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Abstract

We report experimental studies on the combustion of lean hydrogen-nitrous oxide-
ammonia-air mixtures. This project is in support of the waste tank safety assessment
for the storage facility at Hanford, WA. This study focuses on combustion limits,
pressure histories, and flame speeds of flammable gas mixtures characteristic of this
facility.

A facility was constructed to study the lean combustion characteristics of mixtures
containing ammonia. This facility consists of a gas-handling system, a remotely-
controlled 400-liter pressure vessel, a vacuum system capable of pumping and dispos-
ing of the unburned ammonia, and a data acquisition system.

A total of 208 experiments were conducted for this study. All experiments were
performed using air as a primary oxidizer. Separate experiments were carried out for
binary and ternary mixtures containing air, hydrogen, ammonia, hydrogen-nitrous
oxide, ammonia-hydrogen, and ammonia-nitrous oxide. Other experiments examined
quaternary mixtures of ammonia-nitrous oxide-hydrogen-air. Mixtures were burned
under quiescent and turbulent conditions and, in some cases, with an inert substitute
(nitrogen) for the nitrous oxide. The pressure and temperature were recorded in the
tank throughout the combustion events. A schlieren video photography system was
used to observe flame propagation and measure flame speeds. The final equilibrium
pressures were also measured in the experiments.

The results demonstrate that nitrous oxide is inert in lean mixtures of hydrogen-
air-nitrous oxide and reactive in lean mixtures of ammonia-air-nitrous oxide. For
mixtures of hydrogen-nitrous oxide-ammonia-air, the reactivity of the nitrous ox-
ide depends on the hydrogen-ammonia ratio. A correlation between the adiabatic,
constant-pressure, flame temperature of the mixture and the reactivity threshold of
the nitrous oxide is proposed. It was found that the nitrous oxide began reacting

when the adiabatic flame temperature was between 1100 and 1300 K. It was found



iii
that for flame temperatures above this threshold, presence of nitrous oxide affects the

flammability limit, the pressure history, and the flame speed.
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Chapter 1 Background

1.1 Lean Flammability Limits

The flammability limits of a combustible mixture are those limiting compositions
that will just support flame propagation when stimulated by an external ignition
source. Identifying these mixtures is of great interest to the chemical industry and
safety engineers, and compilations of flammability limits have been published by the
Bureau of Mines [Coward and Jones, 1952, Zebetakis, 1976]. Although there is no
widely accepted theoretical method of predicting flammability limits, there are a
number of empirical rules and simple models, the classical results are summarized in
Lewis and Von Elbe [1961] and updated in the series of reports by Hertzberg [1976].
The fuel type, mixture properties and mass diffusion of the deficient reactant are all
factors [Abbud-Madrid and Ronney, 1990] in defining the limiting composition.

The primary reason [Spalding, 1957] for the existence of a flammability limit is
heat loss (thermal radiation and conduction) from the hot products to the cooler
surroundings. When the rate of heat loss exceeds the rate of energy generated by the
chemical reactions, a flame cannot be supported. The composition at which balance
exists between loss and generation determines the flammability limit. Thermal radi-
ation from infrared-active species such as HoO and CO; is one mechanism of energy
loss from propagating flames. Thermal conduction to cold container walls is also a
major loss mechanism in the standard flammability tests using the Bureau of Mines
apparatus [Coward and Jones, 1952].

Mixtures that are either too rich or too lean are not flammable. In the present
study, we are concerned with fuel-lean (excess oxidizer) mixtures, and therefore always
mean lean flammability limit, known as LFL in the literature, when we refer to the
flammability limit. Flammability limits are determined by a variety of techniques,

each of which yields a slightly different value of the limiting composition.
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Further complications are the effect of ignition energy and the buoyancy of the
hot combustion products. If the ignition energy is too low, then although the gas
may be flammable and a limited region will be ignited, a propagating flame will not
result. In the present study, we have attempted to minimize the effect of ignition
energy by using a high energy (10 J) spark of relatively long duration (100 us).

The effect of buoyancy is to cause the initially spherical flame kernel, created by
the spark, to rise and become distorted as it propagates outward. As a consequence,
if the burning velocity is too low (less than about 5 cm/s), the flame is observed only
to propagate upward. The gradients in the gas velocity induced by the rising flame
also affect the flammability limit. The gradients and spherical expansion of the flame
surface result in flame stretch which enhances combustion if the Lewis number Le
(ratio of thermal diffusivity to mass diffusivity of the deficient reactant) is less than
one and tends to quench the flame if Le > 1.

The limiting composition at which upward propagation of the flame begins is re-
ferred to as the upward propagation limit in this report. The composition at which
the transition from upward to downward propagation takes place is known as the
downward propagation limit. We have determined both upward and downward prop-
agation limits.

Determining the flammability limits of mixtures containing multiple fuels and
oxidizers has been largely confined to empirical studies. In the late 1800’s, Le Chate-
lier [Le Chatelier and Boudouard, 1898] proposed a rule for mixtures of fuels: The
flammability limit of a mixture can be approximated by using the weighted average
of individual components:

Xy Xo

- (1.1)

1.0 =
LFL, LFL,

where X7 is the mole fraction of component 1 and LF'L; is the known flammability
limit of fuel 1. For many compounds mixed in air, this rule is a reasonable approxima-
tion. The physical reasoning behind this model is that the reactants are compatible

in kinetic and transport properties, and independently compete for oxidizer within



the flame front.

1.2 Lean Flammability Limits of H, and NHj

The mixtures of interest in the present study contain: hydrogen, Hs; nitrous oxide,
N5O; ammonia, NHs; air, .2105 + 0.79Ny; and occasionally, methane, CH,. The
flammability limits of the individual components and some binary mixtures are well
known, but more ternary and quaternary mixtures are not well characterized.

Hydrogen-air combustion has been extensively researched. The lean limits of
flammability for Hy-air flames are 4.0% for upward propagation and 8.0% for down-
ward propagation [Coward and Jones, 1952]. The stoichiometric concentration of Hy
is 28%.

Because ammonia has been used extensively as a refrigerant, the combustion of
ammonia-air mixtures has been well studied [Fenton, et al., 1995]. Accepted limits
of flammability for ammonia-air are scattered around 15% for upward and 18% for
the downward limit [Ronney, 1987]. As discussed subsequently, NoO appears to dra-
matically lower the limits for NH3 , but Hy is relatively unaffected. Ammonia is

stoichiometric in air at 22%.

1.3 N->O as an Oxidizer

Early researchers noticed [Danby, and Hinshelwood, 1940] that behavior of NoO dur-
ing combustion varies greatly. Depending on the mixture and ignition energy, the
N2O can behave as a diluent, or an oxidizer, or simply dissociate. Scott, Van Dolah,
and Zebetakis [1954] experimentally determined that the upward propagation limit
of Hy is 3.1% in pure N,O. Jones and Kerr [1949] found that the upward propagation
limit of NH3 in N,O is 2.6%, considerably leaner than the upward propagation limit
in air, which is 15%.

In their recent report, Cashdollar et al. [1992] found that in Hs-NoO-air mix-

tures, the NoO begins dissociating in the mixture when the Hy concentration exceeds
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10%. They noted the lack of participation of the NyO in leaner mixtures. How-
ever, ammonia-rich samples of the mixtures were not investigated in this study, so
the present report expands the range of mixtures tested to include ammonia rich
mixtures.

Apparently, the differences in the effect of NoO on NH3 and Hy mixtures is due to
several factors. The main factor is temperature. Lean Hy-air flames have a very low
product temperature (< 1100 K) and NoO decomposes slowly under these conditions.
The product temperature of lean NHjz-air flames is much higher and N;O readily
dissociates and reacts under these conditions. In addition, there appears to be some
reactive intermediates characteristic of nitrogen chemistry that play a role in NHs-
N,O combustion which are not a factor for Hy-NoO combustion.

In the present study, we were not equipped to measure chemical composition. The
combustion mechanism could only be evaluated indirectly by considering the overall

reaction mechanism, considered next.

Major Product Models The major products for lean combustion of Ho-NH3-NoO
mixtures are HoO and N,. If complete reaction of Hy and NHs occurs and all the

N5O decomposes, the overall reaction is:

aNH3+ﬁH2+’yNZO—I—(5air—>
(Ga+B8) HoO + (£ +74.798) Ny + (2 4 .216 — 3(3a + 3)) O, (R1)

where one mole of air has been approximated as 0.21 Oy + 0.79 N,. If the NoO does
not react or decompose in the combustion process, which is expected for some of the

lean mixtures, the overall reaction will be
a NH3 + 8 Hy + v NoO + 6 air —
(Ba+ B) HoO + (£ +.798) Ny + (216 — $(3a + ) O5 + v N2O . (R2)
Finally, if the oxidation of the fuel occurs preferentially by NoO rather than O, this

reaction is modified to

OZNH3+6H2+’YNQO+6EHI‘—>
(Ba+ B) HoO + (2a+ ) Na + (v — (Ba+ 3)) N2O + 6 air . (R3)
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The first overall reaction (full dissociation of NyO) corresponds to complete equi-
librium and would be predicted by the usual equilibrium thermodynamic estimates
by codes such as STANJAN [Reynolds, 1986], which is used for this study. A series
of chemical equilibrium computations using a full set of product species and realistic
thermodynamics has been performed using STANJAN. The constant volume, adi-
abatic combustion properties and the Chapman-Jouget detonation properties for a
range of Ho-NH3-NoO-air compositions are given in Appendix E.

However, as discussed below, at low temperatures, the reaction rates are too slow
and NoO does not react. To simulate this, a series of equilibrium calculations were
performed with the NoO frozen, i.e., non-reacting. These computations, as well as
experiments with Ny substituted for NyO, sheds light on the fate of N,O in the
reactions. These overall reaction models can be used to estimate the final pressure in
a constant volume combustion situation. The ideal gas relation, PV = NRT can be
used to find the final pressure Py in terms of Ny, the number of moles remaining in

the system after combustion.

_ N;RT

Py v

(1.2)

The number of moles, Ny, can be estimated by using the overall reaction balances
discussed above, correcting for the condensation of water and resulting vapor pressure
(26 mbar at 22 °C) at the measured temperature 7. This method of analysis is a
better method of determining the participation of NoO than the comparing measured
and predicted peak pressures because the result is not dependent on the heat transfer
rate during the combustion process. However, it does depend on the combustion
being complete in order to get reliable results.

Equilibrium models, though useful for estimating thermodynamic properties of
combustion systems, cannot predict which oxidizer is preferred by the fuels in a
multi-component system. Experimental measurements of the intermediate and prod-
uct species are needed. Modeling based on detailed chemical kinetics considerations
and known elementary reaction rates is a valuable alternative and supplement to

experiments. A brief discussion of the issues is given below.



