEROMETER:
RESULTS

This chapter presents results from using the heterodyne focused laser interferometer
to make high-resolution measurements of post-shock gas density in GUST. Experi-
ments were performed for a forward-mode and reverse-mode detonation driver and
for a conventional high-pressure helium driver, looking at effects from pressure
ratios, diaphragm parameters, driver gas mixtures, and test gas mixtures. These
experiments complement the shock speed measurements from Chapter 5. All of the
interferometry data presented in this chapter use the absolute phase signals obtained
from one of the FLDI beams. Differential data were largely not found to add any
additional information. Differential and amplitude data are given as supplementary
material in Appendix E.

7.1 Additional Methods
7.1.1 Shock-Tube Modifications
The driven section of GUST was replaced with three stainless-steel sections, giving
it a full length of 1.93 m from the diaphragm. The middle section contains two sets
of optical-access ports for beam transmission through the shock tube. Only the near-
diaphragm ports were used, positioned 1.22 m from the diaphragm. Fused-silica
windows (Thorlabs WG41050-A) were glued using UV-cured adhesive (CRL-701)
into plugs that mount to the test section.

Five ports along the top of the driven section were used to mount dynamic pres-

detonation driver

stainless-steel 
driven section

optical-access port

pressure transducer
port mounts

rigid mounts

Figure 7.1: Diagram of GUST with stainless-steel driven section ports for optical
access and pressure transducers.
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Table 7.1: GUST pressure transducer positions

Sensor No. P1 P2 P3 P4 P5 P6 P7 P8
Position (in) -15.27 -1.5 0.9 9.65 21.65 33.65 48.15 56.15

sure transducers (PCB 113B26). Sensors were mounted using a novel construction,
where the shock-tube plug was 3D printed with FormLabs Clear Resin v4, and
the transducer itself was mounted in a stainless-steel plug with O-ring seal. The
stainless-steel plug screwed into the plastic plug, which mounted to the shock
tube. Using plastic introduced sufficient damping to substantially reduce structural-
vibration noise in pressure measurements, and 3D printing affording quick prototyp-
ing. These methods are discussed further in the Appendix F, where measurements
are compared with those using rigid aluminum plugs. The position of each sensor
relative to the diaphragm plane is given in Table 7.1. P1 and P2 are located in the
driver, and the tabulated positions are only for forward-mode operation.

Since the shock tube is rigidly mounted to the wall, the third segment of the driven
section was designed so that it could be removed without disturbing the test section.
This was important for routinely cleaning the tube, since the end accumulated
significant diaphragm debris.

7.1.2 In Situ Verification
In order to verify the interferometer operation once aligned, isentropic expansion
waves were transmitted down the shock tube, so that density measurements from
the interferometer could be compared with co-located pressure measurements.

There are principally two aspects of the interferometer measurements that are im-
portant to verify: first, that the correct optical path length is used, and, second, that
the Gladstone-Dale constants are accurate. The latter point is particularly important
when considering detonation products.

To launch an isentropic expansion down the driven section, the shock-tube was
operated backward by evacuating the driver and filling the driven section to high
pressure. 12.7-𝜇m Mylar diaphragms were used, which ruptured at roughly 25
psia. Upon diaphragm rupture, the shock-tube centered expansion is launched down
stream and so was interrogated with the interferometer and pressure transducer, P7.
These experiments were performed using N2 and He as the driver gas.

Figure 7.2 shows the measured isentropes plotted with those calculated using thermo-
dynamics. Agreement is excellent with helium data and shows a slight discrepancy
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with nitrogen data. A significant source of error for these measurements is from the
inaccuracy of the pressure transducer in these ranges. The optical path length used
to invert phase measurements was 76.2 mm, the inner diameter of the shock tube.
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Figure 7.2: Comparison of isentropes from pressure and density measurements with
thermodynamic calculations. Density is obtained from interferometer.

The CJ isentrope behind a steady detonation wave was used to investigate the
interferometer’s accuracy regarding measurements of detonation products. The
shock tube was therefore operated as a single detonation tube by filling it with 25
kPa of C2H4 + 3O2 and initiating using the driver like normal.

Pressure transducers were used to record detonation time-of-arrival and estimate its
speed. The measured speed was 1.006% of the CJ speed. At 25 kPa, the cell size
is on the order of a millimeter. Hence, it is reasonable to model the detonation as a
one-dimensional CJ detonation.

Data from P7 and the HFLI are shown in Figure 7.3(a) and (b), respectively. The red
dot in (a) shows the calculated CJ pressure, notably greater than the measurement
peak. This is considered to be both a consequence of the sensor’s finite bandwidth
and sensitive area. Following the detonation front is the TZ wave. The absolute
phase data in (b) show a large negative jump when the detonation intersects the
beam. This negative jump is not physical and a consequence of the beam distortion
by the detonation. After the jump, the phase data show a similar variation in time
through the TZ wave as in the pressure data. The phase data in (b) are zeroed by
the post-detonation value. Both pressure and phase data are extracted up to the
reflected shock that appears after 0.8 ms. Phase data are converted to density using
the Gladstone-Dale constant 𝐾 = 2.84 ·10−4 m3/kg. This value was computed using
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the Shock and Detonation Toolbox and the tabulated data given by Gardiner et al.
(1981). The post-detonation density is assumed to lie on the CJ isentrope and so is
computed as

𝜌2 = 𝜌(𝑃2, 𝑠CJ) , (7.1)

where 𝑃2 is the measured post-detonation pressure and 𝑠CJ is the CJ entropy.
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Figure 7.3: (a) pressure and (b) absolute phase data from 25 kPa C2H4 + 3O2
detonation.

The pressure and density data are plotted with the calculated isentrope in Figure
7.4. Agreement is good, although not as close as that obtained from the inert
isentropes above. At a minimum, this illustrates the greater difficulty in performing
accurate measurements of detonation products. However, the instrument clearly still
provides meaningful data. The root-mean-square error between the calculation and
measurement is 1.9%.

A final point is that the detonation products in a detonation-driven shock tube are
expanded to even lower pressures, and so this calibration is only over part of the
relevant range.

7.1.3 Additional Signal Processing
Because the phase change cannot be reliably measured through a shock, as shown
in Chapter 6, an additional post-processing algorithm is required to obtain absolute
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Figure 7.4: Comparison of measured and calculated CJ isentrope for a 25 kPa
C2H4 + 3O2 detonation.

density measurements. The shock speed is first estimated using time-of-arrival
measurements at pressure transducers. With the shock speed, the post-shock density
is calculated using the Shock and Detonation Toolbox. The measured post-shock
phase is identified and used to zero the signal. Finally, the zeroed signal is shifted
to match the calculated post-shock density. The interferometer time response is
sufficient that relaxation phenomena must be considered for shocks in air. These
steps will be described in more detail below.

Time of arrival at pressure transducers was identified by the first sample with 𝑃 >
10𝑃1. Sensor positions and time-of-arrival measurements were then differentiated
using centered differences – this is important for preserving accuracy with a decaying
shock. Figure 7.5 compares these speed measurements with data from Chapter 5
and shows that they accurately capture the low-frequency shock decay. Therefore,
time of arrival can be used to estimate the mean shock speed at the beam position,
which was obtained by linear interpolation.

The most robust method for identifying the post-shock phase was to first find the
time when the shock intersects the beam waist, 𝑡0, and then choosing the point at
time 𝑡0 + 𝑤/𝑈𝑠, where 𝑤 is the beam radius at the inner diameter. Intersection with
the beam waist was identified from the amplitude data. Figure 7.6 demonstrates this
method’s results for six representative shot conditions.

Using the shock speed and initial test gas conditions, the post-shock density can
be calculated with some assumptions regarding the thermodynamic state of air.
Vibrational relaxation times are estimated using the correlations and data given
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Figure 7.5: Comparison shock-speed measurements using shadowgraphy and pres-
sure sensor time of arrival for shot condition: 100 kPa C2H4 + 3O2 and 10 kPa air.
The calibrated decay model is also shown.
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Figure 7.6: Examples of post-shock phase value identified for representative shot
conditions.
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by White and Millikan (1964). White (1968) also gives additional data for these
systems. Figure 7.7(a) shows relaxation times of oxygen dilute in nitrogen calculated
for the three driver modes and a range of 𝑃1 pressures. The oxygen molecules in air
vibrationally relax quickly behind the shock front, however nitrogen relaxation takes
significantly longer. In air, vibrationally excited oxygen accelerates the relaxation
of nitrogen compared to in pure nitrogen by as much as an order of magnitude.
Nonetheless, even accounting for this, relaxation times for nitrogen in air, 𝜏N2 ∼
O(100 𝜇s), remain much longer than those for oxygen, 𝜏O2−N2 ∼ O(1 𝜇s). An
exception is for shot conditions using a high-pressure helium driver, where 𝑃1

pressures are reduced and so oxygen relaxation times are longer, 𝜏O2−N2 ∼ O(10 𝜇s).
So, for the present experiments using a detonation driver, post-shock air is assumed to
be comprised of vibrationally-equilibrated oxygen and vibrationally-frozen nitrogen.
Post-shock densities are calculated accordingly using the Shock and Detonation
Toolbox, where the nitrogen species is a perfect diatomic molecule with constant
heat capacity,

𝑐𝑃,N2 =
7
2
𝑅 , (7.2)

and 𝑅 is the gas constant. For experiments using a helium driver, post-shock air is
assumed to be comprised of vibrationally-frozen oxygen and nitrogen, so the gas
is perfect with 𝛾 = 7/5. These calculations are only for estimating the immediate
post-shock density resolved with the interferometer.

Relaxation causes a significant change in density, and so accounting for these effects
is important. Figure 7.7(b) compares post-shock densities using the above assump-
tions with values obtained by assuming complete vibrational equilibrium. Densities
change by over 5% in almost all cases. Shot conditions with a forward-mode
detonation driver see density changes over 10%.

An additional complication was from diaphragm particulate intersecting the beams,
since phase also cannot be tracked through these interruptions. However, since the
beams are narrow the blips in the signal are short, and the phase was approximated
as unchanged through the blip. These events were easy to identify as they cause
spikes in the amplitude data. The algorithm looks for these spikes where there are
no shocks, which is known from the pressure data. Before unwrapping, the phase
signal is adjusted so that it stays constant through the event.

Each experiment used four channels with 12.5 MS each, ultimately about 1 GB of
data. In order to accelerate plotting and subsequent analysis, after IQ demodulation
all phase and amplitude data were decimated, giving an effective sampling rate of
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Figure 7.7: (a) Vibrational relaxation times for O2 in air. (b) comparison of post-
shock densities for vibrationally frozen and equilibrium gases. Detonation driver
calculations use 100 kPa of C2H4 + 3O2, and calculations for a cold Helium driver
use a pressure of 1.1 MPa.

625 MS/s. Signal bandwidths were limited to 40 MHz, so this reduction in sample
rate after IQ demodulation has no effect on the signal.

The primary consequence of losing phase information through the shock is a reduc-
tion in measurement accuracy. Additional uncertainty is incorporated through the
shock speed estimate and density calculation. However, the exceptional measure-
ment resolution possible with this interferometer is preserved.

7.2 Results: Forward-Mode Detonation Driver
7.2.1 Pressure Ratio
Experimental results for a range of 𝑃1 pressures are plotted in Figure 7.8 with nu-
merical simulation data from Chapter 3. Experimental and simulation signals are
zeroed in time by the shock arrival. Experimental data preceding shock arrival
are not shown so as to avoid confusion from the erroneous phase jump. Because
the Gladstone-Dale constant jumps across the contact surface, and the contact sur-
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face is only approximately identifiable in experimental results, data are plotted in
units of refractive index. Measured phase is converted to index by the first-order
approximation (6.58).
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Figure 7.8: Comparison between results from experiments and numerical simula-
tions for shot conditions using 50 kPa C2H4 + 3O2. Air is the test gas.

Figure 7.8 shows that the key features from the 1D simulation data are visible in the
experimental results. As expected from Chapter 5, the shock speed is lower than
the simulation value, so the post-shock density is lower. In all cases, there is a rapid
decrease in post-shock density from expansion by the transmitted TZ wave. Subplots
(b), (c), and (d) show the kink at the terminal TZ wave characteristic (most visible
in (d)). The contact surface is also evident from the experimental measurements.
The comparison shows how the discrete contact surface in 1D gas dynamics is
smeared over a finite spatial region in the real shock tube. In general, agreement
is good between experiments and simulations, illustrating the effectiveness of 1D
simulations for investigating these flows.

There are some features in the experimental data not present in the simulations. At
the arrival of the reflected centered expansion wave, there is a small rise in density
in the experimental data. A possible explanation is that this is from the expansion’s
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interaction with the additional gas volume in the initiation channels at the driver
end. Additionally, particularly in (a) and (b), the decrease in index following arrival
of the reflected expansion is slower in experiments.

Of most importance, the immediate post-shock flow exhibits clear signs of fluctu-
ations on top of the mean gradients. These fluctuations appear directly behind the
shock, but their amplitude appears greatest later in time, particularly in the region
driven by the TZ-wave plateau. This is most clearly seen in (b), (c), and (d).

Figure 7.9 shows the same data as in Figure 7.8 but with the immediate post-shock
signal magnified. Data are plotted now in density coordinates using the Gladstone-
Dale constant for air. Additionally, a line is plotted for all cases with slope calculated
using the appropriate shock-change equation, i.e.,

𝜌𝑡,2 = 𝜌1�̂� ¤𝑀 , (7.3)

where �̂� is defined in Appendix A.2.5. Use of a shock-change equation requires
knowledge of the shock acceleration. This was estimated by differentiating the
shock time-of-arrival data twice and by using the calibrated shock-decay model.
Both estimates were close and produced no significant change in the resulting line.
As an additional check, note that the post-shock gradient in the simulation data is
consistent with the shock-change equation estimate.

The comparison in Figure 7.9 shows that the experimental data do not exhibit a post-
shock gradient consistent with either simulation data or the shock-change equation,
except in (d). An important competing effect on these time scales is vibrational
relaxation of nitrogen. This is certainly affecting the signals to some extent, as
evidenced by the positive post-shock density gradient in (a) and (b). In (c) and (d),
gradients are uniformly negative, however some relaxation effects are still expected
to be observable at these conditions. A possible explanation for the variation in
these observations could be the variation in relaxation time scales between each
case, from short time scales in (a) to longer time scales in (d). If the fluid time scale
is sufficiently small compared to relaxation, then the post-shock gradients observed
would coincide with those calculated by the shock-change equation. Further analysis
of these phenomena is beyond the present scope but could proceed by formulating
a thermicity and using the nonequilibrium form of the shock-change equation.

7.2.2 Diaphragm Effects
In Chapter 5, it was found that supporting the diaphragm produced a distinct re-
duction in observable shock speed oscillations. Figure 7.10 compares interferom-
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Figure 7.9: Detailed view of post-shock data from Figure 7.8, plotted in density
units.

etry measurements for two shot conditions with both supported and unsupported
diaphragms. These data are presented in density coordinates using the Gladstone-
Dale constant for air, hence densities are only accurate for the shocked air upstream
of the contact surface, which can be identified by the kinks in (a) and (b) at roughly
0.2 ms. These data are also shown zeroed in time based on the detonation’s arrival at
the shock-tube diaphragm. Prior to arrival of the contact surface, there is no promi-
nent difference from supporting the diaphragm with similar-magnitude oscillations
observable in both signals. However, after the contact surface the oscillations are
clearly of a much greater amplitude for the unsupported diaphragm. Shock speed
measurements from Chapter 5 showed that oscillation amplitude decreased as the
shock propagated, and so they may be weak by the time the shock reaches the in-
terferometer position. However the residual of these oscillations would nonetheless
be expected to be observable in the post-shock flow. There are oscillations apparent
in the post-shock flow for both cases, which suggests that these are not from the
diaphragm bulge.

