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Abstract
Twomodels are proposed for rotating detonation engine performance. The first model is motivated bymodels
of pulse detonation engine performance which are based on the pressure-time history within the detonation
tube. The present work extends those ideas to treat rotating detonation engines with a control volume analysis
that considers the forces within the combustion chamber. The key scaling parameters for this model are the
height of the reactant layer just ahead of the detonation wave and the computed Chapman-Jouguet pressure
and velocity. The thrust can be estimated using these parameters and a simple functional form of the pressure
history on the injector surface. The second model is based on the approximation of mean axial flow and
uses a conventional control volume analysis that focuses on exit conditions to evaluate thrust. The axial flow
speed and thrust are evaluated based on approximating the flow following the detonation as isentropic and
considering a two-dimensional expansion that converts azimuthal motion into purely axial flow. Numerical
and analytic evaluation of these models demonstrates that predicted thrust and specific impulse exhibit the
same scaling relationships with mixture properties as pulse detonation engines.
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1 Introduction
The rotating detonation engine or RDE (Fig. 1a) is based on continuous flow through an annular
chamber in which combustion takes place through a transversely rotating detonation. The fuel and
oxidizer are injected at the entrance of the combustor and the high-pressure combustion products
behind the detonation wave expand and turn to create a primarily axial flow at the exit of the
combustion chamber. The reviews by Rankin et al. (2017) and Zhou et al. (2016) provide more
details about RDEs and Kailasanath (2017) summarizes recent studies. Although variants of
the combustor shown in Fig. 1a are being considered as components in air-breathing propulsion
systems, in the present study we examine the performance of the annular combustor in a rocket
motor configuration.1 For actual rocket motor applications, an obvious extension is to add an
exhaust nozzle; this is not the focus of the present study although the effect of an ideal nozzle is
briefly considered.

The purpose of the present article is to provide two simple analytical methodologies for comput-
ing the thrust of the configuration of Fig. 1a. The first methodology, termed the “pressure history
model”, is motivated by the success of ideas that were originally developed for pulse detonation
engines (PDE) (Wintenberger et al., 2003; Endo et al., 2004) and the observations (Rankin et al.,
2017; Fotia et al., 2017) that models developed to predict PDE performance appear to be quantita-
tively useful for RDEs. We shall demonstrate that although the principles of operation appear to
be quite different for RDE and PDE operation, it is possible to use very similar modeling ideas to
predict RDE performance under certain conditions. The second methodology, termed the “axial
flow model”, is based on the approximation of mean axial flow and uses a conventional control
volume analysis that focuses on exit conditions to evaluate thrust. This model is motivated by the
results of numerical simulations that show the approach to axial flow with downstream distance
and the success of Kato et al. (2016) in using conventional rocket motor performance analyses
in correlating RDE test results. The axial flow speed and thrust are evaluated by approximating
the flow following the detonation as isentropic and considering a two-dimensional expansion that
converts azimuthal motion into purely axial flow.

In order to make progress with analytical modeling, we will need to make a number of simplify-
ing assumptions. First, we will assume that the fuel and oxidizer are supplied at a constant average
rate, are well mixed and the detonation wave moves at a constant speedUD. Under these conditions,
we can further assume that the flow within the engine will be periodic in time. Viewed from the
laboratory frame, as shown in Fig. 1a, the detonation wave appears to rotate with angular speed ω
= UD/R in the azimuthal direction, which gives the device its name. The actual detonation speed,
UD in Fig. 1a, may differ from the Chapman-Jouguet (CJ) speed for a number of reasons such as
incompletely mixed fuel and oxidizer, the influence of the expanding flow within the reaction zone
immediately behind the wave and the upstream velocity of the unburned gas. In our models, we
will assume that the detonation propagates with the CJ speed relative to the incoming flow.

Second, we assume that there is a single detonation front within the chamber and the flow will
oscillate with frequency f = ω/2π. The flow properties will be periodic with temporal period T
= 1/ f . This greatly simplifies the analysis because in a frame co-rotating with the detonation, the
flow will be steady. This corresponds to transforming to a coordinate θ′ = θ − ωt and eliminating

1Due to the large total pressure loss associated with the arrays of small slots or holes used to inject the fuel and
oxidizer, there are a number of challenges in incorporating these combustion chambers into the core of a gas turbine or
similar high-mass-flow engine.
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(a) (b)

Figure 1: a) A rotating detonation engine test fixture (Ishihara et al., 2015). b) Schematic of
“unwrapped” flow field projected onto the θ - Z plane.

time as a variable. For example, the pressure can be written as P = P(r, θ, z, t) = P(r, θ − ωt, z) =
P(r, θ′, z). The restriction to a single wave turns out to be artificial and we will show that the results
for one wave can be easily extended to multiple waves.

Third, we will assume that radial variations in the flow can be neglected and the flow can be
approximated as two-dimensional in space, i.e., P(θ′, z). Developing (“unwrapping”) the surface
of the cylinder onto a plane and considering the flow to be uniform in the radial direction reduces
the geometry to the X-Z plane with the flow field shown in schematic of Fig. 1b. In the X-Z plane,
the flow is spatially periodic in the X direction, f (x + 2πR, z) = f (x, z) with period 2πR. This
representation is commonly employed in many numerical simulations of RDEs. Eude et al. (2011)
have compared pressure distributions computed from two and three-dimensional simulations and
demonstrated that integral (average) properties are insensitive to three-dimensional effects and two-
dimensional models are adequate for predicting properties such as thrust. The transformation to a
two-dimensional system that is co-rotating with the detonation wave is presented in Appendix A

By averaging over a period, the azimuthal and time dependence of the flow can be eliminated
from consideration to facilitate the computation of average thrust. For the purposes of developing
simple models, the variations in the radial direction are also averaged so that the flow in the
combustion chamber can be considered quasi-one dimensional with average properties dependent
only on the axial distance z. For example, the pressure can be averaged to obtain

P(z) =
1
T

∫ t+T

t

1
2πRW

∫ Ro

Ri

P(r, θ, z, t) 2πr dr dt =
1

2π

∫ 2π

0

1
RW

∫ Ro

Ri

P(r, θ′, z) r dr dθ′ , (1)

where W = Ro − Ri is the radial width of the combustion chamber, assumed to be constant for the
purposes of analysis and R = (Ro + Ri)/2 is the mean radius of the combustion chamber annulus.
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In the co-rotating reference frame, the time averaging is equivalent to averaging over the azimuthal
angle θ, as shown in the second version of the integral in (1).

2 Control Volume Analysis of Thrust
The thrust for an engine without an exit nozzle, i.e., just a straight combustion chamber, can be
evaluated using the standard approach of evaluating the integral momentum balance over a control
volume surface A surrounding the engine,∫

A
ρuu · n dS +

∫
A

Pn dS =
∫

A
τ · n dS + F . (2)

Two possible control volumes are shown in Fig 2. These control volumes and the idealized
combustion chamber are axially symmetric. The force F is the reaction force needed to keep the
engine stationary; it is equal in magnitude and opposite in direction to the thrust. For both control
volumes, we assume that the pressure on the exterior of the engine is everywhere equal to the
atmospheric pressure Pa. These control volumes and the simplifying assumptions are identical to
those used in the PDE models of Wintenberger et al. (2003) and Endo et al. (2004).

(a)

(b)

Figure 2: Two approaches to formulating a control volume for a rotating detonation engine to
compute thrust base on a) chamber exit conditions. b) combustion chamber inlet conditions.

The control volume of Fig. 2a completely encloses the entire engine and crosses the exit plane
of the combustor. This enables the computation of the thrust based on exit conditions. The balance
of forces in the axial (z) direction for this control volume, assuming static conditions and uniform
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pressure everywhere except at the exit, is:

Fz =

∫
Ae

ρeu2
z,e dS +

∫
Ae

(Pe − Pa) dS . (3)

To evaluate the integrals, we apply the averaging method described in the introduction to compute
the average magnitude of the thrust T = F z. The momentum of the fuel/oxidizer supply does not
contribute to the force balance because the supply is assumed to enter perpendicular to the axial
direction. In order to use this version of the thrust computation, the entire flow field within the
combustor must be analyzed in order to define the exit conditions. This is the approach taken by
many previous researchers Fievisohn and Yu (2017); Schwer and Kailasanath (2013, 2011b). If the
flow at the exit of the combustor is uniform, then the thrust expression is the same as that used in
idealized rocket motor models

T = ÛMue + Ae(Pe − Pa) . (4)
This expression is used to evaluate thrust for the mean axial flow model described in Section 4 and
is also appropriate for combustion chambers with an ideal exit nozzle.