1.4 Chemical Kinetics

Radicals and reactive intermediates are key factors in determining flammability lim-
its. Only a brief summary of previous results on flame chemistry is given here. A
more detailed study of this aspect of flammability is currently being carried out at
Los Alamos [Breshears, et al., 1996]. The differences in radicals and reactive interme-
diates are one obvious explanation for the differences in the lean flammability limit
of NH3 in air and N,O. At high temperatures (> 1300 K), the primary reactions
[Armitage, and Gray, 1971] responsible for the decomposition of NH3 and Hy are:

OH + NH3; — H,0 + NH, (R4)
OH + Hy — H,O + H . (R5)

These reactions can proceed simultaneously without interfering with each other. It is
known that at lower temperatures (less than 1100 K), the chain branching mechanism

is not as important, but the following reaction
H+ O, +M— HO; + M (R6)

is the primary path for H atom reaction. The primary mechanism for NHs consump-

tion in lower temperature flames appears to be

NH + NO — N,O + Hor N, +0H . (R9)

The decrease in the LFL of NHj, from 15% in air to an estimated 2.6% in N,O, may

be due to the decomposition of NoO in the high temperature NHz flames.
NoO+M — Ny + 0+ M (R10)

and

H + N,O — Ny + OH . (R11)



1.5 Flame Speeds

When predicting the combustion behavior of multiple component mixtures, the flame
speed of the pure mixtures in oxidizer can give some insight into deviation from ideal
behavior. For example, when Hj is mixed with CH4 and burned in air, the difference
in flame speeds causes CHy to act as a diluent for some stoichiometries. Flame speeds
near the lean limit for these fuels are not very well known. Ronney [1987] performed
flame speed measurements for lean NHs-air mixtures in microgravity using the soap
bubble method described in Andrews and Bradley [1978].

4

d

Wy 0.
o)

Flame Front

burned

unburned

Figure 1.1: Radial expansion method for measuring flame velocity.

In the idealized “soap bubble” experiment, the pressure remains constant during
combustion and the flame front is spherical. The flame front expands radially, and it
is assumed that the burned gas inside the flame ball remains stationary. Therefore,
the laminar burning velocity is the difference between the expansion rate of the flame
front, Vy, and the velocity of the unburned reactants. The burning velocity S is

therefore

Sb = Vf — Uu. (13)

The continuity equation may be applied to obtain a relation between the burning

velocity and the expansion rate of the bubble.

puSh = piV, (14)
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where V; is dRy,/dt. The final expression for the burning velocity is

dRy py
Sy = ——. 1.5

The ratio py/p, is the density of the burned material, evaluated by STANJAN
[Reynolds, 1986] at constant pressure, over the density of the reactants at initial
state. Normally this ratio is on the order of 0.2 for the mixtures studied in this
report.

The uncertainty associated with measuring the burning velocity using this method
is almost entirely due to the effect of buoyancy. The flame ball does not remain
spherical, and initially the electrodes interfere with the flame front motion. As shown
in Fig. 1.2 and video frames discussed subsequently, the flame moves upward as well as
outward. The burning velocity was determined by measuring the horizontal growth
of the flame in successive frames of the schlieren system video recording. Despite
the effect of buoyancy, a very linear dependence of R,(t) was observed. An example
of the raw data is shown in Fig. 1.3. The growth data was fit to a linear function
R, = at + b and the slope was interpreted as the flame speed V;. The slope can
be determined quite accurately (the standard error is typically less than 5%) and
the uncertainty in the flame speed is almost entirely due to unquantified effects of
buoyancy. Comparisons with microgravity and two-kernel measurements are quite
favorable.

Flame speed measurements provide a method of comparing reactivity of very
lean mixtures which otherwise may not give much evidence of combustion. The flame
velocity, V7, is also useful for estimating the development of flames in explosion safety

evaluations.



Position, cm

‘\M\
Figure 1.2: Experimentally observed flame development showing a typical buoyant
flame near the flammability limit.

Flectrodes

4.5
4 L
35 ¢
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2

y =27.752x + 1.2881
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Time, s

Figure 1.3: Experimentally measured flame horizontal growth and linear fit. Run
177.
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Chapter 2 Apparatus

The facility (known as CONVOL) uses as a combustion vessel a cylindrical tank with a
volume of 400 liters. The vessel is designed to study the combustion characteristics of
lean flames of various mixtures. It is equipped with a gas dispensing system designed
for the safe handling of combustible and hazardous mixtures. An evacuation and
disposal system is designed to remove combustion products and safely dispose of

unburned fuel. A plan view of the system is shown in Fig. 2.1.

%Mirrors
Vldeo% |l — “

PSS

>=w Gas Supply

-
Spark T : Humidifier
Generator Electrical Box

Light Sourc

\
|J__| Mirror

Figure 2.1: Caltech 400-liter combustion facility.

The system consists of three major parts: 1) the gas handling system; 2) the
pressure vessel and instrumentation; 3) the exhaust system. The gas handling system
consists of a bottle storage area (located outside) and the dispensing/metering system
located in the control room. The pressure vessel and instrumentation includes the

tank and associated control valves, the video system, the ignition systems, and the
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mixing fan. The exhaust system includes the vacuum piping, the pump, and the
sparging system. Instrumentation includes pressure and temperature transducers

and also a data acquisition system.

2.1 Gas Handling System

The bottle farm was constructed with primary consideration given to operator safety
and minimizing the risk to building occupants. The main issues were ignition of the
fuels and operator (or passerby) exposure to ammonia vapor or liquid. The fuels
stored in the area are methane, nitrous oxide, hydrogen, and ammonia. All bottles
are secured with seismic restraints. All tubing is thick-wall stainless steel, connected
by stainless steel Swagelok fittings. All bottles are fitted with two-stage regulators.
To prevent accidental dispensing of these gases in the laboratory, each line is equipped
with an electro-pneumatic valve actuated by a pushbutton switch. If the operator
leaves the control panel, these valves remain closed.

The ammonia is particularly hazardous because it is lammable, corrosive, and
toxic. The ammonia bottle has a special storage cabinet in which the bottle is kept
locked at all times. There is an active exhaust vent in the top of this cabinet to
remove fumes and provide ventilation in the event of an accidental release. A bottle
of nitrogen is attached to the side of the ammonia cabinet which is used to purge the
ammonia line after the end of each day of experimentation.

A plan view of the gas handling system is shown in Fig. 2.2. This figure shows
several of the safety features present in the laboratory. The gas detectors ensure that
the fuel concentration levels present in the room stay below 1/100 of the LFL. In
the event of a release that sets off the detectors, the emergency ventilation system is
automatically activated, and air is exhausted (1500 cfm) through the overhead gas
evacuation vents, shown in Fig. 2.2.

The gas supply system is designed for safe metering of the gases into the pressure
vessel. A schematic of the system is shown in Fig. 2.3. The supply lines are thick-

walled stainless-steel tubing, again connected with Swagelok fittings. Each line is
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Figure 2.2: Explosion Dynamics Laboratory and CONVOL experimental facility.

protected by check valves, labeled “CV” on the schematic. All lines are opened and

closed by stainless steel ball valves (SV1-6) mounted into the control panels.

The

lines converge after these valves, and pass through a needle valve (NV1), another

stainless steel ball valve operated by a key switch (KS1), and into the tank through

the tank isolation valve Al. Position indicators on the electro-pneumatic valves are

interlocked through a logic control circuit to prevent accidental release of gas into the

experimental area.
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Figure 2.3: Schematic of the gas supply system.

2.2 Pressure Vessel

The pressure vessel was moved from Rensselaer Polytechnic Institute, Troy NY, after

being used for experiments described in [Ross, 1993] and in [Krok, 1992]. The vessel

(Fig. 2.4) is 1235-mm long and 711-mm in diameter, cylindrical with elliptical (2:1

aspect ratio) heads. The vessel is constructed of SA-212-B carbon steel, which has a

tensile strength of 70,000 psi. The cylinder is 0.5-in thick and the heads are 0.614-in

thick. The tank was constructed to ASME code rules for unfired pressure vessels and

has a working pressure rating of 612 psi and has been hydrostatically tested to 920

psi.



Figure 2.4: CONVOL pressure vessel.

There are 4 penetrations into the vessel. On the east and west ends, there is a
11-1/4-in OD, 6-1/2-in ID manhole closed with a flat plate and sealed by an O-ring.
All seals used in the facility were made of buna-n, which is recommended for ammonia
service. The plate on the west end of the tank is used for the gas-feed penetration.
Here the gas-feed line, the ammonia vacuum line, and the main vacuum line are
connected to the tank. The plate on the east end holds the support for the ignition
source. There is a 10-3/4-in by 19-in manhole on the south side of the tank and a
6-in, Schedule 80 flange on the north side.

The electric spark generator is designed to store 10 J of energy, the amount de-
livered to the reactants is somewhat smaller. The spark gap is located near the tank
center within the field of view of the video system. The electrodes are each 3.2 mm
in diameter and 50-mm long, so the flame ball can expand with minimal interference
from the electrode supports. The cathode of the spark source is a modified automo-
tive spark plug which has the anode removed and a piece of steel rod welded onto the

spark electrode. The spark plug is then threaded into a Teflon cap, which is sealed
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on the end of a 50-cm section of schedule 80 stainless steel pipe. The opposite end
of this pipe is threaded with 1-1/4 pipe thread and screwed into the end cap on the
tank. This provides a sturdy support for the spark assembly. The anode is a 4-inch
stainless steel, 6-32 threaded rod screwed to a frame constructed to keep the anode
centered with the cathode. The electrode spacing or gap for these experiments is 6.35

mm. A schematic of the system is shown in Fig. 2.5.
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Figure 2.5: Ignition system for 10-J, 100 us spark generation.

The power for the spark is provided by a capacitor discharge system which consists
of two parts, an EG&G TM-11A Trigger Module, and a 0.5-uF capacitor charged by
a Hipotronics 15 kV power supply. The circuit is similar to the design described in
Ronney [1985]. When the system is turned on, the Hipotronics power supply charges
the capacitor through charging resistor R1 and diode D1. Diode D2 prevents the
charging current from being diverted through the TM-11 output transformer.

When the fire button on the control panel is depressed, the TM-11 is triggered
producing a 30-kV pulse that passes through D2, but is blocked by D1. This pulse
of about 10 mJ initiates the discharge across the gap. This provides a conduction
path for the charge stored in the capacitor, and the main discharge occurs through
R2 and the gap. Resistor R2 is chosen to give a time constant of about 100 us, since
this has been found to be most effective in initiating flames. The diode D2 prevents

the capacitor from discharging into the TM-11 after the spark gap ceases conducting.
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After the capacitor is discharged, the power supply then recharges it after a time
constant of 5 seconds.