Pressure data provide useful additional information on the effects of diaphragm
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Figure 7.10: Post-shock density data for supported and unsupported diaphragms.
Data are from shots with a 100 kPa C2H4 + 3O2 driver, air test gas, and 25.4 𝜇m
Mylar diaphragm. Unsupported data have been shifted vertically by an increment
of 0.5 to improve visibility.

support. Figure 7.11 shows pressure measurements from sensor P7, which is located
at the same axial position as the interferometer beams. The pressure data show the
post-shock decay, followed by the plateau period, and then the arrival of the reflected
expansion wave. The large oscillations observed in the plateau period in the density
data are apparent in these measurements as well. The fluctuations observable in
density data nearer to the shock are not evident from the pressure measurements.
Important factors are the much reduced measurement resolution as compared to data
from the interferometer, and added noise from residual vibration. However the near
shock frequencies observed from density data are less than 100 kHz and should be
within the sensor’s bandwidth.

Three diaphragm thicknesses and materials were tested for the same shot condition,
and results are shown in Figure 7.12. For all of these cases, the diaphragm was
supported. (a) show only minor differences between diaphragm thicknesses regard-
ing the post-shock density or fluctuation amplitudes. There is some variation in
the near-shock flow for the 50.8 𝜇m case, but otherwise data are similar for each
thickness. In particular the large amplitude oscillations are unchanged.

In Chapter 5 diaphragm thickness was shown to impact driven shock speeds and
delayed their arrival. This is consistent with the present measurements, which show
an increase in shock arrival time and reduction in shock Mach number.

Diaphragm material has not been investigated thus far, and two alternatives to Mylar
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Figure 7.11: P7 pressure data for shots with a supported and unsupported diaphragm.
Shot conditions are those from Figure 7.10(a).
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Figure 7.12: Post-shock density data for different diaphragm thicknesses in (a) and
materials in (b). All are for shot the same condition: 100 kPa C2H4 + 3O2 and 10
kPa air. Data are shifted vertically in increments of 1 to improve visibility.

are shown in Figure 7.12(b): Kapton and Nylon. Both plastics have densities, elastic
moduli, and tensile strengths different from Mylar. Relevant data are tabulated
below.1 Kapton has a higher density and tensile strength than Mylar, and Nylon

1Values for density and tensile strength are those reported by the distributor, McMaster-Carr.
Elastic moduli are from the materials database MatWeb.
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has a lower density and tensile strength than Mylar. Density is important as it
determines the diaphragm mass and response to shock impact. From results for
varied thickness, diaphragm mass does not seem to significantly affect the post-
shock flow (at least for the values tested). Since solid-phase plastic densities are
much greater than those of the detonation gas, the waves transmitted into the plastic
are weak and only marginally different for the different densities. Testing different
materials was of interest to observe the effect of the material strength and stiffness.
Note that the difference between signals for the different materials is greater than
the difference between signals for different thicknesses, indicating material property
effects. Nylon in particular shows an apparently steadier post-shock flow, with only
some perturbations near the shock. The oscillation amplitudes are also decreased
for Kapton. These results are repeatable, however it is not clear what particular
properties are causing the signal variations. Minimally this illustrates that alternative
materials may be superior to Mylar.

Table 7.2: Diaphragm material properties

Material Density (g/cm3) Elastic Modulus (GPa) Tensile Strength (MPa)
Mylar 1.38 3.5 170
Kapton 1.42 2.5 230

Nylon 66 1.14 3.0 81

7.2.3 Driver Mixture
Figure 7.13 shows results for two test gas pressures (10 kPa and 20 kPa) and three
driver gas mixtures (C2H4 + 3O2, C2H4 + 3O2 + 4Ar, and 2H2+O2). These data are
all zeroed in time by the shock arrival.

A surprising result is that the post-shock gradients for the hydrogen driver are
notably free from large amplitude oscillations. This was not expected due to the
much higher driver gas sound speeds for hydrogen as opposed to ethylene, given
the theory by Paull and Stalker (1992). Results show “quieter” post-shock flows for
a hydrogen driver in all cases. The post-shock oscillations are also weaker for the
argon diluted driver, where the post-shock sound speed is reduced. An important
difference between the different mixtures is the shock speed attained. Data for the
undiluted ethylene driver show the largest amplitude oscillations but the shock speed
is also the greatest. However, the oscillations in (c) appear smaller than those in (b),
where the shock is stronger in the former case. Clearly, the oscillation strength is
not determined by the driver gas sound speed or shock strength.
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Figure 7.13: Post-shock density data for three driver mixtures and two pressure
conditions. All conditions use supported 25.4-𝜇m Mylar diaphragms and air as test
gas.

7.3 Results: Reverse-Mode Detonation Driver
7.3.1 Pressure Ratio
Figure 7.14 shows density measurements for four driven gas pressures. As stated
previously, density data are calculated only for post-shock air, and so densities are
inaccurate regarding the detonation products.

Reverse-mode driven shocks are approximately steady, and data show generally
small post-shock gradients. Test time of usable post-shock flow is determined by
arrival of either the contact surface, as in (a) and (b), or reflected shock from
detonation reflection in the driver, as in (c) and (d). An additional line is drawn for
the expected post-shock density at vibrational equilibrium, and its length is meant
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to roughly indicate the test-time duration. Relaxation effects are confined to early
time, and the density later in time is consistent with the relaxed values. Contact
surfaces are again observed to be elongated and not sharp jumps.

All data in Figure 7.14 show large fluctuations in the shocked gas. Oscillations
are observable not just in the air, but prominently in the detonation products too,
although at a distinctly lower frequency. Analysis of these effects is presented later.
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Figure 7.14: Post-shock density measurements for four 𝑃1 pressures, where all
shot conditions use a 100 kPa C2H4 + 3O2 driver and a supported 25.4-𝜇m Mylar
diaphragm. Density data are valid up to contact surface or reflected shock.

7.3.2 Diaphragm Effects
In Chapter 5, diaphragm support was found to have lesser importance for the reverse-
mode driver. This is consistent with the results in Figure 7.15. These data are
zeroed in time based on the detonation arrival at the diaphragm. The primary shock
arrives earlier for the unsupported diaphragm case. This makes sense, given that a
bulging diaphragm has the effect of lengthening the driver and shortening the driven
section. The reflected shock from detonation reflection arrives at the same time
in both cases. Because of the variation in arrival times of the contact surface and
reflected shock, the contact surface can be observed in (b) for the unsupported case.
Density fluctuations in the post-shock flow are obvious for both cases, reinforcing
the conclusion that they are not from diaphragm effects.
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Figure 7.15: Post-shock density measurements for four 𝑃1 pressures, where all
shot conditions use a 100 kPa C2H4 + 3O2 driver and a supported 25.4-𝜇m Mylar
diaphragm.

Figure 7.16 shows data for two diaphragm thicknesses. The thicker diaphragm
significantly delays shock arrival and reduces available test time. Oscillations are
apparent in both signals.
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Figure 7.16: Post-shock density measurements for two diaphragm thicknesses. Shot
conditions use a 100 kPa C2H4 + 3O2 driver, 10 kPa air test gas, and a supported
diaphragm.

7.3.3 Driver Mixture
Results for the three driver mixtures are shown in Figure 7.17. Post-shock fluc-
tuations are obvious in (a)-(d). Comparing (b) and (c), which have similar shock
Mach numbers, shows that test time duration is similar, however (b) shows much
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larger oscillations in the detonation gas. In the shocked air itself, oscillations are
apparent for both cases. (d) also shows oscillations in the test gas but not clearly
in the detonation gas. (e) and (f) show that for the hydrogen driver the reflected
shock arrives far sooner that for any other condition. Data in (f) are largely unusable
because the reflected shock has nearly overtaken the primary shock. Test time in (e)
is too short for analysis of the post-shock flow except for a general observation of
no large amplitude oscillations as those shown in (a)-(d).
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Figure 7.17: Post-shock density measurements for three driver mixtures and two
pressure conditions.

7.3.4 Test Gas
In order to investigate the effect of the contact surface sound speed ratio, while
preserving the same driver conditions, shots were performed with argon and helium
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as test gases. Because helium has a low molecular weight, both shocked and
unshocked helium have a high sound speed. Argon has a low sound speed initially,
enabling strong shocks. However, because it has a low heat capacity its post-shock
temperatures are very large, and so shocked argon also has a sound speed higher
than for shocked air. Results for these test gases are shown in Figure 7.18. (c), (e),
and (f) clearly show a strikingly more steady post-shock flow than for all results
in air. For these cases, the post-shock flow has a high sound speed and therefore
low 𝑎3/𝑎2, consistent with the theory by Paull and Stalker (1992). Large amplitude
oscillations are present in (d) but not (c). A possible explanation for this is that the
weaker shock results in reduced values for 𝑎2 and therefore higher values for 𝑎3/𝑎2.
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Figure 7.18: Post-shock density measurements for three test gases and two pressure
conditions.

To investigate shocks in argon further, additional experiments were performed for
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lower test gas pressures, and therefore lower values of 𝑎3/𝑎2. These data are shown
in Figure 7.19 in density units normalized by the post-shock value. Each signal is
shifted vertically by 0.1 units to improve clarity. There is distinct contrast between
the 10 kPa condition and all lower pressures, where large amplitude oscillations are
not seen. As the shock strength increases and 𝑎3/𝑎2 decreases, the post-shock flow
does not become observably more steady. Note that test time for the 10 kPa case is
terminated by arrival of the reflected shock, and for all other cases by the arrival of
the contact surface.
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Figure 7.19: Additional data at more pressure conditions where argon is the test gas.
Data are shifted vertically by increments of 0.1.

7.3.5 RMS Oscillation Amplitudes
In order to quantify post-shock oscillations, test time data from all reverse-mode
shots with common diaphragm conditions (supported 25.4 𝜇m Mylar) were pro-
cessed to obtain root-mean-square estimates of fluctuation amplitudes. Test time
was identified manually in all cases using arrival of the contact surface or reflected
shock. To account for the mean gradients, the baseline was subtracted using a lin-
ear fit. The root-mean-square value of these data was then normalized by the mean
post-shock density. These results are plotted in Figure 7.20 against calculated values
of the contact surface sound speed ratio 𝑎3/𝑎2. Markers with a common color are
for the same driver mixture. Different marker symbols are used to denote different
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Figure 7.20: Measurements of root-mean-square density fluctuations, 𝜌′, normal-
ized by the mean density during the test time, �̄�, using a reverse-mode detonation
driver.

test gases.

The majority of data were acquired for a C2+H4 + 4O2 driver mixture, for which
Figure 7.20 shows a clear positive correlation between the RMS density fluctuations
and the contact surface sound speed ratios. This is consistent with the theory by
Paull and Stalker (1992) regarding the transmission of acoustic lateral waves through
the contact surface from the driver gas. Data for an argon-diluted ethylene driver
are also consistent with this positive correlation, except for an outlier point for
one shot using an argon test gas. Data using a hydrogen driver are not consistent
with the trend, however there is low confidence in these data due to the short test
times as shown in Figure 7.17. Assuming there is sufficient test time to assess the
post-shock flow, then this might be consistent with observations from forward-mode
experiments, where hydrogen-driven flows do not exhibit significant oscillations,
despite the much increased driver gas sound speed.

7.4 Results: Helium Driver
Experiments were performed using a cold high-pressure helium driver for two
diaphragm thicknesses and three air pressures. Results are shown in Figure 7.21.
Although conventional static high-pressure driver operation theoretically generates
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steady shock waves, results show that in all cases, except (e), shocks have a positive
post-shock gradient, indicating that they are accelerating. This is consistent with
results from Chapter 5 and the analysis by White (1958). The metal diaphragms
are much more massive than plastic diaphragms requiring more time to open. For
strong shock conditions, this produces a significant area-change effect in early time,
ultimately causing the shock to overshoot its nominal steady shock speed. This
process takes some time, and (e) shows that after the initial transients have passed
the post-shock flow is more uniform.

Some fluctuations are apparent in the data, however generally there do not appear to
be any large amplitude oscillations such as those observed with a detonation driver.
Quantifying these RMS fluctuations was not performed because identification of the
contact surface arrival is less obvious for these data and prone to biasing calculations.
Using ideal shock tube calculations has generally been found to overestimate test
times, since the real contact surface is spatially broad and accelerating from boundary
layer effects.

7.5 Frequency Analysis
In order to extract the oscillations from time-series data, particularly for forward-
mode cases with significant mean gradients, the background must be removed. This
was accomplished by fitting the post-shock data up to the contact surface with a
fifth-order polynomial and subtracting the fit from the data. Examples of back-
ground subtracted signals are shown in Figure 7.22 for forward-mode data obtained
at different 𝑃1 pressures. For lower pressures, the test time is shorter, however
frequency content is still evident. By inspection, the background-subtracted signals
show that for lower pressures the oscillation frequency is greater. There is also some
time-varying component, where greater amplitudes are observed later in time. This
is consistent with the claim that the oscillations are residual density perturbations
from shock oscillations. It was shown in Chapter 5 that shock oscillation amplitudes
decrease with time, so the magnitude of perturbations should also decrease toward
the shock.

Power spectra were estimated using periodograms. The record lengths are short, and
there is no significant noise for averaging with Welch’s method to be useful. Power
spectra of signals with and without background subtraction are shown in Figure
7.23, where the signal with background is black. In all four cases there is a higher
frequency peak that is consistent with the visible periodicity in the time series data.
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Figure 7.21: Post-shock density data for six pressure conditions using a cold high-
pressure helium driver.

The lower frequency peak in background subtracted data is residual power from the
background. The higher frequency peak can be readily extracted for all shot data
with sufficient record lengths. For example, this precludes reverse-mode data using
a hydrogen driver.

Peak frequencies measured from density data for viable shot conditions are plotted
in Figure 7.24. Data are plotted against the initial pressure ratio. Error bars indicate
the DFT frequency resolution.

In Chapter 5, shock speeds were observed to oscillate with some peak frequency,
and these peak frequencies were measured. Interferometry measurements show
fluctuations in density in the post-shock flow. If these frequencies are coming from
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Figure 7.22: Background subtracted data for forward-mode detonation-driven
shocks with a 50 kPa C2H4 + 3O2 driver and air test gas.
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Figure 7.23: Power spectra of data with (colored) and without (black) background-
subtraction.

a common source, then they are related by some Doppler shift. Shock oscilla-
tion measurements were performed in the shock-fixed frame, and interferometry
measurements were performed in the lab-fixed frame.