As pointed out by Schwer and Kailasanath (2011b), as long as the pressure ratio (plenum/exit)
is sufficiently large, the detonation propagation is unaffected by the exit conditions as the flow
throughout the combustion chamber remains supersonic. This implies that it is possible to only
consider the flow at the inlet of the combustion chamber and an alternative control volume con-
struction analogous to that used by Wintenberger et al. (2003) and Endo et al. (2004) for PDEs to
develop an approximate analytical model for RDE thrust. This is the basis of the pressure history
model of RDE thrust developed in Section 3.

To develop this alternative method of thrust evaluation, consider the control volume of Fig. 2b
which encloses the engine but does not cross the exit plane. Instead, the control volume is placed
along the walls of the combustion chamber (in the gas) and crosses the inlet plane of the combustor.
This is the same type of control volume that is used in the PDE models of Wintenberger et al.
(2003) and Endo et al. (2004). This enables the computation of the thrust based on the conditions
at the porous thrust surface with a correction for the drag on the walls of the chamber. The balance
of forces in the axial (z) direction for this control volume is

Fz =

∫
Ac

(Pc − Pc,1) dS︸                ︷︷                ︸
I

+

∫
Ac

[ρcu2
z,c + (Pc,1 − Pa)] dS︸                              ︷︷                              ︸

I I

−

∫
Aw

τw dS︸         ︷︷         ︸
I I I

, (5)

where Ac is the area of the frontal surface of the porous injector at the upstream end of the combustor
(labeled thrust wall in Fig. 1a) and Aw is the area of the annular walls of the combustor that are
subjected to the shear stress τw created by the axial flow. The pressure Pc,1 is the value of the pressure
in the reactant layer just upstream of the detonation wave. In order to make quantitative estimates
of the thrust using this control volume analysis, we now consider appropriate approximations for
each of the terms in (5).

Term I represents the integrated effects of the detonation-generated pressure force on the injector
surface at the upstream end of the combustion chamber. We will assume that radial variation of the
pressure is small so that the integral can be evaluated by multiplication of the area, Ac = π(R2

o − R2
i )

= 2πRW , times the average value of the integrand,

FI = Ac(Pc − Pc,1) . (6)
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This is exactly analogous to the result used to compute impulseI for a single-cycle of PDEoperation
using the temporal average of pressure on the thrust surface rather than the spatial average. To
compute the integral, we must compute Pc using the operating conditions and geometry of the
engine.

Term I I represents the force associated with the momentum flux of the gas at the inlet to the
combustion chamber. Generally, the flow into the combustion chamber is low-speed and the term
ρu2 does not contribute substantially to the thrust although the pressure difference Pc,1 − Pa acting
on the face of the injector may be significantly different than ambient in some cases. The magnitude
of term I I will depend on the engineering details of the injection system. If we assume uniform
flow over the inlet surface, the approximate value of the integral will be

FI I ≈ Ac(Pc,1 − Pa) + uc ÛM . (7)

If the average density ρc ahead of the detonation wave is known instead of the velocity uc, then the
estimate is

≈ Ac(Pc,1 − Pa) +
ÛM2

ρc Ac
. (8)

Term I I I represents friction due to the viscous forces on the side walls due to flow within the
combustion chamber. In addition to the assumptions made above, although not explicitly included
in the momentum equation, we assume that the combustion chamber is adiabatic, i.e., heat losses
to the chamber walls are neglected. The effect of heat loss will be to reduce the mean effective
pressure and thrust from the ideal values computed by the present analysis; just as in the PDE case
as discussed by Radulescu and Hanson (2005) and Kawane et al. (2011).

The total thrust will be given by the sum of the three terms

T = FI + FI I + FI I I . (9)

Using engineering estimates for each of these three terms we observe that the majority of the
contribution to the thrust will be term I, with term I I being a factor of 5-10 smaller depending on
the fuel and engine specifics and term I I I is at least one to two orders of magnitude smaller than the
sum of terms I and I I. The present analysis focuses on term I, estimates term I I in order to obtain
realistic comparisons with computations and measurements of other researchers, and neglects term
I I I.

This analysis also neglects the contribution of the pressure on the base of the engine located at
the exit of the combustor. Interaction between the exit plume and the base may result in the average
pressure Pb on the base being sufficiently different than the atmospheric pressure Pa that there will
be a fourth contribution

FIV = Ab(Pb − Pa) (10)

to the thrust. This approach could also be used to account for the presence of a converging or
converging-diverging nozzle, or a conical aero-spike attached to the inner portion of the base. In
order to calculate the average base pressure or account for a nozzle, a more detailed flow analysis
will be required.
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3 Pressure History Model
The pressure history model is based on evaluating the thrust associated with the pressure history
on the thrust wall due to the propagation of the detonation and expansion flow of the detonation
products. In order to find the average pressure on the thrust wall, we need to model the gas
dynamics of the flow field created by the rotating detonation. A simplified model is to consider the
propagation of the detonation in a layer of height H over a solid surface, setting aside the effect of
porosity of the thrust surface and the inflow of reactants that occurs in an RDE. This is equivalent
to assuming that the flow ahead of the detonation is parallel to the thrust surface and the detonation
wave is normal to the surface.

This model is best analyzed in the X′-Z′ frame that is co-moving with the detonation as shown
in Fig. 3. In this frame, the flow is steady and consists of a planar detonation in the reactive
layer which creates an oblique shock wave in the bounding gas and an expansion wave behind
the detonation. The idealized flow is assumed to be self-similar near the triple point where the
waves intersect, this region is shown as the detail in Fig. 3. The postshock state 5, and the state 3
following the expansion wave must be in mechanical balance which means that pressure and the
flow deflections are continuous across the contact surface: P5 = P3; θ5 = θ3. There must also be
mechanical balance along the contact surface ahead of the triple point: P1 = P4; θ1 = θ4. The
inflow from the plenum will result in θ1 being nonzero and a tilted detonation wave as shown in
Fig. 1b, however this does not change the triple point balance considerations. More significantly,
the periodic nature of the flow will result in a nonzero azimuthal flow uθ upstream of the oblique
shock in the stationary (laboratory) reference frame so that u4 , u1 in the co-moving frame where
u4 = UCJ + uθ and u1 = UCJ . In this situation, the contact surface 1-4 will be a shear layer with a
velocity difference of up to 1000 m/s (See Eude et al., 2011, Fig. 5).

Figure 3: Simplified model for detonation of a uniform layer of thickness H and detail of triple
point region (red box).

There are two key issues in applying this model to an RDE. First, a model of the injection
process is needed to determine the pressure just upstream of the detonation. Fievisohn and Yu
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(2017) discuss a simple control volume model and implementation as boundary condition in their
method of characteristics computations. Schwer and Kailasanath (2011a) compare a detailed
fluid dynamic model of discrete injectors with two approaches that model injection as a boundary
condition. Second, the state of the bounding gas is not known ahead of time but is created by
the expansion of the detonation products. In general, this expansion creates a non-uniform state
upstream of the shock wave in the bounding gas; this state must be determined in a self-consistent
solution considering the periodic flow associated with the annular geometry. Assuming that the
pressure upstream of the detonation is given, solutions to the triple-point configuration can be found
by assuming isentropic expansion of the detonation products to the upstream pressure in order to
define state 4. The iterative solution of the 3-5 contact surface matching problem (P3 = P5 and θ3
= θ5) is equivalent to graphically finding the intersection of the bounding layer shock polar with
the Prandtl-Meyer (PM) expansion solution between states 2 and 3 as shown in Fig. 4 for three
cases. There are two possible solutions for states 3 and 5 but the attached oblique shock case that
is observed in simulations and experiments is the lower pressure solution located on the supersonic
branch of the oblique shock polar. These solutions were computed using realistic thermochemistry
and equilibrium properties using the Shock and Detonation Toolbox Browne et al. (2017). The
numerical values associated with states 1–5 that were determined by these computations are given
in Appendix B for three fuels, hydrogen (H2), ethylene (C2H4) and propane (C3H8) with an initial
state of P1 = 100 kPa and T1 = 300 K..

