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Abstract

A study of detonations in high molecular weight hydrocarbon fuels was per-
formed in two GALCIT facilities: the 280 mm gaseous detonation tube
(GDT) and a 1180 liter vessel (HYJET) with jet initiation capability.

In the GDT, detonation pressure, wave speed and cell width measure-
ments were made in hexane-oxygen-nitrogen mixtures with and without the
addition of lower molecular weight fuels. Stoichiometric mixtures of hexane-
oxygen were studied with nitrogen dilution varying from fuel-oxygen to fuel-
air. Hexane-air mixtures were investigated with varying fractions of lower
molecular weight fuels (hydrogen, acetylene, ethylene, and carbon monox-
ide). The measured cell width decreased indicating increased sensitivity to
detonation with increasing fraction of hydrogen, acetylene, and ethylene, in
order of effectiveness. The addition of a small fraction of carbon monoxide
produced a small decrease in the cell width, but addition of more than about
75 % (by fuel mass) carbon monoxide resulted in a rapid increase in cell
width.

As the oxidation of carbon monoxide is extremely sensitive to the pres-
ence of hydrogenous species, cell width measurements were made in carbon
monoxide-air mixtures with the addition of hydrogen or hydrocarbons of
various H-atom content and structure (acetylene, ethylene, and hexane). A
detonation could be initiated in mixtures with very small fraction of hexane
(0.07% of the mixture volume). Cell width measurements were compared to
calculated ZND reaction zone parameters, including temperature and radi-
cal species concentrations. It was determined that for addition of hydrogen,
ethylene or hexane, the cell width can be correlated with the product of the
peak OH and CO concentrations in the reaction zone. Mixtures containing
acetylene also showed the same linear dependance on this parameter, but,
for the same peak OH and CO concentration, the cell widths were a factor
of two smaller than those of the other mixtures.

A fuel blend representative of thermally decomposed JP-10 was studied at
295 K. This blend consisted of hydrogen, carbon monoxide, methane, acety-
lene, ethylene, and hexane with varying fractions of oxygen and nitrogen.
The cell width for stoichiometric fuel blend-oxygen was found to be an order
of magnitude smaller than that for fuel blend-air. The cell width for the fuel
blend-air mixture was about half that of hexane-air.

Further experiments were carried out in the HYJET facility. A hydrogen-
oxygen-nitrogen jet was used to initiate detonations in vapor phase mixtures
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of hexane (at 295 K) and of dodecane (at 380 K) with stoichiometric oxy-
gen. Pressure and wave speed measurements were made. A critical nitrogen
dilution limit was determined for each fuel. The critical limit was found to
be 2.5 ≤ β ≤ 3.0 for hexane, where β is the ratio of nitrogen to oxygen
concentration. This corresponds to a D/λ (nozzle diameter/cell width) ratio
of 4, which compares well with the value 4.3 previously determined for this
driver. The critical nitrogen dilution limit for dodecane was also found to
be 2.5 ≤ β ≤ 3.0. No cell width measurements are currently available for
dodecane.

An attempt was made to initiate detonation in a dodecane spray. Pressure
and velocity measurements were made and clearly show that no detonation
could be directly initiated. Different fuel injection systems were tried and
the initial temperature of the mixture was varied.
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Part I

Sensitization of High Molecular
Weight Hydrocarbons

1 Introduction

Liquid hydrocarbons are the fuel of choice for aviation propulsion systems,
including the pulse detonation engine (PDE) concept. Much of the published
PDE research carried out up to the present time has used gaseous fuels, C1-
C3 hydrocarbons, due to the difficulty of creating uniform fuel-air mixtures
with liquid hydrocrabon fuels and initiating these mixtures. The present
investigation is part of a larger study that considers how liquid fuels can
best be utilized in PDEs. This report describes measurements of detonation
properties of fuel-blends that are representative of what might be derived by
processing liquid hydrocarbon fuels such as JP-10 and Jet-A.

Liquid fuels have obvious storage advantages over gaseous fuels, but tend
to be composed of larger, heavier molecules (C6 to C12) and are more dif-
ficult to detonate than gaseous fuels such as C1-C2. A liquid hydrocarbon
fuel can be partially decomposed into smaller molecules (C1 to C5) by fuel-
rich combustion or by thermal cracking. Fuel-rich catalytic combustion uses
the presence of a catalyst to achieve combustion beyond the rich combus-
tion limit, producing reactive molecules, high temperatures and little soot.
Catalytic combustion of JP-10 was studied by Brabbs and Merritt (1993) in
an effort to find a storable liquid fuel which had an ignition delay time that
was less than the residence time in the combustion chamber of a hypersonic
vehicle. The majority of the combustion products were low-molecular-weight
hydrocarbons that are also more susceptible to detonation, making this pro-
cess an attractive possibility for PDE fuels.

Smaller molecular weight products may act as ‘sensitizers’ to the parent
fuel: reducing the critical energy required to initiate a detonation compared
to the parent fuel. The aim of this portion of the study is to investigate the
effectiveness of sensitizers on some liquid hydrocarbon fuels by measuring
the characteristic cell width of the detonation wave. The cell width is often
used to characterize the detonability of a mixture and can be empirically
related to parameters such as critical initiation energy, critical diameter or
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Figure 1: GALCIT 280 mm diameter gaseous detonation facility.

minimum tube diameter. The critical energy required to initiate a detonation
is proportional to the cube of the cell width for a spherical source, and directly
proportional to the cell width for a planar source (Lee et al. 1982), so fuels
which produce smaller cell sizes are more sensitive to detonation. Although
direct initiation is not considered feasible for PDE operation, cell width plays
an important role in determining if detonations are possible in a given size
device. For example, the smallest open area in a tube must be larger than
one cell width for deflagration-to-detonation (DDT) to occur. This is an
important issue in PDEs which use DDT initiators.

2 Facility Description

Detonation cell width experiments were performed in the gaseous detonation
tube (GDT) (Akbar 1997, Akbar et al. 1997) shown in Fig.1.

The stainless steel detonation tube is 7.3 m long and has an internal
diameter of 280 mm. Before each shot, an aluminum sheet or foil (0.61 m
by 0.91 m by 0.5 mm) is rolled, riveted to a steel ring and covered in a light
layer of soot. The foil is inserted into the downstream end of the tube and
anchored in place. The entire tube is evacuated to about 10 Pa, and then
filled by the method of partial pressures. Pressure in the tube is measured
by an electronic Heise 901a gauge which is accurate to ± 0.17 kPa. Hexane
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Figure 2: Soot foil for shot 1007: C6H14+9CO+14 Air. Detonation propa-
gated right to left.
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Figure 3: Pressure traces for shot 1007.
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is injected into the evacuated tube through a septum. The partial pressure
of hexane (vapor pressure of 20 kPa at 298 K) was low enough to ensure that
the fuel had vaporized. The partial pressure recorded was at most 0.11 kPa
higher than the value calculated based on the liquid volume injected, so this
error was within the accuracy of the gauge.