First, consider the disturbances to be one-dimensional plane waves, then they can
propagate along any of the three families of characteristics, or they can propagate
supersonically as shock waves. Therefore there are four possibilities for the Doppler
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Figure 7.24: Peak frequencies from power spectra of density data for (a) forward-
mode and (b) reverse-mode detonation drivers.

shift. Figure 7.25 shows these possibilities with four cartoon space-time diagrams,
where in (a) the disturbance is carried by particle paths (p.p.) or 𝐶0 characteristics,
in (b) by 𝐶− characteristics, in (c) by 𝐶+ characteristics, and in (d) by weak shocks.
For (a) and (b), the shock itself is acting like the source of the disturbance, whereas
in (c) and (d) the disturbance is coming from upstream and the primary shock is
the receiver. The observed shock oscillation frequency, 𝑓𝑤, and shock speed, 𝑈𝑠,
give the spatial length for one oscillation. From the characteristics’ geometry the
period, Δ𝑡, of the disturbance in the lab-frame can be identified. Then, the frequency
measured in the lab-frame is 𝑓𝑙 = 1/Δ𝑡. Relating 𝑓𝑤 and 𝑓𝑙 gives the four possible
Doppler shifts:

𝑓𝑙 =
𝑢2

𝑈𝑠 − 𝑢2
𝑓𝑤 = 𝑏0 𝑓𝑤 𝐶0 characteristics , (7.4)

𝑓𝑙 =
(𝑢2 − 𝑎2)

𝑈𝑠 − (𝑢2 − 𝑎2)
𝑓𝑤 = 𝑏− 𝑓𝑤 𝐶− characteristics , (7.5)

𝑓𝑙 =
𝑢2 + 𝑎2

(𝑢2 + 𝑎2) −𝑈𝑠
𝑓𝑤 = 𝑏+ 𝑓𝑤 𝐶+ characteristics , (7.6)

𝑓𝑙 =
𝑈𝑑

𝑈𝑑 −𝑈𝑠
𝑓𝑤 = 𝑏𝑠 𝑓𝑤 weak shock . (7.7)

For case (d), the disturbance shock is propagating at speed𝑈𝑑 in the lab-frame. The
strength of this shock is given by

𝑀𝑑 =
𝑈𝑑 − 𝑢2
𝑎2

, (7.8)

so that
𝑏𝑠 =

𝑢2 + 𝑀𝑑𝑎2
(𝑢2 + 𝑀𝑑𝑎2) −𝑈𝑠

, (7.9)
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which clarifies the connection with 𝑏+. This model is useful only for interpreting
flows with steady shock waves, where 𝑏0, 𝑏−, and 𝑏+ are functions of the shock
speed and medium,2 and 𝑏𝑠 requires knowledge of 𝑀𝑑 . More work is required to
relate lab-frame and shock-frame frequencies for decaying shocks.
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Figure 7.25: Space-time diagrams illustrating four possible modes for a plane
disturbance to propagate between the observation plane and the shock wave.

For experiments with a reverse-mode detonation driver, there are three viable shot
conditions that were used for both shock-speed and interferometry measurements.
The ratio of peak frequencies measured using these methods is plotted in Figure 7.26
with values for Doppler shift coefficients calculated for vibrationally-equilibrated
air. First, note 𝑏0, 𝑏+, and 𝑏𝑠 are all greater than one, indicating that 𝑓𝑙 > 𝑓𝑤,
consistent with observations. 𝑏− < 1 and so it can be ruled out that the observed
disturbances are being carried on 𝐶− characteristics. The experimental data do not

2For a perfect gas, they are functions of only 𝑀𝑠 and 𝛾.
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overlap curves for 𝑏0 or 𝑏+. Because of this disagreement, 𝑀𝑑 was adjusted so that
data points lie on the curve for 𝑏𝑠. Here 𝑀𝑑 = 1.3, which is not a weak shock. If this
were accurate, pressure fluctuations on the order of 50%-100% would be observed
in the post-shock flow, which is not the case. Therefore, an alternative model for the
disturbances must be considered.
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Figure 7.26: Comparison between experimentally measured frequency ratio and
calculated Doppler shifts for a plane wave disturbance and reverse-mode data.

Paull and Stalker (1992) formulated an acoustic wave theory to model disturbances
in cylindrical ducts. In acoustics, by assuming small perturbations the equations
of motion can be linearized. By introducing the velocity potential, u = ∇𝜙, the
linearized equations can be combined to obtain the wave equation

𝜕2𝜙

𝜕𝑡2
= 𝑎2∇2𝜙 . (7.10)

Paull and Stalker (1992) proposed the following form for the velocity potential:

𝜙 = 𝐽0(𝜆𝑟) exp(𝑖𝜔(𝑡 ± 𝛽𝑥/𝑎)) , (7.11)

where 𝐽0 is the zeroth-order Bessel function of the first kind, 𝜔 is the fundamental
frequency, and 𝛽 is the dispersive term, given by

𝛽 =
√︁

1 − (𝜆𝑎/𝜔)2 . (7.12)

It can be verified that (7.11) does indeed solve the wave equation. To satisfy no
penetration boundary conditions at the tube radius, 𝑟0, requires that 𝜆𝑟0 is equal to
any zero of the first-order Bessel function of the first kind. Paull and Stalker (1992)
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focused their analysis on “lateral” waves for which 𝜆𝑟 ≠ 0 and in particular for the
lowest order where 𝜆𝑟0 ≈ 3.83.

Paull and Stalker (1992) formulated Doppler shifts by translating the spatial coor-
dinate in (7.11) by a constant velocity. If the wave source is convected with the
post-shock gas velocity and subsequently observed from the stationary lab-frame,
where the wave source is propagating toward the observer, then the Doppler-shifted
frequency is

𝑓𝑙 = (1 + 𝑢2𝛽/𝑎2) 𝑓0 , (7.13)

where 𝑓0 = 𝜔/2𝜋. This describes the interferometric measurements. Similarly, the
Doppler-shifted frequency in the shock-fixed frame is

𝑓𝑤 = (1 + (𝑢2 −𝑈𝑠)𝛽/𝑎2) 𝑓0 . (7.14)

Equations (7.13) and (7.14) can be combined to find the Doppler-shift relating
lab-frame and shock-frame measurements, and the result is

𝑓𝑙 =
𝑢2 + 𝑎2/𝛽

𝑢2 + 𝑎2/𝛽 −𝑈𝑠
𝑓𝑤 = 𝑏𝐿 𝑓𝑤 . (7.15)

The Doppler shift formulation for lateral waves (7.15) is precisely the same as for
𝐶+ characteristics, except with the local sound speed scaled by the dispersion term.
Generally 𝛽 < 1, which gives the subtle result that the phase velocity of lateral
waves exceeds the local sound speed. This is a physical consequence of guided
wave propagation. The potential function (7.11) is not unique to this problem and
describes wave propagation in a cylindrical waveguide. Phase velocity can exceed
the sound speed as a consequence of interference phenomena inside the waveguide.
Energy is transmitted with the group velocity, which is, for one-dimensional wave
propagation,

𝑣𝑔 =
𝜕𝜔

𝜕𝑘
. (7.16)

For the potential function (7.11), the group velocity is

𝑣𝑔 = 𝛽𝑎 . (7.17)

Since 𝛽 ≤ 1, this illustrates that 𝑣𝑔 ≤ 𝑎 inside the tube, as expected. The group
velocity also gives the minimum frequency that can be coupled into the waveguide.
This is given by 𝛽 = 0, which is obtained for cut-off frequency

𝜔𝑐 = 𝜆𝑎 . (7.18)
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For first-order lateral waves, the cut-off frequency is 𝜔𝑐 ≈ 3.83𝑎/𝑟0.

In order to apply this formulation to experimental data, the fundamental frequency
must be obtained, which is not directly measured in experiments. Instead, the lab-
frame frequencies measured by interferometry can be used with (7.13) and a root
solver to obtain 𝑓0 and consequently 𝛽. Results from these calculations are given
in Table 7.3 with the ratio of experimentally measured lab-frame and shock-frame
frequencies. Since 𝑏𝐿 is calculated using the lab-frame frequencies, measurement
uncertainty was propagated through the calculation and is included.

Table 7.3: Experimental frequency ratio, 𝑓𝑙/ 𝑓𝑠, and predicted Doppler shift of first-
order lateral waves, 𝑏𝐿

experimental 𝑓𝑙/ 𝑓𝑠 𝑏𝐿
3.19 ± 0.46 3.15 ± 0.09
2.90 ± 0.57 2.86 ± 0.11
3.01 ± 0.43 3.00 ± 0.09

Agreement between the experimental frequency ratio and calculated Doppler shift
is striking with all calculated values well inside uncertainty bounds. This re-
sult indicates that measured lab-frame frequencies and shock-frame frequencies for
reverse-mode experiments are indeed coupled and accurately modeled as first-order
lateral waves.

The same analysis cannot be so easily implemented with forward-mode data. For
decaying shock waves, the post-shock flow has nonuniform velocity and sound speed.
We can make some approximate conclusions from analyzing the same plane wave
Doppler shifts plotted with the experimental frequency ratios. These data are shown
in Figure 7.27, where the shock Mach number for experimental data is the value
measured at the interferometer position. The primary observation is that, unlike for
reverse-mode data, for forward-mode data the frequency ratios show a clear positive
trend with increasing shock Mach number. The only Doppler shift that shows this
dependence is for𝐶0 characteristics. The experimental data sit beneath this line, and
this disagreement could be attributed to the unsteady flow behind a decaying shock.
Observations regarding an absence of post-shock pressure perturbations for forward-
mode data are consistent with disturbances propagating on 𝐶0 characteristics. This
is only an approximate analysis with low confidence. Doppler shifts could be more
accurately estimated by integrating along characteristics from numerical simulation
data. However, this is not performed here.
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Figure 7.27: Comparison between experimentally measured frequency ratio and
calculated Doppler shifts for a plane wave disturbance and forward-mode data.

7.6 Discussion
To compare the three driver modes, Figures 7.28 and 7.29 show density data for
cases with similar shock Mach numbers where the test gas is air. There are clear
differences in the post-shock flows between the three cases. Figure 7.28 shows that
the magnitude of the post-shock density gradients is actually comparable for the
forward-mode detonation driver and helium driver. This illustrates the significance
of diaphragm effects on the conventional static high-pressure shock-tube driver. The
length of the driven section that is impacted by diaphragm effects is expected to
scale with the shock-tube diameter, so that for a fixed diameter the shock tube can
be elongated to allow transients to pass and obtain a more steady shock. For the
detonation-driven facility, the post-shock gradient is reduced by lengthening the
driver.

In Figure 7.28 large amplitude oscillations, approximately 5-10%, are only observed
in the detonation-driven post-shock flows, not for the helium-driven shock. However,
in Figure 7.29, there are clearly fluctuations in the helium-driven post-shock flow,
but the forward detonation-driven shock appears quiet. The forward-mode data
displayed are those from a case using a hydrogen driver mixture. A quite surprising
result is how steady the hydrogen-driven flows appeared.

Large amplitude oscillations have been observed in much of the density data pre-
sented above. If these oscillations propagate into a facility’s test flow, then they
would corrupt the flow as “noise”. However, it is important to note that all mea-
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Figure 7.28: Comparison between post-shock density data for the three driver types
where shock Mach numbers are all similar.
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Figure 7.29: A second comparison between post-shock density data for the three
driver types where shock Mach numbers are all similar, where the forward-mode
driver uses hydrogen.
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surements of oscillations have been deterministic and highly repeatable. There is no
randomness associated with the observed oscillations. This indicates that the source
of the oscillations is something repeatable and intrinsic to the system construction
and operation. They could potentially be eliminated by changes to, e.g., diaphragm
rupture and detonation initiation.

7.7 Summary & Conclusions
A heterodyne focused laser interferometer was employed to make high-resolution
density measurements in the flows generated by a detonation-driven shock tube.
The advanced capabilities of this instrument enabled phase measurements spanning
nearly 100𝜋 radians. Signals could be adjusted through the shock so that post-
shock density could be measured. Relaxation effects were prominent, particularly
for forward-mode shocks where relaxation must compete with the decaying shock
gradients. Away from shocks, the interferometer afforded unambiguous insight into
the post-shock flows.

Results from forward-mode operation consistently showed perturbations in the test
flow, regardless of whether the diaphragm was supported. Previous shock speed
measurements showed that oscillation amplitudes were reduced by supporting the
diaphragm and thereby mitigating diaphragm bulge. The oscillations in density data
were consistent for different diaphragm thicknesses, but changed for different mate-
rials, indicating some sensitivity to the diaphragm. The oscillations were reduced
for driver conditions using ethylene diluted with argon, but also for conditions using
hydrogen. Hydrogen was particularly surprising with post-shock flows remarkably
free from perturbations. Frequency analysis of forward-mode data is challenging
because the shocks are decaying and the post-shock flow is nonuniform. The origin
of the observed flow oscillations, not caused by diaphragm bulge, could not be
unambiguously identified.

Results from reverse-mode operation similarly showed significant post-shock flow
perturbations. Hydrogen could not be characterized completely because of how
rapidly the reflected shock overtook the primary shock. Experiments using gases
with large post-shock sound speeds appeared to show suppression of flow oscilla-
tions. This was evident from strong shocks in argon and helium. An estimate of
the root-mean-square density fluctuations showed that the amplitude of fluctuations
was positively correlated with the contact surface sound speed ratio for data using
the same driver conditions, i.e., only the test gas was varied. This observation is
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consistent with the theory by Paull and Stalker (1992). Frequency analysis was used
to related lab-frame frequencies measured by interferometry and shock-fixed-frame
frequencies measured in Chapter 5. Analysis showed that the Doppler shift relating
these frequencies cannot be explained by plane waves. By implementing the acous-
tic wave model from Paull and Stalker’s analysis, it was shown that the Doppler
shifts are in excellent agreement with those predicted for lateral waves propagating
downstream. These are likely generated by detonation implosion, which is used to
initiate the reverse-mode driver. These effects should be a concern for any transverse
initiation tube.

Results from operating the driver with high-pressure helium emphasize the signifi-
cance of diaphragm opening times. Post-shock density gradients were positive from
accelerating shocks. The gradients were sufficiently large as to be comparable with
those behind decaying shock waves from forward-mode operation.
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C h a p t e r 8

CONCLUSIONS & FUTURE WORK

8.1 Conclusions
This work was motivated by the application of a detonation driver to expansion tube
research facilities. There were primarily three objectives: develop an analytical
model for forward-mode shock decay, develop a high-resolution shock-speed mea-
surement technique to investigate detonation-driven shock dynamics, and develop a
heterodyne interferometer to probe post-shock flows.

The shock decay resulting from forward-mode detonation driver operation results
from the interaction between a simple wave and a plane shock. This general problem
was analyzed in detail using higher-order shock-change equations. It was shown
that the model presented is a significant advance over predecessors and provides a
simple solution to a classic problem in gas dynamics.

The shock propagation law derived from this general analysis was shown to ex-
cellently model the motion of detonation-driven shocks. An empirical approach
of fitting simulation data was used to develop correlations of critical independent
variables for the two parameters of the decay model. The new model was used to
investigate the decay-rate characteristics of different driver gases, and it was shown
how reduced sound speeds have the effect of decreasing shock decay rates. This
gives new insight into the trade between shock strength and steadiness in choosing
a facility’s operating conditions. The model provides a tool that can be used for
optimizing a test condition based on given shock-tube lengths.

A time-resolved shock-speed measurement technique was developed and imple-
mented to characterize shock propagation in a small-scale detonation-driven shock
tube. Results were used to calibrate the analytical decay model for various pressure
ratios.

The new shock-speed measurement technique provided insight into the shock dy-
namics in these facilities. Prominent shock-speed oscillations were observed and
shown to result from diaphragm bulging in forward-mode operation and driver
initiation in reverse-mode operation. Shock-speed oscillations are significant for
expansion tubes since they indicate the presence of large disturbances in the post-
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shock flow. A simple fix for diaphragm bulge issues was found to be mechanically
supporting the diaphragm with a blunt cross. This technique could be used to enable
thinner diaphragms for high-pressure detonation driver applications as well.

A heterodyne focused laser interferometer was designed, built, and implemented to
characterize post-shock flows. The technique gave high-resolution measurements
of flow perturbations and mean gradients, including from vibrational relaxation.
The presence of flow perturbations was shown to depend significantly on driver
operating conditions. In particular, a surprising result was to find greatly reduced
perturbations for hydrogen-oxygen forward-mode drivers. Operation with hydrogen-
oxygen generates stronger shocks, yet mean gradients are also greater. However,
flow perturbations are of more significance regarding expansion tube operation.

Frequency analysis of lab-frame density measurements and shock-frame speed mea-
surements was used to show that the observed flow perturbations are consistent with
the first-order lateral waves described by Paull and Stalker (1992). Agreement be-
tween measured and calculated Doppler shifts using this model was excellent. A
principal source for these waves is the initiation of the reverse-mode driver at the
diaphragm. The facility in this work uses wave implosion, which is possibly partic-
ularly prone to generating these waves. However, this should be a concern for any
transverse initiation, which is typical for reverse-mode detonation drivers.