Note that all three ideal RDE cases shown in Fig. 4 admit solutions with attached oblique
shocks. However, in the most general case of arbitrary conditions in the bounding gas layer, a
solution with an attached oblique shock may not exist. This was discussed by Fievisohn and Yu
(2017) using ideal gas models of the polars and considering parametric variations of the bounding
atmosphere temperature. Our computations with realistic thermochemistry and parameters relevant
to RDE operation for a wide range of reactant mixtures give results similar to Fig. 4 and we find
that solutions are obtained for states 3 and 5 as long as state 4 corresponds to expanded detonation
products. Houim and Fievishon (2017) examined the case of a hot, stationary inert gas atmosphere
bounding a cold detonation layer and found that if the bounding layer is sufficiently hot, attached
oblique shock solutions are not observed; see Appendix C for further discussion.

The model of Fig. 3 has been examined previously in the context of fuel-air explosions by Sichel
and Foster (1979) who considered the impulse delivered by a fuel-air layer bounded by the ground
at the bottom and the atmosphere at the top. Sichel and Foster used analytical expressions based
on a constant ratio of specific heats (but with different values for shocked air and the combustion
products) to determine the solutions for states 5 and 3 for MAPP2 gas-air and methane-air mixtures
over a range of equivalence ratios. The flow field following the detonation was determined using
the method of characteristics to compute the interaction of the expansion wave with the ground.
The method of Sichel and Foster was recently adapted by Fievisohn and Yu (2017) to the RDE
flowfield and extended to include inflow and periodic boundary conditions. Fievisohn and Yu
describe their method-of-characteristics solution technique in detail and showed that their solution
compared favorably with the finite-difference solution of Schwer and Kailasanath (2011b).

Sichel and Foster (1979) pointed out that if the detonation reaction zone is sufficiently thin,
then for purposes of computing impulse from an infinitely long layer, the only relevant dimensional
parameters are the layer height H and the detonation overpressure ∆PCJ . Further, it is reasonable

2MAPP gas is a mixture of Methyl Acetylene, Propadiene, Propane and other C3 and C4 hydrocarbons
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Figure 4: Three examples of pressure-deflection diagrams for 3-5 interface mechanical matching
solution.
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to suppose that the main features of the flow are governed by inviscid gas dynamics and the con-
ditions behind CJ detonations correspond to sonic flow in wave-fixed coordinates for all mixtures.
Considering these factors, they concluded that the pressure along the ground behind the detonation
front can then be written in terms of a non-dimensional function ψ and distance ξ = x/H as

P(x) − Pc,1 = (PCJ − Pc,1)ψ(x/H) = ∆PCJψ(ξ; γe) , (11)

where Pc,1 is the pressure in the layer of explosive gas upstream of the detonation. The function
ψ depends on the properties of the combustion products, indicated here as a dependence on the
ratio of specific heats γe. Using (11) for the distribution of pressure along the thrust surface in
an RDE, we evaluate the average pressure (1) due to the detonation in terms of an integral of the
nondimensional pressure

Pc − Pc,1 = ∆PCJ
H

2πR

∫ 2πR/H

0
ψ(ξ) dξ . (12)

The integral for a given value of 2πR/H and γe is a nondimensional function K , defined as

K =
∫ 2πR/H

0
ψ(ξ; γe) dξ . (13)

As discussed by Bykovskii et al. (2006), there is another essential scaling function of the height
H and the annulus width W . As is well-established from fundamental studies (Lee, 2008) on
detonation behavior, the magnitude of H and W relative to the detonation wave cellular structure
size (cell width or length) or equivalently reaction zone length, is a key consideration in determining
if detonations can be initiated and propagate continuously. If the layer height or annulus width
is too small (Bykovskii et al., 2006) relative to the detonation cellular structure width or length,
it will be impossible to initiate and sustain continuous detonation. These are very important
practical considerations and will determine the range of fuel-oxidizer-diluent compositions as well
as injection conditions for successful operation of a given combustor fixture in the continuous
detonation mode. In the present analysis we are assuming that these conditions are met and the
only role of the layer height is as a gas dynamic scaling parameter.

Sichel and Foster (1979) found the functionψ to be relatively independent of the gas composition
so they proposed a universal relationship that could be used to compute the pressure and impulse
for a range of fuel-air detonations. The RDE computations by Schwer and Kailasanath (2013) for
injection face pressure also support this notion, with consistent pressure distributions for H2 and
a variety of C2 and C3 hydrocarbons in air and distinct but also consistent distributions for the
fuel-O2 cases; two examples are shown in Fig. 5; the lines are data digitized from Fig. 7 and 9 of
Schwer and Kailasanath (2013).

Motivated by the success of simple analytic fits to the expansion wave behind propagating
detonations (Beltman and Shepherd, 2002), we propose the following model for the pressure decay
(along the injection surface) behind the detonation front,

ψ(ξ) = exp(−αξ) , (14)

where α is a constant that is determined from fitting the data. Note that this model does not
describe the narrow pressure spike and peak at the detonation front that is shown in Fig. 5. This



Shepherd and Kasahara - September 23, 2017 10

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

P 
(a

tm
)

X (cm)

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

P 
(a

tm
)

X (cm)

(a) (b)

Figure 5: Pressure at injector face (lines) Schwer and Kailasanath (2013) compared to the expo-
nential decay model (points) described in text. a) Stoichiometric C2H4-air and b) Stoichiometric
C2H4-O2.

spike represents the high pressure behind the leading shock front, decaying rapidly to the CJ
pressure with the first cm behind (to the left on this graph) the leading shock front located at 14
cm. This spike contributes a negligible amount to the impulse and as in the previous model of PDE
performance, will be neglected. Integration of the normalized pressure signal yields a value of K =
1.02. For comparison, analysis of the results of Sichel and Foster yields K =1.3, the higher value is
consistent with the larger confining effect3 associated with a cold air bounding layer as compared
to hot detonation products. Using the parameters given by Schwer and Kailasanath (2013) for a
C2H4-air detonation with initial conditions of 150 kPa and 255 K, and a layer height of 3.2 cm, we
obtain from our model equations, (11) and (14), the points shown in Fig. 5a for a value of α = 1/K
= 0.98. Although the model results do not exactly match the pressure profile near the wave front,
the results are both qualitatively and quantitatively reasonable.

The layer heights are substantially different for fuel-air and fuel-oxygen cases analyzed by
Schwer and Kailasanath (2013); in order to compare the present model with their results it is
necessary to use the mass flux and conditions ahead of the detonation to compute H using mass
conservation

H =
ÛM

ρcWUCJ
. (15)

Using this estimate, the fuel-oxygen cases of Schwer and Kailasanath (2013) were analyzed. Direct
integration of the pressure trace shown in Fig. 5b yields K = 1.54; the model pressure history
using α = 1/K = 0.65 yields the points shown in Fig. 5b. The differences between simulations and
model pressure histories are larger than in the C2H4-air case due to the presence of a shock wave
within the expansion flow; apart from this obvious discrepancy, the model is a reasonable empirical
approximation to the simulation results. The difference in α between fuel-air and fuel-oxygen
cases can be attributed to the differences in the combustion product properties due the the larger
energy content and substantially higher detonation product temperatures in fuel-oxygen mixtures
as compared to fuel-air mixtures. As a consequence, flow deflection angles θ3 are larger for the

3The extent of this effect can judged from the difference in values of θ3 ≈ 20◦ for Sichel and Foster compared to θ3
≈ 30◦ for the RDE cases (Appendix B) using fuel-air mixtures.



Shepherd and Kasahara - September 23, 2017 11

fuel-oxygen cases than for fuel-air cases but the pressures P3 are also higher. Systematic studies
using numerical simulations for a range of mixtures will be needed to further clarify the dependence
of K on mixture properties.

