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Abstract

We consider the numerical simulation of inviscid reactive flows with application to high
density explosive detonation. The numerical model is based on the Euler equations and the
Mie-Grüneisen equation of state extended to treat chemical energy release and expanded
states. The equations are computed with a Roe-Glaister solver on a Cartesian mesh. We
present results for two substances, a binder and an explosive. Our solution method is verified
against the exact solution of the shock tube problem for solid materials. We show under
what conditions a “physical” expansion shock can appear in this example. We then address
the problem of modeling expanded states, and show results for a two-dimensional shock
diffraction around a sharp corner. In the last part of the paper, we introduce a detonation
model that extends the Mie-Grüneisen equation of state to enable high explosive simulations
without the complexity of mixture equations of state. We conclude with two examples of
corner-turning computations carried out with a pressure-dependent reaction rate law.
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1 Introduction

Numerical simulations of explosives must include the capability to reproduce the essential
features of unsteady compressible flow, an equation of state for reactants and products, and
a model of the chemical reaction processes. For gases, there are widely accepted models and
approximations for equation of state, reaction rates, and reaction mechanisms. For example,
many mathematical and analytical studies use the perfect gas equation with a constant
energy release parameter and a single-step irreversible reaction. For solids, there are many
models for both equation of state and reaction rate and no simple standard approach. The
available models are essentially empirical in nature, although there have been intensive efforts
to provide sound foundations based on statistical and quantum mechanics.

There are many issues in high explosive modeling: natural microstructure, reaction mech-
anisms, and equations of state are among the most important. In the present paper, we seek
to examine only one issue - the construction of a simple equation of state that can be used to
test numerical solution methods. The purpose of our modeling approach is not to offer more
accurate engineering solutions to explosive simulations, but rather to provide the simplest
possible model that retains the essential features of a high explosive equation of state. With
this motivation in mind, after reviewing in Section 2 some of the previous work on numerical
simulations of gaseous and solid explosives, in Section 3 we introduce the Mie-Grüneisen
equation of state and provide formulas for the isentropic pressure, the sound speed, and the
fundamental derivative of the material. Available numerical techniques based on the con-
trol volume approach are discussed in Section 4. In Section 5, we describe an algorithm to
compute exactly the shock tube problem and we evaluate the performance of a Roe-Glaister
solver. In Section 6, we present two-dimensional results of shock diffraction in a solid ma-
terial. Finally, in Section 7, we include chemical energy release in the model and test the
modified Roe-Glaister solver in the case of a detonation wave diffracting around a sharp
corner.

2 Issues in numerical modeling of detonations

Detonations are supersonic combustion waves with a leading shock front. The shock wave
ignites the reactive material while the volume expansion due to energy release pushes the
shock into fresh reactants.

The shock wave in homogeneous materials is very thin, a few mean free paths in gases or
a few molecules wide in homogeneous condensed explosives. The shock wave is thickened in
heterogeneous material due to scattering at grain boundaries. The overall chemical reaction
zone can be micrometers to millimeters in length depending on the specific composition of
the reactants.

In this section, we give a brief overview of the present state of thermodynamic and
reaction rate models for numerical simulation of detonations in gaseous and condensed ex-
plosives. We focus on fully developed detonations; detonation initiation is an important but
much more difficult problem.
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2.1 Gaseous detonation

For explosives in the gaseous state, the perfect gas equation of state has been extensively
used in detonation simulations [36, 37]. Detailed and realistic chemical reaction mechanisms
have become available for many hydrocarbon species, and it is a relatively simple matter
to implement quantitatively accurate equations of state for both reactants and products by
using the extensive database of thermochemical properties that has been built up by the
combustion community over the last five decades [25, 31, 59].

Despite the availability of detailed reaction mechanisms for many fuel-oxidizer systems,
many one-dimensional simulations and almost all multi-dimensional simulations in gases
have used approximate thermochemical models because of computational restrictions. Only
recently [38] have two-dimensional gaseous detonation simulations been carried out with the
simplest (hydrogen-oxygen) detailed reaction mechanism. Reaction mechanism reduction,
where the reaction network is reduced to a manageable number of relations between chemical
species, is just beginning to be applied to detonation in gases – one of the first efforts was an
application to the Zeldovich-von Neumann-Doering (ZND) structure [39]. Recently, a two-
dimensional cellular structure computation by Oran [38] was successfully replicated with a
reduced chemical mechanism [9].

2.2 Solid and liquid explosives

Detonation modeling of high explosives offers additional challenges. Reactions occur under
extreme thermodynamic conditions, with pressures up to 60 GPa and temperatures up to
4000 K. While many equations of state under these conditions have been proposed, none is
as reliable or simple to use as the perfect gas model. In addition, the development of reaction
mechanisms for nitramine explosives, such as RDX and HMX, have lagged behind hydro-
carbon fuel oxidation mechanisms. Those reaction mechanisms that have been developed
are complex, involving up to 500 chemical reactions between almost 100 species, and are
appropriate for low-pressure gaseous reactions only [3, 40]. There is no consensus about how
the mechanism and rates will be affected by the dense surrounding medium. Finally, many
solid explosives are not homogeneous and the reaction process is expected to be dominated
by the presence of hot-spots, regions of intense reaction created at voids, grain boundaries,
and defects [15].

These factors make the modeling of chemical reaction processes in high explosives an
extremely challenging task. Combined with the additional complexity of the material mi-
crostructure in many high explosives, the situation has made it completely impractical to
apply detailed reaction mechanisms. As a consequence, code implementation has been dom-
inated by empirical models that specify how the reactants are depleted through an ad hoc
reaction rate expression that is calibrated against experiments, such as the cylinder test [23]
and shock initiation experiments. The empirical models are essentially blending algorithms
that specify how the equation of state is represented in the reaction zone region and how
rapidly the transition occurs between reactants and products. A recent study on detonation
in TNT nicely illustrates this approach [26].

There are two general classes of reactive flow models: 1) Two-phase models which treat
gases and solids separately, and 2) single-phase models that treat the mixture of reactants

6



and products as a single fluid with some effective mixture properties. The two-phase flow
approach is exemplified by the work of Baer and Nunziato [1], where mixture theory is used
to derive a set of coupled evolution equations that determine how the properties of each
phase individually evolve. The solid and gas phases are not required to be in equilibrium
since the equation of state for each phase is treated individually. Baer and Nunziato used a
Helmoltz free-energy equation of state due to Hayes for the unreacted solid explosive, and
the Jones-Wilkins-Lee (JWL) equation of state for the gaseous products. A number of issues
arise in formulating [2] and solving [19] the model equation set. Despite this, the two-phase
model has attracted a lot of attention for deflagration to detonation transition in which the
explosive event begins with low-speed combustion.