Heterodyne interferometry is not original but has been rarely applied to fluid dy-
namics research. The heterodyne focused laser interferometer built in this work
demonstrates the significant capabilities of the technique. The spatial filtering ef-
fects of FLDI that have popularized its use are preserved in the new instrument,
however heterodyne detection can be used to make new measurements of absolute
phase changes, which have several advantages. Perhaps most significantly, the ab-
solute phase measurements have a uniform frequency response below some cut-off
defined by the beam shape. A uniform frequency response in measurement band-
widths is desired for all instruments. The differentiation used in FLDI introduces
frequency sensitivity, requiring a more complicated spectral inversion with some
additional knowledge about acoustic disturbances, namely their phase velocity. In
the present work, only waves propagating perpendicular to the beam were consid-
ered, however propagation along the optical axis should be analyzed as Lawson
(2021) demonstrated for FLDI.

Absolute phase measurements with heterodyne interferometry enable a new capa-
bility of directly probing gas densities. This gives the instrument new utility for
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applications beyond fluctuating flows. In particular, it could be used to measure
relaxation times. Large amplitude oscillations in the post-shock flows examined in
this work prevented a detailed study of this. Although there have been significant
advancements with absorption spectroscopy techniques (Streicher et al., 2020), it
remains challenging to measure these quantities in gases composed of nonpolar
molecules like nitrogen and oxygen. The present technique could be employed
for these applications, enabling high-resolution measurements to complement those
obtained with spectroscopy.

8.2 Future Work
8.2.1 Shock Decay Modeling
One aspect of the model that was not explored in depth is its generality for other
equations of state. Application to shocks in media not described by the ideal gas
law is a straightforward extension of the theory and could be of interest.

In order to simplify analysis, thermodynamic equilibrium was assumed throughout
the flow, however for shocks in real gases relaxation phenomena are important. The
time scales of these relaxation phenomena will compete with those of the unsteady
post-shock flow. Investigating how both the relaxation zone and the shock motion
are coupled would be interesting.

For application of the shock decay model to other problems, the challenge is how
to obtain the initial shock acceleration. For detonation-driven shocks, an empirical
approach was used, but an analytical method would provide more generality. The
power-law exponent does not vary significantly, and so in many cases the value
might be estimated from a small number of simulations and extrapolation to other
conditions would remain reasonably accurate. Estimating the decay rate for general
conditions, however, is more challenging. One analytical strategy might be to
employ the fundamental solution of gas dynamics (Courant and Friedrichs, 1948,
Landau and Lifshitz, 1987), which is valid for the isentropic flow confined behind the
shock-tube contact surface. This could enable one to estimate the initial post-shock
gradients and therefore the initial decay rate. With this solution, a more detailed
parameter study could be employed. These results could also be applied to model
expansion tube operation using a decaying primary shock.

The modeling in this work focused on one-dimensional inviscid gas dynamics. Con-
sideration of viscous and heat transfer effects is important, especially for facilities
with larger length-to-diameter ratios. It should be investigated how shock decay
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from an unsteady expansion is coupled with boundary layer effects. Additionally,
the shock-tube boundary layer forms in a flow with a significant adverse pressure
gradient, likely affecting growth rates.

8.2.2 Detonation Driver Optimization
The lateral waves measured in reverse-mode operation are significant. Reducing
contact-surface sound-speed ratios endeavors to reduce their transmission into test
flows, however this can significantly constrain operating conditions and may not be
viable for air test gases. Lateral waves are coupled with the waveguide formed by
the tube, and so perhaps they could be damped using baffles.

The dynamic operation of a detonation driver also provides a means for overcoming
diaphragm issues in general. If the diaphragm is quickly ruptured prior to detonation
arrival, then transients from diaphragm opening result from much smaller pressures
differences and are therefore weaker. When the detonation arrives, a possibly
higher-quality shock is formed with fewer flow perturbations. Methods for fast
diaphragm rupture are therefore an avenue for future work, and the technique might
be transferrable to the expansion tube secondary diaphragm as well.

Detonation-driven expansion tube operation should be investigated experimentally,
where the steadiness of test flows is related to primary shock dynamics. The
heterodyne interferometer in this work could be employed to record both background
gradients and perturbations.

8.2.3 Shock-Speed Measurements
Almost all shock-tube-based facilities have some method for measuring shock
speeds. As the present work has shown, a diagnostic that can measure shock
speeds continuously would be very useful for facility characterization. The shad-
owgraphy technique used here is not transferrable to large-scale metal shock tubes,
so a new method is needed. A possible technique might construct some kind of
linearly distributed sensor that can be unrolled down the length of a shock tube.
Some candidates for this might be: an array of thin-film gauges printed on a flexible
circuit board or using an optical fiber as an intrinsic sensor.

8.2.4 Interferometric Techniques
The absolute phase measurements possible with the heterodyne technique were
limited by the physical optics of a shock transmitting through a focused laser beam.
The instrument’s utility would be greatly advanced by overcoming this issue. A
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possible method would be to send the beam through the test section at an angle,
similar to the original technique used by Bleakney et al. (1949).

For a heterodyne FLDI without absolute phase measurement capabilities, one pos-
sibility for simplifying the construction in this work is to use a Zeeman-split He-Ne
laser. Two optical frequencies with a difference in the MHz range are emitted di-
rectly by the laser. They can be separated by their polarization and used directly
as the beam pair in an FLDI. Interference in the FLDI analyzer generates a signal
modulated at the beat frequency. The simple construction of an FLDI is preserved
while enabling heterodyne detection. If signal amplitudes are large, phase unwrap-
ping can be employed, but there is also the possibility of greatly reduced phase
noise. Balanced detection is possibly still the best choice for low-noise measure-
ments, but heterodyning does not limit signal amplitudes and techniques like lock-in
amplification can be employed.

Heterodyning is only one method for obtaining the IQ data required for direct
phase measurements. IQ data can also be acquired by implementing the quadrature
delay optically in the fashion used by Hogenboom and DiMarzio (1998) or Wang
and Mazumdar (2021). This technique has promise for visualization applications,
where the in-phase and quadrature components are both recorded with one or two
high-speed cameras. Phase can then be unwrapped using the spatial techniques
common with finite-fringe interferometry but also with the temporal unwrapping
possible with IQ data. Fringe shifts could therefore be measured with improved
resolution. This technique has applications beyond interferometry, for example, it
could be used for high-resolution photoelastic stress measurements.
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A p p e n d i x A

ADDITIONAL MATERIAL ON PLANE SHOCK DECAY

Schoeffler, D. T. and Shepherd, J. E. (2024). Decay of plane shock waves in
equilibrium flows. Under consideration for J. Fluid Mech.

A.1 Irreversible Chemical Reaction
The shock decay model can also be applied if there is some nonzero heat of reaction,
Δℎ, where Δℎ > 0 is exothermic and Δℎ < 0 is endothermic. If 𝛾2 = 𝛾1 = 𝛾, and
𝑄 = Δℎ/𝑅𝑇1, then the shock jump relations are

𝑃2
𝑃1

=
1 + 𝛾𝑀2

1 + 𝛾𝑀2
2
, (A.1)

𝑣2
𝑣1

=
𝑃2
𝑃1

𝑀2
2

𝑀2 , (A.2)

𝑀2
2 =

−2𝛾𝜁 + 1 −
√︁

1 − 2(𝛾 + 1)𝜁
(2𝛾𝜁 − 1)𝛾 + 1

, (A.3)

𝜁 =
𝑀2

(1 + 𝛾𝑀2)2

[
𝛾 − 1
𝛾

𝑄 + 1 + 𝛾 − 1
2

𝑀2
]
, (A.4)

where 𝑀2 = 𝑤2/𝑎2. If 𝑄 > 0, then 𝑀 > 𝑀CJ, where 𝑀CJ is the Chapman-Jouguet
(CJ) Mach number, given by

𝑀CJ =

√︄
𝛾2 − 1

2𝛾
𝑄 + 1 +

√︄
𝛾2 − 1

2𝛾
𝑄. (A.5)

If 𝑀 ≥ 1, then admissible values for 𝑄 are

𝑄 ≥ −𝛾
2
𝛾 + 1
𝛾 − 1

. (A.6)

Thompson (1972) discusses this model for CJ detonations. The above equations can
be used to compute 𝐾 and 𝐵 for implementation of the decay model.

Figure A.1 shows the effect of𝑄 on 𝐾−1 for 𝛾 = 1.2. Positive𝑄 shifts the 𝐾−1 to the
right, so that 𝐾−1 = 0 when 𝑀 > 1. The value of 𝑀 when 𝐾−1 = 0 is equal to the
CJ Mach number. Therefore, the overdriven detonation decays toward the CJ Mach
number and approaches it asymptotically with infinite time. Negative 𝑄 results in
faster decay for a given shock Mach number. As 𝑀 → 1, 𝐾−1 remains nonzero and
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Figure A.1: Effect of 𝑄 on 𝐾−1 for 𝛾 = 1.2.

approaches a finite value. As a result, the decaying shock in an endothermic gas
approaches 𝑀 = 1 in finite time. Even small endothermicity results in significant
increase in decay as 𝑀 → 1. These effects are shown by numerical solutions of the
shock decay model in figure A.2.

For 𝑄 > 0, the power-law approximation can be formulated as

𝛿(𝑡) = 1
(1 + 𝛽𝑡/𝛼)𝛼 ,

𝛿(𝑡) = 𝑀 (𝑡) − 𝑀CJ
𝑀0 − 𝑀CJ

, 𝛽 =
− ¤𝑀0

𝑀0 − 𝑀CJ
, 𝛼 = − 1

𝐾 (𝑀0) (𝑀0 − 𝑀CJ) + 1
.

(A.7)

A.2 Implementation of Prior Theories
A.2.1 Chandrasekhar (1943)
Chandrasekhar’s solution is given by equation (31) of his work, reproduced here as

𝑀

(𝑀 − 1)2
(𝑀0 − 1)2

𝑀0
e𝑀0−𝑀 = 1 + 𝑞𝑡,

where 𝑞 is a required time scale. If ¤𝑀0 is known, 𝑞 can be obtained from

𝑞 = −
(
1 + 1

𝑀2
0

)
𝑀0

𝑀0 − 1
¤𝑀0.
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Figure A.2: Solutions of shock decay model for 𝑀0 = 3, ¤𝑀0 = −1, and 𝛾 = 1.2
with nonzero values for 𝑄. The dashed line is the CJ Mach number for 𝑄 = 2 and
is 𝑀CJ = 1.77.

A.2.2 Brinkley and Kirkwood (1947)
Brinkley and Kirkwood (1947) derive a propagation equation for one-dimensional
shocks in a medium with an arbitrary equation of state. The derivation is based
on the equivalence between the work done by some generating surface, e.g., the
piston motion, and the residual enthalpy in shocked gas after having isentropically
expanded back to the initial pressure, 𝑃1. The enthalpy increment is nonzero because
of the entropy increment by the shock. Lee (2016) discusses this theory in more
detail. The Brinkley-Kirkwood shock propagation equations are given by (14) in
their work, which were integrated here as they are given. The second-order shock
propagation equation requires two initial conditions, given by the shock speed or
strength and the blast energy or, equivalently, the initial shock acceleration. The
shock acceleration was computed using this article’s solution (2.86) and converted
to their variables to give

d𝑝
d𝑅

=
𝜕𝑝

𝜕𝑅
+ 1
𝑈

𝜕𝑝

𝜕𝑡
,

= 𝜌1𝑎1(𝐺 + �̂�/𝑀) ¤𝑀,

where 𝑅 is the shock position, 𝑝 is the pressure increment at the shock, and �̂� is
given in section A.2.5.

The critical assumption in Brinkley-Kirkwood theory is that the time-evolution of
the shock-energy integrand is spatially similar. As a result, the integral over scaled
time gives a constant parameter, 𝜈. Brinkley and Kirkwood assume the shock-energy
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time integrand to be exponential and show that a strong shock limit gives 𝜈 = 1 and
a weak shock limit gives 𝜈 = 2/3. For the calculations used in this article, 𝜈 = 1 was
used. This was found to be more accurate than 𝜈 = 2/3. Accuracy was improved
for 𝜈 > 1, but further discussion of this is beyond the scope of the present work.

A.2.3 Friedrichs (1948)
Friedrichs’s solution for the shock position as a function of time is given by equation
(10.13) of his paper. Reproduced here using our nomenclature, the equation is

𝑥𝑠 = 𝑥𝑅 + 𝑎1


𝑡 − 𝑡𝑅 +

4𝑘 ((𝑡1 − 𝑡𝑅) (𝑡 − 𝑡𝑅))1/2

1 + 𝑘
(
𝑡1 − 𝑡𝑅
𝑡 − 𝑡𝑅

)1/2


, (A.8)

where
𝑘 =

𝑢2

4(1 − 𝜇2)𝑎1 − 𝑢2

and
𝜇2 =

𝛾 − 1
𝛾 + 1

.

𝑡𝑅 and 𝑥𝑅 are the time and position where the piston impulsively stops. 𝑡1 is the time
when the head characteristic intersects the shock wave. Friedrichs uses the weak
shock approximation, so 𝑡1 is given by

𝑡1 = 8𝑡𝑅
1 + 𝜇2𝜎1
𝜎1(4 − 𝜎1)

,

where
𝜎1 =

𝑢2

(1 − 𝜇2)𝑎1
.

To obtain the shock speed over time, we differentiated (A.8), using the value of 𝑢2

given by the shock jump equations for 𝑀0. The characteristic time 𝑡𝑅 was scaled to
match our time scale.

A.2.4 Sharma et al. (1987)
The shock propagation equation obtained by Sharma et al. (1987) is given by
equation (38) of their work. To ensure correct implementation of their solution, it
was verified that Figure 2 and Figure 3(b) from their work could be reproduced.
Peace and Lu (2018b) also implemented this solution, and it was verified that their
Figure 4 could be reproduced.
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A.2.5 Best (1991)
Best (1991) uses a truncation term of the form

𝑄2 =
1

𝜌1𝑎
2
1

𝜕

𝜕𝑡

(
𝜕𝑃

𝜕𝑡
+ 𝜌𝑎 𝜕𝑢

𝜕𝑡

)
(A.9)

as a generalization of Whitham’s geometric shock dynamics. For constant area
shock propagation, Best’s hierarchy of shock-change equations can be reduced to a
single equation in the same form as above. We consider the second-order equation
and compare it with our 𝑢𝑥𝑥,2 result (2.54). The algebra is simplified by manipulating
the equations in terms of the coefficients derived in section 2.2.

Expanding (A.9) gives

𝑄2 =
𝑃𝑡𝑡,2

𝜌1𝑎
2
1
+ 𝜌2𝑎2
𝜌1𝑎1

𝑢𝑡𝑡,2

𝑎1
+ 𝜌2
𝜌1

𝑎𝑡,2

𝑎1

𝑢𝑡,2

𝑎1
+ 𝜌𝑡,2
𝜌1

𝑎2
𝑎1

𝑢𝑡,2

𝑎1
. (A.10)

The partial-time shock-change equations are given by
1
𝑎1

𝜕𝑢

𝜕𝑡

����
2
= �̂� ¤𝑀, 1

𝜌1𝑎
2
1

𝜕𝑃

𝜕𝑡

����
2
= �̂� ¤𝑀, 1

𝜌1

𝜕𝜌

𝜕𝑡

����
2
= �̂� ¤𝑀, 1

𝑎1

𝜕𝑎

𝜕𝑡

����
2
= �̂� ¤𝑀,

(A.11)
where the coefficients are given by

�̂� =
𝜕𝑢2
𝜕𝑤1

− 𝑀𝐹, �̂� =
1

𝜌1𝑎1

𝜕𝑃2
𝜕𝑤1

− 𝑀𝐺,

�̂� =
𝑎1
𝜌1

𝜕𝜌2
𝜕𝑤1

− 𝑀𝐻, �̂� =
𝜕𝑎2
𝜕𝑤1

− 𝑀𝐸.