The value of K can be obtained by analytic evaluation which can be simplified in most cases
because the 2πR/H is between 10–20. This means that the upper limit to the integration in (13)
can be taken to be +∞ without any loss in fidelity for the purpose of the present model so that

K ≈
∫ ∞

0
exp(−αξ) dξ =

1
α
. (16)

3.1 Evaluating the thrust
From (12) and (13) , the average thrust due to the detonation is

FI = ∆PCJ
AcH

2πR
K = ∆PCJWHK , (17)

and based on the analysis presented in the previous section, we use K = 1.02 for fuel-air mixtures
and K = 1.54 for fuel-oxygen mixtures. The specific thrust due to the detonation is defined as
FI/ ÛM , where ÛM is the total (fuel and oxidizer combined) mass flow rate. The total mass flow rate
can either be computed from the inflow velocity, ÛM = Acρcuc or from the rate of mass consumption
by the detonation, ÛM = HWρcUCJ . Using the second approach, the specific thrust is

FI

ÛM
=
∆PCJ

ρcUCJ
K . (18)

This expression can be further simplified by using the following approximate expression (Browne
et al., 2017) for ideal gas CJ pressure,

∆PCJ ≈
ρcU2

CJ

γe + 1
. (19)

Substituting this expression into (18), we obtain

FI

ÛM
≈ K

UCJ

γe + 1
. (20)

Another typical figure of merit for RDEs and PDEs is the specific impulse per unit mass of fuel
consumed divided by the acceleration of earth’s gravity g . Defining the fuel mass fraction as Yf =
ÛM f uel/ ÛM , the specific impulse per unit mass of fuel consumed in one revolution of the detonation
is

Isp f ,I =
FI

Yf g ÛM
, (21)

which can be approximated as
Isp f ,I ≈

K
Yf g

UCJ

γe + 1
. (22)

Values of specific thrust and the fuel-based specific impulse due to detonation alone for a range
of equivalence ratios and either air or pure oxygen as the oxidizer are shown in Fig. 6 for three
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representative fuels. These computations are based on computed CJ properties with the state just
upstreamof the detonation at 295K and 100 kPa; however, we expect that these specific performance
measures will be relatively independent of conditions upstream of the detonation. This is based on
the functional form of (20) and (22) and the known modest dependence of UCJ and γe on initial
conditions.

The variations in specific thrust with equivalence ratio shown in Fig. 6a are a consequence
of the dependence of the CJ speed on the energy content of the mixture and the sound speed of
mixture upstream of the detonation. This is discussed at length in Wintenberger et al. (2003) and a
consequence of the thermodynamic relations that determine the CJ state as discussed in Appendix
B of Browne et al. (2017). The trends with equivalence ratio shown in Fig. 6b are primarily due
to the inverse dependence on fuel mass fraction of the model (21) and are the same trends that
are predicted by the PDE model of Wintenberger et al. (2003). The fuel-based specific impulse of
C2H4 and C3H8 are indistinguishable throughout the equivalence ratio range because the energy
content per unit mass of these fuels as well as other alkanes is essentially identical.
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Figure 6: a) Specific thrust T/ ÛM and b) fuel-based specific impulse Isp f of RDEs as predicted
using the pressure history model.

So far, we have considered a single detonation wave but multiple waves are often observed
(Kato et al., 2016; George et al., 2017). Consider a number N of waves within the chamber, all
rotating in the same direction (counter-rotating waves introduce additional complications that we
have not considered). For a total mass flow rate ÛM through the combustor, each wave combusts
mass at the rate

ÛMi = ÛM/N . (23)
The height Hi of each wave will be given by mass conservation

Hi =
ÛMi

ρcWUCJ
= H/N , (24)

where H is the height of a single wave at the same mass flow rate. The nondimensional integral of
the pressure has an upper bound of

(2π/N)R
H/N

=
2πR
H

(25)
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which is independent of N because the extent of the “tail” of the pressure wave behind detonation
wave will be 1/N of the total circumference of the combustion chamber. This implies that the ideal
value of the nondimensional integral is independent of the number of waves

Ki = K =
∫ 2πR/H

0
exp(−αξ) dξ (26)

or in dimensional terms

K =
1

∆PCJ H

∫ 2πR

0

(
Pc(x) − Pc,1

)
dx (27)

and if there are N waves each of height Hi, the effective height of the equivalent single wave is
given by

H = NHi . (28)

The net thrust associated with the detonation pressure on the combustor inlet from all N waves will
be the sum of the thrust of each individual wave

FI =

N∑
i=1
∆PCJWHiKi (29)

=

N∑
i=1
∆PCJW

H
N

K (30)

= ∆PCJW
H
N

K
N∑

i=1
1 (31)

= ∆PCJWHK , (32)

which is identical to the result obtained for a single wave. This is a consequence of the scaling of
all spatial dimensions with the height of the detonation wave. The insensitivity of the thrust to the
number of detonation waves is confirmed by numerical simulations (Yi et al., 2011; Tsuboi et al.,
2017).

4 Axial Flow Model
Although the detonation wave rotates, this does not result in a net (average) azimuthal rotational
flow at the exit of the combustion chamber if, as is usually the case, the flow entering the chamber
does not have a net azimuthal rotation. This does not mean that the velocity in the azimuthal
direction vanishes everywhere within the flow field, but at any axial location z, there are positive
and negative values of azimuthal velocity which average out so that the total angular momentum is
zero.

To show this, consider the angular momentum about the z-axis of the coordinate system shown
in Fig. 7. The angular momentum of an element of volume dV is

r × ρu dV . (33)
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The conservation of angular momentum for a stationary control volume Ω with control surface ∂Ω
is

M =
∂

∂t

∫
Ω

r × ρu dV +
∫
∂Ω
(r × ρu)n · u dS , (34)

where M is the total torque exerted on the control volume. For an annular control volume that
encompasses the RDE shown in Fig. 7, the imposed net torque is zero as the engine is not rotating,
there are no rotating components within the flow path and we are neglecting the effect of friction
on the combustion chamber walls. Because the flow is periodic, averaging over one period of the
cycle will result in the first term on the right-hand side averaging to zero, leaving

0 =
1
T

∫ T

0

∫
∂Ω
(r × ρu)n · u dS dt . (35)

For the geometry of Fig. 7, the integral can bewritten in terms of velocity components and simplified
by transforming to the wave-fixed (steady flow) frame of reference

0 =
∫

A
Rρuθuz dS , (36)

where R is the perpendicular distance from the point in the flow to the z axis and A is the area of
the annulus perpendicular to the z axis, the direction of the mean axial flow. If we further suppose
that the flow is uniform in the radial direction, this reduces to

1
2π

∫ 2π

0
ρ(θ′, z)uθ(θ′, z)uz(θ

′, z) dθ′ = ρuθuz = 0 . (37)

Axial and azimuthal velocities are correlated as shown by Fig. 5 of Schwer and Kailasanath (2011b)
with fluctuations of uz about a mean positive value and both positive and negative excursions of uθ
that support the notion that (37) will be satisfied. The fluctuations in velocity and density are the
consequence of the flow field, particularly the oblique shock waves, which simulations show decay
in strength with distance from the detonation layer. This suggests that sufficiently far from the
detonation layer the flow will primarily be axial and relatively uniform in the azimuthal direction.
Using the nomenclature of Appendix A, uθ = v and uz = w, the vanishing of the mean angular
momentum suggests that the mean azimuthal flow speed will be small in comparison to the mean
axial flow speed

v � w (38)

far downstream from the detonation layer. The validity of this assumption will depend on the axial
length of the combustor and represents an idealization, one that is important in formulating the
axial flow model presented in this section.

4.1 Modeling the expansion process
The net result of the two-dimensional expansion process within the annular combustion chamber is
to convert the flow from the almost entirely azimuthal flow immediately following the detonation
to primarily axial flow at the chamber exit. The expansion simultaneously decelerates the flow
induced by the detonation and turns the azimuthal flow of the detonation products so that it becomes
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Figure 7: Geometry of rotating detonation combustion chamber and associated axisymmetric
coordinate system.

predominantly axial. Interaction of the flowwith the oblique shock wave results in further reduction
of the azimuthal flow components. We anticipate that if the combustion chamber is sufficiently
long, then the azimuthal flow can be neglected, and the performance upper bound can be based
on the same notions as traditional rocket motor performance based on quasi-one-dimensional flow.
The extent to which the flow approaches a purely axial state will depend on the length of the
combustor compared to the height of the detonation layer. Examples of the diminished azimuthal
flow at the exit of the combustor can be found in the simulations of Yi et al. (2011); Schwer and
Kailasanath (2011b); Davidenko et al. (2007).