The remaining gases are added to the tube by the method of partial
pressures, and the mixture is circulated with a bellows pump for 5 minutes.
Ignition is by an exploding wire, created by discharging a 2 μF capacitor
charged to 9 kV, through a copper wire, initiating an oxy-acetylene driver
which is injected just prior to ignition. The equivalent energy of the blast
wave transmitted to the test gas is about 70 kJ. Experiments were limited
to mixtures producing reflected pressures of 5 MPa, the design limit of the
facilty. In cases where the reflected pressure of the mixture would exceed
5 MPa, the test was performed at the highest initial pressure possible, then
the cell widths for 100 kPa initial pressure were estimated by assuming the
cell width varies in inverse proportion to the initial pressure. These data are
presented as ‘extrapolated’. All experiments in the GDT were carried out at
room temperature, nominally 295 K.

Three PCB pressure transducers, mounted along the tube, record the
detonation pressure and time-of-arrival of the wave which is used to calcu-
late a wave speed (Fig. 3). The chemical equilibrium program STANJAN
(Reynolds 1986) is used to calculate the Chapman-Jouguet wave speed, pres-
sure, and temperature. The wave speed obtained from the pressure trans-
ducers is checked against the calculated value and is typically within ± 1%.
The shock triple points in the passing detonation scour a cellular pattern on
the soot foil (Fig. 2). There can be quite a range of cell widths recorded for
a particular mixture due to the inherent irregularity of the cells. About 10
measurements are made on each foil, and a minimum, a maximum, and an
average cell width are recorded. The minimum and maximum give an indi-
cation of the range of cell sizes present on a foil. There are also variations in
measurement from observer to observer. These can be on the order of ± 50%
(Tieszen et al. 1991).
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3 Cell Width Measurements

3.1 C6H14 Mixtures with O2-N2

The sensitivity of stoichiometric C6H14-O2 to nitrogen dilution was investi-
gated. Since the reflected detonation pressure for these mixtures initially at
100 kPa exceeded the facility limit, experiments were performed at 40 kPa or
at the highest initial pressure possible in the facility for each mixture. The
cell width at an intial pressure of 100 kPa was estimated from these two data
points. The average cell width is plotted against β in Fig. 4, where β is the
ratio of N2 to O2 concentration in the mixture (β=3.76 for air). The min-
imum and maximum cell widths measured are indicated by the error bars.
The cell width increased from 1.7 mm at β = 0 to 51.1 mm at β = 3.76.
Extrapolated cell widths were a factor of 2 smaller than those previously
measured at 100 kPa by Beeson et al. (1991).

Fuel Cell width (mm) Reference
H2 10.9 CIT
CH4 280 Moen et al. (1984)
C2H2 10 Knystautas et al. (1982)
C2H4 22.8 CIT
C3H8 51.3 CIT
C6H14 51.1 CIT

Table 1: Comparison of cell width measurements of various stoichiometric
fuel-air mixtures at 100 kPa.

A comparison was made between the hexane and other fuels (Table 1).
Cell widths obtained at different β values are shown in Fig. 6 for H2, C2H2,
and in Fig. 5 for C2H4, C3H8, and CH4, all at 295 K and 100 kPa. ‘CIT’
refers to unpublished cell width measurements previously made in the GDT
at GALCIT. Hexane cell widths appear to be similar to those of propane,
C3H8. Cell widths for hexane are smaller than those for methane, and larger
than those for acetylene or hydrogen. Tieszen et al. (1991) found little
variation in cell width with increasing molecular weight for alkanes from
ethane to decane, but found differences between hydrocarbons with differing
degrees of bond saturation, with alkynes and alkenes producing a smaller cell
width than alkanes.
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Figure 4: Cell width measurements for N2 dilution of C6H14-O2 mixtures.
Experiment parameters are given in Table A
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3.2 Sensitization of C6H14-air

A series of investigations were made into the sensitizing effects of adding H2,
C2H2, C2H4 or CO to C6H14 at 295 K and 100 kPa. The amount of sensi-
tizer was calculated as a mass fraction in the sensitizer-hexane mixture. The
appropriate amount of air was added to maintain a stoichiometric mixture.
Results are shown in Figs. 7 to 10, with cell width plotted against the per-
centage (by fuel mass) of sensitizer in the fuel mixture. H2, C2H2, and C2H4

mixtures show a gradual decrease in cell width as the fraction of fuel additive
increases; H2 and C2H2 are more effective than C2H4. There is no significant
variation in cell width for mixtures containing 10 - 70% CO. In mixtures
with CO fractions increasing beyond about 75% the cell width increases, in-
dicating the CO acts as an inhibitor. This result is reasonable in view of
the subsequent results which confirm the sensitivity of CO mixtures to the
presence of hydrogenous species, since the measured cell width increases (in-
dicating reduced sensitivity to detonation) when the initial fraction of H in
the mixture is decreased.
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Figure 7: Cell width measurements for H2 addition to C6H14 in air. Experi-
ment conditions are given in Table A.
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Figure 8: Cell width measurements for C2H2 addition to C6H14 in air. Ex-
periment conditions are given in Table A.
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Figure 9: Cell width measurements for C2H4 addition to C6H14 in air. Ex-
periment conditions are given in Table A.
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Figure 10: Cell width measurements for CO addition to C6H14 in air. Ex-
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3.3 Addition of H2, C2H2, C2H4, and C6H14 to CO-air

Carbon monoxide is of fundamental importance as a principal intermedi-
ate product of hydrocarbon combustion, however there are very little data
available on the detonation characteristics of CO. The reaction mechanism
is relatively simple and has been studied extensively (Gardiner 1984). In the
presence of even trace amounts of hydrogen, the oxidation of CO takes place
almost entirely by reaction (1) rather than by the spin-forbidden reaction
(2).

CO +OH → CO2 +H (1)

CO +O +M → CO2 +M (2)

Early reseachers has found a dramatic increase in the reactivity of carbon
monoxide with the addition of water vapor or other substances containing hy-
drogen (Dixon 1896, Kistiakowsky et al. 1952, White and Moore 1965). The
hydroxyl radical promotes oxidation and drastically reduces the induction
time Addition of only 0.02 % H2 to a CO-air mixture results in a reduction
in the calculated reaction zone thickness of three orders of magnitude.
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Figure 11: Cell width measurements for N2 dilution of stoichiometric CO-5%
H2-O2. See Table A for experiment conditions.
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The addition of different hydrogenous species to CO-air mixtures was
investigated. The fuels H2, C2H2, C2H4, and C6H14 were chosen so as to
study the effects of varying atomic hydrogen content and chemical structure.
Detonation pressure, velocity and cell width measurements were made. All
mixtures were stoichiometric and at 100 kPa and 295 K initial pressure and
temperature. Gases used were C.P. grade (99%) and no attempt was made
to remove impurities. In these and all other experiments, ‘air’ was formed
from 1 part O2 with 3.76 parts N2. This avoided using room air which might
contain unknown quantities of moisture.

No detonation could be initiated in stoichiometric CO-O2. The limiting
fraction of H2 that was necessary to detonate CO-air was found to be between
0 and 2 %(by fuel volume). Since the mixture CO-2% H2-air resulted in
highly irregular cells, a nitrogen dilution series was performed in the mixture
CO-5% H2 with stoichiometric O2 (Fig. 11).

Cell width measurements were made for varying mixture volume fractions
of H2, C2H2, C2H4 and C6H14 in CO-air (Fig. 12). In all cases, increasing the
fraction of additive reduced the cell width. The rate of decrease of cell width
is largest width fuel addition of H2 and C2H2, followed by C2H4, then C6H14.
This is consistent with results from Tieszen et al. (1991) who measured cell
widths for hydrocarbon-air mixtures and found triply-bonded acetylene had
smaller cell widths than doubly-bonded ethylene, which in turn had smaller
cell widths than a straight-chain hydrocarbon such as hexane.