The penetration on the north end of the tank is closed by flange attached with
6, 7/8” UNC bolts on a 9.0-inch diameter bolt circle. On this flange is mounted a
6-inch diameter, 1.0-inch thick, 4.5-inch clear aperture BK-7 glass window used for
the schlieren system. The second window for the schlieren system is located at the
center of the access cover on the south side of the tank. A penetration for the mixer
fan is located to the left of the window, and a hole for the pressure transducer to the
right. The mixer fan is constructed of a Parr model A1120HC magnetic drive driven
by a universal motor. The motor was run at about 250 rpm for all of the experiments.
The impeller is simply two 8-in. blades mounted at a pitch angle of 45 degrees. The
magnetic drive is connected to the motor by a belt and pulley system. The motor
speed can be adjusted by a light-dimmer control.

A small penetration on the lower south end of the tank was used to support a
diesel engine glow plug near the spark source at the center of the tank. The plug is
mounted in a fixture and supported by a 19-inch length of 1-inch diameter schedule-80
pipe. The glow plug is used in the event that the spark source fails and a flammable
mixture remains inside the tank. The glow plug is powered by a DC power supply

that can be activated from the control room.

2.3 Vacuum System

A special exhaust and vacuum system was constructed to contain the ammonia mix-
tures and prevent gas releases/operator exposure. A schematic of the system is shown
in Fig. 2.6. An important feature is a sparger which scrubs the gases of the ammo-
nia before venting to the atmosphere. The sparger is a 5-gallon stainless-steel tank
with an O-ring-sealed cover. A bubbler, consisting of a 10-inch length of PVC pipe
drilled with 36 3-mm diameter holes, was installed in the bottom of the tank. During
operation, the exhaust gases from the experiment are pumped through the bubbler,

the sparger, and out the main exhaust vent to the roof level. Each day, the sparger
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Figure 2.6: Ammonia exhaust system.

is inspected for pH level by an indicator strip. If the pH of the sparger solution is 10
or above, a weak acid (like vinegar) is added to neutralize the solution below to 9.
The drain valve is then opened, and the mixture is then disposed of into the sewer. A
stream of industrial water is injected into the drain with the sparger waste to dilute
the mixture further.

All the plumbing used in the system is CPVC, except for the valves and nipples
near the vacuum pump, which are stainless steel. The pump is a Sargent-Welch
1397 with a 17.7 c¢fm capacity, modified by sealing the exhaust and installing a water
drain in the bottom. Since the condensates removed from the tank may contain
ammonia, they were not trapped from the exhaust with the cold trap, and would
become emulsified in the vacuum pump oil. Also, since the ammonia apparently
chemically reacts with the pump oil, this necessitated changing the oil very frequently

(every 10 tests when large concentrations of ammonia were used).
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2.4 Instrumentation

The CONVOL combustion facility was instrumented with pressure and temperature
sensors, as well as a schlieren video system for observing the flame initiation and
measuring the flame motion. The location of the sensors is shown in Fig. 2.7. There
are two pressure-measuring-devices in use, one static gauge for metering the reactants
and measuring the final pressure of the products, and another dynamic gauge used
to monitor the tank pressure during the combustion event. The metering gauge
is a Heise model 901A digital pressure indicator with a 0-250 kPa range, and an
accuracy of +0.18 kPa (absolute). The gauge used to measure the pressure during
the combustion process is a Kulite model XTME-190-250A. This is a piezoresistive
type transducer which has a combined nonlinearity, hysteresis, and repeatability of
2.5 kPa. Calibration information is attached in Appendix D. This transducer is
protected by two porous metal frits, which are sufficient to shield the instrument

from temperature but do not affect the pressure reading.
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Figure 2.7: Pressure and temperature sensor location.

A thermocouple is installed 75 mm above the center of the spark source. This
is an Omega K type thermocouple with a 0.125-in. metal sheath. Each wire is 24
AWG, and the weld bead size is approximately 1.5 mm. The thermocouple output is
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used to detect the presence of the flame ball as it rises from the spark source. The
thermocouple output is also used for measuring the initial and final temperature of
the tank contents. An Omega Model DP462 electronic cold-junction and temperature
readout was used to convert the thermocouple output to temperature.

The flame ball is observed with a CCD camera at the output of a schlieren system
and recorded with a Panasonic Model 1970 VHS system. The optical system is shown
in Fig. 2.8. The primary components are the light source, two focusing mirrors, a
turning mirror, a knife edge, and the video camera. The light source is an Oriel
continuous filament-lamp, with a focusing lens and a pin hole to make a spherically
diverging beam. Mirror 1 is an 8-inch diameter, spherical collimating mirror with a
focal length of 1.473 m. This is mounted to the north wall of the experimental room,
and adjusted so that a collimated beam of light passes through the center line of the
tank. Mirror 2 (flat) is located 20 inches from the south window of the tank, and
rotates the beam 45 degrees, diverting it to the second focusing mirror, 3, located on
the west wall. The beam is focused on the knife edge 78 in. from mirror 3, and the
light is directed into the CCD camera. The lens on the camera is a Fujinon model
C6X18G-1 television zoom lens with a 6x zoom ratio and a 108-mm focal length.
The camera is a Sony CCD model DXC-107A. The framing rate is a 2:1 interlace, 30
frames/sec, which translates into a frame every 16.67 ms. The camera is equipped
with an electronic shutter, and the shutter speed of 1/10,000 s was used in the present

study.

2.5 Data Acquisition

The pressure and temperature signals were recorded by Labview data acquisition
software running on a Gateway P5-100 personal computer. Both the temperature
and pressure signals were amplified by signal amplifiers. The thermocouple trace was
amplified by a Trig-Tek model 205b, with gain of 100. The tank pressure signal is
amplified by a Dynamics 7600A signal conditioner with a gain of 50. Signals are
digitized by a National Instruments AT-MIO-64E-3 multi-purpose board sampling at
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Figure 2.8: Layout of optical path and video equipment.

a rate of 1000 measurements per second. The data acquisition system was triggered
by the fire control button for the spark source. The system records data for 16 seconds

following the trigger command.



21

Chapter 3 Experimental Procedure

Each test conducted in the CONVOL facility had an initial pressure of 100 kPa and
an initial temperature close to ambient. The mixtures were prepared by metering the
gases by method of partial pressures. Checklists were used to ensure that startup,
operation, and shutdown tasks were completed. Since the experiment involves many
valves, the use of lists ensured that they were opened and closed in specific order.
The checklists used in the experiment are shown in Appendix C.

The operator first selects the composition of the mixture and computes the cor-
responding partial pressures of each component. In the present experiment, the mix-
tures contained Hsy, Ny, NoO, CHy, NHj, and the balance was air. The experiment
begins by evacuation of the system and zeroing of the pressure transducer. First,
the gas supply plumbing is evacuated and the Heise gauge is set to zero. Second,
the tank is evacuated until the pressure approaches .03 to .05 kPa, and the dynamic
pressure transducer is zeroed. The operator then isolates the tank from the vacuum
pump, and opens the tank air-bleed-up valve. Air is introduced into the tank until
the pressure is close to the partial pressure of the air required for the experiment.
The bleed-up valve is then closed, and the mixer fan is run to bring the air to thermal
equilibrium with the tank. The final increment of air is dispensed using the supply
system controls and the house compressed air. The temperature of the room air is
then recorded. For this series of experiments, the temperature was normally between
21°C and 27°C. The relative humidity of the room air is controlled between 40 and
50%.

Once the air has equilibrated and the tank pressure has stabilized, the remainder
of the gases are dispensed into the tank. Each gas is metered in to 0.15 kPa less
than the precalculated value to account for the gas trapped in the supply lines. It
was determined that the volume of the gas feed lines is approximately 0.15% of the

volume of the tank. The gases are introduced in this order: air, NoO, NHj3, CHy,
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and Hs. Once the the tank has been filled, the tank isolation valve Al is closed and

the mixer is run for two minutes. If the experiment is to attempt a quiescent burn,

then the mixer is turned off and the reactants are allowed to settle for one minute.
The gas motion can be observed with the schlieren system. If the experiment is to
attempt a turbulent burn, then the mixer fan runs throughout the test.

Just prior to ignition, the initial tank temperature is recorded, and the spark
system is armed. After arming the data acquisition system (which is triggered by the
firing circuit), and starting the video recorder, the fire button is pressed to create the
spark discharge. The operator observes the video to determine if ignition took place.
If the reactants do not ignite, he waits 5 to 10 seconds and presses the fire button
again. This is repeated 4 to 6 times. If no burn is observed, he opens the tank valve
and measures the pressure with the Heise gauge and the temperature with the in-tank
thermocouple. The tank is then closed off and the mixer turned on. After resetting
the DAS and cuing the video, the ignition procedure is repeated. If the reactants
do not burn turbulently, fuel is added (usually Hs) and the ignition procedure is
repeated. The mixing fan is allowed to run to cool the combustion products. Once
the temperature decreases to ~ 30 °C, the fan is stopped and the main tank valve
opened. The final pressure is recorded on the metering gauge.

After the final temperature and pressure are recorded, the NH3 vacuum system
is then opened and the products are removed from the tank and vented through the
sparger. The video records the time interval from about 5 seconds before ignition to

10 seconds after.

3.1 Test Conditions

The mixtures chosen for the study were all relevant to the Hanford Waste Tank
Storage Facility, so the basic constituents were Hy, NH3, and methane. The oxidizers
used are air and N,O, the diluent used is nitrogen. For a complete listing of test
composition, refer to Appendix A. The tests were sequentially numbered starting

with 1 and are referred to by this number, also known as the “run number.” In some
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cases, several ignition trials were made for a given mixture and the designator for
each trial consists of the run number and an alpha suffix.

Tests previously conducted at the Bureau of Mines [Cashdollar, et al., 1992] on
similar mixtures indicate that the NoO does not participate in the combustion process
with lean mixtures. This motivated detailed consideration of the effect of NoO on
lean Hs-air mixtures. The tests carried out can be divided into the following series:
1) Ho-NO-air, 2) NHgs-air, 3) Hyo-NHs-air, and 4) Hy-NoO-NHj-air mixtures (four
sets) with various proportions of air. In some cases, nitrogen was substituted for the
N2O to determine the participation of the NoO in the combustion process. For the
H,-N,O series, the Hy concentrations were fixed at 8 and 9%, with amounts of NoO
varying from 0 to 32%. A total of 13 tests were conducted with these mixtures. The
objective of this test series was to determine if the presence of the N,O affects the
downward lean flammability limit of Hy-air mixtures.

The Hy-NHjz-air tests were used to determine the lean flammability limits of the
binary mixture. Both the upward and downward propagation limits were determined.
A total of 43 tests were performed. Tests 25-37 and 96-125 (see the tables in Ap-
pendix A) are designed to test the linear lean flammability rule of Le Chatelier. The
flammability limit was bracketed by varying the Hy concentration in one percent in-
crements. The NH3-N,O test series examines lean NHz-air mixtures with 4 and 8%
added N,O. Sixteen experiments were conducted with added N,O. Peak pressures
and flame speeds were measured to determine the lean limit for both upward and
downward propagation.