The basis of ideal steady-flow analyses in propulsion systems with shock and detonation waves
is the conservation of total enthalpy (Wintenberger and Shepherd, 2006) along streamlines. In
the wave-fixed (steady flow) frame in the unwrapped 2-D coordinates, this is expressed as (see
Appendix A)

ht = h +
1
2
(u′2 + w′2) (39)

which in the laboratory (unsteady flow) frame for a detonation rotating with azimuthal speed UD
transforms to

h1 = h +
1
2
(v2 + w2) − vUD . (40)
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Considering a fixed axial location, the velocity and enthalpywill be a function of time or equivalently
azimuthal location. Using the averaging technique of (1), the average of (40) can be written

w2 = 2(h1 − h) − v2 + 2vUD . (41)

As discussed in the previous section, the conservation of angular momentum (37) indicates
that if the axial flow is sufficiently uniform, then the average azimuthal speed at the end of the
combustor will be negligible, v ≈ 0. However, simulations demonstrate that fluctuations in v are not
necessarily negligible, i.e., v2 > 0, at the end of annular combustors with dimensions commonly
used in testing. The effect of fluctuations in v on the r.m.s. value of axial flow speed w at the exit
can be estimated from (41)√

w2 =

√
2(h1 − h) − v2 =

√
2(h1 − h)

[
1 −

v2

2(h1 − h)

]1/2

, (42)

by assuming v = 0. Numerical evaluation of (42) reveals that if the r.m.s. average of the azimuthal

speed,
√
v2, is 30% of the ideal axial speed,

√
2(h1 − h), this will result in an approximately 5%

fluctuation (r.m.s.) in the axial velocity contribution to the average specific thrust. Given thismodest
effect on the thrust we will neglect the effect of azimuthal and axial speed fluctuations, taking the
effective axial speed at the exit to be the ideal value computed from the mean thermodynamic state
at the engine exit

w ≈

√
2(h1 − h) . (43)

The enthalpy can be considered a function of composition, pressure P and entropy s. In an
expansion wave following a detonation, the flow time scales are sufficiently long compared to the
chemical time scales (see Wintenberger et al. 2004) that the flow is to a reasonable approximation
in chemical equilibrium and so that h = h(P, s) only. In the ideal version of the flow that we are
considering, entropy changes are due only to the flow crossing shock waves. However, the shock
waves are relatively weak, resulting in a modest loss in total pressure, for example about 7% in
the simulations by Yi et al. (2011). As a consequence we can consider the axial velocity to be a
function of pressure only and the entropy is taken to be constant and equal to the value of the CJ
state; for this ideal model we assume that detonation propagates at the CJ speed, UD = UCJ . With
these assumptions we obtain the following simple expression for the axial flow velocity, which
appears identical in form to the expression used in ideal quasi-one-dimensional flow models:

w =
√

2(h1 − h(P, s2)) , (44)

with the important distinction that h(P, s2) is the enthalpy on the isentrope associated with the
two-dimensional flow created by the products of the rotating detonation. The result (44) and the
underlying assumptions have been used by previous researchers, particularly by Davidenko et al.
(2011), who carried out both multi-dimensional numerical simulations and modeling of an ideal
RDE based on axial exit flow. Davidenko et al. (2011) carried out an extensive parametric study for
H2-O2 mixtures comparing an ideal conventional rocket engine with ideal RDE performance based
on the axial flow approximation. Using axial flow models for RDE analysis has a long history and
some elements of the present model can be found in the pioneering studies by the University of
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Michigan group (Shen and Adamson, 1972; Adamson and Olsson, 1967; Nicholls et al., 1966) on
the RDE configurations of the type shown in Fig. 1.

The enthalpy h(P, s2) of the combustion products downstream of the detonation as a function
of pressure is shown in Fig. 8. At the CJ state (2), the conservation of total enthalpy across the
detonation wave implies h2 = h1 + 1

2 (U
2
CJ − w2

2) and there are no solutions (the dashed portion of
the curve) to (44) for PCJ ≥ P ≥ Pm, where the limiting pressure Pm is defined by h(Pm, s2) = h1.
In the case shown in Fig. 8a, the limiting pressure ratio Pm/P1 = 4.18 (P1 = 100 kPa) and axial flow
solutions for Pm > P > P∗ are subsonic and for P∗ > P are supersonic. The limiting pressure Pm
corresponds to the effective one-dimensional (axial flow) stagnation pressure since the axial flow
speed is zero at this point. Computations for a wide range of compositions indicates that Pm ≈

0.22-0.25 P2.
For given values of the exit pressure P and ambient pressure Pa, the specific thrust can be

estimated by (45) as a function of exit pressure assuming uniform axial flow and the control volume
of Fig. 2a.

T

ÛM
= w +

P − Pa

ρw
. (45)

The density ρ and axial speed w are computed assuming isentropic expansion from the CJ state
and (44) so that the right-hand side is only a function of pressure. An example of specific thrust for
Pa = 100 kPa is shown in Fig. 8b as a function of exit pressure. Excluding the sharp changes as P
→ Pm or 0, the results are insensitive to pressure over a wide range of values. This suggests that a
single value of specific thrust can be estimated from the axial model without specifying the precise
value of the exit pressure. The model is valid not only for constant-area combustors but also for
combustors with variable area; for example, those with attached ideal nozzles which can be treated
as quasi-one-dimensional flow.
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Figure 8: Axial flow RDE model for C2H4-air: a) Pressure-enthalpy states; b) Specific thrust.

Using the value of specific impulse predicted at the sonic point, the results for three fuels are
shown in Fig. 9. The results are remarkably similar to those obtained using the detonation pressure
history method shown in Fig. 6. The quantitative values for specific thrust and impulse predicted
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by the axial flow model can be up to 30% higher than for the pressure history model for fuel-air
cases but there is less than 10% difference for the fuel-oxygen cases. The values of the specific
thrust computed with the axial flow model depend not only on the composition of the reactants
but also the thermodynamic conditions in the reactants just ahead of the detonation. Parametric
computations for the case of C2H4-Air mixtures are shown in Fig. 10.
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Figure 9: Sonic axial flow RDE model: a) Specific thrust T/ ÛM; b) fuel-based specific impulse
Isp f .
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Figure 10: Sonic axial flow RDE model: a) Effect of initial temperature T1 for P1 = 100 kPa; b)
Effect of initial pressure P1 for T1 = 300 K.

4.2 Analytical Expressions
The one-γ analytical model of the CJ state can be used with perfect gas thermodynamic expressions
to estimate the specific thrust. The starting point is the expression (Browne et al., 2017) for CJ
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Mach number in terms of energy release per unit mass

MCJ −
1

MCJ
=

√
2q(γ2 − 1)
γRT1

. (46)

The CJ temperature and pressure are

TCJ = T1
(γM2

CJ + 1)2

M2
CJ(γ + 1)2

(47)

and

PCJ = P1
γM2

CJ + 1
(γ + 1)

. (48)

The enthalpy of the reactants is

h1 = CPT1 + q (49)

and the enthalpy of the products is

h = CPT . (50)

The product temperature can be computed from the change in pressure and entropy along the
streamline emanating from state 2 (CJ)

T = T2 exp
(

s − s2
Cp

) (
P
P2

)R/Cp

. (51)

The change in entropy can be estimated from the change in total pressure along the streamline
assuming the total temperature remains constant

s − s2 = −R ln
(

Pt

Pt,2

)
. (52)

These expressions can be used to derive an explicit expression for specific thrust for the particular
case of exit pressure equal to the atmospheric pressure (P = Pa). As shown in Fig. 9, the specific
thrust is relatively insensitive to the exit pressure so we choose the pressure-matched condition to
make the computation of specific thrust particularly simple. Assuming4 isentropic expansion along
the streamlines, s = s2, we obtain

T

ÛM

����
Pa

= w =
√

2CpT1

[
1 +

q
CPT1

−

(
Pa

P1

) (γ−1)/γ (
P1
P2

) (γ−1)/γ T2
T1

]1/2

. (53)

4Evaluating the entropy change for a total pressure loss of 7% results in correction to (51) of less than 1% to the
isentropic temperature.
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Substituting the analytical expressions for T2 = TCJ and P2 = PCJ , we obtain an explicit expression

T

ÛM

����
Pa

= a1

√
2

γ − 1

1 +
1

2(γ + 1)

(
MCJ −

1
MCJ

)2
−

(
Pa

P1

) (γ−1)/γ 1
M2

CJ

(
γ + 1

γM2
CJ + 1

)−(γ+1)/γ
1/2

.

(54)
For the range 5 < MCJ < 8 and 1.1 < γ < 1.15 which are of interest for RDEs, numerical evaluation
gives reasonable agreement (within 10%) to the value computed using detailed thermochemistry
for P1 = Pa. Examining the range of values for MCJ for fixed γ, the specific thrust is observed to
be linearly proportional to CJ velocity, just as in the RDE analysis and consistent with the pressure
history model. We conclude that the scaling relationship

T

ÛM
∝ UCJ (55)

is a feature of both PDE (64) andRDE (20)models; this result could be anticipated fromdimensional
analysis although there are a number of ways in which a characteristic velocity could be defined.
For example, (54) can be interpreted as an example of a relationship of the form

T

ÛM
= a1 f (MCJ, γ, Pa/P1) (56)

as the consequence of dimensional analysis and without further examination of the functional form
of f , it is not obvious that (55) holds.