The second-order shock-change equation for 𝑢𝑡𝑡,2 is
𝑢𝑡𝑡,2

𝑎1
=

1
𝑎1

d𝑢𝑡
d𝑡

− 𝑀𝑢𝑥𝑡,2

=
1
𝑎1

d𝑢𝑡
d𝑡

− 𝑀
(
d𝑢𝑥
d𝑡

− 𝑀𝑎1𝑢𝑥𝑥,2

)
= �̂�′ ¤𝑀2 + �̂� ¥𝑀 − 𝑀𝐹′ ¤𝑀2 − 𝑀𝐹 ¥𝑀 − 𝑀2( ¥𝑀 + 𝐾 ¤𝑀2)/𝐿
= (�̂� − 𝑀𝐹 − 𝑀2/𝐿) ¥𝑀 + (�̂�′ − 𝑀𝐹′ − 𝑀2𝐾/𝐿) ¤𝑀2.

(A.12)

The result for 𝑃𝑡𝑡,2 is derived similarly.

Substituting into (A.10) and grouping terms gives the second-order shock-change
equation for 𝑄2,

𝑄2 =

(
�̂� − 𝑀𝐺 − 𝑀2/𝑁 + 𝜌2𝑎2

𝜌1𝑎1
(�̂� − 𝑀𝐹 − 𝑀2/𝐿)

)
¥𝑀

+
(
�̂�′ − 𝑀𝐺′ − 𝐽𝑀2/𝑁 + 𝜌2𝑎2

𝜌1𝑎1
(�̂�′ − 𝑀𝐹′ − 𝐾𝑀2/𝐿) + 𝜌2

𝜌1
�̂� �̂� + 𝑎2

𝑎1
�̂��̂�

)
¤𝑀2.

(A.13)
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Best’s theory is to assume𝑄2 = 0, which can be used to solve (A.13) with appropriate
initial conditions.

A.2.6 Sharma and Radha (1994)
Sharma and Radha (1994) use a series expansion in terms of 𝜕𝑛𝑥 𝑃, where truncation
at order 𝑛 is used to close the hierarchy of shock-change equations. The required
second-order shock-change equation is given by (2.57) and is reproduced here as

¥𝑀 + 𝐽 ¤𝑀2 + 𝑁 𝑃𝑥𝑥,2
𝜌1

= 0.

The coefficients, 𝐽 and 𝑁 , are given by (2.58) and (2.59). The truncation at second
order then gives 𝑃𝑥𝑥,2 = 0, which reduces (2.57) to a second-order ordinary differ-
ential equation requiring the initial conditions 𝑀0 and ¤𝑀0. The latter is provided by
our solution (2.86).
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A p p e n d i x B

ADDITIONAL METHODS & DATA: SHOCK SPEED
MEASUREMENTS

B.1 Detonation Spectrum
Figure B.1 plots spectra acquired for flash lamp and detonation products using an
Ocean Optics FX spectrometer. The fiber-coupled collection optic was located on
the same optical bread board as the high-speed camera and faced the polycarbonate
tube. The shadowgraphy setup was repositioned so that the line-of-sight between the
tube and the collection optic was unobstructed. The spectrometer was run in “burst”
mode at its highest sampling rate (4.5 kHz). The detonation products spectrum
shows broadband emission with saturation at lines associated with sodium and
potassium, common contaminants. The flash lamp spectrum is similarly broadband
and there is no clear region of the spectrum where filtering would be advantageous.
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Figure B.1: Spectra of luminous detonation products and flash lamp normalized by
the integrated intensity.

B.2 Calibration Methods
High-speed videos give shock motion in units of pixels and frames. Conversion of
these results to lab-frame coordinates requires three calibrations. First, the motion
of the shock shadow on the screen must be converted to the shock’s motion inside
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the tube. Second, the position of the shock shadow must be adjusted relative to
shock tube reference features. Third, pixel units are converted to real length units.
As described in Chapter 5, length calibration was performed using a precision 450-
mm scale that was adhered to the screen. Shadow corners were used to measure
the scale length in pixels and obtain the spatial calibration. This neglects lens
distortion and assumes a flat image field, which was found to sufficient for the
present measurements.

The first two calibration steps were accomplished using an alignment tool that was
placed in the shadowgraphy test field on the polycarbonate tube. A photograph of
the tool is shown in Figure B.2. The tool is constructed from two segments of T-slot
extruded aluminum and two plates. The T-slot rails align the tool parallel with
the tube, so that each plate is parallel to a tangent plane. The top plate is aligned
horizontally with a bubble level so that the plate in front is normal to the optical axis.
The tool is placed on the tube so that the tube lies between the plate and the viewing
screen. The shadowgraphy flash lamps are pulsed and a full FOV record of the flash
is captured with the high-speed camera. An example frame is shown in Figure B.3
where the alignment tool is placed in front of the left Fresnel lens. Features from
these images are used to verify alignment and spatially locate the FOV relative to
the shock tube.

Figure B.2: Photograph of alignment tool positioned on polycarbonate tube.

The front plate of the alignment tool has a linear grid of 37 ribs that project shadows
on the screen. Each rib is 1.27-mm wide. A 16-pixel wide strip along the tube center-
line that matches the narrow FOV used for high-speed shadowgraphy measurements
is extracted from each frame, and the position of each rib’s shadow is identified.
This is demonstrated in Figure B.4(a) and (b), respectively. The rib shadow posi-
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Figure B.3: Calibration image used to obtain pixel size, FOV position, and verify
unity magnification.

tions are then compared with the known dimensions of the array to verify that the
optical alignment gives a unity magnification, i.e., the measured and true positions
are one-to-one. Figure B.4 illustrates these measurements with a linear fit, showing
a fitted line with near-unity slope. This shows that the average magnification over
the width of the Fresnel lens is nearly unity, however shadowgraphy displacement
measurements are performed over only a few pixels, where the magnification must
not deviate significantly. Figure B.6 shows the measurements differentiated to il-
lustrate the local magnification variation. Measurements are coarse and results are
noisy, so a 4-point moving average is also shown. Typical deviation from unity is
within 1%.

On the top plate of the alignment tool, there is a 0.25-in diameter post that is used
to identify the position of the shadowgraphy FOV relative to the shock tube. The
corners of the post are picked out from the image using a corner detection algorithm
(cv2.cornerSubPix) in the OpenCV library (Bradski, 2000). A tape measure is
used to measure the distance between reference features on the diaphragm closure
and the top plate. This method gives measurements accurate to roughly 1 mm.

These calibration and alignment steps were repeated every time the shadowgraphy
set-up was repositioned along the tube length. During early experiments, this was
also performed on every new day of shots. Early experiments also used a different
front plate, where, instead of ribs, a coarser array of 19 slots was used.

B.3 Post-Processing Algorithm
In Chapter 5, the methods used to post-process high-speed shadowgraphy records
was described. These methods were implemented as an algorithm in Python, and
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Figure B.4: (a) linear array of shadows from the alignment tool. In (b), the image is
vertically averaged and inverted. Peaks are identified.
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Figure B.5: Measured rib positions from alignment tool are compared with their
known true positions.

the code used is reproduced below. The outputs from this script are in units of
pixels and frames and are subsequently converted to lab-frame coordinates using
calibration data. These additional processing steps, including saving data to file, are
excluded below.

1 import numpy as np
2 import os
3 import cv2
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Figure B.6: Spatial variation of magnification from differentiating measured rib
positions.

4 from scipy import signal
5
6
7 def cine2pxfr(dynamic=True, path=os.getcwd()):
8 # tifs are 16 bit, however v2512 captures 12 bit

9 tifpath_shot = path + ’/tifs_shot/’

10 tifpath_ref = path + ’/tifs_ref/’ # background reference

11 files = os.listdir(tifpath_shot)

12
13 pxfr = np.zeros((len(files), 1280))

14 for i, file in enumerate(files):

15 fullpath_shot = tifpath_shot + file

16 fullpath_shot1 = tifpath_shot + files[0] #’img000.tif’, single reference

frame

17 fullpath_ref = tifpath_ref + file # each reference frame matches each

shot frame

18
19 im_shot = cv2.imread(fullpath_shot , cv2.IMREAD_ANYDEPTH)

20 if dynamic is True:

21 im_ref = cv2.imread(fullpath_ref , cv2.IMREAD_ANYDEPTH)

22 else:

23 im_ref = cv2.imread(fullpath_shot1 , cv2.IMREAD_ANYDEPTH)

24
25 #background subtraction

26 im_sub = im_shot.astype(’double’) - im_ref.astype(’double’)

27
28 # normalize and vertically average

29 pxfr[i, :] = np.mean(im_sub.astype(’double’)/65535, axis=0)

30 return pxfr

31
32
33 def pxfr_hpf(pxfr, wx=71, wt=71, p=5, filter_time=False):
34 filt_x = signal.savgol_filter(pxfr, wx, p, axis=1)

35 if filter_time is True:

36 filt_t = signal.savgol_filter(pxfr-filt_x, wt, p, axis=0)
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37 pxfr_filtered = pxfr - filt_x - filt_t #subtract savgol to hpf

38 else:

39 pxfr_filtered = pxfr - filt_x

40 return pxfr_filtered

41
42
43 def isolate_shocks(pxfr, iso_window=50, threshold=0.01, center_edges=(622, 658)):
44 nf = np.shape(pxfr)[0]

45 shock_fr = []

46 single_shocks = []

47 px = 0

48 # loop through each frame and find shock pixels

49 for f in range(nf):

50 frame = pxfr[f, :]

51 min_px_value = np.min(frame[px:]) # minimum from shadow

52 contrast = -1*min_px_value

53
54 shock_pxi = np.argmin(frame[px:])+px # minimum pixel index

55 sz = len(frame)-1 # 1279

56 # check if shock is near edges

57 if shock_pxi < 5 or shock_pxi > sz-5:

58 valid = False

59 elif shock_pxi > center_edges[0] and shock_pxi < center_edges[1]:

60 valid = False

61 else:

62 valid = True

63
64 if contrast > threshold and valid is True:

65 shock_fr.append(f)

66 px = np.copy(shock_pxi)

67
68 # construct window around shock

69 if shock_pxi < iso_window:

70 shock_window = range(0, shock_pxi+iso_window)

71 elif shock_pxi > sz-iso_window:

72 shock_window = range(shock_pxi -iso_window , sz)

73 else:

74 shock_window = range(shock_pxi -iso_window ,shock_pxi+iso_window)

75
76 # clean_frame contains the shock shadow pixels but excludes all other

features, such as from diaphragm particulate

77 clean_frame = np.zeros((np.shape(pxfr)[1],))

78 clean_frame[shock_window] = frame[shock_window]

79 single_shocks.append(clean_frame)

80 return single_shocks , shock_fr

81
82
83 # Find shock position. subpx_estimate uses 3pt Gaussian fit
84 def find_positions(single_shocks , subpx_estimate=True):
85 Nshocks = len(single_shocks)

86 minima_positions = np.zeros((Nshocks ,))

87 maxima_positions = np.zeros((Nshocks ,))

88 for j in range(len(single_shocks)):

89 shockjn = np.argmin(single_shocks[j])

90 shockjp = np.argmax(single_shocks[j])
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91 if subpx_estimate is True:

92 Rm, R0, Rp = -1*single_shocks[j][shockjn -1:shockjn+2]

93 inc_n = three_point_Gaussian(R0, Rm, Rp)

94
95 Rm, R0, Rp = -1*single_shocks[j][shockjp -1:shockjp+2]

96 inc_p = three_point_Gaussian(R0, Rm, Rp)

97 else:

98 inc_n = 0

99 inc_p = 0

100 minima_positions[j] = shockjn + inc_n

101 maxima_positions[j] = shockjp + inc_p

102 return minima_positions , maxima_positions

103
104
105 def three_point_Gaussian(R0, Rm, Rp):
106 if Rm <= 0 or Rp <= 0:

107 return 0

108 else:

109 inc = (np.log(Rm)-np.log(Rp))/(2*(np.log(Rm)+np.log(Rp)-2*np.log(R0)))

110 return inc

111
112
113 def displacement_estimator(correlation , lags):
114 int_peak = np.argmax(correlation)

115 Rm, R0, Rp = correlation[int_peak -1:int_peak+2]

116 peak_increment = three_point_Gaussian(R0, Rm, Rp)

117 return lags[int_peak] + peak_increment

118
119
120 def correlate_shock_pairs(single_shocks):
121 Ns = len(single_shocks)

122
123 displacements = np.zeros((Ns-1,))

124 for i in range(1, Ns):

125 shockj0 = single_shocks[i-1]

126 shockj1 = single_shocks[i]

127 corr = signal.correlate(shockj1, shockj0)

128 lags = signal.correlation_lags(shockj1.size, shockj0.size)

129
130 displacement = displacement_estimator(corr, lags)

131 displacements[i-1] = displacement

132 return displacements

133
134
135 if __name__ == ’__main__’:
136 shot = 212

137 shotpath = ’shot’+str(shot)

138
139 # background subtract cine, vertically average, and save contrast stretched

tiff to file

140 # pxfr is a 2D array. Each row corresponds to a frame. Each column is a

vertically averaged pixel.

141 pxfr = cine2pxfr(path=shotpath)

142
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143 # high-pass filter pxfr data to remove artifacts from combustion gas,

diaphragm , lens margins, etc.

144 pxfr_filtered = pxfr_hpf(pxfr, filter_time=True)

145
146 # identify shock in each frame. Check for valid data, threshold

147 single_shocks , pframes = isolate_shocks(pxfr_filtered , )

148
149 # find shock positions

150 positions , _ = find_positions(single_shocks)

151
152 # calculate shock displacements

153 displacements = correlate_shock_pairs(single_shocks)

154
155 # adjust for centered differences

156 px_positions = positions[:-1] + np.diff(positions)/2

157 dframes = pframes[:-1] + np.diff(pframes)/2

158
159 # compute speeds

160 px_speeds = displacements/np.diff(pframes) # units: px/fr

B.4 Shot Conditions
Tables B.1, B.2, and B.3 list all shot conditions tested. For each condition, results
from three to four individual experiments are combined to produce the final shock-
speed record along the driven section. Calculated parameters from ideal models are
also included in each table.
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Table B.1: Shot conditions and model parameters for forward-mode driver experi-
ments. 𝑃41 is unburnt driver pressure, 𝑃1 is initial pressure of air (20.91% O2) in
driven section, 𝑙 is Mylar diaphragm thickness. 𝑀s,0, 𝛽, and 𝛼 are model parameters.
𝛽 is reported here nondimensionalized by the driver time scale, 𝐿/𝑎1 = 1.27 ms.
The asterisk denotes that the shot condition used a blunt cruciform to support the
diaphragm.