The single-phase models are simpler and represent much of the engineering approach to
modeling high explosives. Two models of this type are presented by Lee and Tarver [27]
and Johnson et al. [24]. The common idea is to treat the mixture of detonation reactants
and products as a single fluid with properties that represent a weighted average between
reactants and products. The advantage is the simplification of the numerical scheme, since
the single-fluid Euler equations govern the flow evolution.

In the perfect gas case, there is always a single fluid (with the equation of state provided
by the gas mixture equations) as long as local thermodynamic equilibrium throughout the
reaction zone can be assumed. In dense explosives, the key issue is how to create an effective
single-fluid equation of state when the thermodynamic properties of products and reactants
are separately provided. Since four independent state variables exist (two for each state of
the material) and only two mixture thermodynamic properties (energy and mass density)
define the state of a portion of fluid, two additional relations are needed to describe the
mixture properties.

One solution is to assume local mechanical and thermal equilibrium of the mixture com-
ponents. This is the approach followed by Johnson et al. [24], who use the Mie-Grüneisen
equation of state [29] for the reactants and a modified JWL equation of state for the products.
The equilibrium condition is enforced at each grid point in the flow by numerical solution
of the implicit equilibrium relations. Another solution, proposed by Lee and Tarver [27], is
to require a local pressure equilibration without constraining the temperature. In [27], the
JWL equation of state is used for reactants and products with different fitting parameters.
Additional assumptions have to be made with this model to obtain closure. Stewart et al.
[50] have explored the consequences for the reactant zone structure of making alternate clo-
sure assumptions. They compare the extremes of perfect thermal equilibrium to complete
thermal isolation of products and reactants. They also examine a simple ad hoc assumption
by assuming a fixed ratio of reactant-to-product specific volume. Simulations based on ei-
ther equilibrium or adiabatic assumptions show that this parameter varies over a relatively
modest range. This work was based on the equations of state by Davis for both products
[5] and reactants [6]. Stewart et al. [49] applied this ad hoc closure rule to the computation
of detonation shock dynamics relations. An alternative approach, where the interaction be-
tween different phases is first given by the solution of a set of Riemann problems and then
averaged over each computational cell, is proposed by Chinnayya et al. [4].

A common issue for single- and two-phase models is the choice of a reaction rate ex-
pression. Most of these models use depletion laws with pressure- or temperature-dependent
rates. Lee and Tarver [27] proposed an “initiation and growth” model with a single deple-
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tion variable (the mass fraction of products) and two pressure-dependent terms (the first
describing the initiation of the reaction through hot-spot generation, the second modeling
the growth of the reaction away from these centers). The model of Johnson et al. [24] uses
several depletion variables to represent the fraction of the material in the hot-spots, the
main burn process and, possibly, slower processes associated with recombination or carbon
condensation far behind the front. Chemical rates depend on temperature, pressure, and the
previous history of the material.

In the present work, we have opted for the single-phase model to directly take advantage
of recent developments in numerical schemes for solving Euler equations. We also avoid
the complexity of imposing local pressure and temperature equilibrium by using the Mie-
Grüneisen equation of state (with the addition of an energy release term) throughout the
reaction zone. This formulation is explicit in pressure as a function of energy, density, and
mass fraction to avoid point implicit computations that more complex formulations require.

The reaction rate is a simple single-step pressure-dependent depletion law with fractional
order. The absence of the Arrhenius term eliminates the need to compute the temperature
of the mixture, while the fractional order of the depletion law results in a finite reaction zone
length. At the end of the reaction of a Chapman-Jouguet (CJ) detonation wave, the particle
velocity in the shock reference frame equals the local sound speed [14]. In this way, a finite
reaction length minimizes the effect of disturbances created by rear boundary conditions.

3 Engineering model for high explosives

Plastic-bonded explosives are composed mainly of explosive with small amounts of elas-
tomer binder. The explosive is a granulated material coated with the binder and pressed
into the desired shape. In the present study, we have used solvent-pressed HMX (cyclote-
tramethylenetetranitramine), referred to as HMX sp, as the model for our explosive, and
polychlorotrifluoroethylene (Kel-F) as the model for a binder. Nominal values of the ther-
modynamic parameters which are used in the present computations were obtained from the
literature [7] and are given in table 3.

Table 1: Thermodynamic parameters.

Substance c0 [km/s] s ρ0 [g/cc] G
Kel-F 2.03 1.64 2.132 0.45
HMX sp 3.07 1.79 1.891 0.70
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3.1 Reactive Euler equations

The reactive multi-dimensional Euler equations are


∂ρ

∂t
+ ∇ · (ρu) = 0

∂

∂t
(λ ρ) + ∇ · (λ ρu) = ρR

∂

∂t
(ρu) + ∇ · (ρuu + IP ) = 0

∂

∂t
(ρE) + ∇ ·

[
ρu

(
E +

P

ρ

)]
= 0,

(1)

where ρ is the density of the fluid, λ is the product mass fraction, R is the reaction rate, u is
the velocity vector, P is the pressure, and e is the specific internal energy. E = e + 1/2 ‖u‖2

is the specific total energy. Throughout the paper, we will always refer to specific quantities,
e.g. “energy” for “specific energy”. Equation (1) may be rewritten in conservative form as

Ut + ∇ · F(U) = Ω(U), (2)

where U = (ρ, λ ρ, ρu, ρE)T is the vector of conservative variables.
The chemistry is based on a simple one-step irreversible reaction of reactant to product.

The pressure-dependent rate of depletion of the reactant is

R(λ, P ) = K

(
P

PV N

)ν

(1 − λ)1/2, (3)

where K is the rate multiplier, PV N is the von Neumann pressure (defined in Section 5), and
ν is an adjustable parameter, typically 0 < ν < 5.

In the remainder of the paper, pressure is expressed in GPa, speed in km/s, density in
cc/g, specific volume in g/cc, energy in kJ/g, time in µs, and distance in mm.

3.2 Equation of state

To close the system of equations above, it is necessary to relate pressure P , specific volume
v = 1/ρ, and internal energy e through an equation of state. The most popular of such
thermodynamic relations for compressible flow is the perfect gas equation of state, P (e, v) =
(γ − 1) e/v, where γ is the ratio of specific heats.

In the solid state (or in a dense fluid regime), pressure can be expressed as the sum of two
terms, P (e, v) = PT + PC [62]. The thermal component PT is associated with the random
motion of atoms and molecules and is related to the heat capacity Cv(T ) = (∂e/∂T )v. PT is
the only pressure component acting in a gas. The cold component PC is due to intermolecular
forces, repulsive at short distances and attractive at long distances. The cold component of
pressure dominates the thermal component for the higher compressed state produced in solid
explosive detonations [61]. PC and the associated cold compression energy eC are evaluated
at absolute zero temperature and, therefore, are only a function of v.