Of particular interest were “fuel” blends comprised of Hy-NoO-NH3 mixtures. A
matrix of “fuel” compositions was chosen to cover a broad range of NH3-Hy ratios.
Four mixtures, defined in Table 3.1, were selected from the cases initially examined
in the parametric study of Appendix E. These mixtures are labeled A, B, C and
D and the corresponding numeric identifiers of Appendix E are given in Table 3.1.
In addition to experimentally determining the peak pressure and pressure history
of these mixtures, the objective of these experiments is to determine thresholds of

participation for the NoO in the combustion process.
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Table 3.1: Compositions for the Ho-NoO-NHj3 tests. Designator in parentheses refers
to Appendix E.

Mixture | % Hydrogen | % Nitrous Oxide | % Ammonia
A (26) 42 36 21
B (11) 35 35 30
C (12) 2% % 50
D (20) 16.7 33.3 50

note: Mixture A included 1% Methane

Forty-five experiments were performed for mixture A, the conservative estimate
for the gas release in Tank 101-SY. The release gas simulant is composed of 42% Ha,
36% N0, 21% NHs, and 1% methane. In this experiment, turbulent combustion
tests were performed from the point of no flame propagation up to 30% “fuel” in air.
To determine the N,O participation threshold, nitrogen was substituted for the N,O
for 12 of these tests. These experiments were used to locate the NoO participation
threshold. Finally, seventeen quiescent tests performed on this mixture, which were
used to estimate the propagation limits and the flame speed.

Fifteen experiments were executed for mixture B, which contains 35% H,, 35%
N,O, and 30% NHj. Quiescent, turbulent, and nitrogen substitution tests were con-
ducted for all of these compositions. Eighteen experiments were done on mixture C,
composed of 25% Hy, 25% N3O, and 50% NHj. Finally, seventeen tests were per-
formed on mixture D, containing 16.7% Hs, 33.3% N,O, and 50% NH;s. The primary
objective is to cover a range of Ho-NHj3 ratios to adequately test the participation
of the N5O in the combustion process. The mixtures studied can be represented by
lines on a Hy-NH3 composition plane, shown in Fig. 3.1.

The above tests composed the majority of the experiments performed. There was
also a humidity study which was done for selected Hs-air cases, and two cases using
mixture D. The air was saturated by use of a sparger (of similar design to the one used
in the vacuum exhaust) containing water at 50 °C. The air was drawn through the
sparger before entering the tank to ensure saturation. Eleven tests were conducted

on the humidity experiment. Four on Hs-air (dry), five on Hy- air (saturated), and
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Figure 3.1: Mixtures examined in N5O reactivity test series.

two on mixture D.

Finally, other miscellaneous tests performed include CHy-air, and a mixture mod-
eled after the retained gas sampler container [Shepherd and Ross, 1995]. For the
CHjy-air case, the upward flammability limit was verified as 5.5% CHy. The down-
ward propagation limit was found for the retained gas sampler mixture, composed of
33% Ha, 53% N,0O, and 14% NHs. Runs 38 - 44 (seven total) were performed for the

retained gas sampler study.
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Chapter 4 Results

The key results of the experiments are summarized in this chapter. A full listing
of all experiments and key data are given in Appendix A. A complete set of data
plots is given in Appendix F. The flame speed data are supplied in tabular format in

Appendix B.

4.1 HQ-NQ O-Air

A series of tests were conducted to investigate the influence of NoO addition on Ha-
air mixtures near the downward propagation limit of Hy (8 - 9%). The relevant run
numbers are 11 - 24. The concentrations of N,O tested were 8, 12, 16, 24, and 32%,
and the balance of the mixture was air and Hy. Peak pressures as a function of N,O
concentration are shown in Fig. 4.1 for the 8% Hy tests. All of these cases were
ignited in a quiescent mixture, but turbulent motion was needed to propagate the
flame throughout the volume and consume all of the fuel. In a quiescent mixture, a
rising flame “ball” of limited extent (see Fig. 1.2) was produced. The flame quenched
when it reach the top of the vessel so that only a small portion of the mixture actually
burned. The pressure rise in those cases was extremely low, usually on the order of
0.1 bar.

Figure 4.1 reports the results of burns in turbulent mixtures. The results are
compared with equilibrium adiabatic pressure computed by STANJAN. Various as-
sumptions were made about the reaction of NoO were made in these computations.
The solid line represents a full dissociation of the NyO, the middle line the Hy only
reacting with N,O, and finally, the small dashed line with negative slope shows the
pressure for no reaction with NoO or dissociation, only reaction with oxygen.

Figure 4.2 shows the pressure histories as a function of time for selected 8% H,

cases. The pressure histories are independent of NoO concentration up to 32%. We
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Figure 4.1: Peak pressure vs. NyO concentration of 8% H, mixtures. The trend
indicates little or no participation of the NoO in the combustion process, especially
no dissociation of the N,O.

conclude that the molecular O, is serving as the oxidizer rather than the oxygen
in the NoO and that the NoO does not decompose. This is confirmed by the final
pressure results shown in Fig. 4.3. The final pressures are essentially independent
of the NoO concentration. The final pressures were estimated by constant volume
equilibrium computations using the measured final temperature of about 30 °C. The
three estimates shown correspond with full dissociation of the NoO, Hy reacting with
the N5O only, and Hs reacting only with the O5 molecules.

Similar tests with the Hy concentration fixed at 9% were also performed using the
same procedure. These cases, unlike the 8% cases, completely burned the tank con-
tents under quiescent initial conditions. The measured peak pressures and computed
adiabats are shown in Fig. 4.4. The adiabats were computed in the same manner as
the 8% case. Here, a greater variation is observed with increasing NoO concentrations.
The pressure histories, shown in Fig. 4.5, are not coincident as in the 8% case. The
measured and estimated final pressures vs concentration plot is shown in (Fig. 4.6).

indicate minimal participation of the N5O in the combustion process.
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Figure 4.2: Pressure vs. time for the 8% H, in NyO-air mixture. The fact that the
histories overlap indicates the inert character of the NoO in these mixtures.
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Figure 4.3: Final pressure vs. concentration of NoO for 8% Hj in air. This affirms
the hypothesis that minimal dissociation of the N5O occurs.
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Figure 4.4: Peak pressure vs. concentration of NoO for 9% H, in air, quiescent com-
bustion.
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Figure 4.5: Pressure vs. time for 9% H, in NyO-air mixture, quiescent combustion.
Results indicate consistent peak values, but more variation in the histories than was
observed in the 8% Ha, turbulent case.
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Figure 4.6: Final pressure vs. concentration of NoO for 9% H, in air, quiescent com-
bustion.
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4.2 IQHg-Hg-KII‘

A series of experiments were designed to compare the flammability limits in the Cal-
tech CONVOL vessel with those published in earlier work [Coward and Jones, 1952,
Fenton, et al., 1995]. Experiments 25 - 37 and 96 - 125 were conducted to test the
applicability of Le Chatelier’s principle for the NH3-Hs-air mixture. Published NHj-
air lean flammability limits were also verified. Measured peak pressures are shown
in Fig. 4.7. The leanest mixture that would propagate throughout the vessel under
quiescent conditions is 18%, which corresponds to the accepted value of the hori-
zontal propagation limit (18.2%, [Coward and Jones, 1952]). The minimum NHj -air
mixture concentration that would burn turbulently is 15%, which is close to the ac-
cepted value (16.1%, [Coward and Jones, 1952]) for the upward propagation limit.
A propagating reaction was observed with the schlieren system at the 14% NHj
level. This is below most accepted values of upward propagation of NHs-air listed
in [Fenton, et al., 1995], but our schlieren system is substantially more sensitive than

previous techniques used to establish limits. No reaction was detected at 13%.
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Figure 4.7: Peak pressure vs. concentration of NH3 in air. Quiescent and turbulent
cases.

Pressure histories are shown in Fig. 4.8 and flame speeds are shown in Fig. 4.9.
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Figure 4.8: Pressure histories vs. time of NHj in air. Quiescent combustion. Results
show a marginal burn at 18% NHj, which agrees with the downward limit published

in the literature.

Data from Ronney’s study (1988) of NHs-air flames in microgravity are also shown.
The uncertainty in the burning velocity using our technique has not been quantified,
but this comparison shows that our values are within +1 c¢m/s of the microgravity
measurements.

To complete this study, we examined the upward and downward propagation
lean limits for the binary fuel Hy-NH3. The concentration of Hy was varied in 2%
increments and the NHjz in 1% increments. Using Le Chatelier’s rule as a guide,
the upward and downward propagation limits were bracketed. Results are shown in
Fig. 4.10. The data symbols in this graph indicate the experimental conditions closest
to the lean combustion phenomenon. The linear Hyo-NHj relationship for the limits

indicate that Le Chatelier’s rule for binary mixtures is appropriate for this system.
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Figure 4.10: Upward and downward propagation limits for NHs-Hs-air mixtures.
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NH;-air-N,O tests were conducted over the range of 12-18% NHj. Two N,O concen-
trations were used, 4% and 8%. All of these tests were carried out with quiescent
initial conditions. Seventeen tests (175 - 179, and 186 - 197) were conducted. Peak
pressure results are shown in Fig. 4.11. The peak pressure results for NHs-air are also
shown. The results indicate that the downward propagation limit of NHj is decreased

as NoO is added to the mixture.
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Figure 4.11: Peak pressure vs. NH3 concentration for NH3-N5O-air mixtures.

Addition of N5O resulted in a significant increase in the peak pressures for a given
NH; concentration. The downward propagation limit decreased from 18% NHj to
15% with the addition of 8% NyO. The peak pressures are still substantially lower
(1-2 bars) than the computed adiabatic values, indicating that heat transfer and/or
partial flame propagation through the volume occurred. We attribute the decrease in
the downward limit as being due to an increase in the temperature of the combustion
products as a result of NoO addition. Burning velocity and density ratio (p./pp) both
increase with increasing flame temperature. This results in a higher value of apparent

flame speed, dR/dt, and enhanced propagation. We expect that addition of larger
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amounts of NoO will have an even greater effect on the downward flammability limit of
NH;-air. This explanation is based on the result of Jones and Kerr [1949] who found

a downward flammability limit of 7% NHj in pure N,O. Craven and Grieg (1968)

were able to obtain a detonation in a 3-in. diameter, 100-foot-long pipe with 12%
NHj in NoO mixture. On the other hand, there have been no reported detonations in
stoichiometric NHz-air mixtures. Extrapolation of Os-enriched No-Oo-NH3z mixture
data indicates a cell width of about 60 cm, comparable to stoichiometric CHy-air
mixtures, which are very difficult to detonate [Benz, 1988].