no. driver mixture 𝑃41 (kPa) 𝑃1 (kPa) 𝑙 (𝜇m) 𝑀s,0 𝛽 𝛼

1 C2H4+3O2 50 50 12.7 4.71 2.42 .293
2 C2H4+3O2 50 25 12.7 5.72 1.92 .309
3 C2H4+3O2 50 15 12.7 6.54 1.62 .315
4 C2H4+3O2 50 10 12.7 7.23 1.41 .317
5 C2H4+3O2 50 6.5 12.7 7.99 1.22 .315
6 C2H4+3O2 50 5 12.7 8.47 1.12 .312
7 C2H4+3O2 100 20 25.4 7.31 1.44 .317
8 C2H4+3O2 100 13 25.4 8.08 1.24 .315
9 C2H4+3O2 100 10 25.4 8.57 1.14 .313
10 C2H4+3O2 100 20 25.4* 7.31 1.44 .317
11 C2H4+3O2 50 25 25.4 5.72 1.92 .309
12 C2H4+3O2 50 15 25.4 6.54 1.62 .315
13 C2H4+3O2 50 6.5 25.4 7.99 1.22 .315
14 C2H4+3O2 50 25 50.8 5.72 1.92 .309
15 C2H4+3O2 50 15 50.8 6.54 1.62 .315
16 C2H4+3O2 50 6.5 50.8 7.99 1.22 .315
17 C2H4+3O2+4Ar 63.3 18.02 25.4 5.72 1.28 .305
18 C2H4+3O2+4Ar 63.3 10.2 25.4 6.54 1.06 .308
19 C2H4+3O2+4Ar 63.3 3.92 25.4 8.02 0.76 .300
20 2H2+O2 87 32.12 25.4 5.72 2.96 .317
21 2H2+O2 87 20.21 25.4 6.54 2.53 .325
22 2H2+O2 87 9.56 25.4 7.99 1.96 .329
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Table B.2: Shot conditions and model parameters for reverse-mode driver experi-
ments. 𝑃41 is unburnt driver pressure, 𝑃1 is initial pressure of air (20.91% O2) in
driven section, 𝑙 is Mylar diaphragm thickness. 𝑀s is ideal shock Mach number.
The asterisk denotes that the shot condition used a blunt cruciform to support the
diaphragm.

no. driver mixture test gas 𝑃41 (kPa) 𝑃1 (kPa) 𝑙 (𝜇m) 𝑀s
23 C2H4+3O2 air 50 50 25.4 2.45
24 C2H4+3O2 air 100 50 25.4 3.13
25 C2H4+3O2 air 100 25 25.4 3.89
26 C2H4+3O2 air 100 15 25.4 4.53
27 C2H4+3O2 air 100 10 25.4 5.07
28 C2H4+3O2 air 100 5 25.4 6.09
29 C2H4+3O2 air 100 25 50.8 3.89
30 C2H4+3O2 air 50 12.5 25.4 3.85
31 C2H4+3O2 air 100 25 25.4* 3.89
32 C2H4+3O2+4Ar air 100 25 25.4 3.40
33 C2H4+3O2+4Ar air 100 10 25.4 4.39
34 2H2+O2 air 100 25 25.4 3.45
35 2H2+O2 air 100 10 25.4 4.64
36 C2H4+3O2 Ar 100 15 25.4 4.80
37 C2H4+3O2 He+Ar 100 15 25.4 4.31

Table B.3: Shot conditions for high-pressure helium driver using 1100-O aluminum
diaphragms

no. 𝑃4 (kPa) 𝑃1 (kPa) 𝑙 (𝜇m) 𝑀s
38 531 5 152.4 3.61
39 1096 5 304.8 4.15
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B.5 Shock Speed Data
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Figure B.7: Shock speed measurements for forward-mode shot condition numbers
1 to 10. Solid line is measurement, dashed line is model. Driver length is 438.6
mm.
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Figure B.8: Shock speed measurements for forward-mode shot condition numbers
11 to 22. Solid line is measurement, dashed line is model. Driver length is 438.6
mm.
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Figure B.9: Shock speed measurements for reverse-mode shot condition numbers
23 to 31. Solid line is measurement, dashed line is model.
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Figure B.10: Shock speed measurements for reverse-mode shot condition numbers
32 to 37. Solid line is measurement, dashed line is model.
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Figure B.11: Shock speed measurements for shot condition numbers 38 and 39
using high-pressure helium driver. Solid line is measurement, dashed line is model.
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B.6 All Calibration Factors
Decay model calibration factors, 𝑐, for all forward-mode shot conditions are plotted
in Figure B.12. Values for 𝑐 can be used with the decay model to estimate shock
trajectories in shock tubes with length-to-diameter ratios comparable to GUST. See
(5.4) for the decay model formulated with 𝑐.
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Figure B.12: Calibration factors for all tested shot conditions.
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A p p e n d i x C

ULTRA-SENSITIVE FLDI USING BALANCED DETECTION

Signal-to-noise ratio (SNR) is limited in most FLDI implementations by residual
intensity noise in the laser. This is true even for high-quality lasers designed to
minimize intensity noise. Methods to eliminate laser intensity noise include hetero-
dyne interferometry and laser-noise canceling techniques, like balanced detection.
Balanced detection uses either subtraction or division of two signals to cancel
common-mode noise. Several auto-balancing circuits are presented and described
in detail by Hobbs (1997), and some balanced detectors are commercially available.
Here, a simple construction is employed for balanced detection using two reverse-
biased photodiodes and a low-noise differential amplifier. Settles and Fulghum
(2016) and Benitez et al. (2021) employed balanced detection in FLDI previously
with comments on its improvement to SNR, however its performance has not been
investigated in detail.

Figure C.1 shows the optical construction used to implement balanced detection. The
key difference between this setup and a conventional FLDI is that the signal beams
are interfered in a polarizing beam splitter (PBS) instead of with a linear polarizer.
The first quarter-wave plate (QWP) is used to generate circularly polarized light,
enabling Wollaston prism 1 (WP1) and therefore the foci pair to be oriented at any
angle in the 𝑥𝑦-plane. WP2 recombines the beams, and the second QWP allows the
analyzer to again be oriented at any angle relative to the foci pair. This is essential
for employing a PBS as an analyzer, since the PBS is most conveniently aligned
parallel to the optical bench. From the advice given by Hobbs (1997), a linear
polarizer was placed at the laser output. This was found to be essential for achieving
good noise cancellation.

Photocurrents from the two reverse-biased photodiodes (Thorlabs DET10A) were
converted to a voltage signals through 500 Ω terminations. The two signals are
then differentially amplified with a low-noise amplifier (Stanford Research SR560).
Various gain settings were used on the amplifier depending upon the signal level.
The differential signal was then balanced by adjusting WP2.

To illustrate the performance of this setup, the ultrasonic source from Chapter 6 is
used as a reference signal at 100 kHz. Figure C.2 shows a comparison between
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QWP2 detector 1

detector 2

PBS

lens 4

lenses 5 and 6

lens 1 lens 2

WP1QWP1

laser lens 3

LP1 WP2foci pair

Figure C.1: Schematic for FLDI modified to implement balanced detection. Ab-
breviated element names refer to linear polizer (LP), quarter-wave plate (QWP),
Wollaston prism (WP), and polarizing beam splitter (PBS).

resulting FLDI signals. (a) shows a single FLDI channel with unity gain, equivalent
to the signal produced by a conventional FLDI. (b) shows the effect of amplifying the
AC coupled signal, a significant improvement upon (a). This is not equivalent to the
signal from an amplified photodetector. An FLDI using amplified photodetectors
is typically aligned at a half fringe where phase changes are most linear. The
signal then carries a significant DC component. Signals are usually AC-coupled
with a digitizer’s input and vertical resolution is adjusted to fill the instrument’s
dynamic range. At no point is the AC-signal amplified, and so for low signal levels
it must compete with the noise floor of the oscilloscope front end. This can be
considerable. In (b), the single-ended signal is AC-coupled with a preamplifier,
where it is amplified before digitizing. Noise in (b) is residual laser intensity noise.
(c) shows the differential signal for unity gain, i.e., without amplification. Assuming
laser noise is canceled, then the noise in (c) is principally from the oscilloscope.
Finally, (d) shows the signal obtained with differential amplification, a remarkable
improvement upon the conventional measurement in (a).

Power-spectral densities (PSD) are estimated using the method by Welch (1967) for
the four cases and plotted in Figure C.3. By implementing balanced detection, the
noise floor has been dropped by such a degree that ninth-order signal harmonics are
clearly observable. SNR is improved by 30 dB over conventional methods!

In order to quantify how good the laser-noise cancellation is, the instrument noise
floor can be compared with the expected shot noise limit from the photocurrent.
Hobbs (2008) gives a procedure for making these measurements, where an incan-
descent light bulb is powered with a low-noise DC supply (better yet, batteries) to
generate broadband light, free from intensity noise. By matching photocurrents
from detectors obtained with this light source and with the laser, the resulting noise
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Figure C.2: Comparison of signals obtained using FLDI with balanced detection
and differential amplification. (a) shows the signal obtained from a conventional
FLDI.
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Figure C.3: Comparison of power-spectra of signals obtained using FLDI with
balanced detection and differential amplification.

spectra can be compared. To focus enough light onto the photodetectors, a pair
of aspheric condenser lenses was used. Power delivered to the light bulb and its
position were adjusted until the output voltage from both detectors matched the 1.09
V signal level when using the laser and hence gave a null differential signal. The
same gain and low-pass filters were used. Figure C.4 shows these signals. The
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white-noise light is barely distinguishable from the balanced FLDI reference signal.

Additionally, results can be compared with theoretical expectations for shot noise.
The power spectral density, 𝑆, of shot noise from a photocurrent 𝑖 is

𝑆 = 2𝑖𝑒, (C.1)

where 𝑒 is the charge of an electron, and units of 𝑆 are A2Hz−1. Shot noise is an
example of white noise exhibiting a uniform power spectral density across all fre-
quencies. The current noise is converted to voltage noise in the terminating resistor
of the photodiode, which is 500 Ω in the present case. The voltage noise is assumed
to be linearly amplified by the pre-amplifier gain (200). The DC photocurrent was
measured to be 2.18 mA, giving an amplified voltage noise density of 7 · 10−12

V2Hz−1. The shot noise from both detectors is uncorrelated, so their subtraction in
the amplifier gives an output noise spectral density that is the sum of both. Hence
the expected power spectral density from photocurrent shot noise in the detected
signal is 1.4 · 10−11 V2Hz−1.

The Stanford Research DS345 function generator was used to generate 10 MHz
band-limited white noise. In this bandwidth, the theoretical shot-noise root-mean-
square voltage is 8.35 mV in each channel. Two DS835 function generators were
configured to deliver 8.35 mVrms noise to the differential input of the SR560
preamplifier, configured to unity gain. Figure C.4 shows the resulting power spectral
density. The simulated photocurrent shot noise accurately reproduces the measured
shot-noise spectral densities from the incandescent light bulb and the FLDI. These
two methods verify that the measurements obtained using FLDI with differential
amplification are limited only by the shot-noise of the photocurrent.

Figure C.4 shows that white noise measurements are rolled off above 1 MHz. To
determine where this roll-off is coming from, the same noise power was directly
connected to the oscilloscope input, bypassing the pre-amplifier. As expected the
spectrum is flat, verifying that this roll-off is from the SR560 preamplifier.
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A p p e n d i x D

ADDITIONAL HFLI METHODS

D.1 Optical Construction
The interferometer schematic is duplicated here for reference as Figure D.1. Tables
D.1 and D.2 detail all of the optical and electrical components used in this work with
the exception of the Wollaston prisms. 2 arc min Wollaston prisms were repurposed
from the FLDI built by Lawson (2021).
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Figure D.1: Diagram of heterodyne focused laser interferometer.

The heterodyne focused laser interferometer was installed in the laboratory test cell
by constructing it on a custom optical table. The interferometer was designed so that
all free-space optics could be mounted to a 2.5-m optical rail (Newport X95-2.5).
All detection optics were fit onto a 12-in square breadboard mounted to the rail.
The rail was mounted to the custom optical table and ran underneath the shock-tube
test section. Figure D.2 shows a diagram of the optical table construction. It was
built from 0.75-in plywood and stacked steel strut channel. This design gave the
table sufficient stiffness and some vibration damping through the plywood. The
table itself was mounted to the test-cell walls using 1-in thick steel angle braces.
The table was floated using four air mounts (Newport SLM-3A). The shape of the
table was driven by test-cell mounting location, and consequently the design was
asymmetric with the center-of-mass shifted toward one side of the table. In order to
evenly load each air mount, an additional 20 kg of ballast was added to each side of
the table.
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Table D.1: Optical components of interferometer

item product description
laser Coherent Sapphire SF 532 nm, 55 mW max
AOM G&H Fibre Q 200 MHz, 532 nm, PM fiber, FC/APC

FP Thorlabs PAF2-A4A achromatic fiber port
FC Thorlabs TC25APC-532 FC/APC 25 mm triplet collimator

PM fibers Thorlabs P3-488PM-FC-1 FC/APC
BS Thorlabs BS004 50:50 nonpolarizing beam splitter
L1 Thorlabs AC127-025-A 25 mm achromat

L2a & b Thorlabs AC508-300-A 300 mm achromat
L3 Thorlabs AC508-150-A 150 mm achromat
L4 Thorlabs AC254-200-A 200 mm achromat

L5 & L6 Thorlabs LA1131-A 50 mm plano-convex
L7 Thorlabs LA1484-A-ML 300 mm plano-convex

QWP1 & 2 Thorlabs WPQ10M-532 zero-order quarter-wave plate
HWP Thorlabs WPH05M-532 zero-order half-wave plate
PBS Edmund Optics 48-574 25 mm, 532 nm

LP1 & 2 Thorlabs LPVISA050-MP2 linear polarizer
mirrors Thorlabs BB1-E02 broadband

Table D.2: Electrical components of interferometer

item product description
D1 & 2 Thorlabs DET10A 12 V biased Si diode, 350 MHz BW

RF source G&H 3910 200 MHz, 1 W
splitter Mini-Circuits Z99SC-62-S+ two-way power splitter

attenuator 1 Mini-Circuits HAT-10A+ 10 dB, BNC
attenuator 2 Mini-Circuits BW-S10W2+ 10 dB, SMA
attenuator 3 Mini-Circuits BW-S3W2+ 3 dB, SMA

LNA Mini-Circuits ZFL-500LN+ 28.8 dB gain, 3 dB NF
HPF Crystek CHPFL-0010-BNC 10 MHz high-pass, 7th-order Chebyshev

oscilloscope Tek MSO44B 6.5 GS/s, 500 MHz, 4 Channel

Only optical components and the AOM RF driver were mounted directly to the
optical table. All other electrical components were mounted separately with strain-
relieved cables to minimize disturbances to the interferometer.

D.2 Beam Profiling
Real laser beams are not perfectly Gaussian with all energy occupying the lowest
order transverse electric and magnetic field mode, TEM-00. Occupation of higher
modes leads to more rapid diffraction of a beam and is a typical feature of real lasers.
This can also occur in the form of aberrations introduced by optical components.
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Figure D.2: Diagram of optical table constructed from 0.75-in plywood and steel
channels. All free-space optics are rail-mounted.

Deviation from a TEM-00 beam is quantified by the 𝑀2.

Measurement of a focused beam’s waist, typically on the order of micron, requires
specialized equipment. The Thorlabs BP209-VIS is used for this. Several represen-
tative measurements are included here. These measurements are performed with the
test section of GUST removed with the window plugs mounted in their respective
positions in the beam path.

Figure D.3 shows the FLDI foci pair, measured using the “slit” mode with 5−𝜇m
slits. In this mode, the foci pair separation can be measured and is shown to be 90
𝜇m. Measurement of the beam waist requires use of the BP209-VIS “knife-edge”
mode. This is accomplished by rotating QWP1 until it is aligned with the input
polarization axis, and so only a single focus is produced. Removing the QWP is
not advised as this can affect the focus diameter and position. The “reconstructed
knife-edge” profiles generated by the beam profiler software are plotted in Figure
D.4. The edges in the wings of both (a) and (b) are thought to be artifacts from
the beam profiler. The knife-edge mode requires good alignment. Note, that the
beam focus was measured here slightly off center of the device, and the profiles in
Figure D.3 are zeroed by their maxima. The dashed lines show the 1/𝑒2 clip-level.
The beam is slightly elliptical with the 𝑥 and 𝑦 widths equal to 13.9 and 8.9 𝜇m,
respectively. The beam waist radius is estimated from the mean of the 𝑥 and 𝑦

widths divided by two and is 5.7 𝜇m.
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Figure D.3: Foci pair using Thorlabs BP209-VIS in “slit” mode.

