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ABSTRACT

In this report we present a model for the flow processes associated with a
gas-generating combustion wave propagating through a porous reactor. A
one-dimensional model is constructed using a thin flame approximation. The
flow is determined by the permeability of the unreacted material and the
exothermicity of the combustion. Numerical calculations are presented to
demonstrate various aspects of the model. In addition, analytical solutions
to the flow fields are determined for the limiting cases of reactants with very

high or low permeability.
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1. INTRODUCTION 5

1 Introduction

In this study, we present a simple model for one-dimensional propagation
of a combustion wave in reactive, gas-permeable materials. In particular, we ex-
amine the combustion of a heterogeneous mixture of granulated, solid reactant
which forms a solid residue and hot combustion-product gases. Our model is ap-
plicable to slow combustion and is an analog of approximate flame-sheet models
developed for gaseous combustion [1, 2]. Utilizing the thin-flame approximation
greatly simplifies the calculation since the detailed structure of the flame is
eliminated. This removes a major source of difficulty in the computations by
separating the vastly different length and time scales associated with the flame
structure and those associated with flow processes outside the flame. Without the
thin-flame assumption, fast reaction kinetics produce a high degree of stifiness
in the system of differential equations used to model the problem and a high-
resolution spatial grid must be used in the vicinity of the flame. Development
of efficient numerical methods for such problems is an area of intense current
research and an interim technique which eliminates these difficulties would be
quite useful for parametric engineering studies.

As in the gaseous combustion models, the presenc study treats the combus-
tion wave as a density and temperature discontinuity. The states upstream and
downstream of the combustion wave are related by jump conditions to assure
the conservation of mass, momentum and energy. The combustion physics is
introduced in the model by prescribing a burn velocity of the combustion wave
discontinuity. The burn velocity, or “flame law”, can be treated as a function
of pressure, temperature or concentration at the flame front , as determined
by experiments. Alternatively, if sufficient knowledge of reaction mechanisms,
rates and transport processes is known, the burn velocity can be calculated
by a separate, two-point boundary value computation — a procedure which has
been used previously in single- and two-phase combustion [3 - 5]. In addition
to the burn velocity, the flow resistance of the unburned porous material and
the thermodynamic properties of the reaction products must be estimated or
measured.

In the sections to follow, we will outline the details of the proposed model.
Our model divides the flow field into three regions: a postcombustion zone
composed of high-pressure gaseous combustion products and solid residue; a
thin flame/preheat zone in which all combustion and thermal nonequilibrium
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effects occur; and a zone of unburned porous reactant into which the gaseous
combustion products permeate.

Simplifying assumptions are introduced and described for each region. With
these assumptions, a model is constructed which consists of a single partial
differential equation and boundary conditions. To illustrate the features of this
model, numerical solutions are found for the flow induced by a combustion wave
which propagates at a constant velocity from the closed end of a finite-length
column of reactant toward an open end which vents gaseous combustion product
to ambient pressure. We will show that the character of the flow field described
by this model is completely determined by two nondimensional parameters. For
two extremes, corresponding to very large and very small permeability of the
unreacted porous media, analytical solutions to the governing flow equations
are derived. In addition, an approximate solution method to internal pressure
distributions and exit flow rate are then compared to numerical solutions.

In the final section and appendices of this report, we suggest various exten-
sions to our basic model. These extensions would allow more general treatment
of the combustion aspect of this problem and enhance its overall utility as an
engineering tool.

2 Overview of Model and Assumptions

To illustrate our model, consider a one-dimensional, porous flow reactor in
which a combustion wave is initiated at the closed end of a vessel (see Figure 1).
Gas generation is a result of the overall reaction occurring within the combustion
zone:

Solid, + Solid; — Solid (alloy) + Gas + Heat. (1)
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Figure 1. Pictorial of a one-dimensional porous reactor.

The exact composition of the reactants and products is unimportant to the
present study, and our results are intended to apply to any system of this sort
as long as the reaction zone can be considered to be thin compared to the length
of the reactant column and the combustion is slow ( #.e. , the burn velocity
is much less than the sound speed in the reactant material). If a melt phase
is present during combustion, our model will be applicable only if the melt is
confined to the combustion zone and solidifies rapidly outside of it.

Due to the confining effect of the reactor vessel and frictional forces restrain-
ing the unreacted material, a pressure gradient is quickly established following
ignition and gas flows through the unreacted medium. If the gas generation rate
at the combustion front exceeds the rate of permeation into the unreacted porous
material, a continual pressure buildup occurs in the reacted region. At some time
following ignition, the gas permeation front in the unreacted material will arrive
at the open end of the vessel and venting of the gas will occur. This venting
process counteracts the pressure buildup in the reacted region and the pressure
at the flame front will begin to decay. Thus, we expect that the evolution of
the pressure distribution in the vessel is closely related to the flow processes
occurring in the unreacted and reacted regions of the vessel. A schematic of this
pressure development is shown in Figure 2.
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Figure 2. Anticipated behavior of pressure developed during
combustion, t; < t; <tz <ty <5 .

In the model to be described, we shall consider the porous material to be
immobile; this limits the application of this model to porous materials that
are packed tightly to withstand the forces associated with the highest pos-
sible pressure (adiabatic combustion overpressure) developed at the flame front.
Furthermore, we will not consider mechanical compaction effects that are known
to occur during flame spread in explosives [6]. This effect will cause pore collapse
which can impede the permeation of the gas.

As we envision this combustion process, it is evident that three distinct
regions must be considered: the reacted region between the closed end of the
vessel and the flame; the flame/preheat zone in which all combustion and com-
position/thermal gradients occur; and, the unreacted zone between the flame
and the open end of the vessel. In the sections to follow, we will examine each
region in detail.