A detonation could be initiated in mixtures with only very small fractions
of C6H14 (down to 0.07 % of the total mixture). This was the lowest fraction
attempted since we were limited by the accuracy of the gauge used during the
filling process. In view of the sensitivity of CO oxidation to the presence of
hydrogen, this was an interesting result. The hexane molecule contains many
more H atoms than the other hydrocarbons considered and so hexane has the
highest initial H atom concentration for a mixture at a particular additive
concentration. Fig. 13 shows the measured cell width against the initial H
atom concentration normalized by the initial CO concentration, where initial
H atom concentration is defined as n times the fuel concentration for the fuel
CmHn.

To investigate whether the hexane molecule is successful in releasing more
H atoms to form OH radicals than an equivalent mixture fraction of the
other additives, reaction zone parameters such as species concentrations and
temperature were calculated using detailed chemical kinetics mechanisms.
Chemical mechanisms were first validated by comparing induction times cal-
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Figure 12: Cell width measurements for hydrogen or hydrocarbon addition to
CO-air mixtures. Curves are interpolated from the cell widths of successful
detonations. Error bars represent minimum and maximum measured cell
widths. The detonation limit denotes a mixture where at least one failure
was observed. About three experiments were performed for each mixture
that resulted in a failure. Conditions and data are given in Table A

culated with a constant volume explosion assumption with measured shock
tube induction times for the same mixtures. Mechanisms were validated
against shock tube data for CO-H2 mixtures and also for mixtures involving
the hydrocarbon for which they were considered. The mechanism of War-
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natz and Karbach (1997) (34 species, 165 reactions) was chosen for mixtures
containing H2, C2H2 and C2H4. The mechanism of Curran et al. (1998) (550
species, 2500 reactions) was used for C6H14 mixtures. Some validations are
shown in Fig. 14 and 15. The mechanisms both perform very well against
the CO-H2-O2 data of Dean et al. (1978). The largest discrepancy is for the
Curran mechanism against the data of Burcat et al. (1996) for which the
mechanism underpredicts the experimental results by a factor of 2. David-
son et al. (1999) compared ignition delay times calculated by the Curran
mechanism with their shock tube data for heptane mixtures and found the
same trends: the mechanism shows a similar temperature dependence as
their data but the calculated ignition times are a factor of two shorter than
the measured values. A discussion of the range of validity of detailed reaction
mechanisms for detonation conditions, possible sources of error in shock tube
induction time data and the applicability of a constant-volume calculation
for the validation process is given in Schultz and Shepherd (2000).
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Figure 14: Mechanism validation for CO-H2-O2-Ar mixtures. Shock tube
data is for the mixture 0.049% H2, 1.01% O2 , 3.28% CO, Ar.

A one dimensional Zel’dovich-von Neumann-Doring (ZND) code was used
together with the validated mechanisms and CHEMKIN II (Kee et al. 1989)
chemical kinetics subroutines to calculate the variation of temperature and
species concentrations through the reaction zone. The reaction zone length
is typically defined as the distance between the shock and the location of the
maximum temperature gradient and can be related to the cell width by a
constant of proportionality, A. This constant has been shown to be different
for fuel-O2 and fuel-air mixtures (Westbrook 1982) and also to vary with
the equivalence ratio (Shepherd 1986). In spite of this, both reaction zone
length and cell widths decrease with decreasing critical initiation energy and
are a useful measure of the sensitivity of a mixture to detonation. Fig. 16
shows measured cell widths against reaction zone lengths. There are some
significant deviations from the expected linear relationship. For instance,
some of the acetylene mixtures have shorter reaction zone thicknesses due
to an early ‘bump’ (and therefore change in curvature) in the temperature
profile. Reaction zone lengths were redefined as the location of the peak in
OH mole fraction. The correlation with measured cell width appears more
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linear (Fig. 16) and this definition of reaction zone thickness will be used for
the rest of this section. Values between 25 and 35 were obtained for A.

To track the production of the OH radical, species concentrations of CO,
CO2, OH, O, H and CH were calculated through the reaction zone. As
an example, some species concentrations for mixtures with 2% and 30% H2

(by fuel fraction) are shown in Fig. 17. A large difference in the amount
of OH produced by the two mixtures can be seen. The calculated peak
OH concentration is shown in Fig. 18 against initial [H]/[CO] ratio. For
small initial [H]/[CO] ratio, all mixtures produce about the same peak OH
mole fraction. With the addition of more significant fractions of hydrogen or
hydrocarbon, the calculated peak OH mole fraction is highest for H2, C2H2

and C2H4. C6H14 produced the smallest peak mole fraction for a given initial
[H]/[CO] ratio. A closer look at the species profiles for these C6H14 mixtures
shows a peak in the CH and CO mole fraction profiles (Fig. 19). The fall-off
in OH production might be attributed to competition between OH and CH
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formation reactions.
As discussed above, the cell width can be related to the reaction zone

thickness by a constant of proportionality, A. The reaction zone thickness
is transformed to an induction time by dividing by the particle post-shock
velocity. The induction time, τ , may be modeled by identifying a dominant
overall reaction for the mixture. A simplified expression for the induction
time for a reaction rate with a simple Arrhenius dependance is shown in (3).

τ =
K

[OH][CO]
exp

EA

RTs
(3)

where Ts is the post-shock temperature. As the fraction of hydrogen or hy-
drocarbon added was small, thermal differences between the mixtures con-
sidered are small and Ts is approximately constant, so the temperature term
plays a negligable role for these mixtures. Correlating the measured cell
width against the inverse of the product of the OH and CO concentrations
results in a linear relationship for hydrogen and all the hydrocarbons con-
sidered (Fig. 20). The species mole fractions are evaluated at the OH peak.
Data for H2, C2H4 and C6H14 collapses onto a single curve while the C2H2

mixtures obey the similar linear relationship but the data fall a factor of two
below that of the other additives. This relationship between the cell size
and the OH and CO concentrations suggests that reaction (1) is in fact a
dominant reaction for CO mixtures in the presence of hydrogenous species.
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Figure 16: Cell width measurements versus reaction zone thickness in CO-O2

mixtures with hydrogenous additive at 100 kPa. The reaction zone thickness
is defined by a) the location of the maximum temperature gradient or b) by
the location of the OH peak.
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3.4 Decomposed JP-10 Surrogate (HCS)

Brabbs and Merritt (1993) investigated the fuel-rich catalytic combustion of
JP-10 for a range of equivalence ratios. We have used their results to create a
mixture similar to the decomposition products and tested this mixture in our
detonation tube. The mixture chosen for this study (Table 2) resulted from
JP-10 combustion at an equivalence ratio of 5.06, with a reaction temperature
of 1220 K . Group 2 hydrocarbons are those with 3 or more carbon atoms.
The remaining fraction consisted of condensible products which were not
analyzed.