An important thermodynamic property of a solid is the Grüneisen parameter G [62, 5, 33],

G = v

(
∂P

∂e

)
v

. (4)
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A typical approximation is to assume that the Grüneisen parameter is dependent only on
the specific volume, as in

G(v) = G0

(
v

v0

)q

,

where G0 and q depend on the material (see, for instance, [34]). The Mie-Grüneisen equation
of state is formulated as

P (e, v) ∼ G(v)
e − eC(v)

v
+ PC(v) = G e

v
+ f(v). (5)

For a perfect gas, G(v) = γ−1 and f(v) = 0. For condensed phase materials, expressions for
G, eC , and PC must be obtained from experiments or molecular dynamics simulations [17].

3.2.1 Shock wave data

An alternative to using the cold compression functions eC and PC in equation (5) is provided
by shock compression data. Shock experiments on solids provide a relation between the shock
speed Us and the particle velocity behind the shock, up, along the locus of shocked states
(the Hugoniot of the inert material). For non-porous materials, and in the absence of phase
transitions, these data are approximated reasonably well by a linear relation

Us = c0 + s up. (6)

In equation (6), c0 is the bulk sound speed at ambient conditions and s is related to the
isentropic pressure derivative of the isentropic bulk modulus, K ′

s = ∂Ks/∂P |s, through the
formula s = (K ′

s + 1) /4 (see [34]).
By neglecting ambient pressure P0 and internal energy e0 with respect to the compressed

states, the pressure PH and the internal energy eH on the Hugoniot (figure 2) are obtained
from the shock jump conditions and the linear relation (6) as

PH = ρ0Usup = ρ0c
2
0

ϕ

(1 − sϕ)2 (7)

and

eH =
PH
2

(v0 − v), (8)

with ϕ = 1 − v/v0. By using the definition of G and an approximate expansion of P (e, v),
we can write

P (e, v) ∼ G e − eH(v)

v
+ PH(v). (9)

The Hugoniot-based Mie-Grüneisen equation of state is, therefore,

P (e, v) =
G
v

e +
ρ0c

2
0ϕ

(1 − sϕ)2

[
1 − G

2v
(v0 − v)

]
. (10)

By comparison with (5),

f(v) = PH

[
1 − G

2v
(v0 − v)

]
. (11)
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The sound speed, defined [54] as

c2 =

(
∂P

∂ρ

)
e

+
P

ρ2

(
∂P

∂e

)
ρ

, (12)

can be expressed as

c2 = Ge +
∂f

∂ρ
+ GP

ρ
. (13)

3.2.2 Expanded states

Expanded states below the reference point can occur for sufficiently strong rarefactions. An
example of this is given later in the discussion on shock diffraction around a corner. The
expressions (10) and (11) are no longer valid for v > v0, since, on the shock adiabat, v < v0.
Attempting to simply extrapolate (10) to expanded states eventually fails because the square
of the sound speed can become negative for realistic values of ρ and e. A solution is to modify
the function f to be

f(v) = c2
0

(
1

v
− 1

v0

)
if v > v0. (14)

This is similar to the pseudo-elastic approximation used by Miller and Puckett [34] to elim-
inate analogous difficulties in their computations. Thus, the final form of our expression for
f is

f(v) =




ρ0c
2
0ϕ

(1 − sϕ)2

[
1 − G

2v
(v0 − v)

]
if v ≤ v0 (a)

c2
0

(
1

v
− 1

v0

)
if v > v0 (b)

. (15)

Note that f is not defined for v ≤ va = v0(s − 1)/s. This is the minimum specific volume
allowed by the linear Us–up relation.

3.2.3 Isentropes

By substituting equation (5) in the isentropic relation de = −Pdv, we obtain the following
non-homogeneous ordinary differential equation (ODE) for internal energy on an isentrope

de

dv
+ G e

v
= −f. (16)

The solution, passing through a reference state defined by (ei, vi), is

es(v) = ei

(
v

vi

)−G
− v−G

∫ v

vi

fvGdv.

By substituting es(v) in equation (5), we obtain the isentropic pressure

Ps = − G
vG+1

∫ v

vi

fvGdv + G eiv
G
i

vG+1
+ f. (17)
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Closed-form solutions of the integral are not possible for arbitrary G. In our examples, Ps

is computed using Romberg’s numerical integration [41]. This iterative technique provides
high accuracy for sufficiently smooth functions. If G is an integer, it is a matter of simple
calculus to provide a closed-form expression for Ps.

Example isentropes are shown in figures 3(a) and (b) using G = 2 and the remaining
parameters from table 3. These cases do not correspond to any real material, but were
selected to verify the numerical results against closed-form integration of equation (17).
Note that in figure 3(a), Ps(v) exhibits an inflexion point. An interesting implication of this
is discussed in Section 5.3. Results for more realistic values of the Grüneisen parameter are
displayed in figure 4.

We conclude this section by deriving expressions for the sound speed c,

c2 = −v2

(
∂P

∂v

)
s

, (18)

and for the fundamental derivative of gasdynamics Γ [54],

Γ =
v3

2c2

(
∂2P

∂v2

)
s

. (19)

Substitution of equation (10) in the previous definitions gives(
∂P

∂v

)
s

= −G
[
f

v
− (G + 1)

v(G+2)

∫ v

vi

fvGdv

]
− G (G + 1)

eiv
G
i

v(G+2)
+ f ′ (20)

and (
∂2P

∂v2

)
s

=
(G + 2)

v

(
∂P

∂v

)
s

− f ′
(G

v
+ 1

)
+ f ′′. (21)

4 Numerical integration of the Euler equations

The reactive equations (1) are numerically integrated by using the time splitting technique
proposed by Strang [51]. In the operator splitting procedure, the homogeneous Euler equa-
tions

Ut + ∇ · F(U) = 0, (22)

and the system of ODEs
Ut = Ω(U), (23)

are computed separately. F(U) is the vector of the convective fluxes and U is the vector of
conservative variables. In terms of the advection operator LA and the chemistry operator
LC , the Strang’s splitting takes the form

Un+1 = LC

(
∆t

2

)
LA (∆t) LC

(
∆t

2

)
Un. (24)

By recursion, equation (24) may be written as

Un+1 = LC

(
∆t

2

)
LA (∆t) LC (∆t) · · · LA (∆t) LC

(
∆t

2

)
U0. (25)
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Tang [52] provides error estimates for stiff ODE operators when the solution to the homo-
geneous advection equations is exact. To maintain the overall order of accuracy in the time
integration, one should carry out the first and last iterations with only half the value of the
time step. For simplicity, we do not perform the first halved time step ODE iteration and
perform a whole time step in the last ODE iteration. This approximation is, in general,
acceptable for n large.