Reacted Zone

Combustion products (both solid residue and gas) accumulate in the region
where combustion has occurred. If the combustion generates gaseous products
at a rate exceeding the permeating flow ahead of the flame, gas remaining in
the open pores of the product solid i1s compressed and the pressure increases.
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Furthermore, if the residual solid is highly permeable the pressure within this
region can be treated as being spatially uniform. Solid-solid reactions often have
this property, since the agglomeration of particles and the density decrease of the
solid following reaction causes a large increase in pore size and the development
of fissures in the solid product.

The combustion products left behind the flame are considered to be in
thermal equilibrium and fixed at a uniform temperature as dictated by adiabatic
combustion. This equilibrium constraint is valid if the thermal capacitance of the
solid residue far exceeds that of the combustion product gas. Large gas-to-solid
heat transfer rates, typical of porous flow, will cause the compressional heating
of the gas to be quickly absorbed by the reacted solid.

Flame/Preheat Zone

The next region is the flame/preheat zone containing the combustion reac-
tion and thermal gradients. Thermal gradients are caused by conduction of heat
from the combustion and convective heat transfer from the hot product gas which
is forced into the cold unreacted material. The heat transfer between the hot
product gas and the solid unreacted material occurs until the gas temperature
reaches that of the unignited reactant. Thus, product gas exiting the preheat
zone has equilibrated to the temperature of the cold unreacted material.

A fundamental assumption of our model is that the flame/preheat zone is
very thin compared to the total length of combustion wave propagation. This
assumption will be valid when the reaction kinetics are fast and the heat transfer
occurring in the preheat zone is rapid. The reaction kinetics are a strong function
of the specific reactants under consideration and validity of the fast reaction
assumption must be determined for the case of interest. Heat transfer ahead of
the flame occurs by both conduction and interphase convective heat exchange
between the gas and solid phases. From fundamental combustion theory (7], the

length of the preheat zone, 3preh833, determined by conduction alone, can be
estimated as:

-

- a
6preheat et | (2)
Vi

where & is the thermal diffusivity of the porous unreacted material and VF 1S
the burn velocity of the combustion wave. For many combustion situations this
region is small. For example, if we consider a typical metallic diffusivity of & =
0.2 c¢cm?/s and a burn velocity of V& = 2 em/s , the preheat zone is of the
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order of a millimeter in thickness . (As in the above notation , we refer to all
dimensional quantities by denoting them with a * accent.)

To examine the convective preheating effect of hot gas permeation ahead of
the flame zone one must consider interphasial heat transfer. If the solid reactant
particles are sufficiently small so that a large specific surface area is available for
heat transfer, rapid heat exchange will occur. In estimating this convective heat
exchange, we use a model similar to that postulated by Schumann [8]. The inter-
ested reader is referred to Appendix A for a more complete development of this
model. A convective heat transfer coefficient was estimated using an empirical
correlation [9]. Using representative gas properties and a small particle diameter
in this packed-bed correlation, a large exchange coefficient for the convective
heat transfer is calculated and the resulting convective thermal boundary layer
is much smaller than the conduction layer thickness given by equation (2).

Unreacted Zone

The remaining portion of the reactor is the zone of unreacted material
into which cold product gas permeates. As discussed above, all of the thermal
energy is extracted from the hot product gases in a narrow layer in front of the
flame. Consequently, only the interphase momentum exchange between the solid
unreacted material and the permeating gas must be considered in this zone. We
“use the Darcy approximation which balances the pressure gradients with drag
forces. The permeability coefficient in this model must be estimated from known
empirical laws or experimentally measured. In this study we have estimated
this parameter using the Blake-Kozney relationship [10] which requires the local
Reynolds number ( based on interstitial velocity and pore hydraulic diameter )
to be small. As will be discussed in a later section, this parameter is of major
importance, suggesting that experimental determination of the permeability

is an important step in applying the model to real systems [11].

3 Theory

Using the assumptions introduced in the previous sections, we now develop
the fundamental governing equations which will describe the combustion-driven
gas flow. First, we examine the jump relationships across the flame/preheat
discontinuity.
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Consider a control volume (shown in Figure 3) which moves at the combus-
tion wave velocity, ‘:’}: . This control volume contains the reaction/preheat zone
which we will consider to be of a vanishing small volume. We denote conditions
of the reacted and unreacted states by the superscripts b and u and the solid-
and gas-phase quantites by the subscripts s and g.

Reaction/Preheat zone

Figure 3. Control volume encompassing the reaction/preheat
zone.

We introduce the partial density of each phase, p; , (¢ = s, g) , as the product
of volume fraction, ¢; , times the material density, I'; :

b =il (3)

As indicated in Figure 3, the mass generation rate of gas is equal to the
change in solid partial density times the burn velocity. A fraction of the gas is
forced forward into the unreacted porous material and the remainder is left in
the reacted region. Therefore, the balance of mass is simply stated as:

P~ L b o e b
oty = VF(py — pg) + Vr(bg — by), (4)
where ©, is the average interstitial gas velocity relative to a laboratory reference

frame. (Note that the gas flow into the reacted region is absent. This i1s due to
the assumption of negligible flow resistance in the reacted region.)