A small beam waist results in rapid diffraction. Measurements of the beam radius
along the 𝑧 axis are shown in Figure D.5. An 𝑀2 = 1.02 most accurately fits the
data. This is consistent with the laser manufacturer specification, 𝑀2 < 1.1.
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Figure D.4: Focused beam diameter measurements using Thorlabs BP209-VIS in
“knife-edge” mode.

D.3 Spherical Aberration
An initial construction of the interferometer with a fiber-coupled reference beam
generated interference patterns with distinct circular or curved fringes. Fringe
patterns were photographed by expanding them with a lens and projecting them
onto a ground glass screen. Figure D.6(a) and (b) show the fringe pattern obtained
with beams slightly tilted and parallel, respectively. Circular fringes can also be
obtained from interfering beams with unmatched collimations, however in these
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Figure D.5: Beam M2 measurement.

cases circular fringes extend to the center of the pattern. The fringes shown in
Figure D.6(a) and (b) were identified to result from spherical aberration in the free-
space beam, which transmits through the optics of an FLDI. The focusing optics
in an FLDI generate a system that operates at a high numerical aperture and so is
sensitive to the aberrations from real optics. If the system was realigned to a lower
numerical aperture, then the number of fringes was reduced, as expected. These
fringes are significant because, when the beam is focused onto a single detector,
they reduce the fringe visibility and therefore SNR that is achievable.

To compensate for the aberration, all FLDI lenses were replaced with achromatic
doublets, and for the pitch focusing lens a pair of doublets were used. Figure D.6(c)
shows the fringe pattern and reduced aberration obtained with these new optics.
In the final alignment used for the experiments in GUST, a very high numerical
aperture was used to achieve a tight focus. Consequently, aberrations were worse
than shown in (c).

Figure D.6: Fringe patterns obtained from homodyne interferometer setup. Bicon-
vex and plano-convex lenses are used in (a) and (b), where signal and reference
beams are slightly tilted in (a). Achromatic doubles are used in (c).
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D.4 IQ Demodulation
D.4.1 Digital
The methods used for digital IQ demodulation were described in Chapter 6 and were
implemented in Python using a slight modification of the code reproduced below.
The function actually employed includes additional processing of the wrapped phase
data to eliminate artifacts resulting from diaphragm particulate that intersects the
laser beam.

1 import numpy as np
2 from scipy import signal
3
4 def IQ_demodulate(time, RF, LO, fs=6.25e9, fc=200e6, lpfc=40e6):
5 ’’’

6 Function used to IQ demodulate experimental data obtained from

7 heterodyne focused laser interferometer.

8 Absolute measurements: LO is reference signal from AOM driver

9 Differential measurements: RF is D1 signal, LO is D2 signal

10
11 Parameters

12 ----------

13 time : array of time data

14 RF : array of voltage data for RF

15 LO : array of voltage data for LO

16 fs : sampling rate (S/s)

17 fc : center frequency (Hz)

18 lpfc : low-pass filter cut-off frequency (Hz)

19
20 Returns

21 -------

22 phase : array of unwrapped phase data

23 amplitude: array of amplitude data

24
25 ’’’

26
27 # see Pei and Lai (2012)

28 def phase_delay_filter(D, N):

29 freqs = np.fft.fftfreq(N)

30 H = np.exp(-1j*D*2*np.pi*freqs)

31 H[0] = 1

32 H[N//2] = np.cos(D*np.pi)

33 return H

34
35 # construct phase delay filter

36 N = len(time)

37 D = -1/fc/4*fs # delay

38 H = phase_delay_filter(D, N)

39
40 # apply phase delay filter

41 LO_fft = np.fft.fft(LO)

42 LO_fft_shift = LO_fft*H

43 LO_delay = np.real(np.fft.ifft(LO_fft_shift))

44
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45 # mix signals

46 I = RF*LO

47 Q = RF*LO_delay

48
49 #8th order Butterworth low-pass filter, second-order sections, forward-

backward

50 sos = signal.butter(8, lpfc, fs=fs, output=’sos’, btype=’lowpass’)

51 I_lpf = signal.sosfiltfilt(sos, I)

52 Q_lpf = signal.sosfiltfilt(sos, Q)

53
54 phase_wrapped = np.arctan2(Q_lpf, I_lpf)

55 amplitude = np.sqrt(I_lpf**2+Q_lpf**2)

56
57 # code used to eliminate blips in wrapped phase is excluded

58 phase = np.unwrap(phase_wrapped)

59
60 return phase, amplitude

D.4.2 Analog
IQ demodulation using analog RF electronics was also investigated with the advan-
tage of enabling long-duration measurements. Figure D.7 shows a block diagram of
the prototype system. IQ demodulation was accomplished using an Analog Devices
integrated circuit, the ADL5387. In particular, the chip’s Evaluation Board was
used. The default configuration for the ADL5387-EVAL uses a pair of baluns at the
chip’s output to convert the differential signal to single-ended. The specific baluns
have a usable bandwidth beginning at 900 kHz, so signal cannot be measured at
lower baseband frequencies. Consequently, the evaluation board was configured
to use the differential baseband output. Figure D.7 shows two of the differential
outputs passed through high-pass filters to eliminate the DC bias. By not including
the other signal half from the differential output, SNR is reduced by 3 dB.

RF source splitter attenuator

AOM

2X

QI

Quadrature 

Demodulatorf multiplier

LNA HPF D

HPF

Figure D.7: Schematic of analog IQ demodulation system.

The ADL5387 uses a frequency division architecture to achieve high phase accuracy,
and so the LO frequency required is twice the design frequency, i.e., to demodulate
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the RF signal at 200 MHz required an input 400 MHz LO. This was generated
by attenuating the AOM RF driver and passing the signal through a 2X frequency
multiplier (Mini-Circuits ZX90-2-13-S+). The RF input of the ADL5387-EVAL
was driven directly by the output of one LNA.

Figure shows an example of the IQ data acquired from this construction where the
heterodyne interferometer is resting. As expected, the SNR obtained using analog
IQ demodulation was worse than that from the above digital algorithm, and so the
analog setup was not used for further measurements. In this case, the ADL5387
has a specified NF of -12 dB. Additionally, by using the heterodyne signals with an
analog IQ demodulator, both differential and absolute phase measurements cannot
be obtained without further splitting the signals. By digitizing the heterodyne signal,
any of the three RF signals can be demodulated in software, and the lost SNR from
the reduced ENOB is less significant.
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Figure D.8: Comparison of phase measurement using analog and digital IQ demod-
ulation.

D.5 Noise and Drift
D.5.1 Laser Noise
Hobbs (2008) discusses laser noise at length, including measurement procedures
and mitigation strategies. Of most concern for FLDI measurements is residual
intensity noise. This intensity noise is spectrally confined to lower bandwidths,
which of course motivates heterodyne detection. Laser noise must be distinguished
from photocurrent shot noise or detector noise. For the reverse-biased photodiodes
used in this work, noise from dark current is totally swamped by photocurrents.
Amplified detectors can add quite a bit of noise from the internal amplification. In



235

order to discriminate laser noise from shot noise, an incandescent light bulb powered
by a regulated DC supply can be used to illuminate detectors until output currents
or signal voltages match those with the laser on (Hobbs, 2008). This was described
also in Appendix C.

Figure D.9 shows laser noise measurements for two lasers using a Thorlabs PDA36A2
amplified detector. Voltage levels were matched from both lasers using ND filters.
The Spectra-Physics Excelsior is the laser used by Lawson (2021), which clearly
contains more intensity noise than the Coherent Sapphire SF used in this work.
Fancy detection can be used to reduce laser noise, but using a better laser helps
too. “White-noise” light refers to the incandescent light bulb. Above about 10 kHz,
the additive shot noise is apparent. Below 10 kHz, the noise floor is limited by the
oscilloscope itself (this is measured by terminating the output at 50 Ω, which is the
output impedance of the PDA36A2 detector). Laser noise drops off as frequencies
approach 10 MHz.

102 103 104 105 106 107

frequency (Hz)

10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

PS
D 

(V
2 /H

z)

oscilloscope
Thorlabs PDA36A2 20 dB dark
Coherent Sapphire SF
Spectra-Physics Excelsior
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Figure D.9: Laser noise measurements.

D.5.2 Free-Space Mach-Zehnder Interferometer
While troubleshooting the HFLI, the fiber-coupled reference beam was removed and
replaced with mirrors to align the setup as a free-space Mach-Zehnder interferometer.
In order to make large amplitude phase measurements over long durations, the analog
IQ demodulator was used for the HFLI. For the free-space interferometer, optical
IQ demodulation was employed using the QWP trick described by Hogenboom
and DiMarzio (1998). Optical IQ demodulation could have been used for the
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fiber-coupled interferometer and that would provide a more one-to-one comparison,
but in separate studies the AOM was not found to significantly affect the signal
drift. Figure D.10 shows a comparison between the resting phase signal for the
fiber-coupled versus the free-space interferometers. The drift in the fiber-coupled
interferometer is huge.
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Figure D.10: Comparison between phase signals measured using a reference beam
that was fiber-coupled versus in free-space.
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A p p e n d i x E

ADDITIONAL HFLI DATA

E.1 Shot Conditions
Shot conditions are listed in Table E.1. For forward (fwd) and reverse (rev) mode shot
conditions, the driver gas is the fuel with or without diluent. For conditions where
the driven gas is air, bottled Ultra-Zero air was used (20.91% O2). All conditions
use a stoichiometric mixture with pure oxygen. The backward (bwd) mode refers
to calibration conditions where the driven section is filled to a static high-pressure
so that the shock tube is operated backwards. High-pressure (HiP) mode refers
to operation as a conventional shock-tube with a static high-pressure driver gas. 𝑙
denotes the diaphragm thickness and whether the diaphragm is supported (sup.) or
unsupported (unsup.) is noted. For all conditions using an aluminum diaphragm,
the alloy is 1100-O.

Table E.1: Shot conditions for HFLI measurements.

375 50.0 10.0 C2H4 air fwd 25.4 Mylar unsup.

376 50.0 10.0 C2H4 air fwd 25.4 Mylar unsup.

377 50.0 5.0 C2H4 air fwd 25.4 Mylar unsup.

378 50.0 5.0 C2H4 air fwd 25.4 Mylar unsup.

379 50.0 10.0 C2H4 air fwd 25.4 Mylar unsup.

380 50.0 5.0 C2H4 air fwd 25.4 Mylar unsup.

381 50.0 5.0 C2H4 air fwd 12.7 Mylar unsup.

382 50.0 5.0 C2H4 air fwd 12.7 Mylar unsup.

383 50.0 10.0 C2H4 air fwd 12.7 Mylar unsup.

384 50.0 10.0 C2H4 air fwd 12.7 Mylar unsup.

385 50.0 10.0 C2H4 air fwd 12.7 Mylar sup.

386 50.0 5.0 C2H4 air fwd 12.7 Mylar sup.

387 50.0 5.0 C2H4 air fwd 12.7 Mylar sup.

shot no. 𝑃41 (kPa) 𝑃1 (kPa) driver driven mode 𝑙 (𝜇m) material note

Continued on next page
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Table E.1: Shot conditions for HFLI measurements. (Continued)

388 50.0 2.0 C2H4 air fwd 12.7 Mylar sup.

389 50.0 2.0 C2H4 air fwd 12.7 Mylar sup.

390 50.0 1.0 C2H4 air fwd 12.7 Mylar sup.

391 40.0 1.0 C2H4 air fwd 12.7 Mylar sup.

392 40.0 1.0 C2H4 air fwd 12.7 Mylar sup.

393 50.0 15.0 C2H4 air fwd 12.7 Mylar sup.

394 50.0 15.0 C2H4 air fwd 12.7 Mylar sup.

395 50.0 25.0 C2H4 air fwd 12.7 Mylar sup.

396 50.0 25.0 C2H4 air fwd 12.7 Mylar sup.

398 100.0 10.0 C2H4 air fwd 25.4 Mylar sup.

399 100.0 20.0 C2H4 air fwd 25.4 Mylar sup.

400 100.0 10.0 C2H4 air fwd 25.4 Mylar sup.

401 100.0 10.0 C2H4 air fwd 25.4 Mylar sup.

402 100.0 20.0 C2H4 air fwd 25.4 Mylar sup.

403 100.0 20.0 C2H4 air fwd 25.4 Mylar sup.

404 50.0 5.0 C2H4 air fwd 12.7 Mylar unsup.

405 100.0 10.0 C2H4 air fwd 25.4 Mylar unsup.

406 100.0 10.0 C2H4 air fwd 25.4 Mylar unsup.

407 100.0 10.0 C2H4 air fwd 25.4 Mylar unsup.

409 100.0 20.0 C2H4 air fwd 25.4 Mylar unsup.

410 100.0 20.0 C2H4 air fwd 25.4 Mylar unsup.

411 25.0 25.0 C2H4 C2H4 det none

412 0.0 170.9 vac He bwd 25.4 Mylar unsup.

413 0.0 164.0 vac He bwd 25.4 Mylar unsup.

414 0.0 177.8 vac He bwd 25.4 Mylar unsup.

417 0.0 188.2 vac N2 bwd 25.4 Mylar unsup.

418 100.3 1.0 N2 Ar HiP 50.8 alum. unsup.

shot no. 𝑃41 (kPa) 𝑃1 (kPa) driver driven mode 𝑙 (𝜇m) material note

Continued on next page
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Table E.1: Shot conditions for HFLI measurements. (Continued)

419 100.3 1.0 N2 Ar HiP 50.8 alum. unsup.

420 100.3 2.0 N2 Ar HiP 50.8 alum. unsup.

421 229.5 1.0 N2 Ar HiP 76.2 alum. unsup.

422 226.1 1.0 N2 Ar HiP 76.2 alum. unsup.

423 229.5 2.0 N2 Ar HiP 76.2 alum. unsup.

424 229.5 2.0 N2 Ar HiP 76.2 alum. unsup.

425 100.0 10.0 C2H4+4Ar air fwd 25.4 Mylar sup.

426 100.0 10.0 C2H4+4Ar air fwd 25.4 Mylar sup.

427 100.0 20.0 C2H4+4Ar air fwd 25.4 Mylar sup.

428 100.0 20.0 C2H4+4Ar air fwd 25.4 Mylar sup.

429 100.0 10.0 H2 air fwd 25.4 Mylar sup.

430 100.0 10.0 H2 air fwd 25.4 Mylar sup.

431 100.0 20.0 H2 air fwd 25.4 Mylar sup.

432 100.0 20.0 H2 air fwd 25.4 Mylar sup.

433 100.0 5.0 C2H4 air fwd 25.4 Mylar sup.

434 100.0 5.0 C2H4 air fwd 25.4 Mylar sup.

435 100.0 10.0 C2H4 air fwd 12.7 Mylar sup.

436 100.0 5.0 C2H4 air fwd 12.7 Mylar sup.

437 0.0 184.7 vac N2 bwd 25.4 Mylar unsup.

438 0.0 181.1 vac N2 bwd 25.4 Mylar unsup.

439 0.0 181.1 vac N2 bwd 25.4 Mylar unsup.

440 0.0 184.6 vac N2 bwd 25.4 Mylar unsup.

441 0.0 174.2 vac He bwd 25.4 Mylar unsup.

442 100.0 10.0 C2H4 air fwd 50.8 Mylar sup.

443 100.0 10.0 C2H4 air fwd 50.8 Mylar sup.

444 100.0 10.0 C2H4 air fwd 25.4 Kapton sup.

445 100.0 10.0 C2H4 air fwd 25.4 Kapton sup.

shot no. 𝑃41 (kPa) 𝑃1 (kPa) driver driven mode 𝑙 (𝜇m) material note

Continued on next page
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Table E.1: Shot conditions for HFLI measurements. (Continued)

446 100.0 10.0 C2H4 air fwd 25.4 Nylon 6/6 sup.

447 100.0 10.0 C2H4 air fwd 25.4 Nylon 6/6 sup.

448 35.2 35.2 C2H4 C2H4 det none

449 100.0 40.0 H2 air fwd 25.4 Mylar sup.