CO2 H2 CO CH4 C2H2 C2H4 Group 2 O2 N2

3.37 8.07 14.70 2.88 0.73 4.24 3.03 1.38 60.79

Table 2: JP-10 catalytic combustion products

A hydrocarbon surrogate (HCS) blend was made by omitting the O2,
N2 and CO2 from the mixture given in Table 2. Hexane was chosen as a
representative larger hydrocarbon from Group 2. Four of the compoents of
the blend (H2, CO, CH4, and C2H4) were premixed by the manufacturer to
an accuracy of ±2 % on each component. This was done to improve the
repeatability of the tests.

The HCS blend was mixed with a stoichiometric amount of O2 and di-
luted with N2 (Table 7). Experiments were performed at 295 K and at the
maximum pressure possible in the facility. The pressure was limited by the
design strength of the tube. Cell widths were obtained for several β values
(Fig. 21), and decrease from 27.6 mm for β = 3.76 (i.e. fuel blend-air) to
1.0 mm for β = 0 (i.e. fuel blend-oxygen), a decrease in the spherical critical
initiation energy of four orders of magnitude.

The mixture for shot 1067 is the HCS blend together with the O2 and
N2 remaining after the catalytic combustion. Sufficent air was added so that
the mixture was stoichiometric. Since most of the original oxygen had been
consumed in the combustion of JP-10, this resulted in a β ratio greater than
that of air. The cell width for this case was 55.8 mm which is very close to
the 51.1 mm cell width measured for C6H14-air (Section 3.1). If the HCS
blend is mixed with stoichiometric O2 and no N2 is added beyond that which
would result from the catalytic combustion, β = 1 and the extrapolated cell
width at 100 kPa is about 4 mm. Thus we estimate the spherical critical
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Figure 21: Cell width measurements for N2 dilution of a hydrocarbon blend
representative of decomposed JP-10. The initial pressure was increased with
increasing N2 dilution.

initiation energy can be reduced by three orders of magnitude if the combus-
tion products of JP-10 catalytic combustion are detonated in oxygen rather
than in air.
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Part II

Homogeneous and
Heterogeneous Detonations in
C6H14 and C12H26

4 Introduction

Liquid hydrocarbon fuels can be pre-heated to vapor phase, or alternatively,
injected into a combustion chamber in a fine spray. Papavassiliou et al.
(1992) initiated detonations in decane sprays of 5μm and found the cell size
increased by a factor of two over cell sizes obtained for vapor phase detona-
tions at 100 ◦C. They report a cell width of 4 mm for decane spray-oxygen
detonations at an equivalence ratio of about 0.95.

In this study, a jet-initiation facility was used to try to detonate both
vapor phase and droplet phase mixtures of a representative heavy hydrocar-
bon (dodecane). Cell width measurements are not available for dodecane, so
the critical nitrogen dilution limit was used as a measure of the detonability.
Vapor phase dodecane experiments were performed at 380 K. Detonations
were initated in vapor phase hexane mixtures for comparison.

5 Facility Description

Experiments were performed in the HYJET facility (Fig. 22). A brief facility
description is given below, for more details see Krok (1997). The facility
consists of two vessels, a driver and a receiver chamber, initially separated
by a Mylar diaphragm. The driver has a volume of 0.028 m3 and an inner
diameter of about 114 mm, although there are variations in cross-sectional
area along its length. Interchangeable nozzles mate to the end of the driver
and retain the diaphragm. Only the 92 mm diameter nozzle was used in
these experiments. The driver extends into the receiver, which has a volume
of 1.19 m3 and an outer diameter of 0.91 m.

The receiver can be heated to a maximum gas temperature of 383 K and
was maintained at 380 K for the vapor-phase dodecane experiments. The
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Figure 22: HYJET receiver instrumentation. (Driver vessel not shown.)

vessel walls are heated by condensing steam inside the vessel and by electrical
heating pads and tapes. The temperature is monitered by a thermocouple
gauge positioned in the receiver vessel.

Both vessels are evacuated to less than 40 Pa, then filled by the method of
partial pressures. The liquid fuel is injected through a septum. Sufficient fuel
was injected to achieve the required partial pressure; the volume of hexane
injected varied between 1 and 1.3 times the calculated volume and the dode-
cane required 1.1 and 1.6 times the calculated amount. There was no obvious
correlation between the volume required and the other test parameters (see
Appendix A). A similar effect was observed by Tieszen et al. (1991) when
vaporizing liquid hydrocarbon fuels up to decane. The amount of liquid fuel
required was 1.25 - 2 times the amount calculated, with the error increasing
as the molecular weight of the fuel was increased. It was determined the soot
in the facility absorbed fuel from the gas phase. It is expected that a similar
effect occurs in the HYJET facility.

The driver mixture is initiated by a 30 kV spark. More detailed driver
characteristics are given below. A thermocouple and three PCB transducers
(T1,T2,T3) are located along the receiver and a fourth PCB is located on the
end flange as shown in Fig. 2.1. These PCB transducers record the pressure
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and time-of-arrival of the detonation wave. The trigger for the driver spark
also triggers the data acquisition. The driver flange is instrumented with two
pressure gauges (a PCB and a Kulite) and thermocouple gauge.

6 Driver Characterization

Figure 23: Ionization gauge located in the driver of the HYJET facility. The
receiver contained air at 1 atm.

The driver mixture was 60% H2, 15% O2, 25% N2 at an initial pressure of
1.114 bar. The same driver was used throughout this series of experiments.
Various H2, O2, N2 driver compositions had been previously investigated
(Krok 1997), by determining the lean limit of detonation initiation in the
receiver. For receiver mixtures that were 0-30% H2 in air at 1 atm, it was
determined that the above driver was most effective, as it was able to give
prompt initiation with only 24% H2 in the receiver mixture, a D/λ ratio of
4.3, where D is the diameter of the jet and λ is the detonation cell size of
the mixture. A driver with no N2 dilution required the receiver mixture to
contain more than 26% H2 before it could be detonated.
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Figure 24: Schematic of the ionization gauge circuit, V+=12V.

Krok’s results indicated the 60% H2, 15% O2, 25% N2 driver may be
transitioning to detonation, but there wasn’t sufficient instrumentation in the
facility to be sure. To characterize the driver more thoroughly, an ionization
probe has been built consisting of four gauges (G1, G2, G3, G4) mounted on
a sting extending from the back flange of the driver (Fig. 23). The gauges
are 178 mm apart and G4 is positioned 100 mm upstream of the diaphragm
location. The gauges are all positioned in the part of the driver that is of
uniform cross-sectional area. A schematic of the ionization gauge circuit is
shown in Fig. 24. Time-of-arrival data and wave speeds (Fig. 25) show that
the driver does indeed transition to detonation, and at 100 mm from the
diaphragm it is probably an overdriven detonation as the CJ velocity of the
driver mixture is calculated to be 2571 m/s. The receiver mixture was air at
1 atm.

A subsequent study (Pfahl and Shepherd 1999) determined the critical
N2 dilution limit for H2-O2 mixtures in the receiver of the same facility using
a driver that didn’t transition to detonation before the nozzle exit. Pfahl
and Shepherd (1999) found 8 ≤ D/λ ≤ 11 which, as expected, is higher
than the ratio of around 4 determined for the detonating driver. Results for
other flame-jet drivers also show higher D/λ ratios: Carnasciali et al. (1991)
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obtained 8 ≤ D/λ ≤ 15, Bezmelnitsin et al. (1997) obtained 18.5 ≤ D/λ ≤
24.