12 A THIN FLAME MODEL FOR REACTIVE FLOW IN POROUS MATERIALS

Next, we consider the balance of momentum across the discontinuity. Ignoring
inertial effects of the gas motion, conservation of momentum requires the pres-
sure to be continuous:

P,=F., (5)

Finally, we consider an energy balance. The heat liberated by the reaction is
used to heat the two phases to the adiabatic combustion temperature (a fraction
of this energy is passed forward into the preheat zone). In treating the jump
in energy across the reaction/preheat zone, the gas in the product region is at
the adiabatic flame temperature and the gas flowing ahead of this “jump” is
equilibrated to the cool unreacted temperature:

S, 1 sbsb _ abab
pgg(ey + F) Ve(p3&) + by&; — bats — Bgiy), (6)
g

where &; is the internal energy of each phase, including the heat of formation.

The ideal gas law is then used to relate the pressure, density and tempera-
ture of the gas phase. As a simplification in the present model, we assume that the
reacted region is at a constant adiabatic flame temperature and the unreacted
material is at a known uniform low temperature. (The reader should refer to
Appendix B for the details and implications of this approximation.) Therefore,
on either side of the combustion front:

qﬁ)”P . ¢bP
by = mrei Py = (7)

where, P is the pressure at the burn front, T° is the adiabatic flame tempera-
ture, T is the ambient temperature of the unreacted material,and R is the gas
constant for the gaseous combustion products .

Porosities, ¢, and qbg , are determined by the solid volume fraction in each
region according to a saturation volume constraint:

bg + ¢ = 1. (8)

The mass conservation jump relationship can be then rewritten as:

6LP L P BT
AAoctu 1 :—,08 +"f ,ngol g
B0 fall ) s ( po (9)
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In addition, we consider the mass generation of gas, f/p(ﬁ:‘ - ,62} , to be
constant. Note that this restriction can be removed and the case of variable
burn velocity and/or variable solid volume fraction changes can be treated.

Balance Equations for Regions Exterior to the Flame Zone

As described above, the reacted porous medium is treated as being highly
permeable and only a temporal variation of pressure is considered in this region.
The thermodynamic state of the gas is determined solely by the pressure generated
at the flame front and the gas-solid temperature (fixed at the adiabatic flame

temperature).

In the unreacted region, # > Vgt , the laminar gas flow equations are:

aﬁg + a(f)yvg)

a1 25 O {10)

. k5 OF

V= — e e 11
Gghg OF (1)

where & is the permeability of the unreacted medium and ,&g 1s the gas molecular
viscosity. The spatial ind time coordinates re denoted by the variables z and

t, respectively.

In the reacted region, & < Vi , the governing equations are:

T, = 7% = constant, (12)
LP, = p,RT,. (13)

Next, we introduce the following nondimensionalization scheme to describe
one-dimensional combustion wave propagation within a fixed bed length, L:

P i "
P=— I='{E? t= —;
Pref I L ( )
-] AT A~ OO 14
ébT L RPref i ~ T o RT
A=(1— L), F=or o Fre =07 -5, e

ouT o VPl
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In the reacted region, z < t, the gas pressure is spatially uniform at the
pressure of the burn front, P° | and in the unreacted region, z > t , the gas
flow is related to the pressure gradient according to the Darcy approximation.
Combining equations 10 and 11 with the ideal gas law produces the following
description of the pressure field:

o°P
o = r(PS (15)

The gas initially within the reactor is at ambient pressure, P®°.

The balance of mass at £ = ¢ requires:

BP

and the boundary constraint on gas pressure at z =1 is:

P= P> (17)

Note that the exit boundary condition can easily be modified to include a
variable back-pressure condition. Such a constraint might be needed to model
the pressure gradient imposed by a frit endplate at the bed exit. ""he exit mass
flow rate (at z = 1) , denoted m , is defined as:

VF(ﬁ: - f’a)

We see that our model reduces to a nonlinear, parabolic differential equation
with an interface condition which traverses the reactor at x = t. Solutions to this
model are a function of only two nondimensional parameters, A and k, which are
related to the thermodynamics of the combustion process and the permeability
of the unreacted porous material.

4 Numerical Method

In obtaining numerical solutions of equation 15, we found it very convenient
to introduce a coordinate transformation which maps the computational domain
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domain to a fixed interval. The location of the flame front is mapped to the
origin and the bed exit is given a coordinate of one with the following variable
changes:

G T=1.

{= m, (19)
This yields a transformed equation:
o°P (¢—-1)0P k& 9 0P
ar T(1=n € (1-rp 5eF 5g) (20)
The burn front constraint at £ = 0 becomes:
K oP
-(I*T)Pa—£_1+)\P, (21)
and at r=0and { = 1: P = P*.

Numerical solutions of equation (20) were obtained using a method-of-lines
algorithm with 4th-order spatial differences on a computational grid of twenty-
one nodes and an Adams-Moulton implicit time-integration scheme [12]. Typical
computations for complete combustion of a model reactor require 100 seconds
(actual cpu time) on a CDC 6600.

5 Results

For demonstration purposes, the following dimensional variables were chosen

for a representative reactor of length L=3cm:

qbg = 0.5; 7° = 1500°K; Vr = 2cm/s;
¢t =03, T° =300°K; T,=2g/cm® (22)

The dimensional permeability of the unreacted porous medium is estimated using
the Blake-Kozney formula [10]:

~2
_ b
e -
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As a representative gas viscosity we used fi, = 2.0 X 10~% gm/cm - s and
the reactant is assumed to be composed of uniform particles 1 pm in diameter.
The resulting reference permeability and pressure are:

k=36X10"2cem?; P,y =11X 10" dyne/cm®.

The nondimensional parameters X\ and k are 0.67 and 30.0, respectively. Results
are given below for cases with these parameters and two lower values of k , 0.5
and 2.0.