The pressure histories for 4 and 8% N,O addition are shown in Figs. 4.12 and
4.13.
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Figure 4.12: Pressure histories of NH3-NoO-air, 4% N,O.

The burning velocities are summarized in Fig. 4.14. The addition of the N5O
appears to increase the burning velocity by a factor of 2 with the 8% N,O from
the NHs-air case. The burning velocity is approximately 4 cm/sec at the downward

propagation limit for this mixture.
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4.4 H2-N20-NH3 Mixtures

In previous tests discussed in Section 4.1, it was shown that near the lean limit of Ha (8-
9%), replacing air with NoO had little effect. This is shown graphically in Fig. 4.15.
However, near the lean limit of NH3, the NyO was found to participate readily in the
reaction and substantially influences the lean limit, as shown in Fig. 4.16. Based on
our results and data of previous investigations, a simple picture of the propagation
limits emerges. In this approximate model the downward propagation limit for both

the Hy and the NHj3 decreases linearly with the NoO concentration:

Xu,ppr, = 0.08—0.02Xn,0 (4.1)
Xnmsppr = 0.18 = 0.15X 0. (4.2)

These are the approximations to the experimentally measured limits [Scott, et al., 1954,

Jones and Kerr, 1949].
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Figure 4.15: Propagation limits for lean Hy-N5O-air mixtures
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Figure 4.16: Propagation limits for lean NH3-N5O-air mixtures

In the absence of NyO the present results imply that Le Chatelier’s rule applies
to the Ho-NHgs-air system. Making the admittedly crude approximation that this
also applies to systems with added N,O, the approximate limiting compositions for
downward propagation can be estimated as shown in Fig. 4.17 and 4.18. Added N5;O
clearly sensitizes all mixtures, but as observed in the experiments, has a much greater
effect on the NHz-air mixtures.

In order to examine the effect of NoO addition systematically, four compositions
were chosen for further study, described previously in Table 3.1. A series of tests
were carried out to study the combination of each mixture with various amounts of
air. The upward and downward propagation limits were measured for each mixture.
Burning velocities were measured in quiescent mixtures. Peak and final pressures
were measured for turbulent burns. Some tests are repeated with No substituted for
the N5O to identify the participation limit of the NoO. These points are indicated by

the open symbols on the peak and final pressure graphs.
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4.5 Mixture A - 101-SY Estimate

Mixture A is a conservative estimate of the release gas composition from Tank 101-
SY. The fuel composition is: 42% Ha; 36% N2O; 21% NH;; and 1% CHy. Since this
tank has been considered extensively in safety assessments, we have done a thorough
study of the combustion behavior of this composition mixed with air. The mixture
was burned under turbulent conditions in tests with between 7% to 30% mixture in
air. Runs 51 - 95 were dedicated to studying mixture A. Nineteen experiments were
conducted with the mixer fan on (turbulent burns). Seventeen experiments were
quiescent and ten were turbulent conducted with Ny substituted for the N,O. Results

are plotted in Fig. 4.19.
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Figure 4.19: Mixture A. Peak pressure vs. concentration. Quiescent, turbulent, and
turbulent with N, substituted for NoO results are shown.

This figure and the final pressure results in Fig. 4.23 clearly indicate at 13% fuel,
the NyO begins participating in the combustion process. This is reflected in the
pressure histories shown in Figs. 4.20-4.22. The dramatic change in pressure signal at
the downward propagation limit is demonstrated in Fig. 4.20, where a complete burn
is observed in the tank for 16% mixture. Further investigation showed the downward

flammability limit to be closer to 15.25% (see runs 63, 64).
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Figure 4.20: Mixture A. Pressure vs. time plots for quiescent cases. These include
cases from 14 to 17% mixture, the lean flammability limit was determined to be near
15.25% for this mixture.

Figures 4.21 and 4.22 show a composite of pressure histories for mixture A, with
fuel concentrations between 10% to 30% and the fan operating (turbulent burns).

The final pressure is shown as a function of concentration in Fig. 4.23. The dashed
line is the value of the final equilibrium pressure predicted by STANJAN if the N,O
is inert, and the solid line corresponds with complete combustion. Only turbulent
cases are plotted.

Figure 4.24 shows the burning velocity vs. concentration curve for mixture A.
A burning velocity of 4 cm/s is measured at the downward propagation limit. For
mixture A, the upward propagation limit is at 8%. No ignition was detected by the
schlieren system at 7%. The downward propagation limit is 15.25%, where the flame
propagated through the tank in a laminar fashion. Finally, the NoO participation
limit is near 13%, where peak and final pressure differences from the turbulent burns
with and without NoO are first observed.

Le Chatelier’s rule based on the measured Hs-NHjz-air limits predicts the upward

and downward limits reasonably well for this mixture. (see Fig. 4.34) The downward
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Figure 4.21: Mixture A. Pressure vs. time curves for lean turbulent cases (10 - 18%).

limit is slightly displaced from the limit line at 15.25% because N,O is participating

at this point and this affects the downward propagation limit.
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Figure 4.22: Mixture A. Pressure vs. time curves for richer turbulent cases (20 - 30%).
The 30% case is offset because the spark generator did not ignite the mixture on the
first attempt.
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Figure 4.23: Mixture A. Final pressure vs. concentration for conservative estimate of
release gas in tank 101-SY.
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Figure 4.24: Mixture A. Burning velocity vs. concentration of fuel in air.
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4.5.1 Mixtures B, C, and D

In order to more completely characterize the Ho-NoO-NHj3 compositions, three other

mixtures were tested.

Mixture B The fuel composition of mixture B was 35% Hs, 35% N,O, 30% NHs.
This mixture has a higher NH3 to Hy ratio (approximately 1:1) than mixture A.
Sixteen experiments on mixture B were conducted. Four were turbulent, seven were
quiescent, and five were turbulent with Ny substituted for the N5O.

Peak pressure vs concentration is shown in Fig. 4.25 for turbulent and quiescent
cases. These results indicate that the downward limit is near 15%, and the N,O
participation limit is also close to 15%. The upward propagation limit, determined

by the schlieren system, was about 9%.
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Figure 4.25: Mixture B. Peak pressure vs. composition. Fuel composition: 35% Ha,
35% N»O, 30% NH;.

Final pressures vs. concentrations for mixture B are shown in Fig. 4.26. Figure
4.27 shows the burning velocity vs. concentration curve for mixture B. The velocity

corresponding to the downward propagation limit is about 4.5 cm/sec.
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Figure 4.26: Mixture B. Final pressure vs. concentration. Fuel composition: 35% Ha,
35% N,O, 30% NH;.

12 p 2

10

oo
L]

Buming Velocity, cmy/s
IN )

8 10 12 14 16 18 20 22 24

Concentration, % Fuel

Figure 4.27: Mixture B: Burning velocity vs. composition. Fuel composition: 35%
H,, 35% N30, 30% NHs.
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Mixture C Overall, 17 experiments were conducted with mixture C, composed of
25% H,, 25% N,O, and 50% NHs. Six were turbulent burns, five were turbulent

without N»,O, and six were quiescent.
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Figure 4.28: Mixture C. Peak pressure vs. composition. Fuel composition: 25% Ha,
25% N»O, 50% NHs;.

Peak pressure vs. composition results for mixture C are shown in Fig. 4.28. The
lean upward propagation limit is 10%, 9% and lower concentrations resulted in no
flame detection by the schlieren system. The downward propagation limit is close to
16%. The mixture at which the N,O participates is 13% fuel in air. This result is
also supported by the final pressure vs. concentration graph for mixture C, shown in
Fig. 4.29. The flame speed vs. concentration graph is shown in Fig. 4.30. The flame

speed at the downward propagation limit for this mixture is about 5 cm/sec.
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Figure 4.30: Mixture C. Burning velocity vs. composition. Fuel composition: 25%
H,, 25% N0, 50% NHs.
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Mixture D The final Hy-NoO-NH3; mixture tested was mixture D, composed of
16.7% Ha, 33.3% N0, and 50% NHs. This mixture contains an NH3/H, ratio of 3:1.
The peak pressure plot is shown in Fig. 4.31. A total of 18 tests were run for this
mixture, four turbulent, eight quiescent, four turbulent with Ny substituted for the

N>O and two quiescent runs made with humidified air.
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Figure 4.31: Mixture D. Peak pressure vs. composition. Fuel composition: 16.7% Ha,
33.3% N30, 50% NH;.

The peak pressure results indicate a downward propagation limit of 20%. The
N,O participation limit is 15%, indicating that flames close to the upward limit are
hot enough to dissociate the NO. Inspection of the schlieren photograph indicates
that the upward propagation limit is 12%.

The corresponding final pressure vs. concentration graph for mixture D is shown
in Fig. 4.32. The burning velocity vs. concentration graph is shown in Fig. 4.33. The

downward propagation limit corresponds with a velocity of about 5 cm/sec.
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4.6 N,O Participation

The study of the combustion characteristics of quaternary mixture of Hy-NoO-NHjy
and air indicated that the NoO does not participate in the combustion process for
all mixtures. Hydrogen-rich mixtures did not burn NoO below the downward lean
limit, but the NoO participated in the combustion of NHs-rich mixtures. Figure 4.34
summarizes these results for both the flammability and the NoO participation limits

based on the present experiments.

- 1000 K
— - —1100K

— — 1200K

o0  Measured DPL
® Measured UPL

A Measured N20O

Jm‘ Participation
|Mixture D,

Hydrogen, %
o

0 2 4 6 8 10 12 14 16 18

Ammonia, %

Figure 4.34: N,O participation and propagation limits for a quaternary mixture of Hy,

N5O, NH;3, and air. The propagation limit lines shown are for the ternary mixtures
of Hy-NHj-air.

The straight lines radiating from the origin are lines of constant Hy/NHj ratio
associated with the quaternary mixtures studied in this report. The dashed lines are
constant pressure isotherms calculated for the temperatures indicated in the legend.
These isotherms are calculated using STANJAN with frozen (non-reactive) NyO. The
triangles are observed N,O participation points interpreted from the data presented
in this chapter.

This chart shows a correlation between the adiabatic flame temperature and the

NoO participation points. For mixtures with a constant pressure adiabatic flame
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temperature higher than 1300 K, the N,O participates in the combustion process.
Mixtures which have an adiabatic flame temperature nearer to 1000 K can be approx-
imated by treating the NoO as inert in the equilibrium calculation. The existence of
a limiting flame temperature is consistent with the observations of Breshears [1996]
as discussed in Chapter 2. The upward and downward propagation limits for Ho-NHj
mixtures are shown, and each of the four quaternary mixtures are also shown. As dis-
cussed previously, the predictions of Le Chatelier’s rule are in reasonable agreement
with the experimental data and the discrepancies can be explained by the participa-

tion of NoO in the combustion process with increasing amounts of NHs.