Expression (54) is useful in discussing the dependence of specific thrust on temperature and
pressure that is shown in Fig. 10. The modest increase in specific thrust with a decrease in initial
temperature (Fig. 10a) is due to the dependence of MCJ on T1 as given by (46). The more dramatic
increase in specific thrust with increasing P1 for a given Pa is due to the decrease in enthalpy
with decreasing pressure; the CJ temperature (T2/T1) and pressure ratios (P2/P1) are essentially
independent of initial pressure so that a decrease in enthalpy and the corresponding increase in
specific thrust is entirely due to the greater isentropic expansion resulting from smaller pressure
ratios, Pa/P2 = Pa/P1 · P1/P2.

4.3 Axial Flow Model and Nozzles
Sufficiently far downstream from the detonation where the axial flow approximation is valid,
the usual quasi-one dimensional flow methodology employed for ideal rocket motor performance
estimates (Sutton, 1992, Chap. 3) can be used to examine the effect of a nozzle on the performance
of a RDE. Relationship (44) is identical to the conservation of energy relation for a nonreacting
quasi-one dimensional flow if we recognize that the effective total temperature Tt is defined by
h1 = CpT1 + q = CpTt and h = CPT . This is equivalent to defining the total temperature as the
constant pressure combustion temperature as suggested by Kato et al. (2016). The constant pressure
combustion temperature has a modest dependence on pressure so that a single value of Tt can be
used for a given mixture composition and a wide range of combustor pressures. The conservation
of energy (44) applies along a streamline in the flow and is equally valid within the constant area
combustor and an attached nozzle. As a consequence, the results of the axial flow model and the
specific thrust estimates (45) apply to configurations with nozzles downstream of the combustor
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and as examined below, the usual ideal rocket motor analysis can be applied using the appropriate
stagnation conditions.

To relate the axial flow model to the usual perfect gas methodology, the axial speed relation

w =
√

2(h1 − h(P, s2)) (57)

can be approximated using the perfect gas model as

w ≈
√

2(CPTt − CpT) =

√
2γRTt

γ − 1

(
1 −

T
Tt

)1/2
(58)

for T ≤ Tt (P ≤ Pt). The standard perfect gas isentropic relationships can be used to define
temperature and density in terms of pressure. The density, axial speed and flow area A are related
through the conservation of mass flow.

ÛM = ρwA . (59)

These relationships can be used to evaluate the specific thrust for a given nozzle exit area A using
(4). For a given mass flow rate, an effective sonic throat area A∗ can be defined based on the sonic
point in the expansion. At the sonic point w∗ = a∗, the mass flow will be

ÛM∗ = ρ∗a∗A∗ = ρtat
ρ∗

ρt

a∗

at
A∗ . (60)

Apply the perfect gas thermodynamic relationships, we obtain the standard relationship for mass
flow through a choked nozzle in terms of the stagnation conditions

ÛM∗ = A∗Pt

[
γ

RTt

(
2

γ + 1

)γ+1/γ−1
]1/2

. (61)

Consider the situation in which the mass flow rate through the combustor is determined by the
injector system and a nozzle is attached to the end of the combustor. For a given total temperature
Tt , the chamber stagnation pressure Pt will be determined by the constancy of mass flow for steady
operation and the value of the nozzle throat area (Kato et al., 2016).

Pt =
ÛM

A∗

[
RTt

γ

(
γ + 1

2

)γ+1/γ−1
]1/2

. (62)

As the nozzle area decreases, the stagnation pressure increases as observed in the tests of Kato
et al. (2016). The axial flow model computations show that Pt ∝ P2 = C · P2/P1 · P1 where C ≈
0.24 so that increases in Pt will result in proportional increases in P1 because P2/P1 is nominally
a constant for a given mixture. Likewise, for fixed values of A∗, the pressure Pt or P1 will increase
proportional to increases in mass flow rate as observed in the tests of Kato et al. (2016).
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5 Comparisons with simulations
The simulation parameters for four cases are given in Table 1 together with a comparison of
simulation results to model estimates for the fuel-based specific impulse. The specific impulse
values estimated by the present models are within 5-10% of the values computed by Schwer and
Kailasanath (2013); the fuel-air estimates are slightly higher than the Schwer and Kailasanath
(2013) values; the fuel-oxygen values are slightly lower except for the C2H4-O2 axial flow model.
Term I I amounts to 20% of the thrust for the H2-air case and 15% for the C3H8-O2 case. The
pressure history model results shown in Table 1 were made using (7) and the value of uc = 300
m/s given by Schwer and Kailasanath (2013). The axial flow model results used the same pressure
and temperature (1.5 atm and 255 K) ahead of the detonation as the pressure history model. The
PDE model results are consistently lower (by up to 11%) than the axial sonic flow model results
but comparable to both the pressure history model predictions and the simulation values.

Table 1: Parameters for the cases reported in Schwer and Kailasanath (2013) and comparison of
numerical simulations with models of fuel-based specific impulse.

case H2-air C2H4-air C2H4-O2 C3H8-O2
Model Input and CJ Parameters

ÛM (kg/s) 0.950 1.12 1.91 0.884
ρc (kg/m3) 1.48 2.04 2.19 2.41
H (mm) 32.4 29.9 15.1 15.4
α 0.98 0.98 0.65 0.65
UCJ (m/s) 1982 1836 2402 2383
PCJ (MPa) 2.75 3.24 5.97 6.46
γe 1.169 1.165 1.142 1.137
Yf 0.02852 0.06375 0.2260 0.2160

Fuel-Based Specific Impulse
Unsteady 2D simulations, Schwer and Kailasanath (2013)

Isp f S&K (s) 4860 1990 700 1070
Pressure History Model

Isp f (I + I I) (s) 4706 1975 704 1016
Axial Flow Model

Isp f (s) 5383 2280 911 952
PDE Model, Wintenberger et al. (2003)

Isp f (s) 4761 1985 750 781

6 Comparison to Test Results
Kato et al. (2014, 2016) performed experiments using a C2H4-O2 fueled RDE to directly measure
the average thrust with a load cell and instrumented the plenum and combustion chamber with
pressure transducers. The annular RDE chamber had an inner radius of 30.25 mm, an outer radius
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of 33.45mm andwas approximately 100mm long. The fuel and oxygenwere injected from separate
plenums using impingement to promote mixing with the fuel injection being axial and the oxygen
injection oriented radially outward. The plenum pressures were approximately 5 to 10 times the
average combustion chamber pressure. The flow through the injectors was choked and mass flow
rates were measured by using an electronic scale to determine the change in mass of the supply
tanks. The thrust was measured over an operational period of 0.2 to 0.8 s depending on the mass
flow rate and equivalence ratio.

Comparisons between measured specific thrust (assumed to be the load cell output) and model
predictions for selected tests from Kato et al. (2016) are shown in Fig. 11 using both the pressure
history and axial sonic flow models. Analyses of these tests require making assumptions about
the state of the reactants just upstream of the detonation front as there are no time-resolved
measurements available for the pressure or temperature. The measured values of mass flow rate
and static pressure in the downstream portion of the combustor were used to compute the total
pressure at that point assuming axial flow as discussed in Kato et al. (2016). The pressure just
ahead of the detonation is inferred by using the observation from the axial flow model results that
the total pressure is approximately 0.24 times the Chapman-Jouguet pressure and performing an
inverse CJ computation to determine P1 corresponding to PCJ = Pt/0.24. The static temperature
was assumed to be equal to the value in the plenum. Some tests in Kato et al. (2016) used a
convergent or converging-diverging nozzle so that strictly speaking, the pressure history model is
not applicable and should only be compared to those tests with just the constant area combustion
channel.

Experimental values of specific thrust are 20-60% less than the pressure history estimates as
shown in Fig. 11a, which may indicate a highly non-ideal detonation process with significant losses,
resulting in speeds much less than the CJ value. The influence of mixing on detonation propagation
is discussed by Fujii et al. (2017) and Gaillard et al. (2015) who describe the challenges obtaining
uniformmixtures with impinging jets. The filled data in Fig. 11a are for combustors with a constant
area and the open data points are for cases with nozzles. The data in Fig. 11b are for both constant
as well as variable area cases. Representative ranges of values for the pressure P1 inferred from
the experimental conditions are 35 to 40 kPa for the low mass flow cases and 60 to 70 kPa for
the high mass flow model. The test data trends in Fig. 11b are consistent with sonic axial flow
model for the high-mass-flow cases but show significant deviations for the fuel-rich, low-mass-flow
cases. Just as in the pressure history model, the test data are lower than the axial sonic flow model
prediction values in all cases. A key source of uncertainty that may be responsible for the differences
between model predictions and measurements is the lack of experimental data for the pressure and
temperature of the reactant gas layer just upstream of the detonation. Other possible causes for
the differences between model predictions and test data include nonideal mixing and detonation
processes as well as deviations from ideal axial flow at the exit of the test fixture. Resolving these
issues will require further tests and analyses.