Figures 4 to 6 show the spatial pressure profiles at selected times during
combustion for the cases described above. Ignition of the porous bed occurs at
t = 0 and t = 1 corresponds to the completion of burning. The choice of a
normalized pressure-squared ordinate in these plots is to facilitate comparison
with analytical solutions described below. Note that at early times, the gas
permeates only a short distance in front of the flame and there is no flow ahead
of this layer.
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Figure 4. Temporal variation of the pressure-squared profile
for model parameters k =0.5 and A\ =0.67 .
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5. Temporal variation of the pressure-squared profile
for model parameters k =2.0 and A\ =0.67 .
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Figure 6. Temporal variation of the pressure-squared profile
for model parameters kK =30.0 and A =0.67 .
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With increasing time, the leading edge of the permeation layer reaches the
open, unconstrained end of the reactor and very rapidly a quasi-steady gas flow is
established between the combustion wave and the exit. This quasi-steady flow is
characterized by a pressure profile which varies with the square root of distance.
As the nondimensional permeability increases, the steady-state flow is reached at
earlier times. In an unstretched coordinate system that moves with the flame, the
pressure in the permeation layer decreases approximately linearly with distance
in front of the combustion front.

An important influence on the burning velocity is the pressure at the com-
bustion front. For example, in single-phase gaseous combustion the burn velocity
is found to vary as a power of the pressure: Vg ~ P™ | where n depends on the
details of the kinetic mechanism [7]. Figures 7 to 9 show the time evolution of
the pressure at the burn front for a constant burn velocity. Note that the scale
of the ordinate for each plot is different and for smaller values of permeability,
k , higher pressures are predicted at the same nondimensional time. Prior to the
time at which the leading edge of the gas permeation layer reaches the exit, the
pressure at the burn front monotonically increases with time. Following the ar-
rival of the permeation layer at the exit, the pressure at the burn front decreases.
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Figure 7. Temporal variation of the nondimensional burn front
pressure for the parameters k =0.5 and A =0.67 .
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Figure 8. Temporal variation of the nondimensional burn front
pressure for the parameters k¥ =2.0 and A =0.67 .
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Figure 9. Temporal variation of the nondimensional burn front
pressure for the parameters k =30. and A =0.67 .
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Pressure development prior to the gas venting occurs in two stages. This can
be seen in Figure 7 for the case of a nondimensional permeability, kK =0.5. The
initial stage corresponds to the growth of a boundary layer ahead of the flame.
Upon reaching a steady state (in a moving coordinate attached to the flame),
the pressure at the burn front increases toward an asymptotic value of P7 ,.:
po (1+ P*>)

mazx ~ (1 = X) :

This asymptotic value of pressure can only be reached in a porous bed with a
very small nondimensional permeability. In the present case, the nondimensional
asymptotic overpressure has a value of 3.03.

After the gas permeation layer reaches the exit, the gas flow quickly adjusts
to a quasi-steady rate determined only by the combustion front gas pressure and
the distance to the exit. An analytic solution has also been determined for this
flow.

The temporal variation of normalized gas mass outflow,m, is shown in Figure
10. Note that there is effectively zero mass flow prior to the time at which the
permeation layer reaches the exit. For a very large permeability the gas mass
outflow is constant, t.e. , m = 1 during the entire burn.
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Figure 10. Nondimensional mass flow at the bed exit as a
function of time.
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6 Analytical Solutions

For the two extremes of low and high permeability ( Kk — 0 and &k — oo,
respectively) analytical solutions to the flow equations have been determined.
In the subsections to follow, we examine several approximate techniques and
alternative methods for solving the basic model equation governing the flow.

Gas Permeation Boundary Layer Solution

In the limit of low permeability, k — 0, the exit conditions will have little
effect on the pressure distribution ahead of the flame. Because the gas permeation
layer is so thin, the flow will be independent of the venting condition until the
flame front nears the exit. This situation can be idealized to the case of flame
propagation in a semi-infinite reactor. In this case, the scaling and coordinate

transformations are modified to remove the reactor length scale, L , in favor of
an alternative scaling based on the boundary layer thickness, 6 :

. kP,
§ezat el (24)
i, VF
Similarly, the relevant time scale, 7 , is taken as:
5
Vr

and we retain the reference pressure, P,,f , defined previously.

In order to follow the boundary layer development ahead of the flame, we
introduce a wave coordinate which travels with the flame velocity and has its
origin at the flame. In these coordinates, the governing nondimensional equation
1s given as:

ar an o Bn( '5;)’

and the boundary condition is

oP 9P _ 9 0P %)

oP°
= i =1+ \P° 7
P 5 + ; (27)
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where:

-

and P = L

-

Pref

3
Il
>
%
|
| >

Note that with this coordinate scaling, only one parameter, A\, determines the
character of the solution of equation (26).

Equation (26) has been solved numerically for the case X\ = 0.67. The
temporal variation of the normalized pressure at the flame front is shown in
Figure 11 and the spatial distribution of the pressure in the boundary layer
is shown in Figure 12. Note that a linear variation of pressure with distance
ahead of the flame is predicted. This observation is the basis for an approximate
integral solution method which is described below.