The initial pressure for N2-diluted drivers had been increased over 1 atm
in an attempt to compensate for the reduced peak driver pressure. How-
ever, the peak pressures recorded in the driver were found to be higher than
expected (Krok 1997). This was attributed to a dynamic effect of the con-
finement geometry, which is not considered by the equilibrium code used to
predict the PAICC pressure.

7 Vapor Phase Experiments in Hexane and

Dodecane

7.1 Hexane

Figure 26: Pressure traces recorded along the receiver vessel wall for vapor
phase C6H14-O2-N2 mixtures. On the left, β = 2.25 (shot 569). The initial
pressure was 690 mbar, the initial temperature 298 K. On the right, β = 3.0
(shot 571). The initial pressure was 844 mbar, the initial temperature 296 K.
Note the difference in scale on the ordinate axes.

The critical nitrogen dilution limit, defined as the maximum value of β
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for a mixture that can still be detonated in this facility, was determined for
stoichiometric mixtures of C6H14-O2. To keep within the maximum design
pressure of the facility, the partial pressures of C6H14 and O2 were kept
constant for each shot. The total pressure then depended on the amount
of nitrogen added. A detailed description of the conditions for each test is
given in Appendix A. The vapor pressure of C6H14 is high enough that the
facility did not need to be heated for this series. Pressure traces are shown
in Fig. 26 for two values of β, where β is the ratio of nitrogen to oxygen
concentration in the mixture.
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Figure 27: D/λ (nozzle diameter/measured cell width) variation with nitro-
gen dilution. Initial pressure increased with increaing N2 dilution.

The equilibrium code STANJAN (Reynolds 1986) was used to calculate
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CJ pressure, reflected pressure, and CJ velocity for each test. These calcu-
lated values, together with measurements, are given in Appendix A. Direct
initiation was observed up to β = 2.5. For these cases, the peak pressure
at the first transducer location (T1) is usually comparable to the calculated
reflected wave pressure (around 2.5PCJ). The pressure decays as the wave
passes from T1 to T3, but remains above PCJ . The wave speed, obtained
from the time of arrival at the three locations (T1,T2,T3), is up to 37%
higher than the calculated CJ value, and decreases as the wave propagates
from T1 to T3. Although the variation in the volume of liquid fuel injected
was not systematic, the CJ wave speed corresponding to a mixture with the
actual volume of fuel injected was also calculated and found to be about 5%
higher than the stoichiometric value, so the excess liquid fuel injected (which
is presumed to have been absorbed by the soot in the vessel) can not account
for the high wave speed observed in experiments.

If the detonation in the receiver mixture is initiated near the jet exit, it
will expand like an unconfined spherical detonation. The detonation wave
will be curved rather than planar and will not propagate parallel to the wall
but at an oblique angle. When the wave reaches T1 it may still have signifi-
cant curvature so that the pressure recorded is close to the reflected pressure.
The wave will flatten out as it propagates down the vessel decreasing the an-
gle of incidence between the wave and the wall. For angle of incidence greater
than about 60◦, a Mach reflection will occur. This will affect the interpre-
tation of the pressure measurements. It is also possible that the reactants
are driven downstream by the jet flow and the detonation is initiated only
after sufficient time for entrainment and an ignition delay period (see (Krok
1997)). In this case, the time-of-arrival at the three pressure transducers
would be similar and a high wave speed would be inferred.

No detonation was directly initiated at β ≥ 3.0 (Fig.26) although a de-
layed secondary explosion was observed. The peak pressures following the
shock (0.4-0.2 MPa) and the wave speeds (around 500 m/s) were substantially
less than the CJ values (PCJ=1.72 MPa, UCJ 1853 m/s). Cell width mea-
surements made in the GDT facility for hexane were interpolated to match
the pressure of the HYJET data (Appendix A). The critical D/λ ratio is
about 4 (Fig. 27) and compares well with a previously determined value of
4.3 for this driver .
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7.2 Dodecane

A similar nitrogen dilution series was performed in stoichiometric C12H26-O2.
Again, the partial pressures of C12H26 and O2 were kept constant to keep the
reflected pressure within facility design strength limits. The facility was
heated to maintain a gas temperature of about 380 K, although variations
of ± 1 degree did occur during the filling process. Measured and calculated
properties for each test are given in Appendix A. A detonation could be
directly initiated up to β=2.5 (Fig. 28). Both the wave speed and peak
pressure were higher than the calculated CJ condition, but decayed as the
wave propagated in the receiver. No detonation was directly initiated at β
= 3.0 resulting in a critical N2 dilution limit similar to hexane. No DDT
regime was observed although a secondary explosion was observed in β =
3.0 mixtures after sufficient time had passed for shock reflection and shock
focussing to precondition the mixture.

Figure 28: Pressure traces recorded along the receiver vessel wall for vapor
phase C12H26-O2-N2 mixtures. On the left, β = 2.5 (shot 581). The initial
pressure was 738 mbar, the initial temperature 381 K. On the right, β = 3.0
(shot 579). The initial pressure was 842 mbar, the initial temperature 380 K.
Note the difference in scale on the ordinate axes.
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No cell size data is currently available for dodecane. (Tieszen et al. 1991)
measured cell widths for several hydrocarbons from hexane to decane and
found little change in the cell width with increasing molecular weight (at
373 K, 100 kPa hexane-air had a cell width of 55mm, decane-air a cell width
of 40mm). The study also determined there was little variation in cell size
with temperature (297-373 K) for smaller hydrocarbons such as ethylene and
propane. This is consistent with the present results since the critical β range
for both hexane and dodecane was found to be the same. If D/λ ratio for
jet-initiation is taken as a constant for a particular driver, the cell widths for
the two fuels should be similar.

The critical nitrogen dilution limit was found to be repeatable for both
C6H14 and C12H26, in spite of differences in the volume of liquid fuel injected,
which varied by as much as 20% (Appendix A).

8 Heterogeneous Experiments in Dodecane

8.1 Facility Modifications

Figure 29: HYJET facility receiver vessel: two-port injection system config-
uration. (Driver vessel not shown.)
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The HYJET facility (Fig. 29) was modified to allow liquid fuel injection.
Two injection systems were tried and are described below. The initial mix-
ture composition, pressure, and volume of liquid fuel in the receiver were to
be the same as for the vapor phase experiments. The only mixture considered
was stoichiometric dodecane-oxygen: 92 ml of liquid dodecane was injected
into O2 at 20.8 kPa. The mixing fan was run during the injection process,
both to improve the homogeneity of the mixture and to assist in keeping the
droplets suspended, but was turned off for the experiment. The driver was
initiated immediately (about 0.5 to 1 s) after all the fuel had been injected
to try to maximize the amount of fuel that remained suspended. Three PCB
transducers (T1,T2,T3 in Fig. 22) located in the receiver vessel wall, to-
gether with a fourth transducer in the end wall, measure wave pressure. The
time of arrival at the transducers T1-T3 is used to calculate the wave speed.
The temperature was now only measured by gauges located on the external
walls of the receiver vessel.

The nozzles used were obtained from McMaster-Carr (part# 3178KM3).
The nozzle spray parameters were known for water and estimated for dode-
cane. The injection systems were tested with water outside the vessel, but
the actual fuel injection could only be performed inside the vessel.