7 Comparison of RDE and PDE analysis
The RDE performance model can be compared with the PDE model of Wintenberger et al. (2003)
if we recognize that PDE impulse per cycle is the analog of RDE thrust and PDE mass per cycle
is the analog of RDE mass flow rate. PDE specific impulse I/M is therefore the analog of RDE
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Figure 11: a) Measured and model estimates of specific thrust T/ ÛM for the C2H4-O2 RDE tests of
Kato et al. (2016). (a) Pressure history model and (b) sonic axial flow model; lines are predictions,
points are test data.

specific thrust T/ ÛM and PDE fuel-based specific impulse Isp f = I/(gYf M) is the analog of RDE
fuel-based specific impulse Isp f = T/(gYf ÛM). Specific thrust and specific impulse not only have
the same units for both PDEs and RDEs but the analytical models have exactly the same dependence
on the detonation thermodynamic parameters. From equation (27) of Wintenberger et al. (2003),
the analytical model for impulse per PDE cycle is

IPDE = KPDEV
∆P3
UCJ

. (63)

To compare this to the RDE impulse, the plateau pressure difference ∆P3 can be expressed in
terms of the CJ pressure, ∆P3 ≈ 0.35∆PCJ , and we use the nominal value of KPDE = 4.3 given
by Wintenberger et al. (2003). The mass of gas that participates in each cycle of the detonation
process is M = ρcV . Substituting these relations into (63), we obtain the following expression for
the PDE analog of specific thrust due to the detonation(

I
M

)
PDE
≈ 1.5

∆PCJ

ρcUCJ
, (64)

which is identical in form to the RDE pressure-history specific thrust expression (18) but with a
constant K = 1.5 in place of KRDE = 1.02–1.54 (fuel-air vs. fuel-oxygen). This is the reason for
the surprisingly good qualitative correlation (Fig. 12) of measured RDE performance with the PDE
model, as originally observed by Rankin et al. (2017). As shown in Fig. 12, the pressure history
and sonic axial flow RDE models bound the data for both RDE and PDE tests. The systematic
discrepancy between the RDE pressure history model and the RDE data can be explained by noting
that only term I of the model could be estimated from the information available in Rankin et al.
(2017). The sonic axial flow model appears to be about 10% higher than the experimental data for
H2-air cases and less than 5% higher for the C2H4-air cases.
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Figure 12: Comparison of predicted RDE and PDE performance with measured performance using
data from Fig. 10 of Rankin et al. (2017). a) H2-air. b) C2H4-air.

8 Conclusion
The analyses given in this paper provide simple mechanistic explanations and relationships to
predict RDE performance using either elementary thermochemical computations or approximate
analytical models based on perfect gas relationships. The analyses also demonstrate why RDE and
PDEmodels give very similar trends and identical qualitative dependence on detonation properties.
The pressure history model indicates how quantitative differences in performance occur due to the
differences in the pressure-time history at the thrust surface and the possible importance of the
thrust associated with the filling process in the RDE case. The axial flow model provides a way
to account for both pressure and mass flow contributions to thrust without explicitly evaluating the
contributions to the integrals required for the pressure history model. Both the pressure history and
axial flow models require knowledge of the conditions just upstream of the detonation; reinforcing
the importance of the fuel-oxidizer injection andmixing processes to the performance of RDEs. The
axial flowmodel provides a simple upper bound on the effective stagnation conditions which can be
used in the traditional quasi-one dimensional rocket motor methodology to estimate performance
of RDEs used in a rocket motor configuration.
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A Equations of Motion
The equations of motion for inviscid compressible flow can be written as:

∂ρ

∂t
+∇ · (ρu) = 0 ; (65)

ρ
∂u

∂t
+ ρ(u ·∇)u = −∇P ; (66)

ρ
∂

∂t

(
h +

1
2
|u|2

)
+ ρ(u ·∇)

(
h +

1
2
|u|2

)
= −

∂P
∂t

. (67)

In terms of the components of velocity (u, v,w) and the cylindrical coordinate system (r, θ, z) shown
in Fig. 7, these equations are:

∂ρ

∂t
+
∂

∂r
(ρu) +

1
r
∂

∂θ
(rρv) +

∂

∂z
(ρw) = 0 ; (68)
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∂u
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+
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∂u
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+ w

∂u
∂z
−
v2

r
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ρ
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; (69)
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. (72)

The relation to the 2D, “unwrapped” coordinate is through the approximations of neglecting motion
in the r direction by setting u = 0 and taking ∂/∂r = 0. This results in an inconsistency for the
radial momentum which reduces in the limit u = 0 to

v2

r
=

1
ρ

∂P
∂r

(73)

and because v does not vanish, there must be a radial pressure gradient. However, if the radius
of the annulus R is sufficiently large, the pressure gradient in the radial direction will be small
in comparison to the azimuthal and axial gradients and can be neglected. Formally this can be
accomplished by taking the limit r →∞ in the 3D equation set.

To transform to wave-fixed coordinates in 2D, define the following coordinate and velocity
transformations using the mean radius R of the combustion chamber.

x′ = UDt − Rθ ; (74)
z′ = z ; (75)
t′ = t ; (76)

and

u′ = UD − v ; (77)
w′ = w . (78)
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This transformation corresponds to going from the laboratory frame (θ-Z) representation in Fig. 1b
to the unwrapped wave-fixed frame (X′-Z′)in Fig. 3. The velocity components in the unwrapped
frame are (u′,w′) corresponding to the coordinates (x′, z′). The detonation is located at x′ = 0 and
the thrust surface is located at z′ = 0 in the transformed variables. The quantities ρ, P and h are
invariant, i.e., the same in both coordinate systems. The equations of motion transform exactly to
the 2D steady-flow compressible (Euler) equations in this limit:

∂

∂x′
(ρu′) +

∂

∂z′
(ρw′) = 0 ; (79)

u′
∂u′

∂x′
+ w′

∂u′

∂z′
= −

1
ρ

∂P
∂x′

; (80)

u′
∂w′

∂x′
+ w′

∂w′

∂z′
= −

1
ρ

∂P
∂z′

; (81)(
u′

∂

∂x′
+ w′

∂

∂z′

) [
h +

1
2
(u′2 + w′2)

]
= 0 . (82)

One implication of the energy equation is that the total enthalpy is constant along streamlines in
the wave-fixed frame,

ht = h +
1
2
(u′2 + w′2) = constant . (83)

In this frame of reference, the flow is steady and total enthalpy is conserved across both shock
and detonation waves enabling evaluation of the total enthalpy at any convenient point along a
streamline. In the flow just ahead of the detonation h = h1, w′ = 0 and u′ = UD so that

ht = h1 +
1
2

U2
D . (84)

If the flow ahead of the detonation has uniform properties, then this is the unique value of stagnation
enthalpy for the entire flow field. Transforming (83) to the laboratory reference frame using (77),
the total enthalpy is

ht = h +
1
2
(v2 + w2 +U2

D) − vUD = constant . (85)

Subsituting for the value of ht from (84) we obtain the alternative expression for total enthalpy
conservation, which is used for the axial flow model discussed in Section 4,

h1 = h +
1
2
(v2 + w2) − vUD . (86)

In the limit as the azimuthal velocity vanishes, v→ 0, the axial flow velocity is given by

w |axial =
√

2(h1 − h) . (87)
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Although at first glance this appears to be inconsistent with the same limit for (83), in the co-rotating
frame, conservation of angular momentum requires that u′→ UD in the limit of purely axial flow
in the laboratory frame. Substituting (84) in (83), we find that

h1 = h +
1
2
(w′2 + u′2 −U2

D) , (88)

which gives a result identical to (87) in the limit of purely axial flow, recognizing that w′ = w.
In the context of turbomachinery, the expression on the right-hand side of (86) is referred to as

the rothalpy and UD is tangential speed of the rotor. A detailed discussion of this concept is given
by Lyman (1993).
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B Solutions to Triple-Point Configuration
The pressure-deflection states shown in Fig. 4 were computed using equilibrium thermochemistry to
determine the detonation state, oblique shock state and Prandtl-Meyer expansion with the methods
described in Browne et al. (2017). Selected numerical values associated with each state are given in
Table 2. Initial conditions for all cases are stoichiometric mixtures with P1 = 0.1 MPa and T1 = 300
K; velocities are all given in the wave-fixed frame. State 4 was determined by isentropic expansion
of the detonation state 2 to the initial pressure P1 assuming one-dimensional flow parallel to the
x axis. The solutions for states 3 and 5 were determined by numerical solution of the pressure
and deflection matching conditions at the 3-5 contact surface. The reported values of enthalpy
are mixture averages including the heats of formation for each species with the concentrations
determined by the equilibrium solutions. The 53 species found in GRI-Mech 3.0 (Smith et al., 1999)
were used for these computations with the thermodynamic data fits corrected for discontinuities
and the temperature range extended to 6000 K.
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Table 2: Triple-point and axial-flow solution states for representative fuel-air and fuel-oxygen
mixtures.