From Figure 12, it is seen that the pressure has reached 94% of it’s final
value at a nondimensional time of 8. Examinination of the pressure profiles at
later times indicates that they are practically indistinguishable. This suggests
that the solution approaches a steady state relative to the moving coordinate
system. By setting the time derivative of equation (26) to zero, the steady-state
profile is obtained. A single integration of the resulting equation produces:

oP
P+ Pa_n = constant. (28)

Far upstream, the pressure must drop to an ambient level and the pressure
gradient must vanish. Using these boundary conditions, the constant can be
evaluated to obtain:

oP

PPy P, (29)

The conservation of mass across the burn front determines the overpres-
sure generated by the combustion and the maximum pressure developed in this
steady-state solution is given as:

Pnee = (o). (30)

The boundary layer profile has a particularly simple form in the limiting
case where the pressure at the flame front greatly exceeds the ambient value. If
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we set P> = 0 the solution of equation (29) is:

P=P:nax_'ﬂ P:na:ZﬂZO;
P=o0 n> P (31)

Note that there is a discontinuity in slope at the leading edge of the permeation
layer (n = P5,,,) which is due to the approximation that the ambient pressure
is zero.

An exact solution to the boundary layer equation (Eq. 29) has been deter-
mined and the solution can be expressed in terms of the following normalized
variables:

_ (P=P=)
‘w“ (P:za:r_Poo)
oo n (32)

(Pgna:_Pco),

and a single parameter, ¢, which is the ratio of ambient pressure to the over-
pressure induced by combustion:

POO
= F—p=) (33)

Thus, equation (29) is transformed to:

d
Y+ B+95 =0 (34)

Boundary conditions are ¥y = 1 at § = 0 and ¢ — 0 as § — oo. A direct
integration of the differential equation produces the following transcendental
solution:

Y+elny=1—0. (35)

The structure of the pressure wave solution is more clearly illustrated by asymptotic
expansions (for small €) in the regions: A - near the flame front for § < 1; B - near
the foot of the pressure wave at & 1; C - in the outer region of the boundary
layer for 6 > 1. These approximate solutions are:

Region A (§ < 1)
Y ~1—0—¢cln(l—0), (36)
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Region B (6 =~ 1)
Pp~1—0—clne, (37)

Region C (6 > 1)

p ~ exp(~—). (38)

The singular character of the solution dependence on ¢ is clearly brought
out by these expansions. A discussion of the mathematical details of this general
type of wave structure can be found in Reference 13.
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Figure 11. Time variation of normalized pressure at burn front
for A\ = 0.67
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Normalized pressure -

1.6

Wave coordinate -

Figure 12. Spatial distribution of pressure in the boundary
layer for A = 0.67
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Integral Boundary-layer Solutions

The simple form of the boundary-layer pressure variations determined in the
previous section can be utilized to develop an integral solution method which
reduces the transient problem to solving an ordinary differential equation. We
assume that the boundary layer has a time-dependent thickness, 6(¢) , and the
variation of pressure within the boundary layer can be approximated as:

P = P°(t) z < t,
o\ __ (p° __ _(.’L‘—*t) ' T

(P= P¥)=(P*—P™)i 50 ] t<az<, (39)
P= P™ x> 6.

This form of the pressure variation was suggested by numerical and ap-
proximate solutions valid for P*° ~ 0 . Substituting these equations into the gas
pressure equation and integrating across the boundary layer results in:

__ P (PP
==y
d P°(P°—P®),  2(1—)\)(1+P®)
@t (1+X\P°) = ((1—>\) ) (40)

Solutions to this equation were obtained numerically using a Runge-Kutta-
Fehlberg method [14]. Predictions with this model for the case of A = 0.67 are
superimposed on Figures 7 to 9 as broken curves. Clearly, the early-time growth
of pressure is accurately approximated by the integral method. However, at later
time, venting of the permeated gas occurs and a different pressure development
occurs. The next section describes an analytical solution which incorporates the
venting of the product gases.

Quasi-steady Solution

After the leading edge of the gas permeation layer reaches the reactor exit,
the flow can be approximated as though there was a steady flow of gas from the
burn front to the bed exit at any given time. The flowrate will vary as the driving
pressure in the burned region changes with time. This mode of gas transfer is
particularly relevant to reactants which are highly permeable. By setting the time
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derivative in the transformed equation (20) equal to zero a quasi-steady solution
is obtained. The resulting ordinary differential equations can be integrated to
yield:

(P2_Poo2)=(Po2_Poo2)(l_ET::;)’ (41)
where the pressure at the burn front, P°, is determined by:
MI=t)  x3I—e) 21—1)\2
K K K

The mass flux of combustion-product gas at z =1 is:

m = (14 \P°). (43)

In Figures 4 to 10, the two analytical solutions have been plotted along with
the results of the numerical calculations. As seen in these figures, after the gas
flow reaches the bed exit, the pressure quickly changes to one consistent with
the quasi-steady solution even for low and intermediate values of permeability,
K.

An approximate but complete analytical model of the pressure field in the
reactor is obtained by using the boundary layer model of the previous section at
early times and the quasi-steady model at later times. Overlaying the temporal
variation of burn front pressure predicted by these solutions produces curves
which intersect at a particular time. This is the time when the leading edge of
the gas permeation layer has reached the bed exit.

7 Summary

With the use of a simple model it has been shown that internal gas flow
and pressure induced by combustion can be estimated without considering the
detailed structure of the reaction zone. Our model treats the combustion wave as
a density/temperature discontinuity which propagates at a known burn velocity.
The burn velocity must be determined separately by either experiment or a
detailed kinetic model of the reaction zone.
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The utility of our basic model is in the use of the thin flame approxima-
tion. Several additional restrictions are imposed to demonstrate results for a
particular reactive system. These restrictions can be easily modified to obtain
more realistic models. High Reynolds number gas flows can be calculated by in-
cluding the appropiate inertial corrections to the permeation law [15]. Appendix
C examines an approach for treating this modification. In addition, the model
can be extended to treat pressure gradients in the reacted region or gasdynamic
flows in the case of complete gasification of the reactant as outlined in Appendix
D. Other simple variations could include a variable burn velocity and the one-
dimensional propagation through a variable corss-sectional area reactor.