The nozzles produce a solid cone spray pattern with a theoretical half
angle of 40◦ for water at 100 psi into the atmosphere. The spray angle
increases when the surface tension of the liquid is reduced, and so is greater
for dodecane (surface tension 24.98 mN/m at 25◦C) than for water (surface
tension 71.99 mN/m at 25◦C). The spray angle is also likely to increase due
the reduced pressure in the receiver. It should be noted that the theoretical
spray angle is only useful in the immediate vicinity of the nozzle as the actual
dimensions of the spray will be modified by gravity and moving gases.

The flow rate through the nozzles (3.0 ml/s at 70 psi) was used to deter-
mine when all the fuel had been injected. The flow rate, Q, was calculated
by correcting the manufacturer measured flow rate for water at 70 psi for
the specific gravity of dodecane. Specific gravity, SG, is the fluid property
considered to have the most important effect on the flow rate. A simple check
of the manufacturer’s value was performed outside the vessel by injecting a
measured volume of water through the nozzles and measuring the injection
time required.

QC12H26 = QH2O

√
SGH2O/SGC12H26
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The nozzles are calibrated by the manufacturer to produces water droplets
of 35 μm. Droplet size is affected by surface tension and by viscosity. The
surface tension of dodecane is about 3 times less than that of water, which
would reduce the droplet size, while the viscosity of dodecane (1.38 mPa s)
is a factor of 1.5 times greater than that of water, which would increase the
size of the droplets. The actual mixture distribution may also be affected
by the droplets coalescing, by particles adhering to the vessel walls or by
inhomogeneous particle distribution.

8.2 Results

Two liquid fuel injection systems were tried. In the first system, fuel was
injected through the two ports shown in Fig. 29. Half the total volume of
fuel was poured into each reservoir, then a 70 psi air supply forced the fuel
to spray through the nozzles into the receiver vessel while the valves V1 and
V2 were open. The valves were opened for time required for all the liquid to
be injected, then the experiment was initiated as soon as possible (0.5-1 s)
after the valves were closed. The pressure traces from this experiment (Fig.
30) clearly show only the decaying shock resulting from the driver detonation
unsuccessfully diffracting into the receiver vessel.

This test was repeated with the vessel at an initial temperature of 65◦C.
Again the experiment was initiated as soon as the injection was complete.
At this temperature, up to 45% of the fuel could vaporize if given sufficient
time to reach equilibrium. The aim of increasing the initial temperature was
twofold. It was hoped the fuel would partially vaporize so that a droplet
might be surrounded by a fuel-oxygen vapor which would help sustain a
detonation. In the process, the droplet size would be reduced, allowing the
fuel to remain suspended for a longer time. The traces (Fig. 30) show a
detonation was initiated, but only on reflection from the end wall of the
vessel. The velocity of the reflected wave was 2070 m/s (UCJ = 2259 m/s,
PCJ = 0.67 MPa). Heterogeneous detonation velocities have been observed
to be 2-35% below the CJ value (Dabora et al. 1969).

The injection system was then redesigned in an attempt to decrease the
injection time and reduce the amount of fuel lost to the vessels walls. A
manifold with five nozzles was suspended from the top of the vessel (Fig. 31).
This arrangement was to provide a more uniform injection, and in particular
to improve the distribution around the driver exit. A reservoir of fuel was
located above V2. Unlike the previous system, the reservoir held more fuel
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Figure 30: Pressure traces recorded along the receiver vessel wall and at the
end wall for heterogeneous C12H26-O2 mixtures. On the left, (shot 590) the
initial temperature was 25 ◦C and only a decaying shock is observed. On
the right, (shot 591) the initial temperature was 65 ◦C and a detonation is
initiated on reflection. The two-port injection system was used in both cases.
Note the difference in scale on the ordinate axes.

than required (around 150 ml), although the valve was only opened for the
calculated injection time. This was so that the nozzles furthest downstream
had sufficient fuel for the entire injection period. Since the valve could only
be located outside the manifold, closing the valve did not immediately shut
off the flow through the nozzles. However, since the mixture was ignited as
soon as possible after the valve was closed, this did not introduce a significant
error for this experiment. The manifold was not refilled or evacuated between
tests. Pressure traces again show only the decaying driver shock.

The experiment was repeated with the manifold injection system at initial
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Figure 31: HYJET facility receiver vessel: manifold injection system config-
uration. (Driver vessel not shown.)

temperatures of 50◦C (up to 10% of the fuel could vaporize if given sufficient
time) and 65◦C (up to 45% of the fuel could vaporize) and the results are
shown in Fig. 32. No direct detonation was observed at 50◦C, although a
possible transition to detonation is observed between the end wall and T2.
In the 65◦C test, a pressure rise consistent with a detonation was observed on
reflection from the end wall. Unlike the reflected initiation observed for the
two-port injection system, in this case the detonation fails before reaching
T3. The manifold injection time was shorter than for the two-port system,
allowing less time for the fuel to vaporize. Also the two-port injection system
was more likely to concentrate fuel in the downstream portion of the vessel.
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Figure 32: Pressure traces recorded along the receiver vessel wall and at the
end wall for heterogeneous C12H26-O2 mixtures. On the left, (shot 594) the
initial temperature was 50 ◦C; on the right, (shot 595) the initial temperature
was 65 ◦C. The manifold injection system was used in both cases. Note the
difference in scale on the ordinate axes.
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9 Summary and Conclusions

Detonations in C6H14-O2-N2 for different values of β were investigated, where
β is the ratio of nitrogen to oxygen concentration.. Cell sizes varied from
1.7 mm for β = 0 to 51.1 mm for β = 3.76, corresponding to an estimated
increase in the spherical critical initiation energy of four orders of magnitude.
Comparison was made between similar β series studies for other fuels. C6H14

cell widths are greater than those of H2, C2H2 and C2H4, smaller than those
of CH4, and appear to be closest to C3H8.

CO is a principal intermediate product of hydrocarbon combustion yet
there are relatively little cell width data available. A study was made of the
effects of adding hydrogen or representative hydrocarbons to CO-air mixtures
The greatest rate of reduction in cell width was due to addition of C2H2

and H2, followed by C2H4, then C6H14. Detonations could be initiated in
mixtures with very small fraction of C6H14 (0.07% of the total mixture),
and this detonation limit is thought to be dependant on the fraction of H
atoms initially present in the mixture. Measured cell widths were compared
with calculated reaction zone thicknesses. If the reaction zone thickness is
taken to be defined by the location of the peak in OH concentration, the
relationship was found to be approximately linear with slopes between 25
and 35 for the mixtures considered. Temperature and radical species profiles
were calculated through the reaction zone with a ZND code. The measured
cell width for all mixtures considered was found to be inversely proportional
to the product of peak OH concentration and the CO concentration evaluated
at that peak. peak: Command not found

This relationship was suggested by the dominant CO oxidation reaction
in which oxidation occurs through the OH radical. Cell widths of mixtures
containing H2, C2H4, or C6H14 could be collapsed on to a single line when
plotted against this parameter. Cell widths for mixtures containing C2H2

showed a similar linear dependance on this parameter, but were a factor of
two smaller than the cell widths for the other mixtures.