H2-air C2H4-air H2-O2 C2H4-O2 C3H8-O2
State 1 - Initial Conditions

ρ1 (kg/m3) 0.838 1.15 0.482 1.24 1.36
h1 (kJ/kg) 2.61 122. 4.47 425 -506.
u1 (UCJ) (m/s) 1968 1823 2836 2373 2356
a1 (m/s) 409 346 539 328 308

State 2 - CJ
T2 (K) 2943 2923 3675 3930 3822
P2 (MPa) 1.55 1.82 1.86 3.31 3.59
ρ2 (kg/m3) 1.51 2.09 0.884 2.30 2.53
h2 (MJ/kg) 1.34 1.28 2.83 2.42 1.46
a2 (m/s) 1091 1005 1542 1281 1269
γ 1.163 1.161 1.129 1.139 1.134

State 3 - PM Expansion
T3 (K) 2479 2455 3288 3423 3324
P3 (MPa) 0.429 0.470 0.461 0.626 0.653
ρ3 (kg/m3) 0.506 0.655 0.255 0.526 0.557
h3 (MJ/kg) 0.145 0.204 0.104 0.234 -0.736
θ3 (deg) 28.6 30.3 32.5 38.1 39.0
u3 (m/s) 1895 1777 2800 2451 2452
a3 (m/s) 1002 918 1422 1156 1145

State 4 - Upstream of Oblique Shock
T4 (K) 1948 1922 2935 2993 2898
ρ4 (kg/m3) 0.151 0.180 0.0646 0.101 0.103
h4 (MJ/kg) -0.952 -0.780 -2.45 -1.75 -2.74
u4 (m/s) 2405 2264 3598 3160 3164
a4 (m/s) 902 825 1310 1045 1036

State 5 - Downstream of Oblique Shock
T5 (K) 2602 2593 3346 3528 3439
ρ5 (kg/m3) 0.480 0.616 0.245 0.489 0.515
h5 (MJ/kg) 0.479 0.548 1.07 1.38 0.482
u5 (m/s) 1710 1572 2429 1929 1891
a5 (m/s) 1024 942 1451 1200 1193

Axial Sonic Flow
w∗ (m/s) 951 877 1376 1130 1123
P∗ (MPa) 0.203 0.236 0.253 0.426 0.460
T/ ÛM (m/s) 1347 1297 2117 1901 1908
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C Existence of Attached Oblique Solutions
Houim and Fievishon (2017) call attention to the role of acoustic impedance ratio Z across the
interface between the detonation layer and inert bounding gas, using two-dimensional unsteady
simulations with a single-step model of detonation. They define the acoustic impedance ratio Z
in terms of the ratio of the impedance ρa of the reactants to that of the bounding gas layer, both
evaluated upstream of the wave complex. Using the notation of Fig. 3, this is

Z14 =
(ρa)4
(ρa)1

. (89)

For constant property model used in Houim and Fievishon (2017), this reduces to Z =
√

T1/T4 and
values of Z = 1.73, 1, 0.71, 0.55 and 0.29 were used in their simulations (corresponding to T4 =
100, 300, 600, 1000 and 3500 K for T1 = 298 K. They found that in all cases except for T4 = 3500 K,
a solution was obtained with an attached oblique shock wave, corresponding to the configurations
shown in Fig. 4. For case 5 (T4 = 3500 K) of Houim and Fievishon (2017), the solution consisted of
a detached precursor shock (oriented normal to the interface and propagating in the inert bounding
layer) followed by an oblique shock in the cold reactant layer that intersects a nominally normal
detonation wave in the reactant layer. A secondary oblique shock is needed to match the conditions
associated with the PM expansion within the detonation products. Although these cases generally
still result in an expansion wave following the detonation, the scaled variation of pressure with
distance along the thrust surface may be significantly different for detached and attached oblique
shock solution. Solutions of this type (normal precursor shock in the inert bounding layer) will be
unsteady because the flow behind the detached normal shock is subsonic relative to the shock wave,
resulting in acoustic feedback coupling the precursor shock propagation with the flow downstream
of the triple point. This is in contrast to the attached oblique shock cases discussed in Section 3;
these all have supersonic flow behind the oblique shock and disturbances generated by the flow
downstream of the triple point do not propagate upstream.

Simulations by Houim and Fievishon (2017) raise the interesting possibility that more complex
flowfields may result than shown in Fig. 1 or 3. Analyses of triple-point configuration for cases
similar to those examined by Houim and Fievishon (2017) are shown in Fig. 13. In Fig. 13a,
all cases except for 3500 K (comparable to Case 5 of Houim and Fievishon (2017)) display an
intersection between the oblique shock polar and PM expansion behind the detonation. These cases
admit a mean flow solution with an attached oblique shock, which is consistent with the unsteady
simulations of Houim and Fievishon (2017). The polars do not intersect for the 3500 K case,
consistent with the detached shock solution observed in their unsteady simulations.

There are several key differences between the simulations of Houim and Fievishon (2017) and
the RDE situation. One key difference is that the expanded detonation products are moving relative
to the reactant layer, resulting in shear flow between the inert gas layer and reactants. Parametric
computations with four layer speeds are shown in Fig. 13 for detonation of a stoichiometric C2H4-
O2 layer (T1 = 300 K, P1 = 1 atm) bounded by a layer of air at various initial temperatures and
velocities. These solutions show that attached oblique shock solutions are possible if the bounding
gas speed is sufficiently high; the speed of the flow of the bounding inert gas layer is given relative
to the reactant layer in the direction opposed to the detonation motion in the laboratory frame. The
velocity required to obtain attached shock solutions are comparable to those of state 4 in the model
RDE cases we have examined, see Table 2. Other significant factors include the bounding gas layer
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temperature, which is much lower for fuel-air than fuel-oxygen cases, and significant differences in
the value of γ, the ratio of specific heats compared to what was used in the Houim and Fievishon
(2017) simulations. The consequences of these differences is that for RDEs, attached oblique shock
solutions such as shown in Fig. 4 appear to be possible in all the cases we have examined.

(a) (b)

Figure 13: Pressure-flow deflection analyses. (a) Effect of air temperature (b) Effect of shear flow
for 3500 K air temperature.

All other factors being equal, the existence of attached shock solutions can be correlated with
the ratio Z14 but is it clear from examining the behavior of the shock polars in Fig. 13 that this is
caused by decrease in the inert layer Mach number with increasing sound speed for fixed U1 and
T1, resulting in the shift of the shock polar relative to the PM expansion. An even larger shift in
the relative location of the PM and oblique shock polar occurs due to the change in the reactant
composition from fuel-oxygen to fuel-air, as shown in Fig. 4. In general, the existence of attached
shock solutions will depend on M1, γ1, M4 and γ4 (using one-γ approximations for each layer) and
is not correlated with Z14 alone.

Houim and Fievishon (2017) unsteady simulations indicate that transmission of the transverse
waves across the boundary between detonation products (state 3) and shocked inert gas (state 5)
does appear to be a significant factor is determining if detonations will successfully propagate
within the reactant layer. If we treat the interactions of the transverse waves with the 3–5 interface
in the acoustic limit, then the ratio

Z35 =
(ρa)5
(ρa)3

(90)

will be relevant to the contact surface interaction of transverse waves associated with detonation
instability rather than Z14. From Table 2, values of Z35 are 1; whereas the values for the contact
surface upstream of the detonation Z14 are between 0.25 and 0.40. This difference between upstream
and downstream values of Z can explain the confinement of transverse waves to the detonation
layer in case 5 of Houim and Fievishon (2017) and stability of detonation propagation despite the
lack of a stable attached oblique shock solution.
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