Our calculations show that the development of the pressure field has a strong
dependence on the permeability of the reactants. Any physical process which can
modify the permeability during the combustion, such as the presence of a melt
phase or a compaction front, should be considered in more detailed models.
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9 Appendix A

Thermal Nonequilibrium in the Preheat Zone

In this appendix, we examine the thermal structure of the preheat zone
ahead of a combustion wave. Our formulation of the thermal field follows a
model first examined by Schumann [8].

Consider a combustion wave discontinuity which propagates at a constant
velocity, Vr , and generates combustion gas at & = Vii. We assume the porous
material is packed into a rigid bed and that the only exchange of energy between
the solid- and gas-phase is due to interphase convective heat transfer. The
resulting equations governing the flow are as follows:

conservation of gas mass,

—_— -a-g(f?gﬁg) = (; (lA)

conservation of momentum of the gas phase (Darcy’s law),

k OP,
{T _ — e , 2A
g ¢g #g B ( )

conservation of gas- and solid-phase energies,

g 2 ' X - .

g(Png) + %(f’gvar—rg) o a(Ta =15} (34)
oT, 8 . . a?i"
— = ———(T, — T, & : 4A
= p,ca( g) + ey (44)

».RT,. (54)
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The nomenclature is the same as that used in the main text. The interphase
heat transfer coefficient, ¥ , is estimated using an empirical relationship taken
from the packed bed literature [9]:

;{ — 12(1 Tquﬁ' )kg ,
d?

(64)

where, k, is the gas thermal conductivity and fip is the surface mean particle
size of the porous reactant.

In addition to the nondimensional variables used in the main text, we
introduce the following nondimensional parameters:

- A~ OO

NRRT™ &, RT

B = S £ == 2 7 et o : P i
- Py C =—TE K
Cg(,ﬁg#gvp g ¢'9ps ref

The nondimensional quantity, € , is the ratio of thermal capacitance of the
gas to the solid; « is a nondimensional thermal diffusivity of the solid reactant
and A is the ratio of interphase convective heat transfer to the rate at which
heat is advected by the hot combustion gases. Granular materials composed of
small particles have a very large surface area which is available for heat transfer
and we expect [ to be a large quantity. For the representative reactor variables
given in the main text, we estimate that @ ~ € ~ 102 and f ~ 107 .

In order to obtain more quantitative estimates of the thermal boundary
layer thickness, we will examine the structure of a steady preheat zone. First, the
conservation equations are transformed to a coordinate system which moves with
the combustion wave. Setting the time derivatives to zero yields the following
equations in terms of a steady wave coordinate, n =z —t :

d
3’;;(99 g == Pc) =0, (8A)
Vg, = _ﬁ 9A
g dﬂ ’ ( )
d
27 (PovaTy = sTy) = AT, = ), (104)
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al, d2T,
— i \
7 +a an? eB(T, — Ty), (11A)
P=p,T,. (124)

The rate of gas generation by the combustion, ¢ , is defined by integration
of equation (8A):

Pg¥y — Py = O. (13A4)
Note that o is a positive quantity ( ¥, > V), and has a value of order one.

The convective heat transfer between the gas and the solid can be eliminated
by combining equations (10A) and (11A) to obtain:

€ e = @ + i (14A4)
Integrating this equation once with respect to 5 yields:
d
eo(Ty —T*®) = (T, —T°°)+a‘—i-1-1-(T,-—T°°). (15A)

In order to evaluate the constants of integration, we use the conditions 7, —
7. T, s T Jand 3‘%('1’, — T%) — 0, in the cold reactant far ahead of the
combustion wave ( n — oo ).

With this relationship, the gas-phase temperatures can be eliminated in
equation 11A, and the solid reactant temperature is governed by the following
ordinary differential equation:

d’T, (o+Pa)dT, pB(1—eo) &
e + e A + o= (T, —T*)=0, (16A)
which for large 3 has the solution

(1~ 60)7?)'

T (17A)

T, —T°° = c; exp (-—-i—n) + c exp (—

From equation (15A) it follows that the gas-phase temperature has similar
exponential behavior. The constants ¢; and ¢ are determined by requiring
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that T, — Tj;, (reactant ignition temperature) and T, — T° (adiabatic flame
temperature) at the flame front 7 — 0. From the exponential nature of equation
(17A), it is clear that the preheat zone is composed of two boundary layer regions.
Close to the flame is a region where convective heat transfer dominates the
heat transfer. The length of this region is of the order &.onvection ~ Jﬁ— The
outer region is dominated by the effect of thermal conduction. As expected, the
conduction dominated region has a length of the order d.onduction ~ a. For
reactant beds with large specific surface area ( t.e. small particles) the region of
solid-gas nonequilibrium is small — well within the preheat limit as determined by
conduction alone. Pictorially, the temperature distributions given by the above
analysis are as shown in the figure below.

Reaction zone

T
/ Jeonuectl'on -t B}'
E
A

\ Preheat zone

2

| ‘Ooudsah'cn ~ O _-*

n

Figure 13. Solid- and gas-phase temperatures in the preheat
zone.
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10 Appendix B

Temperature Field in Reacted Region

In this appendix, we examine the energy jump condition given in the main
text. This jump condition is used to provide a definition of the adiabatic flame
temperature of the fully reacted region. We shall show that the assumption of an
1sothermal temperature of the reacted region is valid when the solid phase, fully
reacted material is in thermal equilibrium with the combustion-product gases.
By definition, the internal energy of the solid and gas phases are:

gy =27 +¢,(T-T7), (1B)
e =&l +&,(T—T%); (2B)

where é; and & are the heats of formation at 7 and ¢g and ¢, are the specific
heats of the gas and solid phases.