4.7 Effect of Humidity

Ten experiments were also conducted to determine the effect of the humidity on the
lean combustion properties of these mixtures. Runs 197 - 206 were designed to obtain
burning velocities for Hy-air mixtures. Four experiments were run at 45% humidity,
9, 8, 6, and 4% H, in air. An additional four experiments were run with the same
H, concentration, only the air used in the reactants was saturated (100% humidity).
The measured burning velocity is shown in Fig. 4.35 and compared with the previous
results [Koroll, et al., 1993] obtained with a two-kernel method. Note that there is
no observable effect of the humidity on the flame speed and our results are in good
agreement with Koroll et al.’s data at 8% and 9% H,.

Two runs were conducted with the composition of mixture D and saturated air.
The saturated case took slightly longer (10%) to reach peak pressure than the 45%
R.H. case (see Fig. 4.36).

There were no significant differences in peak pressure or burning velocity for these
limited variations in humidity. Experiments by [Koroll, et al., 1993] on Hs-air mix-
tures indicate that in order to change the burning velocity by a substantial amount,
much larger (20 to 30%) amounts of water vapor are needed. Extensive studies
[Kumar, et al., 1983] on Ha-air-steam flammability have also shown a very slight ef-

fect of steam concentration on the flammability limit up to the inerting concentration
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Figure 4.35: Burning velocity vs. Hy concentration. Humidity has no significant effect
on burning velocity at room temperature.

of about 60%.
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4.8 Video Observations

The schlieren system output was recorded by a Panasonic 1970 video recording sys-
tem. Later, after the experiment was over, an Epix video digitizer board was used to
grab a series of frames from the tape playback. We have chosen frames that illustrate

the range of combustion phenomena observed in these experiments.

A typical laminar flame is shown in Fig. 4.37. This case is 20% NH;3 in air. The
flame front is smooth and spherical. A dimple produced by buoyancy is observed at
the bottom of the flame in the last two frames. Turbulent motion induced by the
mixing fan has the effect of distorting and rapidly convecting the flame away from
the ignition point. Figure 4.38 shows a frame sequence for a mixture of 18% NHj in
air. A highly wrinkled flame front is seen in all frames.

For rich mixtures, the instability of the flame results in a cellular structure visible
as bright lines on the flame surface. This is observed in Fig. 4.39 for a quiescent burn
of 20% of Mixture B in air. An unusual case is seen in Fig. 4.40, 15.5% mixture A
in air, close to the downward propagation limit. The flow produced by the buoyant
rise of the flame results in a low-speed wake above the electrodes. The flame can be
observed to propagate back down this wake and stabilize just above the electrodes.
Therefore, in this case the electrodes are acting as a flame holder. Note that frame e
is taken 2 s after frame d.

Figure 4.41 shows a sequence of frames for mixture C at 10%. This flame is
slightly above the upward propagation limit and the distorting effects of buoyancy
are clearly visible. Figure 4.42 shows a sequence of frames for mixture C at 9%. This
flame is just below the upward propagating limit. In comparison with the 10% case,
the flame has clearly stopped growing radially after the first three frames. The radial
velocity is less than 1 cm/s in the last frame. The boundary between the products
and the surroundings becomes indistinct, indicating that combustion has ceased. For
comparison, a spark in an inert atmosphere is shown in Figure 4.43. The apparent
decrease in size from frame a) to frame b) is an artifact resulting from the camera

“blooming” when suddenly over-exposed by the luminosity of the electric discharge.
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Figure 4.37: Sequence of video frames from experiment 180.
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Figure 4.38: Sequence of video frames from experiment 183.
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Figure 4.39: Sequence of video frames from experiment 159.
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Figure 4.40: Sequence of video frames from experiment 63.
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Figure 4.41: Sequence of video frames from experiment 161.
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Figure 4.42: Sequence of video frames from experiment 162.
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Figure 4.43: Sequence of video frames from experiment 209. Inert gas, 10 J spark
only.
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Chapter 5 Summary and Conclusions

A facility was constructed to study the near-limit combustion characteristics of pre-
mixed fuel-oxidizer system in a closed volume. Special precautions were taken with
the gas handling system for ammonia and the combustible gases.

A series of experiments were carried out to explore the combustion behavior of
hydrogen-ammonia-nitrous oxide mixtures in air. Mixtures of these compositions are
of particular interest for safety assessments of operations at the Hanford waste tanks.
These gases are the major constituents of release gases observed in some of the waste
tanks at that site. Results from this study can be used to evaluate some of the
combustion hazards associated with operations in the tanks.

Two hundred eight experiments were carried out for the present report. Studies
of hydrogen-air, hydrogen-nitrous oxide, ammonia-air, and ammonia-nitrous oxide
were conducted to compare results to previous literature. Pressure histories, final
equilibrium pressures, and burning velocities were measured. The present results
were in reasonable agreement with previous experiments, taking into consideration
the differences in the facilities. We observed that the nitrous oxide does not always
participate in the combustion of hydrogen-nitrous oxide-air mixtures, but participates
in the combustion of ammonia-nitrous oxide-air mixtures.

A mixture based on the conservative estimate of the gas release from Tank 101-
SY was studied to determine lean flammability and combustion characteristics. The
upward propagation limit for the mixture is 8% and the downward propagation limit
is 15.25%. The burning velocity is determined to vary from 1 cm/sec at the lean limit
to 8 cm/sec at 18%.

The peak pressure for a burn of this mixture can be predicted by the constant
volume equilibrium pressure for the mixture at values above 15% fuel. The nitrous
oxide was found to begin dissociating in the reaction at 13% fuel; below that value

the nitrous oxide can be treated as an inert diluent in the combustion process. The
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final tank pressure could be predicted by equilibrium approximations for greater than
13% fuel.

Three other hydrogen-nitrous oxide-ammonia mixtures were examined to find the
effect of the nitrous oxide on mixtures rich in ammonia. The nitrous oxide was
found to begin participating in the combustion process when the constant pressure
adiabatic flame temperature approached 1100 K. Using the present and previous data,
an approximate flammability limit diagram for Hy - NH3 - NoO -air mixtures can be

constructed.
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Appendix A Test Conditions

A total of 208 test conditions were studied. The principle features of these tests are
summarized here and the details are given in the following tables. Low energy spark
ignition (10 mJ) was used for tests 1-48, high energy (10 J) spark ignition was used
for tests 49 and later.

Runs Fuel Comments
1-13 CHy, Hy Shakedown tests.
14-24 H, 8 and 9 % with N,O addition.

25-37, 96 - 125 Hy-NHg Le Chatelier’s rule investigation.

38 - 95 Mixture A Conservative estimate of 101SY release.
Quiescent, turbulent (7 to 30%), and N,
substituted for N,O.

126-131, 143-147 Mixture B Quiescent, turbulent (7 to 30%), and Ny
substituted for N,O.

132-142 Mixture C  Quiescent, turbulent (7 to 30%), and N,
substituted for N,O.

148 - 155 Mixture D Quiescent, turbulent (7 to 30%), and Ny
substituted for N,O.

156 - 159 Mixture B UPL
160 - 166 Mixture C  UPL
167 - 174 Mixture D  UPL
175 - 197 NH; , NoO N0 reactivity

198 - 208 H,, Mix D  Humidity study.
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Appendix B Burning Velocity

The measured radial flame velocity dr/dt (cm/s), density ratio p,/p,, and laminar

burning velocity S, (cm/s) are given here in tabular form.

Table B.1: Hydrogen-Air. Laminar burning velocity.
% Mix | 4 6 8 9
dr/dt | 7.43 | 13.61 | 17.90 | 32.17

po/pu | 482 | 388 | 326 | .308
S. | 358 5.28 | 5.84 | 9.89

Table B.2: Ammonia—Air. Laminar burning velocity.

% Mix | 12 13 14 15 16 17 18 20 22 24
dr/dt | 4.27 | 3.64 | 4.42 | 11.21 | 17.37 | 19.71 | 24.62 | 37.16 | 45.8 | 48.7
pv/pu | 204 | 193 | 183 | 174 | 167 | .160 | .154 | .143 | .134 | .136

Su 871 .702 | 809 | 1.96 | 2.89 | 3.15 | 3.77 | 5.30 | 6.10 | 6.64

Table B.3: Ammonia—Air-4% N,O. Laminar burning velocity.

% Mix | 13 14 15 16 17 18

dr/dt | 5.10 | 11.62 | 16.56 | 22.6 | 27.75 | 36.75

pv/pu | 181 | 164 | .157 | .150 | .145 | .140
Su 923 | 1.90 | 2.60 | 3.41 | 4.03 | 5.16

Table B.4: Ammonia - Air - 8% N3O. Laminar burning velocity.

% Mix | 12 13 14 15 16 17 18
dr/dt | 6.98 | 11.54 | 14.38 | 22.7 | 29.5 | 38.8 | 44.7
Pv/pu | 179 | 171 | 164 | .157 | .151 | .145 | .140

Su 1.25 | 1.97 | 2.35 | 3.57 | 444 | 5.64 | 6.27
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Table B.5: Mixture A. Laminar burning velocity.

% Mix

8

9 10

11

12

13

14 15

16

17

dr/dt

4.38

7.78

9.84 | 12.92

15.31

15.82

17.43

18.62 | 25.50

29.56

37.30

Pb/Pu

.38

.35

33 | 31

301

274

.260

248 | 236

.226

217

1.68

2.76

3.25 | 3.98

4.62

4.34

4.54

4.61 | 6.03

6.70

8.10

Table B.6: Mixture B. Laminar burning velocity.

% Mix

8

9

10

12

14

15

17 20

dr/dt

4.96 | 8.24 | 10.02

13.45

18.36

20.64

31.09 | 62.38

Pb/pu

3562 | .327 | .3061

267

.245

233 | .

215 | .192

Sy

1.75 | 2.69 | 3.07

3.60

4.50

4.82

6.67 | 11.99

Table B.7: Mixture C. Laminar burning velocity.

% Mix

9 10

12

13

16

19

22

dr/dt

6.12 | 8.0

12.84

14.48

26.55

45.12 | 67.8

Pb/ Pu

299 | 279 | 247

243

0.205 | .180

162

Su

1.83 | 2.23 | 3.17

3.51

5.43

8.12

11.01

Table B.8: Mixture D. Laminar burning velocity.

% Mix

11

12

13

15

18

19

20 21

dr/dt

6.94

8.28

10.21

14.55

20.02

26.45

29.78 | 34.09

Po/ Pu

0.271

0.256

0.243

0.220

0.193

0.186

0.179 | 0.174

1.88

2.12

2.48

3.19

3.87

4.92

5.33 | 5.92




Appendix C Checklists

A series of checklists were used to carry out the operations needed to startup, run
and shut down the experiment. These checklists implemented the safety procedures
that were developed in the course of contructing the experiment and carrying out a
safety assessment.