The multi-dimensional finite volume discretization of (22) is based on the integral for-
mulation of the conservation equations

∂

∂t

∫
Ci

U dx +

∫
∂Ci

F(U) · n dl = 0, (26)

where Ci is the control volume, ∂Ci is its boundary, dx is the volume element, dl is the
boundary element, and n is the outward normal unit vector to ∂Ci.

The literature abounds with methods to properly approximate at the cell interface the
numerical flux Φi+1/2(Ui+1,Ui) needed by equation (26). For stability reasons, this flux must
be upwind, or appropriate dissipation must be added to a central scheme. Upwind schemes
include those proposed by Godunov [18], where the exact Riemann problem is solved at the
cell boundary, by Roe [43], who uses a linearized solver based upon the sign of the eigenvalues
of the Jacobian of the convective fluxes, by van Leer [57], who uses a flux splitting based
upon the value of the local Mach number, and by Shu and Osher [47], with the Essentially
Non Oscillatory (ENO) solver based on interpolation via divided difference tables. This list
is certainly not exhaustive, but indicates the range of the different methods available. One
must note that all those methods were initially developed for perfect gases. Several were
extended to the more complex case of real gases [46, 28], but only a few, it appears, were
used for solid-state materials.

A Godunov solver, where the approximate and non-iterative solution of the Riemann
problem requires only two material-dependent parameters, was developed by Dukowicz for a
general equation of state [8]. This approach was successfully extended by Miller and Puckett
[34] to a multi-phase scheme that is second-order accurate in regions of smooth flow. The
thermodynamic model was based on the Mie-Grüneisen equation of state and tested in the
context of shock wave geophysics. The description of a two-phase approximate Godunov
solver with a non-ideal Tait solid can be found in [20]. Saurel and Massoni [45] used the
HLL solver by Harten, Lax, and van Leer [22], with the modification suggested by Toro
[56], to solve the Riemann problem with two distinct Mie-Grüneisen equations. Numerical
studies by Vitello et al. [58] on the HLL scheme investigated the role of artificial viscosity
in Arbitrary Lagrangian Eulerian (ALE) computations of detonations with JWL equation
of state. Fedkiw et al. used an ENO solver in examples computed with the Tait equation
of state in [11, 10]. Finally, Xu and Stewart extended the use of ENO to a non-conservative
system of equations derived for a single-velocity two-phase model of high explosive [60].

In the present study, we use the extension proposed by Glaister [16] of Roe’s method.
Roe’s scheme has a few flaws, such as capturing unphysical expansion shocks in gases or the
“carbuncle” phenomenon, but these flaws are well known and most of them can be corrected
[21, 44]. The one-dimensional expression for the numerical flux is

F(U) · n ≈ ΦRoe
i+1/2(Ui+1,Ui) =

1

2

[
Fi + Fi+1 − |Ai+1/2| (Ui+1 − Ui)

]
, (27)
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where the dissipation matrix A is the Jacobian of F, A = DUF. Expressions for A and the
associated eigenvectors can be found in [48]. Roe [43] has shown that A must be evaluated
at the following averages

ρ = ρi+1/2 =
√

ρi ρi+1 β = βi+1/2 =

√
ρi βi +

√
ρi+1 βi+1√

ρi +
√

ρi+1

P = Pi+1/2 = ρ

(
H − e − 1

2
u2

)
c2 = c2

i+1/2 =
P P e

ρ2 + P ρ,

(28)

where β = u, e, and H. The Roe average is also performed for the mass fraction, i.e., β = λ
in (28). The partial derivatives of pressure, Pρ, Pλ, and Pe, at a cell interface are computed
as linear averages of the derivatives on each side of the interface. Harten’s entropy correction
[21] is added to all the waves.

The scheme is rendered Total Variation Diminishing (TVD) by a minmod limiter [53].
The minmod limiter may be replaced by Roe’s “Superbee” limiter [53], or any other technique
that will damp out spurious oscillations.

Time marching of the advection operator is achieved through explicit time stepping. In
one dimension

Un+1
i = Un

i − ∆t
(
Φi+1/2 − Φi−1/2

)
,

where the time step ∆t accounts for the stability condition

∆t = CFL
∆x

|u| + c
.

CFL is the Courant-Friedrichs-Levy number, ∆x is the space discretization, u is the fluid
velocity, and c is the speed of sound.

Time marching of the chemistry operator reduces to the integration of

d

dt




ρ
ρu
ρE
λ


 =




0
0
0

R(λ, P )


 . (29)

Since the conserved quantities in (29) remain constant in the interval ∆t, we need only to
integrate the equation for the mass fraction and correct its advected value obtained from
(22).

The simulations presented in this work are performed with the adaptive mesh refine-
ment (AMR) capability provided by the Amrita computational facility of Quirk [42]. AMR
is especially useful for correctly capturing flow features such as contact discontinuity and
reaction zones.

5 The shock tube problem

A shock tube consists of two materials at two different pressures, P1 and P4, separated by
a membrane (see Figure 5, where P1 < P4). When the membrane ruptures, three waves are
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generated: a shock, a contact discontinuity, and a rarefaction [54]. This Riemann problem
may be solved exactly using the Riemann invariants and the shock jump conditions. The
material on the right of the membrane is shock-compressed to state 2, according to the shock
speed Us. The material on the left experiences an isentropic rarefaction whose final value is
given by state 4. State 2 and 3 have equal pressure (mechanical equilibrium) and velocity
(no discontinuity in the material) but can be separated by a discontinuity in density.

5.1 An exact solution to the shock tube problem

In this section, we compute the solution of the shock tube problem for a single material
obeying the Mie-Grüneisen equation of state. While this solution exists in closed form for
a perfect gas [54], numerical integration and the iterative evaluation of non-linear equations
are required for the Mie-Grüneisen case. This ”exact” solution will be compared in the next
section with the results obtained with the linearized Roe-Glaister solver.

The solution is obtained by iteration, adjusting the shock velocity until the conditions
across the contact discontinuity are satisfied. Graphically, this corresponds to finding the
common point P2 = P3 and u2 = u3 that corresponds to the state of the contact between
the rarefaction fan and the shock. This point is at the intersection of the rarefaction wave
passing by the compressed state (P4, v4) with the shock Hugoniot passing by the rest state
(P1, v1).