Combining equations (4) and (6) of the main text with the above definitions
of internal energy, produces the following energy balance:

~U ~b

~F 4 - ~b . ~b
(pa “pa)(eg —-—C:)-{-((p; - pg) + (p: - pa))p

P by . KB, KO 880
=z = —(PsCa+p,c)(T =T ). (3B)
g

The heat released by combustion is equal to the heat of combustion multi-
plied by the change in solid partial density across the flame. This energy goes
into flow work to expand the combustion products across the flame and increases
the sensible heat of the phases. As in typical gas-phase combustion (deflagration),
the heat release greatly exceeds the flow work, te:

~

P A A~ 0O
67 —ef|> =% ~RT . (4B)
g pg

Therefore, equation (3B) can be approximated as:

-~ 0 ~ 00

(Pocs + pyea)T =T )= (py — pa)(&] —&7). (5B)
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In the case considered in the main text, we assume that a large fraction of
combustion product is solid residual and therefore the thermal capacntance of the
solid phase exceeds that of the gaseous combustion products, t.e. psc, 5 pgcg
The thermal field of the reacted region is approximated by the spatially-uniform,
adiabatic temperature:

(6B)

In the limit of total reactant consumption, only gas products reside in the
reacted region and equation (6B) can not be used. For that case, the thermal
field becomes nonuniform and the gasdynamics of the gases in the reacted region
must be considered. Thus, the jump in energy across the flame must include the
transport of energy into the reacted region.
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11 Appendix C

Extension to High Reynolds Number Flow of Combustion Gases

The theory presented in the main text is restricted to low Reynolds number
or Darcy flow of the product gas in the unreacted material. If the pore sizes
in the granular reactant are large enough and the combustion pressures high
enough, the Reynolds number based on interstitial velocity v and particle size
dp:

Fies PIEEE. (C1)
o’

will be large. Under these conditions, an additional term must be added to the
drag law to account for inertial forces in the flow.

The modified drag law was first introduced by Ergun [15] and has the form

315 ¢§ﬁga qf)ga. ~2
=85 R Ty (C2)

K

The cons’ant a is an empirically deterr ined factor which is related to the pore
size and shape and to the overall porosity. For packed beds of spheres with
diameter d,, o was found by Ergun to be:

(C3)

The purpose of this appendix is to reformulate the model equations given
in the main text for the more general drag law described above. In particular,
the limiting case of very high Reynolds number flow will be examined. We will
derive the analytic solutions for the special cases of a steady boundary layer
in moving coordinates and the quasi-steady flow between the flame and reactor
exit. Numerical results for the general case are given for some representative
Reynolds numbers.

Using the scaling scheme given in equation (14) of the main text, the non-
dimensional equations governing gas flow in the region ahead of the flame are:

oP " O(Pv)
ot or

=0, (C4)
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and

oP
—Kla —U"‘f‘RPU (CS)
where R is a parameter which could be called a “characteristic Reynolds number”

and is defined as

CE(,O, o p,)V
R= B, (C6)

An alternative scaling which is more appropriate for high Reynolds number flow
is based on a new constant o defined as

o= —. (C7)

+ Pv®. (C8)

The boundary condition at the flame is independent of the particular form of
the scaling and is equivalent to equation (9) of the main text. In scaled variables,
the form most convenient for this section is:

PUI:;: =1+ X (09)

A simplified form of the complete system of equations (C4), (C5) or (C8) ,
and (C9) can be found by using either (05) or (C8) to eliminate the velocity from
equations (C4) and (C9). For example, using the high Reynolds number scaling,
equation (C5), the boundary condition can be rewritten as

0P  (1+ \P)
-.-.a T e—

2
- R + (14+ \P)°, (C9a)

and the velocity can be determined by solving equation (C5) to obtain

\/ e 4P(-cr——) - ")li)' (C5a)

Additional insight into the behavior of the solutions at high Reynolds num-
ber can be obtained by taking the limit R — oo in equations (C5a) and (C9a).
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The resulting equations are:

oP
Py zs —0—
v P Uax)’ (C5b)
and
oP 2

This system of equations is similar to the equivalent low Reynolds number model
(equations (15) and (16) of the main text). Numerical solutions to this system of
equations have been obtained for A =0.5 and various o . The computed pressure

at the flame front is shown in Figure 14.

2.00

Pm =10"*

1.75

1.50

Pressure at burn front
=
(]

Figure 14. Numerical solutions of the pressure at the burn
front for high Reynolds number gas flow.
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The rest of this appendix will be devoted to examining approximate analyti-
cal solutions of (C5a) and (C9a). Closed-form solutions can be found for early
times (a steady-state boundary layer in moving coordinates) and late times
(quasi-steady flow between the flame front and the reactor exit).