There are five checklists:

1. Bottle installation/change

2. Start of day/end of day

3. Burns with ammonia

4. Failed burn (NOGO) procedure

5. Burns without ammonia



85
C.1 Bottle Installation/Change

Ammonia Storage/Dispensing System - Checklist
Bottle change/New bottle installation

1. Check exhaust, sparger Guggenheim basement

(a)
(b)

Check that all valves in system are closed (use list)

Verify exhaust vent operation

Read the Magnehelic gauges in room 14

1.

EF3, high-velocity vent: (~ 0.4-in. HyO)

ii.

EF1, emergency purge, Rm 14: (~ 0.4-in. Hy)

actuate Manual purge to test.

()
(d) —Check sparger

Lock out/Tag Main Vacuum valve (B1)

i. Water level (2-3-in. below line)

ii. — Ph less than 9
If Ph is too high, drain tank (SV10) and refill. Run HyO into floor

drain while draining tank.
Skip e) and f) if no bottle is present
(e) Suit up with appropriate equipment

i. Chemical goggles and faceshield

ii. Rubber gloves

iii. Respirator available

(f) — Through access port, check bottle valve is tightly closed.
(g) Purge Ammonia supply line if needed (see “end of day” procedure)
i. Check that all valves in system are closed, see list.

ii. Open Ammonia Vacuum valve (SV8)
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(h) Evacuate Ammonia Line Control Room

i. Switch selector to ”"NH3” on front panel

ii. — Open NH3 vacuum valve (C1)

ili. — Open the "key switch” valve (KS1)

iv. — Open Ammonia valve on control panel (SV1)
v. — Open the needle valve (NV1)

vi. — Press the red NH3 button.

vii.

Release the button when vacuum drops below 5 kPa

viii. — Close Ammonia feed valve (SV1)
(i) Purge pump exhaust line Experiment Room

i. Close Ammonia Vacuum valve (SV8)

ii. Open Bleed up valve (SV7), bleed system up to 1 bar, close

bleed up valve.

iii.

Open Purge Valve (SV9)
(j) Using Nitrogen to Purge pump exhaust line Control Room

i.

Open nitrogen valve on diluent rack

ii. — Open Diluent valve (SV5)

iii. — Allow system to purge for 30 sec.
iv. — Close Diluent Valve (SV5)

v. — Close the "key switch” valve (KS1)
vi. — Return to bottle farm

Bottle Change Procedure Two operators in bottle farm
(k) Remove Old Bottle (if needed)

i. Operator 1 suits up with chemical goggles, faceshield, Apron,

and respirator is available. Operator 2 at eyewash.

ii. Open cabinet

1il.

Unthread the yoke securing nut



1v.
V.
vi.

Vil.
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— Remove yoke from bottle, air will leak into hose

Secure a cap on the bottle

— Release the securing strap

— Remove the empty bottle

(1) Regulator adjustment if required

1.
ii.
iii.

v.

V1

vil.

Open pump bypass circuit (SV1, NV1, KS1, C1, SV9)

— Ny purge bottle open, regulator set to 150 kPa
— Manually actuate FV2 (N2 Purge)

— Adjust regulator to 20 psi (150 kPa)

. Close SV1, NV1, KS1, C1, SV9

i. — Close SV8

_ Evacuate Ammonia Line if needed Control Room Repeat steps

g) to j)

(m) Install New Bottle

i.
ii.
1il.

iv.

vi.

vii.

Place the new bottle in the cabinet, secure the strap

— Remove the cap from the bottle.
__ Remove the plastic insert from the bottle nozzle
— Place a new rubber gasket on the sealing surface of the yoke

_ Place the yoke over the bottle, secure the sealing surface in

place.

— Tighten the yoke.

Open the valve on the bottle.

2. The system state is:

air in ammonia bottle hookup line

ammonnia line under vacuum

vacuum lines

filled with Ny, 1 bar
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Line from SV to KS1 filled with Ns, 1 bar

tank - unchanged
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C.2 Start/End of Day

Ammonia Storage-Dispensing System - Start of Day Last

Modified: April 21, 1999

1. Sparger, Exhaust Operation Gugg basement

(a) — close all valves on gas supply, mimic panels, set room purge to “manual”

(b) — Verify Kinney Vacuum valve (B1) is locked out

(¢) — SV7 & SV9 closed, SV8 open, check and start NH3 vacuum pump

(d) — Test exhaust vent EF3: ___ (~ 0.42-in. H,O), EF1 ______ (~
0.42-in. Hy)

(e) — Set NHj selector valve on 14 Gugg.

(f) — Fill sparger, check pH

(g) — Reset room purge to “auto”

(h) — Evacuate NHj line up to Ny purge regulator (bottle farm) (C1, KSI,
SV1 open)

(i) — Close SV1, KS1, C1

2. Opening ammonia bottle bottle farm

One operator is required with equipment bag, keys.

(a) — Open Ny purge bottle, regulator at 20-40 psi, supply pressure
(psi)
(b) — Suit up with appropriate equipment (faceshield, rubber gloves, respi-

rator available)

(¢) — Open access door on cabinet

(d) — Open NHj bottle valve (3/8-square drive socket, ~ 2 turns)
(e) — Close and lock access door

(f) — Open other gas bottles as needed

(g) — Lock bottle farm
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3. Charging the Ammonia system Control room

(a) — Switch selector on panel to “NH3” (FV1)
(b) — Press “NH3” button (PB1) on gas panel to fill line

(¢c) — NHj line pressurized to — (psig) (PG1)
Adjust NHj3 regulator pressure to 15 psig if needed bottle farm

(d) — Hang ”"Warning: Line Loaded with Ammonia” placard over Ammonia

feed valve handle

4. System is ready for use Ammonia bottle open, line at 15 psig
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End of Day (Shutdown) Operations

1. Turn off ammonia bottle Bottle farm

(a) — Suit up with gloves, faceshield
(b) — Open access door

(¢) — Close Ammonia bottle valve
(d) — Close and lock access door

2. Purging the Ammonia Line control room

(a) — Fill tank with air (90 kPa) or use products from the last shot
(b) — Mixer on

(¢) — Close NH3 vacuum line (C1)

(d) — Open tank isolation valve (A1)

(e) — Open ammonia feed valve (SV1)

(f) — Switch KS1 on, Open needle valve (NV1)

(g) — Select "Purge” valve (FV2), purge (PB2) for 20 s

3. Dispose of tank contents and evacuate line

(a) — Open NHj vacuum line (C1)

(b) — Wait (!) for pressure to approach 0.1 kPa

(¢c) — Close NHj line valve (SV1)
(d) — Close KS1

(
(

(g) — Change NHj line placard to ”System Safe: Line Under Vacuum”

)

)

e) — Close tank isolation valve (A1)

f) _ Close NH3 vacuum valve (C1)
)

4. Final Purge (In control room)

(a) — Turn off vacuum pump

(b) — Crack open valve SV7 and bleed pump up to atmospheric pressure



92

c¢) — Close valve SV7 and SV8

(d) _ Open SV9

()
)
(e) — Open Ny diluent line, SV6, NV1, KS1, C1, purge for 20 s
(f) — Close Ny diluent line, SV6, NV1, KS1, C1

)

(g) — Close SV9

5. — Shut down video and instruments (see list)
6. — Mimic panel power off
7. — Check Ph of Sparger and dump (SV10)

Final state of system

a) Tank: under vacuum

(
(

)

b) Ammonia line: Under vacuum

(¢) Gas handling line: Ny from SV1 to C1
)

(d) Ammonia Vacuum line: Ny from C1 to SV9 to Sparger,

Air from SV8 to vacuum pump
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Valve List

1. Mimic Panels control room

(a) A-1, tank isolation
(b) B-1, house vacuum line (NO NHj!)

¢) C-1, NH3 vacuum line

(
(d) KS1, key switch authority valve

(
(f) SV1-6 gas supply feed valves

)
)
)
)
e) NV1, needle vavle for gas supply manifold
)
g) Diluent supply valves (Air, Ny Ar)
)

(
(h) NHj control system (purge or NH3)
i. FV1 NHj bottle farm block valve (PB)

ii. FV2 N, purge bottle farm block valve (PB)

(i) FV3 CH, bottle farm block valve (PB)
(j) Ha bottle farm block valve (PB)

2. Manual valves Experiment room

a) SV7, air bleed-up for vacuum lines

(a)

(b) SV8, NH3 vacuum pump isolation valve

(¢) SV9, NH3 vacuum pump bypass valve
)

(d) SV10, sparger drain valve

3. Bottle farm (not included in valve shut down list)

(a) NH;s bottle valve

(b) NH;j regulator outlet valve (Leave open at all times)

(c¢) Ny purge bottle valve

(d) Ny purge regulator outlet valve (Leave open at all times)

e) Air supply for air-operated valves (Leave open at all times)
)

f) CHy bottle (leave regulator exit valve open at all times)

(
(
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(g) N,O bottle (leave regulator exit valve open at all times)

(h) Other bottles in farm (N3, O, Hy, Ar)

Instrumentation
1. — Light source & fan (north side of vessel, power strip and switches)
2. __ Video Camera, small monitor (on top of CONVOL)
3. — VCR, load CONVOL tape and cue up (Under Hyjet control panel)
4. __ Timer (set switch on minibox to CONVOL)
5. — Monitor, Computer (Brookside)
6. — Trigtek amplifier (Blue rack panel)
7. — Dynamics amplifier (Blue rack panel)
8. — TMI11 (under convol table, check switch, controlled from mimic panel)

9. __ Hipotronics power supply (grey rack panel, check switch, controlled from

mimic panel)



C.3 Burns with NHj;
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CONVOL Shot Checklist (NH3;Operation)Last Modified: April 21, 1999

Shot: Date:

Time:

Preparation and pump down

Operator(s):

C1, A1, P (mbar)

1. — “NHj3 Start of Day” checklist complete

2. _ Complete “Incomplete burn procedure” checklist item 1
3. _ If 1st shot of day: Turn on instruments, close SV7, SV9
4. __ Evacuate tank. Open: _____ SV8,

5

. _ Balance dynamic amplifiers for Kulite transducers set filter on 1 Hz

6. — Leak check for 5-10 min, close C1. Delta P (mbar)

7. — Close and lock door to room 14, turn on warning lights

Gas Fill Room 14 Off Limits

Fill to desired pressure using key switch (KS1) external block valves, gas supply
valves (SV1-6), and NV1. (Hy block valve switch on wall)

Gas | Target Fraction | Target Partial Pressure

Target Final Pressure

Final Pressure

kPa kPa kPa
kPa kPa kPa
kPa kPa kPa
kPa kPa kPa
kPa kPa kPa

8. — Close SV1-6, KS1, Al
9. __ Run mixer for 2 minutes

10. — Turn off mixer, wait 1 minute




11.
12.
13.

14.
15.
16.
17.
18.
19.

20.

21.