Briefly, the algorithm starts with an initial guess for the shock velocity Us. Using the
shock jump conditions and an initial value for v2, we find the shock-compressed state (P2, e2).
Since P2 must satisfy the Mie-Grüneisen equation of state, v2 is iterated until P2 = P (e2, v2).
In this way, the post-shock state is computed for the given Us. Then, we use the matching
condition at the contact discontinuity P3 = P2 to iteratively find the value v3 such that P3

equals the value Ps(v3) of the pressure isentrope passing by state 4. Next, the Riemann
invariant is used to find the change in velocity across the rarefaction

u3 = u4 +

∫ v3

v4

√
−

(
∂P

∂v

)
s

dv, (30)

by carrying out the integration with Romberg’s technique. At this point, the second matching
condition u3 = u2 closes the problem. If u2 > u3, the value of Us is decreased and if u2 < u3,
Us is increased. We repeat this process until |u2−u3| < ε, the prescribed error. Overall, this
algorithm may be regarded as an implementation of the Newton method to find Us given
states 1 and 4. As such, it will converge if the initial guess for Us is not too far off the
solution. Figure 6 shows both the Hugoniot and the isentropic pressure in the (P, u) plane.
The point at the intersection of the two curves, represented by a solid diamond, is computed
by the algorithm described above.

Once Us is known, we can find the specific volume and velocity inside the rarefaction
fan, vr and ur, using the Riemann invariant between the backward characteristics of inverse
slope, u4 − c4 and u3 − c3. For the characteristic with specific volume vr, v4 < vr < v3, we
compute the velocity with equation (30) and the sound speed with c2

r = −v2
r (∂P/∂v)s (vr),

and then find the location xr(t) = t (ur − cr) where the flow takes the values vr, ur and
Pr = Ps(vr).
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In the rest of this paper, we will refer to this algorithm as our “exact” Riemann solver,
exact meaning that this solution is correct up to the precision allowed by the Newton method
and the numerical integration method. This algorithm, too cumbersome to be used for
calculating numerical fluxes, provides in the next section a reference solution to validate our
numerical time-dependent finite-volume simulation.

5.2 Non-reactive shock tube experiments

Results of shock tube simulations are compared against the exact solutions for Kel-F and
HMX sp in figures 7 and 8. The thermodynamic properties of the two materials are given in
table 3. The approximate solution is computed on a uniform grid ∆x = 10−3 mm for both
cases. From the very favorable agreement between the exact solution (solid line) and the
approximate solution (open diamonds), we conclude that the Roe-Glaister solver is suited for
use in shock dynamics computations for materials described by the Mie-Grüneisen equation
of state.

5.3 Rarefaction shock

Before concluding this section, we examine the artificial situation where a material similar
to Kel-F (table 3) has a larger G coefficient. Figures 9(a) and (b) show the fundamental
derivative Γ computed for G = 2 and G = 1.7. Negative values of Γ are of particular interest
since they can give rise to expansion shocks. This is seen by expressing Γ as

Γ = 1 +
ρ

c

(
∂c

∂ρ

)
s

. (31)

From the theory of characteristics [54],

d

(
dx

dt

)
C∓

= ∓ Γ

Γ − 1
dc. (32)

In equation (32), (dx/dt)C∓ = (u∓ c) is the inverse slope of the C∓ characteristics in the x–t
plane and d(·) is the variation taken along the family of opposite characteristics. If Γ < 0,
then stronger rarefaction waves travel faster than weak ones, leading to the convergence of
expansion characteristics and, eventually, to an expansion shock. Under these conditions,
an expansion shock may be a legitimate (i.e. entropy non-decreasing), solution to the Euler
equations, just as compression shocks are for ordinary materials. Expansion shocks are
experimentally observed in certain regimes in multi-phase dense gases [55], and predicted
and computed to occur in single-phase dense gases [13, 12]. Expansion shocks cannot occur
in perfect gases, where Γ = (γ + 1)/2, because γ is always positive.

Figure 10 shows the isocontours of negative Γ for various values of (P, v). This area, close
to the limit specific volume va defined in Section 3.2.2, cannot be neglected for G = 2, but is
very small for G = 1.7. For the more realistic case G = 0.45, Γ remains positive in the entire
(P, v) range of interest.

A few modifications to the original algorithm are required in order to account for expan-
sion shocks. The fundamental derivative, computed with equation (19), must be monitored

16



inside the expansion fan for negative values. If applicable, shock jump conditions must be
used to compute Ues, the expansion shock velocity, and P new

4 . In general, the pressure eval-
uated from shock jump conditions across the expansion shock is not necessarily equal to P4,
so that the computation of the rarefaction should be embedded in a loop over the value of
Us.

Figure 11 shows the exact solution of the shock tube problem, the plot of Γ, and the
approximated solution (for ∆x = 5 · 10−3 mm). Close to the rarefaction head, where the
fundamental derivative is negative, the exact solution (solid line) exhibits a weak expansion
shock. Its correct position is found with only one iteration, since we found |P new

4 −P4|/P4 =
1.60 ·10−5 at the first pass. As in the previous example, the solution obtained from the Roe-
Glaister solver (diamonds in Figure 11) follows the exact solution very well, and correctly
captures the weak expansion shock.

6 Shock diffraction

In this section, we present results of two-dimensional shock diffraction in an inert solid with
the model parameters appropriate to HMX sp. The problem consists of a traveling shock
wave that diffracts around a sharp corner. The abrupt area change generates rarefaction
waves departing from the corner followed by complex vortex-shock interactions.

In numerical simulations of a gas, strong rarefactions can result in negative pressures. A
gas does not support tension, and clearly negative pressures are unphysical, but the most
serious consequence is that for a perfect gas, c2 = γ P/ρ, and negative pressures result in
negative c2, causing a numerical simulation to abort. From experience, this problem does not
occur in perfect gases for Mach numbers no greater than 2.5 when Roe’s entropy corrected
scheme is used [21]. The entropy correction adds enough dissipation to the scheme to avoid
the problem. Higher Mach numbers usually require more dissipative flow solvers that will
not be described here (see Quirk [42]).

Solids, however, can support tension provided the stresses are less than the limit value
associated with fracture. For these cases, explicit extensions of the equation of state are
required so that the square of the sound speed remains positive for negative pressures. In the
following example, we test our Roe-Glaister solver with the Mie-Grüneisen model expanded
to treat tension, as discussed in Section (3.2.2).

6.1 Geometry

The computational domain is an 80 mm×80 mm square, containing 80 × 80 coarse cells. It
includes a step that extends 30 mm in width (x-direction) and 50 mm in height (y-direction).
Adaptive refinement targets the variation of density to identify steep gradients or contact
discontinuities. With R and L denoting the right and left sides of a cell interface, the two
criteria,

|ρR − ρL|
ρR + ρL

>
|PR − PL|
PR + PL

(33)

and |ρR − ρL|
ρR + ρL

> ε , ε << 1, (34)
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are used in sweeps of the grid in the two Cartesian directions [42]. To avoid the amplification
of start-up errors, the more stringent refinement criterion (33), used to capture contact
discontinuities, is performed only later in the run. Three levels of refinement, each with
refinement ratio 2, are maintained throughout the simulation, so that the smallest grid size
is ∆x = 0.125 mm.