First, the early-time solution will be presented. Since the bed is effectively
semi-infinite at early times, o can be eliminated by a transformation of variables.
The equations can be solved in a coordinate system moving with the flame
velocity and with the origin at the flame front. The necessary transformation is:

t
Y
ag

S (:‘L‘-—t)
ag

which yields the transformed equations

ar 9P 15) oP 3
ot " 3w Yo Fag) =0 (€10

and
oP
~Polr—o = (1+ AP)?. (c11)

To simplify the notation, we will drop the primes on the transformed variables.
First, we determine the traveling wave solutions which are independent of time,
te, ;% = 0. The structure of the steady-state permeation layer in front of the
flame is determined by:

o°P 9 c’)P);‘t

dr Oz oz
A single integration of this equation, with the boundary condition (C11) at z = 0
and %E—»Oasx—roo,yields:

. (C14)

ar
e PO et PN
P—-P ( PB:::) ; (C14a)
and as in the low Reynolds number case ( ¢f.,, equation (30)), the maximum

pressure at the flame front is

. 1+ P®
Pmax= 1_)\ *
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Using the scaling defined in Section 6 of the main text ( ¢f., equations (32) , (34))

P — p*
M

equation (C14a) can be recast to the following form:
0
W+ (e =0, (C15)

where € is the same parameter defined in the main text (equation (33)):

POO
€= ——«——.
P:m:c — P
Equation (C15) can be integrated to give a closed-form solution analogous to
equation (35) of the main text:

lnt,b——e(l-{-%]:——:r. (C16)

In the limit ¢ — O (¢, very high pressure at the flame front compared to the
ambient pressure), the solution is:

Y = exp(—z). (C17)

In terms of the physical, dimensional variables, the boundary layer has a thick-
ness (based on 9 = exp(—1)) of § = o. The characteristic time required for
the boundary layer to develop will be 7 = O(ﬁ;). There is an additional, un-
specified dependence on X that can be determined by numerical solution of the
time-dependent equations in a moving coordinate system. This could be carried
out by an approximate integral approach similar to that described in Section 6.
The functional dependence of pressure on distance should probably be chosen as
exponential, as suggested by equation (C17), rather than the linear dependence
chosen for the low Reynolds number case.

The second type of closed-form solution which can be obtained is valid at
late times, after the permeation layer has contacted the end of the reactor and
a quasi-steady gas flow has developed between the flame front and the bed exit.
The analysis for this situation is identical to that carried out in the main text.
In fact, the only difference in the result is that the pressure at the bed exit is
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given by a different expression. The governing equations are equation (41) of the
main text:

2 _ poo?2y _ 02 _ poo?2 __(x‘—t)
(P? — P®?) = (P°* — P>?)(1 __"(1-t))’
equation (43) of the main text
m = (1+ \P°),

and the pressure at the flame front is given by the positive root of the following
quadratic:

(1+ 2%2(1 —t))P°* + (42(1 —t))P° — (P>* - %(1 —t))=0. (C18)
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12 Appendix D

Complete Gasification of Reactants

Near the limit of complete gasification of the solid phase reactants, the
temperature field becomes nonuniform and a spatial variation of gas density
induces a flow of product gas within the reacted region. To treat this flow field
we use a model of the gasdynamics derived in the limit of slow combustion. The
gasdynamic equations relevant to this limit were first derived by Sivashinsky [1]
and the interested reader should consult this reference for details of the theory.

In considering an isentropic flow of ideal product gas which has an adiabatic
index, =, the conservation of gas mass within the confined reacted region is given
by:

dvg 1 dP°

oz . AP° dt’ {21)

where the pressure field within the reacted region changes only temporally.

For one-dimensional planar flow into a linearly expanding reacted region,
the flow velocity of hot gases (normalized by the burn velocity of the porous
reactant) at the flame front is given as:

N
§ ~P° dt

(D2)

With the forementioned relationship, the balance of mass across the flame
is modified and the nondimensionalized relationship is given as:

P°  t(1—\)dP°
+

=wE oz ~ dt

= 14 \P°. (D3)

As defined in the main text, 1 — X is related inversely to the gas temperature
ratio across the flame and the jump in energy determines its value. Rather than
being a fixed value (as was considered in the main text), A will vary with the
pressure at the burn front. Isentropic compression of the combustion product
gases is represented by the following relationship:

(1=3) = (1 =2 )(om )0 (D4
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where A\, refers to the initial combustion condition P° = P%.

To demonstrate the importance of including the gasdynamics of the product
region flow we present two sets of numerical calculations of the pressure at the
burn front shown in Figure 15 using model constants A\, = 0.5 and 7 = 1.2 .
The solid curves correspond to an isothermal product region calculation using
the model described in the main text and the broken curves are comparable
cases for isentropic flow of the product gases using the boundary constraint of
equation (D3). Two permeabilities , Kk = 0.1 and 10., are examined.

For low permeability, numerical calculations indicate that the flow in the
product region is important. Higher pressures are seen to develop when compres-
sion of the gas phase is included in the model. For highly permeable materials,
the isentropic and isothermal models yield similar predictions of the pressure at
the burn front.
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Figure 15. Comparison of the temporal variation of burn front
pressure with isentropic gas flow in the confined reacted region
to that without gas flow in the confined reacted region.
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Approximate analytical solutions have also been determined for this case
using the same methods outlined in the main text. The early-time behavior can
be approximated using the boundary layer integral method. Using the pressure
wave forms given by equation (39) in the main text, the pressure at the burn
front, P° , and the boundary layer thickness, § , are determined by:

Ef__:.z_’i_)ﬁ = t(1+ P> —A), (D5)
and
d(tA) kP°(P° — P>)?
a5 ke 2t(1+ P> —A)’ 08}
where
A= (1-)\)P°.

The quasi-steady solution is calculated using the pressure profile of equation
41 of the main text. The pressure at the burn front is given by the root of the
following transcendental equation:

P° = \/2(1 —t)(1 + \P°). (D7)

| Figure 16 shows é."—comparison of the above analytical solutions to a numerical
solution for model parameters k =1.0 and X, =0.5.
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