22.
23.
24.
25.
26.
27.
28.
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Pressure: _______ kPa Temperature: ________ °C
— Initial gas sample, if required. GC file ____  FTIR file
— Dynamics amplifiers set filter on 300 Hz
Firing Room 14 Off Limits
— Turn on ignition power, arm
— Arm DAS
— Cue tape, reset video timer
__ Press FIRE button, Time:
— Check DAS results, video for burn.

If complete burn, run mixer until 7" less than 27 °C

Final pressure: ______ kPa Final Temperature: —_______ °C

— Final gas sample, if required. Backfill with N5 to 100 kPa GC file _______

, FTIR file _____

If misfire/incomplete/no burn, follow “Incomplete Burn” checklist
Tank Venting Room 14 safe

— Open (SV8) if closed, C1, Al

— Evacuate vessel P (kPa)

— Close Al

— Open KS1, SV5, dispense air for ten seconds

— Close KS1, SV5, C1

— Turn off warning lights

If last shot of day, see "End of Day Procedure”
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C.4 Failed Combustion

Incomplete Burn Procedure - Checklist

1. Prior to running experiment

Calculate lean limit estimate of mixture

(a)

(b) — Determine corrective action for spark failing to ignite mixture

2. During Experiment

(a) Spark fails to ignite mixture

1.

Reset video tape

ii. — Type in Information in DAS, label Run ()a
iii. — Arm DAS
iv. ______ Start video, timer
v. — Arm and fire
vi. _—__ Disarm spark
vii. — Determine if spark ignited mixture
viii. — Open tank isolation valve (ISO 1) and record pressure
ix. — Close isolation valve (ISO 1)
x. — Turn mixer fan on
xi. — Type in information in DAS, label Run ()b
xii. Arm DAS
xiii. ____ Start video, timer
xiv. — Arm and fire
XV. Disarm spark
xvi. — Determine if spark ignited mixture
xvii. — Open tank isolation valve (ISO 1) and record pressure

xviii. _____ If mixture did not ignite



XIX.
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— Open key switch valve (KS1)

— Add necessary hydrogen to ignite mixture
— Close Valves (SV2, KS1, ISO 1)

— Turn on Mixer for 5 min.

_ Arm and fire

5 =2 0 a w >

— Disarm spark

If mixture ignited, dispose of products according to main check-

list

(b) Spark failure and test abort

1.

ii.

If glow plug is available

A. turn on glow plug power and arm
B. —___ Turn on ignition switch
C. — Observe system for combustion via video
If glow plug is not available, mixture must be inerted and dis-
posed of
A. ___ Add diluent to tank to reduce fuel concentration according

to calculations from above
— Open diluent valve (SV5)
— Open Nitrogen valve on diluent rack

— Open key switch valve (KS1)

= O O

— Allow pressure to reach predetermined value (less than 250

kPa) and turn off diluent valve (SV5)

F. — Close key switch valve

G. — Close isolation valve (ISO-1)

H. ____ Allow mixer to run for 5 minutes

I. ____ If P exceeds 100 kPa, bleed excess through sparger

J. — Open pump bypass valve (SV9)
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K. _ Open Vacuum system valve (C1), allow pressure to bleed

through sparger.

L. — Close pump bypass valve (SV9), open ammonia vacuum

pump valve (SV8)

M. __ Allow system to evacuate to less than 0.1 kPa

System is safe, return to main checklist
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C.5 Burns without NHj

CONVOL Checklist (no NH3) Last Modified: April 21, 1999

1. — Complete Start of Day Checklist if necessary

2. _ Determine corrective action for mixture in the case it does not burn.
3. — Turn on

(a) — HYJET power strip

(b) — Mimic panel main power switch

(¢) — T/C manifold vacuum gage

(d) — Valve actuators air supply valve

4. __ Close valves to vacuum lines (VAC-1 thru VAC-6)
5. — Turn on Kinney pump (see Kinney Pump Operating Instructions)

6. — Open

(a) — Vacuum valve (VAC-1)
(b) — Tank isolation valve 1 (ISO-1)

(¢) — Valve to Kinney pump (VAC-2)

7. — Evacuate until vacuum ~ 75 mTorr
8. __ Record evacuated pressure

9. __ Close Vacuum valve (VAC-1)
10. — Turn off T/C vacuum gage
11. — Wait 15 minutes, while waiting

12. _ Turn on

(a) — Camera
(b) — Light source and Fan
(¢c) — VCR



13
14

15.
16.

17.
18.

19
20
21
22
23
24
25
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(d) — Timer (set on line 2)
(e) — Monitor

(f) — DAS, enter data

(g) — Trigtek amplifier

(h) — Dynamics amplifier and balance

(i) — Glow plug power supply, if necessary

. — If pressure in vessel exceeds 0.1 kPa, abort test

. — If desirable, bleed up air to near required pressure by opening the ammonia

vacuum system (ISO-2) and opening the bleed up valve (SV7)
— Close door to room 14

— Turn on warning light

Room 14 to be isolated beyond this point

Open key switch valve (KS1)

Add gases to vessel by partial pressures. Use mixer to expedite gas settling, use
needle valve (NV1) to meter gases.

a) — Air/Diluent

b) — Hydrogen

(c
d
(e

. — Gas feed valves (SV1-6) closed

(
(
(

)

)

) — Methane
) — Nitrous Oxide
)

. — Close key switch valve (KS1)

. — Close tank isolation valve (ISO-1)
. — Run mixer for 10 minutes

. — Record temperature

. — Turn on ignition power

. Arm DAS
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. _ Check DAS and video for burn

26. — Start video "record”
27. __ Start timer

28. __ Arm and fire

29

30. _ If complete burn:

31

32
33
34
35
36
37
38
39
40
41
42
43

—_— Turn on mixer
— — Open tank isolation (ISO-1) when T ~ 30 C.
— — Record temperature and pressure

__ Turn off mixer

. — If incomplete/no burn, follow “Incomplete burn” checklist

Room 14 safe to enter beyond this point
. — Turn off warning lights
. — Unlock and open doors
. — Open main vacuum valve (VACI)
. — Open Liquid Ring vacuum valve (VAC3)
. — Start liquid ring pump
. — Wait until pressure is below 10 kPa
. — Stop liquid ring pump
. — Close liquid ring vacuum valve (VAC3)
. — Open Kinney vacuum pump valve (VAC2)
. — Evacuate vessel to evacuated state

. — Close all valves (VAC-1,3,5; ISO-1, C1)

. _ If last shot of day, turn off:
(a) — Instruments
(b) — Camera, cover mirrors, lens

(¢) — Electronic Heise Gauge
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(d) — Light source, let fan run for 15 min.

(e) — Monitor, VCR

(f) — Main Power switch on Mimic Panel

(g) — Kinney pump (see procedure)

(h) — Necessary bottles in bottle farm, lock farm



Appendix D Instrument Data

In this appendix, we reproduce the data sheets and calibrations for the two pressure

instruments.
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(KULITE SEMICONDUGTOR

PRESSURE TRANSDUCER TEST REPORT

MODEL NO. XTME-190-250 A SERIAL NO. 4797-6-296
ALPHA CODE:Y21-20
CUSTOMER RENSSELAER POLYTECHN P.O. P0006894

STANDARD ELECTRICAL CONNECTIONS: (Per ISA 37.1) KI|SPECIAL CONNECTIONS: []

RED __ 4input GREEN 4 output
BLACK —input WHITE - OQutput

TEST CONDITIONS:

Rated pressure 250 PSI A Operational Mode ABSOLUTE
Mavimum Prassure 500 PSI A

Maximum Reference PressureN.A.
Tested At _10.00  vDC Excitation Maximum Excitation___15.00

SPECIFICATIONS:

Sensitivity: 0.316 MV PST A

Zero Pressure Output: < +/_3% F.S.

Compensated Temperature Range: 80 ¥ to450 °F

Output Impedance 611 Q Input impedance
*See Bulletin for external compensation method.

REMARKS:

O-RING SUPPLIED
HEX TO TIP .437"

QUALITY ASSURANCE: CALIBRATION TRACEABLE TO NATIONAL BUREAU OF STANDARDS.
TESTED BY A. SAAD INSPECTED BY

DATE 06/25/93

GERMANY « KULITE SEM CONDUS
FRANCE + KULITE INTERNATIONAL

P-122C 2
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INSTRUMENT
DIVISION

Newtown,

Phone: (203) 426-3115  FAX: (203) 426-4349

NEWTOWN OPERATIONS
153 South Main Street

Connecticut 06470

. .
Calibration Certification Report
Customer California Institute of Technology Cerlification 1.0, # 26077 - 34997 Modet S01A
Customer POR  178833-52 Customer Conlral # BIA Accuracy 0.07 %
House Order # 406866 Pressure Range: 0 /250 KPAABS  Serial # 26077
Readings: iritial Temp, Comp: Comments:
As Rec'd 45.95F
As Left [ 1 20420F
wol Rophed Target Upscale % of Span Dowrscale % of span Rnalog
Span Pressure Reading Reading  Error Reading Error Output
KPR ABS KPR RBS Voe
4] 0 0.00 0.00 0.000 0.00 0.000 0.000
10 25 25,00 24.99 0.004 2499 -0.004 0.497
20 50 50.00 50.00 0.000 50.00 0.000 0.997
30 75 75.00 76,00 0.000 75.00 0.000 1.496
40 100 100.00 100.01 0.004 100.01 0.004 1.997
50 125 125.00 124.99 0.004 124,99 -0.004 2494
60 150 150.00 149.99 0.004 149.99 0.004 3.008
70 175 175.00 175.01 0.004 175.01 0.004 3.506
80 200 200.00 200.00 0.000 200.00 0.000 4.005
90 226 225.00 225.00 0.000 22501 0,004 4.502
100 250 . . 250.00 250.00 0.000 250.00 0.000 5.000
Accuracy Tolerance: +/- 018 KPAABS
Calibrated by Fred Moore Accepted by: S E @'ﬂ[# i Conditi T 72 +i- 3 Degrees F
/ Relative Hurnidity = 0- 80%
Oste 10711195 Daste: fof2s Calibrati :
? N ot b £

iﬂu has been calib with whose accuracy is bl to N: ! institute of and test numbers
Pressure: Mass: 737/202491-60 Electrical: DC Volls: 252769
Piston and Cylinder: 215451 AC Volls @ 251625
Resistance 600263
Frequency ' VLF WWVB
Calibration Standard 1D, #: QAID 1094 Accuracy of standard is +4 0.015% of reading’  Last Calibrated:  05/94  Calibration Due Date:  01/67
ICsiibration Standard 1.D. & QAID 1267 Accuracy of standerd is +4 0,008%+30 of reading* Las! Calibrated: 07/20/95 Calibralion Due Date:  0/20/86
* Tha stated accuracy is obtained et reference conditicns.

Form # - MM__032