We initialize the data with post-shock values to the left of the wave. The shock is located
at xs = 5 mm and has speed Us = 9.60 km/s, corresponding to a shock Mach number
Ms = Us/c = 3.13. This gives the post-shock state P = 66.17 GPa and ρ = 3.05 g/cc.

The approximate solver generates spurious start-up oscillations due to the evolution of
the ideal initial jump to the actual shock profile. To remove these oscillations the code
is initially run for 1.56 µs until the shock front has moved 10 mm in the channel. Then
the solution behind the shock front is “repainted” with the numerical post-shock values
(arbitrarily taken at 5 mm from the numerical front).

6.2 Numerical results

Figure 12 shows the solution at time t = 1.56 µs and t = 3.55 µs in the form of numerical
Schlieren images based on the modulus of the density gradient. The solution at the final
time t = 7.49 µs is shown in Figure 13. In frame (a), the refinement flags indicate where
the AMR algorithm is active. In frame (b), one can count at least two shocks in the vortex
region interacting with the contact discontinuity that forms at the corner. Due to the very
low pressures in the core of the vortex, the extended equation of state described in Section
3.2.2 is accessed by the solver.

To evaluate the performance of the extended equation of state, we look at the cross-
sections of the flow field at x = 31 mm and x = 32 mm at time t = 3.55 µs. Frames (a)
to (d) in figure 14 show density and pressure as a function of y, whereas frames (e) and
(f) show pressure as a function of density. Frames to the left of the figure correspond to
x = 31 mm, while frames to the right correspond to x = 32 mm. In all the plots, the open
diamond curve is the rest state at 1.56 µs and the cross represents the solution at 3.55 µs.
The lowest density in frame (a) is approximately ∼ 0.66 g/cc, corresponding to −5 GPa in
frame (c). Pressure is always positive in the cross-section at x = 32 mm, since the vortex
core is located further to the left. Note that, in the two pressure-volume plots, data points
are mostly distributed along the shock Hugoniot curve, as expected, and that in frame (e)
the portion of the curve extended to negative pressures is also visible.

7 A simple detonation model

In analogy with the simplest model of reactive perfect gas, a simple detonation model for
a solid explosive can be obtained by adding an energy release term to the Mie-Grüneisen
equation of state. The resulting equation,

P = G e

v
+ f(v) + Gλ q

v
, (35)

is well suited for implementation in a numerical solver because it provides an explicit de-
pendence on the mass fraction of the products λ. The energy release q represents the heat
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of reaction released in the transformation of reactants to products. Its value can be chosen
to match the experimental value of the CJ propagation speed, UCJ , or the pressure at the
CJ state, PCJ , but, in general, not both conditions at the same time. A better match to
product properties could be obtained by making G a function of the state of the products.
For instance, it is well known that the value G is close to 2 for detonation products near the
CJ point and then decreases to approximately 0.3 at lower pressures. We have not explored
this potentially more accurate approach as our goal in the present study was to extend the
Mie-Grüneisen model in the simplest way possible.

To derive the relation between q and UCJ , we take a control volume bounded by the
shock and any point in the reaction zone inside the one-dimensional CJ wave. If the values
P0 and e0 of the material at rest can be neglected with respect to the values in the reaction
zone, conservation of energy is expressed as

e =
1

2
P (v0 − v) . (36)

Using the reactive equation of state (35), with λ = 1, to substitute e as a function of P , v
and q yields the reactive version of the p–v representation of the Hugoniot,

PH(v) =
f(v) + G

v
q

1 − G
2v

(v0 − v)
, (37)

which is the extension of equation (11) to reactive flow.
Another representation of the Hugoniot can be found by using momentum conservation,

P = upUs/v0, and mass conservation, v = v0(1 − up/Us), to obtain an implicit relation
between up and Us.

2G q (Us − sup)
2 − up (2Us − (2 + G) up)

(
(Us − sup)

2 − c2
0

)
= 0. (38)

The corresponding Us–up diagram is shown in figure 15 with q as a parameter. When q = 0,
the linear Us–up relation of equation (6) is recovered. When q > 0, the curve has a point
that is tangent to the horizontal Rayleigh line. This minimum corresponds to the CJ state
for that particular value of q [14] and can be found by differentiating equation (38) with
respect to up, keeping ∂Us/∂up = 0. This procedure leads to a non-linear equation in Us and
up that can be solved numerically, yielding the CJ wave velocity UCJ = Us (up,min).

Figure 15 also shows shock compression data for single-crystal and solvent-pressed HMX
[32], as well as detonation data for the HMX-based explosives PBX 9404 and PBX 9501 [50].
These data suggest that at high compression the Us–up curve for HMX is less steep than the
curve obtained with the values c0 and s in table 3.

The overall agreement of our model with the data in figure 15 is rather poor, even if
there is a qualitative correspondence near the CJ state (we do not access overdriven states
in the simulations presented here). Note also that the CJ speed for PBX 9404-9501 is slightly
smaller than the CJ speed for HMX sp. Excellent agreement is instead obtained by more
complex equations of state that are directly calibrated on the experimental data. This is
shown by the two additional Us–up diagrams in figure 15, calculated from the model for
PBX reactants and products proposed by Stewart, Yoo, and Davis [50]. With more complex
models, the number of required parameters tends also to increase. In this example, twelve
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Table 2: JWL parameters for HMX products.

A [GPa] B [GPa] C [GPa] R1 R2 ω v0 [cc/g]
778.3 7.071 0.643 4.20 1. 0.3 0.5288

parameters where used for computing the two Us–up diagrams for PBX, versus the four
parameters (c0, s, G, and q) appearing in equation (38).

The measured CJ state for HMX sp is UCJ, exp = 9.11 km/s and PCJ, exp = 39.0 GPa [7].
As anticipated, we find that in our model either the correct CJ speed is obtained (with q =
12.67 kJ/g) at a smaller CJ pressure PCJ, calc = 34.48 GPa (figure 16(a)); or the correct CJ
pressure is obtained (with q = 14.67 kJ/g) at a larger wave speed UCJ,calc = 9.60 km/s (figure
16(b)). In the end, since the sensitivity of the reaction rate to the local thermodynamic state
is built in our model via a pressure dependence, and we are interested here in comparing
simulations with pressure-insensitive and pressure-sensitive reaction rates, we decided to use
the value q = 14.67 kJ/g.

The ZND profile corresponding to q = 14.67 kJ/g is shown in figure 17 for ν = 5, K = 2,
and the values listed in table 3. The wave is computed by numerical quadrature of the
differential equations derived from the set (1) in the one-dimensional steady case.