A significant decrease in cell width was measured for C6H14-air with the
addition of low molecular weight fuels: H2, C2H2, C2H4, in order of decreasing
effectiveness. Cell widths measured for mixtures with 10 %(by fuel volume)
addition of sensitizer are tabulated below (Table 3). Addition of 25% (by
fuel mass) H2 results in a 50% reduction in cell width and reduces the critical
initiation energy (spherical source) to an eighth of that previously required.
Addition of 10-75% by fuel mass of CO had little effect on the cell width, but
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larger amounts increased the cell size, indicating the CO acts as an inhibitor.
This result is supported by the above results which show the oxidation of
CO proceeds much faster in the presence of hydrogen.

Sensitizer H2 C2H2 C2H4

Cell width (mm) 43.2 36.8 46.4

Table 3: Comparison of cell width measurements of C6H14-sensitizer-air mix-
tures with 10 % sensitizer addition (by fuel volume) at 100 kPa.

A hydrocarbon fuel blend representative of thermally decomposed JP-10
was studied at 295 K. Cell widths decrease from 27.6 mm for β = 3.76 to
1.0 mm for β = 0, corresponding to a decrease in initiation energy (spherical
source) of four orders of magnitude. For a mixture composed of the JP-10
decomposition products, including the remaining O2 and N2, and sufficient
air to make a stoichiometric mixture, the measured cell width was 55.8 mm.
This is approximately the same as the cell width measured for stoichiometric
C6H14-air, 51.1 mm, indicating the critical initiation energy is the same for
both mixtures.

A jet-initiation facility was used to try to detonate both vapor phase and
droplet phase mixtures of representative high vapor pressure hydrocarbons.
The driver jet transitioned to detonation before entering the test section.
Velocity measurements were made in vapor phase stoichiometric C6H14-O2

and C12H26-O2 mixtures with nitrogen dilution. The initial pressure was
increased with increasing N2 dilution to keep within the maximum design
pressure of the facility. A critical nitrogen dilution limit, defined as the
maximum β for which a detonation can be directly initiated in this facility,
was found to be 2.5 ≤ β ≤ 3.0 for both C6H14-O2and C12H26 mixtures. For
C6H14 mixtures this corresponds to a D/λ (nozzle diameter/measured cell
width) ratio of about 4 which compares well with the previously determined
value of 4.3 (Krok 1997)for this facilty. There are no cell size data currently
available for dodecane.

Two injection systems were tried in an attempt to detonate dodecane
droplets. Nozzle spray parameters were known for water and were estimated
for dodecane. The injection systems were tested with water outside the vessel,
but the actual fuel injection could only be performed inside the vessel where
the effect of droplets coalescing or adhering to the vessel walls could not be
determined. These factors contributed to the uncertainty in characterizing
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the initial mixture inside the vessel. The injection system tests outside the
vessel indicated the largest source of error would be the fuel lost to the
vessel walls, in particular to the bottom of the tank. A manifold injection
system was designed to shorten the injection time to try to increase the
fraction of fuel that remained suspended, and to improve the fuel distribution
throughout the vessel. Detonations through decane sprays have been studied
previously (Papavassiliou et al. 1992, Bowen et al. 1971, Bar-Or et al. 1982,
Williams 1961) in continuous flow facilities. In these facilities, fuel droplets
were produced by a nebulizer or by by agitating a fuel jet. The oxidant was
seeded with the fuel particles and flowed continuously through a (usually
vertical) tube. In this way, the initial mixture could be characterized.

It was hoped that increasing the initial temperature in the vessel might
decrease the droplet size and so increase the settling time as well as increasing
the amount of vapor in the surrounding mixture. It is not necessarily true,
however, that smaller droplets are easier to detonate Papavassiliou et al.
(1992), and self-sustaining detonations have been observed in decane sprays
with particles of 2 - 400 μm (Papavassiliou et al. 1992, Bowen et al. 1971,
Bar-Or et al. 1982, Williams 1961) and in diethylcyclohexane sprays with
particles up to 2600 μm (Dabora et al. 1969). In a theoretical study, Williams
(1961) calculated that if vaporization is the only mechanism present, the
reaction zone for 30μm particles is 100 cm, making a detonation unlikely.
However, Ranger and Nicholls (1969) determined that larger droplets could
be shattered by the induced hydrodynamic flow around them and that this
process could occur sufficiently rapidly for the shock and reaction zone to
remain coupled. Borisov et al. (1970) considered vaporization, deformation,
and shattering of droplets and concluded that vaporization was an adequate
process for droplets of less than 10μm, droplet stripping was sufficient for
droplets between 10 and 1000μm, while for larger droplets, local explosions
around the droplets were necessary for sufficiently fast energy release.
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Table 4: GDT cell width measurements: hexane dilution series.
Shot no. Mixture Po UCJ U (m/s) λav

(kPa) (m/s) 1-2 2-3 (mm)
932 C6H14+9.5O2 40 2313.6 2307.7 2303.9 1.7
933 C6H14+9.5(O2+0.75N2) 40 2104.6 2108.3 2107.1 6.3
934 C6H14+9.5(O2+1.5N2) 40 1987.4 2008.8 2006.5 16.0
935 C6H14+9.5(O2+2.25N2) 40 1904.6 1914.2 1911.2 30.4
936 C6H14+9.5(O2+3.0N2) 40 1839.2 1842.9 1842.6 50.5
937 C6H14+9.5(O2+3.76N2) 40 1783.0 1769.8 1758.6 91.7
940 C6H14+9.5(O2+0.75N2) 55 2116.0 2091.4 2088.0 6.1
939 C6H14+9.5(O2+1.5N2) 70 2004.3 2042.4 2002.2 8.3
941 C6H14+9.5(O2+2.25N2) 80 1922.0 1910.2 1909.2 19.7
942 C6H14+9.5(O2+3.0N2) 90 1857.9 1852.2 1850.0 23.7
938 C6H14+9.5(O2+3.76N2) 100 1800.5 1806.5 1797.9 51.1
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Table 5: GDT cell width measurements: hexane sensitization
series.‘Air’=O2+3.76N2