450 100.0 50.0 H2 air fwd 25.4 Mylar sup.

451 100.0 10.0 C2H4 air rev 25.4 Mylar sup.

452 100.0 10.0 C2H4 air rev 25.4 Mylar sup.

453 100.0 5.0 C2H4 air rev 25.4 Mylar sup.

454 100.0 5.0 C2H4 air rev 25.4 Mylar sup.

455 100.0 2.5 C2H4 air rev 25.4 Mylar sup.

456 100.0 10.0 C2H4 air rev 25.4 Mylar unsup.

457 100.0 10.0 C2H4 air rev 25.4 Mylar unsup.

458 100.0 5.0 C2H4 air rev 25.4 Mylar unsup.

459 100.0 5.0 C2H4 air rev 25.4 Mylar unsup.

460 100.0 20.0 C2H4 air rev 25.4 Mylar sup.

461 100.0 2.5 C2H4 air rev 25.4 Mylar sup.

463 50.0 5.0 C2H4 air rev 25.4 Mylar sup.

464 100.0 10.0 C2H4 air rev 50.8 Mylar sup.

465 100.0 10.0 C2H4+4Ar air rev 25.4 Mylar sup.

466 100.0 10.0 C2H4+4Ar air rev 25.4 Mylar sup.

467 100.0 5.0 C2H4+4Ar air rev 25.4 Mylar sup.

468 100.0 5.0 C2H4+4Ar air rev 25.4 Mylar sup.

469 100.0 1.0 C2H4 air rev 25.4 Mylar sup.

470 100.0 10.0 H2 air rev 25.4 Mylar sup.

471 100.0 5.0 H2 air rev 25.4 Mylar sup.

472 100.0 5.0 H2 air rev 25.4 Mylar sup.

473 100.0 10.0 C2H4 Ar rev 25.4 Mylar sup.

shot no. 𝑃41 (kPa) 𝑃1 (kPa) driver driven mode 𝑙 (𝜇m) material note

Continued on next page
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Table E.1: Shot conditions for HFLI measurements. (Continued)

474 100.0 10.0 C2H4 Ar rev 25.4 Mylar sup.

475 100.0 5.0 C2H4 Ar rev 25.4 Mylar sup.

476 100.0 5.0 C2H4 Ar rev 25.4 Mylar sup.

477 100.0 10.0 C2H4 He rev 25.4 Mylar sup.

478 100.0 10.0 C2H4 He rev 25.4 Mylar sup.

479 100.0 5.0 C2H4 He rev 25.4 Mylar sup.

480 100.0 5.0 C2H4 He rev 25.4 Mylar sup.

481 100.0 1.0 C2H4+4Ar air rev 25.4 Mylar sup.

482 100.0 1.0 C2H4+4Ar air rev 25.4 Mylar sup.

483 100.0 1.0 C2H4+4Ar N2 rev 25.4 Mylar sup.

484 100.0 1.0 C2H4 Ar rev 25.4 Mylar sup.

485 100.0 1.0 C2H4+4Ar Ar rev 25.4 Mylar sup.

486 100.0 2.0 C2H4 Ar rev 25.4 Mylar sup.

487 100.0 3.0 C2H4 Ar rev 25.4 Mylar sup.

488 526.1 5.0 He air HiP 152.4 alum. unsup.

489 531.2 5.0 He air HiP 152.4 alum. unsup.

490 527.8 1.0 He air HiP 152.4 alum. unsup.

491 529.5 2.5 He air HiP 152.4 alum. unsup.

492 1098.2 5.0 He air HiP 304.8 alum. unsup.

493 1089.6 5.0 He air HiP 304.8 alum. unsup.

494 1087.8 1.0 He air HiP 304.8 alum. unsup.

495 1098.2 1.0 He air HiP 304.8 alum. unsup.

496 1087.8 2.5 He air HiP 304.8 alum. unsup.

497 1093.0 2.5 He air HiP 304.8 alum. unsup.

498 528.8 2.5 He N2 HiP 152.4 alum. unsup.

shot no. 𝑃41 (kPa) 𝑃1 (kPa) driver driven mode 𝑙 (𝜇m) material note
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E.2 Additional Data: Absolute Phase
HFLI data from all shots in Table E.1 are plotted below in units of unwrapped
absolute phase. The complete 2-ms record is plotted. For all cases the spanwise
distance is 𝐿 = 76.2 mm, which can be used to convert phase to index units by
Δ𝑛 = Δ𝜙/2𝜋 · 𝜆/𝐿 within the wavenumber bandwidth defined by (6.59). For
post-shock flows, the measured shock speed is included.
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Figure E.1: Absolute phase data for shots 375 to 384.
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Figure E.2: Absolute phase data for shots 385 to 394.
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Figure E.3: Absolute phase data for shots 395 to 405.
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Figure E.4: Absolute phase data for shots 406 to 418.



247

0.0 0.5 1.0 1.5 2.0
−5

0

5

10

15

20

ph
as

e 
(ra

d)

shot 419, Us =  indet.

0.0 0.5 1.0 1.5 2.0
−5

0

5

10

15

20
shot 420, Us =  indet.

0.0 0.5 1.0 1.5 2.0
−5

0

5

10

15

20

ph
as

e 
(ra

d)

shot 421, Us =  indet.

0.0 0.5 1.0 1.5 2.0
−5

0

5

10

15

20
shot 422, Us =  indet.

0.0 0.5 1.0 1.5 2.0
−5

0

5

10

15

20

ph
as

e 
(ra

d)

shot 423, Us =  indet.

0.0 0.5 1.0 1.5 2.0
−5

0

5

10

15

20
shot 424, Us =  indet.

0.0 0.5 1.0 1.5 2.0

−60

−40

−20

0

ph
as

e 
(ra

d)

shot 425, Us = 1.78 km/s

0.0 0.5 1.0 1.5 2.0
−60

−40

−20

0

20

shot 426, Us = 1.78 km/s

0.0 0.5 1.0 1.5 2.0
time (ms)

−150

−100

−50

0

ph
as

e 
(ra

d)

shot 427, Us = 1.43 km/s

0.0 0.5 1.0 1.5 2.0
time (ms)

−150

−100

−50

0

shot 428, Us = 1.44 km/s

Figure E.5: Absolute phase data for shots 419 to 428.
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Figure E.6: Absolute phase data for shots 429 to 438.
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Figure E.7: Absolute phase data for shots 439 to 448.
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Figure E.8: Absolute phase data for shots 449 to 458.
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Figure E.9: Absolute phase data for shots 459 to 469.
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Figure E.10: Absolute phase data for shots 470 to 479.
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Figure E.11: Absolute phase data for shots 480 to 489.
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Figure E.12: Absolute phase data for shots 490 to 498.
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E.3 Additional Data: Differential Phase
The HFLI was designed so that both absolute and differential phase signals could
be measured, where the differential signal is equivalent to that obtained by a con-
ventional FLDI. Spatial differencing causes wavenumber-dependence of the signal,
which complicates both its inversion to density units and seriously attenuates lower-
wavenumber disturbances. Consequently, only the absolute phase measurements
have so far been presented and analyzed. Differential phase signals for all shots
are similar, and Figure E.13 illustrates a representative result from shot 405. The
post-shock disturbances are zoomed in upon in (b) and the shock response is shown
in (c). There are two spikes, corresponding to the primary and reflected shocks.
The reflected shock peak is negative due to its propagation in the opposite direction.
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Figure E.13: Differential phase measurement from shot 405.

The disturbance spectrum for signal between the two shocks is plotted in Figure
E.14 along with the spectrum calculated from the absolute phase data. There is a
peak at around 21 kHz in both spectra, however observe the enormous difference is
signal amplitudes. The peak from the absolute phase measurement is over 26 dB
greater than from the differential phase measurement (or roughly a factor of 400).
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Figure E.14: Power spectral densities for differential and absolute phase measure-
ments from shot 405.

E.4 Additional Data: Amplitude
IQ demodulation enables independent measurement of both phase and amplitude
modulation. Phase modulation is directly proportional to density fluctuations in the
test flow and is the primary object of interferometry. Amplitude modulation provides
new information relevant to physical optics effects like refraction and diffraction.
Distortion of the signal beam causes the formation of fringes when interfered with
the reference beam, which reduce the RF signal amplitude. The variation in this
signal amplitude is acquired from IQ demodulation of the RF signal with the AOM
driver.

The amplitude signal is normalized by its initial value, so deviation from unity
indicates an increase or decrease in the signal amplitude. Signal and reference beam
wavefronts are not exactly identical due to both imperfect alignment and different
aberrations, and so fringe visibility is not unity. Consequently, perturbation of the
signal wavefront can result in an improved interference with the reference beam and
an increased heterodyne signal amplitude.

The entire amplitude signal from a representative shot (shot 400) is shown in Figure
E.15. The subplots show various features in detail, namely the spikes from (b) the
shock and (c) diaphragm particulate traversing the beam. Figure E.16 compares the
amplitude signal with a background reference signal and shows their power spectral
densities in (b). In this case, the PSD is calculated for the entire record. There is
clearly significant broadband signal from shock-tube flows. For typical homodyne
interferometers without IQ demodulation schemes, phase modulation is converted
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to amplitude modulation and indistinguishable from these other disturbances.
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Figure E.15: Amplitude modulation from heterodyne signal obtained for shot 400.

The signal obtained from the interaction between the shock and laser beam in
Figure E.15(b) shows a distinct two-lobed structure with some finer oscillations in
one lobe. This signal is unique to these measurements, and so it is plotted below for
each relevant shot.
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Figure E.16: Amplitude modulation compared with background reference signal
and estimates of their power spectral densities.
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Figure E.17: Shock-response amplitude data for shots 375 to 389.
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Figure E.18: Shock-response amplitude data for shots 390 to 405.
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Figure E.19: Shock-response amplitude data for shots 406 to 427.
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Figure E.20: Shock-response amplitude data for shots 428 to 447.
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Figure E.21: Shock-response amplitude data for shots 448 to 463.
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Figure E.22: Shock-response amplitude data for shots 464 to 479.
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Figure E.23: Shock-response amplitude data for shots 480 to 494.
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Figure E.24: Shock-response amplitude data for shots 495 to 498.
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E.4.1 Local Shock-Speed Measurement
As the shock propagates through the two signal beams of the HFLI, the signal
amplitude decreases significantly before returning to the nominal baseline amplitude.
The amplitude data from each beam are nearly identical but displaced by some Δ𝑡.
The beam pair has a known separation, measured using a beam profiler, and so the
Δ𝑡 may be used to estimate the instantaneous shock speed as it intersects the beams.
The Δ𝑡 can be measured using cross correlation of the two amplitude signals. Figure
E.25 demonstrates this for three representative shot conditions for each of the driver
configurations.
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Figure E.25: Shock Δ𝑡 estimate using cross-correlation of amplitude signals.

This method was found to sometimes be inaccurate. Consequently, pressure sensor
time-of-arrival was used instead. Figure E.26 compares measurements using ampli-
tude data cross-correlation with pressure sensor time-of-arrival and shadowgraphy
results. In (a) agreement is good, whereas there is clearly a discrepancy in (b).
Measurement uncertainty is determined by SNR, spatial and temporal resolution,
and varied signal shapes. Uncertainty for ideal Gaussian amplitude signals was es-
timated numerically by simulating signals with SNR comparable to measurements.
Simulation results showed a predicted uncertainty of approximately 2.5%, however
Figure E.26(b) shows an error of nearly 6%. The non-Gaussian signal shape and
beam-to-beam variation is expected to be the source for this inconsistent measure-
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ment accuracy. This cross-correlation technique would be much improved if the
beam separation was larger. For this work it was small, Δ𝑥 = 90 𝜇m.

Figure E.26: Comparison between shock speed measurement techniques for two
shot conditions.
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A p p e n d i x F

ADDITIONAL DATA: PRESSURE MEASUREMENTS

F.1 Vibration Isolation
Shocks in shock tubes drive structural vibrations that can have serious effects on
wall-mounted pressure transducers. This was mitigated in the present work by using
plastic plugs instead of aluminum plugs for mounting the PCB sensor. The plastic
plugs were 3D printed using a Formlabs SLA printer and Clear Resin V4. The plugs
were tapped to receive an SAE-1926 plug that contained the PCB sensor. Figure
F.1 shows a comparison between a pressure measurement using the plastic plug
and an aluminum plug. Figure F.1 compare spectra. The plastic clearly damps a
significant portion of high-frequency vibrations. In particular, note the absence of
oscillation ahead of the shock. These are from dilatational and shear waves excited
by the traveling load. These do not transmit into the PCB sensor when mounted in
the plastic plug.
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Figure F.1: Comparison between pressure measurements using a PCB mounted in
an aluminum and in a plastic plug.
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Figure F.2: Post-shock pressure signal spectrum for PCB mounted in an aluminum
and in a plastic plug.

F.2 Shot Data
Driven-section pressure data for a selection of shots are shown below. Shot condi-
tions are given in Table E.1 and transducer positions are given in Table 7.1. Time
is zeroed by the detonation’s estimated arrival at the diaphragm. For all shot data
below, transducers P4-P8 are mounted in plastic plugs for vibration isolation. Trans-
ducer P3 is always mounted directly downstream in the diaphragm closure. Pressure
measurements from the driver are excluded.
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Figure F.3: Pressure data for shot 400.
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Figure F.4: Pressure data for shot 402.
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Figure F.5: Pressure data for shot 411.
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Figure F.6: Pressure data for shot 425.
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Figure F.7: Pressure data for shot 427.
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Figure F.8: Pressure data for shot 429.
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Figure F.9: Pressure data for shot 431.
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Figure F.10: Pressure data for shot 433.
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Figure F.11: Pressure data for shot 435.
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Figure F.12: Pressure data for shot 442.
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Figure F.13: Pressure data for shot 444.
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Figure F.14: Pressure data for shot 446.
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Figure F.15: Pressure data for shot 451.
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Figure F.16: Pressure data for shot 453.
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Figure F.17: Pressure data for shot 455.
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Figure F.18: Pressure data for shot 460.
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Figure F.19: Pressure data for shot 464.
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Figure F.20: Pressure data for shot 465.
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Figure F.21: Pressure data for shot 467.
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Figure F.22: Pressure data for shot 470.
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Figure F.23: Pressure data for shot 471.
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Figure F.24: Pressure data for shot 473.
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Figure F.25: Pressure data for shot 475.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

pr
es

su
re

 (M
Pa

) P3

0.0 0.5 1.0 1.5 2.0
0.0

0.2

P4

0.0 0.5 1.0 1.5 2.0
0.0

0.1

P5

0.0 0.5 1.0 1.5 2.0
time (ms)

0.0

0.1

0.2

pr
es

su
re

 (M
Pa

) P6

0.0 0.5 1.0 1.5 2.0
time (ms)

0.0

0.1

P7

0.0 0.5 1.0 1.5 2.0
time (ms)

0.0

0.1

0.2
P8

Figure F.26: Pressure data for shot 477.
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Figure F.27: Pressure data for shot 479.
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Figure F.28: Pressure data for shot 481.
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Figure F.29: Pressure data for shot 483.
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Figure F.30: Pressure data for shot 485.
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Figure F.31: Pressure data for shot 487.
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Figure F.32: Pressure data for shot 493.
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Figure F.33: Pressure data for shot 494.
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Figure F.34: Pressure data for shot 496.
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A p p e n d i x G

ENGINEERING DRAWINGS

Engineering drawings for parts used to construct GUST are listed below. Several
parts required modification or replacement from their initial designs. In particular,
the diaphragm closure was modified to use four Destaco 341 clamps. Both the initial
and modified drawing are below. Some parts, like block spacers, are not included
below. Also not included are drawings for the polycarbonate driven section, however
drawings DDST-E3 and DDST-E4 are the pipe caps that retained the polycarbonate
tube.
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