We conclude this discussion by comparing the isentropic pressure derived from our model
with the JWL fit

Ps,JWL(v) = Ae−R1v/v0 + Be−R2v/v0 + C(v/vo)
−ω−1 (39)

for HMX products [7]. The JWL parameters for HMX are listed in table 7. The Mie-
Grüneisen isentrope for HMX products is obtained by substituting f +G q/v to f in equation
(17). The reference volume in the equation is chosen to be vi = 0.43 cc/g, close to the CJ
value. The reference pressure Pi is computed directly from (39), so that the two isentropes
are centered on the same state. Figure 18 shows that the curves are approximately tangent
at that point and also remain relatively close to each other for larger volumes. The behavior
of the product equation of state in the pressure range between 0 and 10 GPa, shown in figure
18 (b), is particularly important when computing products expansion in problems such as
cylinder test simulations and other configurations that are relevant to accelerating materials.

7.1 Reactive shock tube computation

In the setting of this shock tube problem, the fluid to the left of the membrane is pressurized
to PV N , while the fluid to the right is set at the rest state. The reaction rate is given
by equation (3), with ν = 5 and K = 2. The computation is carried over a regular grid
with ∆x = 1.3 mm. Figure 19(a) shows pressure as a function of distance at regular time
intervals. To the right, pressure first drops from PV N to PCJ , then climbs back to PV N

as a self-sustaining detonation progresses through the tube. To the left of the membrane, a
rarefaction wave reaches the left wall, where reflective boundary conditions are implemented,
and reflects as a new rarefaction wave. A second rarefaction extends from the end of the
reaction zone to equilibrate the pressure reached at the contact discontinuity. Figure 19(b)
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shows the first and the last pressure diagrams, at t = 0 µs and t = 18.4 µs. PV N and PCJ are
slightly underestimated by the approximate solver, indicating that a finer grid is required
in the reaction zone, but, overall, the detonation wave appears to propagate as the correct
ZND-CJ profile.

7.2 Reactive shock diffraction with pressure-independent rate

The geometry shown in Figure 20 is the same as that described for non-reactive flow. Data
are initialized by computing the reference ZND profile for the steady state CJ wave with
ν = 0 and K = 2. The solution is then copied as a plane wave in the computational
domain. This procedure is identical to the one used in our previous computation of inert
shock diffraction in Section 6. The same technique to remove start-up errors as used with
inert shocks is also used for detonations.

This computed reaction zone is labeled “Detonation” in Figure 20. The burnt gases,
labeled “Products”, are at the CJ state behind the reaction zone and the rear boundary is
implemented as a Dirichlet conditions at the CJ state. The corner is assumed to be rigid and
inert (modeled by standard reflective boundary conditions). To the right of the reactants,
there is a higher density inert substance, defined by ρ = 1.5 ρ0, λ = 1 and P = P0.

The computational domain measures 423 mm× 211 mm. At start-up, the entire reaction
zone of the reference ZND-CJ profile, between λ = 0 and λ = 1, contains 20 computational
cells in a 6.60 mm long reaction zone. This length is, of course, unrealistically large for HMX
and was chosen for convenience in this example problem. Refinement is based on the mass
fraction gradient and the density gradient. The reaction zone is always embedded in grid
patches with the highest allowed level of refinement, so that the initial grid resolution is
maintained in the AMR calculation.

Figure 21 shows the detonation wave diffracting around the corner and eventually inter-
acting with the higher density inert substance. The incident shock is partially transmitted
through the inert material and partially reflected. The transmitted wave passes through the
right boundary of the domain, where transmissive boundary conditions are implemented,
while the reflected wave interacts with the vortex formed at the corner. The lower part of
the diffracted wave reflects from the bottom of the domain (with reflective boundary con-
ditions) and moves upward to interact with the vortex at a time close to t = 42.77 µs. At
the final time t = 55.89 µs, a system of transmitted and reflected waves can be observed
surrounding the vortex, while the contact line formed between the corner and the vortex
core is quite diffuse. In the last frame of figure 21, the AMR algorithm loses track of the
shock aligned with the grid. This could have been avoided by decreasing the tolerance of the
refinement criteria, but only at the price of a greater computational overhead. Details of a
few flow features are shown in figures 22, 23, and 24. Boxes in the figures to the left show
where the close-ups are performed.

7.3 Reactive shock diffraction with pressure-dependent rate

We now consider the pressure-dependent reaction rate case, equation (3), ν = 5 and K = 2.
The initialization and overall set-up of the experiment are the same as in the fixed-rate
computation. The reaction zone measures 26.29 mm, approximately four times the reaction
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length in the pressure-insensitive case. To compare the results with the previous case, the
domain size is scaled to be four times larger, 1683 mm × 841 mm.

Figures 25, 26, and 27 show a comparison between the fixed and pressure-dependent rates
computations. Each plot is taken at the time when the incident wave has covered the same
distance measured with respect to the reference reaction zone length. In each figure, the top
frames are numerical Schlieren images, while the bottom plots are isocontours of λ.

The diffracted wave considerably slows down in the case of the pressure-dependent rate.
This is due to the fact that when the pressure ratio P/PV N becomes sufficiently small, the
reaction essentially subsides. Chemical reaction is no longer sustained behind the shock and
a region of partially reacted explosive is left close to the vertical corner wall – the so-called
“dead-zone” (see [30] and references therein).

Summary

In this work, we have investigated the numerical solution of compressible flow in solids using
the Mie-Grüneisen model together with numerical methods that were originally introduced
for gas dynamics problems. To verify our work, we have developed a numerical procedure
to obtain similarity solutions for the shock tube problem using the Mie-Grüneisen equation
of state. We implemented a Roe-Glaister solver and verified that it computes this Riemann
problem correctly. We then used it to simulate the two-dimensional corner-turning problem
in inert HMX sp. This study demonstrated the necessity of an extended equation of state to
account for tension. We proposed a rudimentary extension to the Mie-Grüneisen equation
and applied it successfully to this test case.

A simple detonation model was implemented in the Mie-Grüneisen equation of state.
This is based on a constant energy release and is analogous to the model commonly used
for gaseous detonations. The shock tube and corner-turning problems were computed again,
this time for reactive HMX. One of these simulations, with pressure-dependent reaction rate,
enabled us to visualize the formation of a “dead-zone” region along the wall downstream of
the corner.