Shot no. Mixture Po UCJ U (m/s) λav

(kPa) (m/s) 1-2 2-3 (mm)
938 C6H14+9.5Air 100 1800.5 1806.5 1797.9 51.1
951 0.95C6H14+0.05H2+9.05Air 100 1800.0 1804.7 1801.4 39.2
945 0.9C6H14+0.1H2+8.6Air 100 1800.5 1802.0 1804.9 43.2
950 0.8C6H14+0.2H2+7.7Air 100 1801.3 1808.3 1801.4 42.7
947 0.7C6H14+0.3H2+6.8Air 100 1803.3 1810.1 1804.9 39.5
965 0.6C6H14+0.4H2+5.9Air 100 1805.3 1811.9 1806.6 38.5
948 0.5C6H14+0.5H2+5.0Air 100 1807.8 1810.1 1803.1 34.9
993 0.1C6H14+0.9H2+1.4Air 100 1853.0 1863.5 1857.4 27.3
994 0.05C6H14+0.95H2+0.95Air 100 1884.0 1890.5 1887.8 21.9
995 0.02C6H14+0.98H2+0.68Air 100 1932.4 1925.1 1922.7 13.5
996 0.01C6H14+0.99H2+0.59Air 100 1943.6 1955.1 1947.4 10.1
880 H2+0.5Air 100 1971.9 1985.0 1977.0 10.9
982 0.9C6H14+0.1C2H2+8.8Air 100 1801.5 1804.7 1804.9 36.8
985 0.7C6H14+0.3C2H2+7.4Air 100 1805.7 1810.1 1806.6 31.4
986 0.5C6H14+0.5C2H2+6.0Air 100 1813.1 1819.1 1810.2 32.2
987 0.3C6H14+0.7C2H2+4.6Air 100 1826.2 1833.7 1824.6 20.7
990 0.2C6H14+0.8C2H2+3.9Air 100 1835.4 1839.2 1835.3 14.1
998 0.1C6H14+0.9C2H2+3.2Air 100 1848.2 1856.0 1855.6 10.7
991 0.05C6H14+0.95C2H2+2.85Air 100 1856.7 1863.5 1857.4 8.4
992 C2H2+2.5Air 100 1867.5 1871.2 1866.8 6.2
967 0.9C6H14+0.1C2H4+8.85Air 100 1800.0 1808.3 1801.4 46.4
974 0.8C6H14+0.2C2H4+8.2Air 100 1801.5 1808.3 1803.1 35.3
966 0.7C6H14+0.3C2H4+7.55Air 100 1802.5 1804.7 1803.1 37.7
972 0.6C6H14+0.4C2H4+6.9Air 100 1804.2 1810.1 1799.6 35.8
968 0.5C6H14+0.5C2H4+6.25Air 100 1805.7 1792.4 1804.9 36.4
997 0.3C6H14+0.7C2H4+4.95Air 100 1809.8 1815.5 1815.5 24.7
1000 0.2C6H14+0.8C2H4+4.3Air 100 1813.5 1822.7 1819.1 24.7
998 0.1C6H14+0.9C2H4+3.65Air 100 1818.4 1830.0 1817.3 20.6
1001 0.05C6H14+0.95C2H4+3.33Air 100 1821.5 1833.7 1822.7 19.2
999 0.02C6H14+0.98C2H4+3.13Air 100 1823.8 1835.5 1828.1 17.0
899 C2H4+3Air 100 1825.0 1833.7 1829.9 22.8
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Table 6: GDT cell width measurements: CO mixtures.‘Air’=O2+3.76N2.(
∗:

cells unreadable)

Shot no. Mixture Po UCJ U (m/s) λav
(kPa) (m/s) 1-2 2-3 (mm)

1058 9.5CO+0.5H2+5O2 100 1820.4 1830.0 1824.5 5.0
1057 9.5CO+0.5H2+5(O2+1.5N2) 100 1754.6 1763.0 1761.9 12.5
1056 9.5CO+0.5H2+5Air 100 1679.9 1683.5 1678.8 48.4
1118 0.995CO+0.005H2+0.5Air 100 1671.4 859.2 766.0 no det.
1119 0.99CO+0.01H2+0.5Air 100 1672.1 899.7 782.6 no det.
1151 0.99CO+0.01H2+0.5Air 100 1672.1 1688.2 1669.7 det∗

1152 0.99CO+0.01H2+0.5Air 100 1672.1 562.0 534.1 no det.
1055 0.98CO+0.02H2+0.5Air 100 1673.9 1671.2 1674.2 100.3
1056 0.95CO+0.05H2+0.5Air 100 1679.9 1683.5 1678.8 48.4
1120 0.9CO+0.1H2+0.5Air 100 1690.7 1699.2 1688.0 32
1150 0.7CO+0.3H2+0.5Air 100 1739.2 1742.9 1745.3 16.9
1157 0.995CO+0.005C2H2+0.51Air 100 1674.0 915.9 812.5 no det.
1158 0.995CO+0.005C2H2+0.51Air 100 1674.0 1761.3 1678.8 102.3
1156 0.99CO+0.01C2H2+0.52Air 100 1677.2 1741.2 1677.2 90.5
1159 0.98CO+0.02C2H2+0.54Air 100 1683.7 1683.5 1681.8 49.5
1160 0.95CO+0.05C2H2+0.6Air 100 1701.5 1703.9 1701.9 29.9
1161 0.8CO+0.2C2H2+0.9Air 100 1763.7 1771.5 1768.6 10.9
1148 0.995CO+0.005C2H4+0.513Air 100 1673.4 824.0 746.6 no det.
1162 0.995CO+0.005C2H4+0.513Air 100 1673.4 972.4 863.7 no det.
1147 0.99CO+0.01C2H4+0.525Air 100 1676.4 1682.0 1672.7 71.8
1154 0.99CO+0.01C2H4+0.525Air 100 1676.4 1687.0 1679.0 89.7
1146 0.98CO+0.02C2H4+0.55Air 100 1682.2 1682.0 1680.3 54.3
1125 0.97CO+0.03C2H4+0.575Air 100 1687.9 1691.3 1689.5 43.8
1124 0.95CO+0.05C2H4+0.625Air 100 1698.3 1705.5 1697.3 36.2
1145 0.9CO+0.1C2H4+0.75Air 100 1720.1 1724.8 1714.6 33.8
1149 0.7CO+0.3C2H4+1.25Air 100 1770.8 1781.9 1778.9 25.2
1167 0.997CO+0.003C6H14+0.527Air 100 1675.2 1671.2 1672.7 112.0
1166 0.995CO+0.005C6H14+0.545Air 100 1678.0 1665.2 1686.4 89.4
1165 0.992CO+0.008C6H14+0.572Air 100 1682.4 1683.5 1681.8 69.7
1011 0.99CO+0.01C6H14+0.59Air 100 1770.8 542.1 1778.9 no det.
1164 0.988CO+0.012C6H14+0.608Air 100 1688.0 1685.1 1686.4 61.8
1163 0.985CO+0.015C6H14+0.635Air 100 1691.8 1697.6 1689.5 58.3
1009 0.98CO+0.02C6H14+0.68Air 100 1697.8 1700.7 1692.6 52.2
1008 0.95CO+0.05C6H14+0.95Air 100 1724.0 1685.1 1729.0 43.1
1007 0.9CO+0.1C6H14+1.4Air 100 1747.6 1756.2 1748.6 40.0
1006 0.7CO+0.3C6H14+3.2Air 100 1779.5 1788.9 1782.3 36.7
1005 0.5CO+0.5C6H14+5.0Air 100 1789.2 1797.6 1796.1 34.3
1004 0.3CO+0.7C6H14+6.8Air 100 1793.9 1801.2 1792.6 36.9
1003 0.1CO+0.9C6H14+8.6Air 100 1796.7 1806.5 1803.1 35.1
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Shot Mixture Fractions Pressure β λav
no. H2 CO CH4 C2H2 C2H4 C6H14 O2 N2 (kPa) (mm)

1060 0.025 0.046 0.009 0.002 0.013 0.009 0.188 0.707 100 3.76 27.6
1061 0.03 0.053 0.011 0.003 0.015 0.011 0.219 0.658 100 3.0 15.5
1062 0.035 0.064 0.013 0.003 0.018 0.013 0.262 0.591 90 2.25 10.6
1066 0.044 0.080 0.016 0.004 0.023 0.016 0.327 0.490 85 1.5 6.4
1065 0.058 0.105 0.021 0.005 0.030 0.022 0.433 0.345 75 0.75 2.9
1064 0.087 0.157 0.031 0.007 0.045 0.032 0.641 0.0 65 0.0 1.5
1067 0.021 0.039 0.007 0.002 0.008 0.008 0.161 0.751 100 4.66 55.8

Table 7: Composition of HCS mixtures.
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