We conclude by reporting that Morano and Shepherd recently built on this work [35] to
examine a simple model accounting for the heterogeneity of high explosives. They used the
Mie-Grüneisen equation of state with energy release and added a passive scalar transport
equation to model the explosive heterogeneity. The microstructures present in high explosives
and conducive to hot-spots were simulated by a periodic variation in reaction rates associated
with material elements. In this limited study, they were able to show that the average
detonation front velocity was only modestly affected by the model heterogeneity. Their
study was facilitated by the straightforward implementation of the equation of state that is
described in the present paper.
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Figure 1: HMX Hugoniot pressure (PH), cold component (PC), thermal component (PT ),
and shock-compression data (+) from [32].
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Figure 2: Hugoniot pressure PH(v) from (7) and experimental data from [32]. (a) Kel-F
G = 0.45. (b) HMX sp G = 0.7.
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Figure 3: Verification of the numerical computation of Ps(v), the isentropic pressure, (a)
Kel-F G = 2 (b) HMX sp G = 2.
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Figure 4: Isentropic pressure Ps(v) using tablee 3, (a) Kel-F G = 0.45 (b) HMX sp G = 0.7.
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Figure 6: Pressure vs. velocity at t = 0.02 µs, (a) Kel-F G = 0.45 (b) HMX sp G = 0.70.
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Figure 7: Kel-F inert shock tube experiment at t = 0.02 µs.

34



1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

0.00 0.20 0.40 0.60 0.80 1.00

Exact
Approximate

distance [mm]

de
ns

ity
 [

g/
cc

]

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 0.20 0.40 0.60 0.80 1.00

Exact
Approximate

distance [mm]

ve
lo

ci
ty

 [
km

/s
]

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.00 0.20 0.40 0.60 0.80 1.00

Exact
Approximate

distance [mm]

Pr
es

su
re

 [
G

Pa
]

(a) (b) (c)

Figure 8: HMX sp inert shock tube experiment at t = 0.02 µs.

35



-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fundamental derivative

volume [cc/g]

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fundamental derivative

volume [cc/g]

(a) (b)

Figure 9: Fundamental derivative Γ vs. v (a) Kel-F G = 2 (b) Kel-F G = 1.7
.

36



0.25 0.30 0.35 0.40 0.45
0.00

50.00

100.00

volume [cc/g]

Pr
es

su
re

 [
G

Pa
]

0.245 0.250 0.255
96.00

97.00

98.00

99.00

100.00

101.00

102.00

103.00

volume [cc/g]

Pr
es

su
re

 [
G

Pa
]

(a) (b)
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Figure 11: Kel-F inert shock tube experiment at t = 0.02 µs.
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(a) (b)

Figure 12: Inert HMX sp shock-diffraction (a) t = 1.56 µs (b) t = 3.55 µs.
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(a) (b)

Figure 13: Inert HMX sp shock diffraction at t = 7.49 µs: (a) computational cells flagged for
refinement; (b) numerical Schlieren.
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Figure 14: Cross-sections of the solution for HMX sp inert shock diffraction at t1 = 1.56 µs
(reference state, indicated by ¦) and at t2 = 3.55 µs (+) at x = 31 mm (left column) and at
x = 32 mm (right column).
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42



v [cc/g]

P
[G

P
a]

0.38 0.4 0.42 0.44 0.46 0.48 0.5

20

25

30

35

40

45

50

CJ point (computed)

CJ point (Dobratz [7])

v [cc/g]

P
[G

P
a]

0.38 0.4 0.42 0.44 0.46 0.48 0.5

20

25

30

35

40

45

50

CJ point (computed)

CJ point
(Dobratz [7])

(a) (b)

Figure 16: Product Hugoniot curve (——) and Rayleigh line (– – –) for HMX sp: (a) com-
puted with q = 12.67 kJ/g and Us = 9.11 km/s; (b) computed with q = 14.67 kJ/g and
Us = 9.60 km/s. The square is the computed CJ point, the circle is the experimental value
from [7].
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Figure 17: ZND profile of density, mass fraction and pressure as a function of distance
normalized by the total length of the reaction zone, ∆R. Pressure and density are normalized
by their respective post-shock, or von Neumann, values. Particle velocity is proportional to
P in the limit of a strong shock, and it is not shown here.
.
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Figure 18: Mie-Grüneisen product isentrope (——) with q = 14.67 kJ/g, Us = 9.60 km/s and
HMX data from table 3; JWL isentrope (– – –) from table 7. The two curves are centered
at the state marked by x in frame (a), at vi = 0.43 cc/g. In (a) the pressure range is 10–60
GPa; in (b) the pressure range is 0–10 GPa.
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Figure 19: Detonating HMX shock tube experiment for q = 14.67 kJ/g. Frame (a) shows
a sequence of pressure diagrams as a function of distance plotted at regular time intervals.
Frame (b) shows the initial conditions (——) and the final solution (– – –). Also indicated
are the expected CJ pressure, PCJ, calc = 39.51 GPa, and VN pressure, PV N, calc = 66.17 GPa.
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Figure 20: Geometry for shock diffraction simulation.
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t = 25.29 µs.

t = 34.03 µs.

t = 42.77 µs.

t = 55.89 µs.

(a) (b)

Figure 21: Detonation diffraction example with a pressure-independent rate (ν = 0): (a)
refinement flags; (b) Schlieren images.
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(a) (b)

(c) (d)

Figure 22: Details of selected flow features at t = 34.03 µs: (a), (b) corner vortex; (c), (d)
shock interaction at lower boundary.
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(a) (b)

(c) (d)

Figure 23: Details of selected flow features t = 42.77 µs. (a), (b) contact surface; (c), (d)
reflected shock interaction with contact surface showing precursor wave on slow-fast type
interface.
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(a) (b)

Figure 24: Close-up of instability of contact surface at t = 55.89 µs.
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(a) (b)

(c) (d)

Figure 25: Comparison of detonation diffraction calculated with pressure-independent reac-
tion rate (ν = 0), frames (a) and (c); and pressure-dependent reaction rate (ν = 5), frames
(b) and (d). Top row contains Schlieren images and bottom row contains mass fraction
contours. The incident wave has moved downstream a distance that is approximately 44%
of the total traveled distance in this calculation.
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(a) (b)

(c) (d)

Figure 26: Comparison of detonation diffraction calculated with pressure-independent reac-
tion rate (ν = 0), frames (a) and (c); and pressure-dependent reaction rate (ν = 5), frames
(b) and (d). Top row contains Schlieren images and bottom row contains mass fraction
contours. The incident wave has moved downstream a distance that is approximately 56%
of the total traveled distance in this calculation.
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(a) (b)

(c) (d)

Figure 27: Comparison of detonation diffraction calculated with pressure-independent reac-
tion rate (ν = 0), frames (a) and (c); and pressure-dependent reaction rate (ν = 5), frames
(b) and (d). Top row contains Schlieren images and bottom row contains mass fraction
contours. The incident wave has moved downstream a distance that is approximately 69%
of the total traveled distance in this calculation.
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