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Abstract

Experiments were carried out in a closed tube to obtain measurements of incident and
reflected pressure histories for detonations in stoichiometric ethylene-oxygen mixtures. The
data are compared with the Chapman-Jouguet and Taylor-Zeldovich ideal model and also
numerical simulations of the Euler equations. Detonation waves are observed to propagation
within 1% of the Chapman-Jouguet velocity and the pressure history is slightly lower (8%)
than the predicted ideal behavior. Reasonable agreement between experiment and numerical
simulation of the Euler equations is found for incident waves and reflected waves close to
the reflecting end of the tube. The disagreement is larger for reflected waves far from the
reflecting end. Possible reasons for this disagreement are discussed.
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1 Introduction

Experiments on detonation and coupling of detonation waves to structural response of con-
fining metal tubes has been sponsored at Caltech as part of the Center for Simulation of
Dynamic Response of Materials. This center is part of the Academic Strategic Alliance
Program of the NNSA’s Advanced Simulation and Computing (ASC) program. A series
of experiments (Chao and Shepherd, 2005a, 2004, Chao, 2004, Chao and Shepherd, 2005b)
and corresponding simulations (Deiterding et al., 2006a,b, Cirak et al., 2006, Deiterding
et al., 2007) have been performed to examine the coupling between detonations and struc-
tural response in thin-wall tubes. These studies build on earlier work in our laboratory on
elastic vibrations excited by shock (Beltman et al., 1999) and detonation waves (Beltman
and Shepherd, 2002, 1998) inside tubes. We have examined excitation of elastic vibra-
tions, detonation-driven fracture, detonation diffraction through a fixed-slot, and detonation
diffraction through a variable slot created by plastic deformation of a portion of the tube
surface. The studies on elastic vibrations, and diffraction through fixed and variable slots is
described in a companion report by Shepherd et al. (2008).

This report documents experimental tests performed in 2005 and 2006 to provide bench-
mark experimental data on two situations. First, we measured the pressure histories and
extracted arrival time and the peak pressure for incident detonation and reflected shock
waves. The motivation for these experiments was to resolve discrepancies between observed
and predicted values that appeared to be a consequence of systematic differences in actual
and documented experimental configurations. This data was also used to create model pres-
sure profiles for simulations of elastic wave generation used in validation studies described in
Shepherd et al. (2008). Second, we developed a new experimental configuration with venting
through slots or movable flaps. This configuration was designed specifically for providing
validation data for fluid-structure simulations and to be more repeatable than the fracturing
tube configuration.

2 Experimental Configuration

The test facility was based on the precision test rig that is described in Chao (2004). This
consists of a main detonation tube coupled to a test specimen tube (Fig. 1). The detonation
is initiated and stabilized in the main tube, which is a 6.35 mm wall thickness, 1.607 m
long aluminum tube. A stoichiometric ethylene-oxygen mixture (C2H4+3O2) was ignited by
an electrical spark at the end of the main detonation tube, and a Schelkin spiral was used
to accelerate the flame into a detonation. The spiral consisted of a 10-in length of spring
welded to a tubular insert. After propagating out of the main tube, the detonation entered
a 6061-T6 aluminum tube of 41 mm outside diameter and 0.9 mm (nominal) wall thickness.
Specimen tubes of different lengths were used in these tests; the details are given below.
Piezoelectric (PCB) pressure gages along the detonation tube and test specimen were used
to measure the detonation wave speed and pressure histories. Measurements of strain were
also obtained and are discussed in the companion report by Shepherd et al. (2008).
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Figure 1: Detonation tube and specimen mounted on precision holding fixture.

3 Tests in 2005

The dimensions of the test specimen tube for shots 30-34 in 2005 are shown in Fig. 2. One
pressure transducer was mounted in the middle of the test section and one was located at
the end. The locations of the pressure transducers relative to the ignition point are shown
in Table 1. The arrival times and the maximum pressures recorded at each transducer are
listed in Table 2. The detonation waves propagated within -0.5% to +1% (see Fig. 3a) of the
computed Chapman-Jouguet (CJ) velocity for these five tests. A comparison of the distance-
time relationship for these tests is shown in Fig. 3b. The data are very repeatable with a
small offset in arrival times for each data set. This offset is due to the intrinsic variability in
the process of deflagration-to-detonation transition that is used to initiate the detonation.
An average detonation velocity of 2357 ±12 m/s is computed by finding the average of slope
to least squares fits of lines to the data in Fig. 3b.

Figure 2: Tube dimensions for the shot 30-34 performed in 2005.

Figure 4 demonstrates the repeatability of the pressure signals from test to test. These
results are all from gage P4 and the zero time of each signal has been shifted slightly to align
the arrival time of the detonation for all five shots. We see that the fine details of the signal,
which on first glance appear to be noise, are actually quite repeatable. These waves have a
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Table 1: Location of pressure gauges.

Station X (in) X (m)
P1 15 0.38
P2 30.75 0.78
P3 46.5 1.18
P4 76.6 1.945
P5 96 2.439

Table 2: Peak pressures and pressure wave arrival times for tests 30-34. The initial pressure
is nominally 100 kPa for all tests.

T0 t1 P1 t2 P2 t3 P3 t4 P4 t5 P5shot
(K) (ms) (MPa) (ms) (MPa) (ms) (MPa) (ms) (MPa) (ms) (MPa)

30 296 0.389 5.22 0.556 4.28 0.723 4.43 1.62 3.22 1.25 8.162
31 297.5 0.397 5.27 0.568 4.13 0.734 4.52 1.05 3.30 1.26 7.79
32 297.3 0.426 5.31 0.600 4.03 0.764 4.47 1.08 3.12 1.31 9.07
33 296 0.366 4.33 0.538 4.02 0.709 4.50 1.03 3.42 1.25 10.13
34 296 0.421 4.37 0.593 3.95 0.764 4.42 1.08 3.19 1.27 8.103

period of approximately 2.5 µs or a frequency of 400 kHz. In order to make sure that the
frequency content was being resolved, shot 34 was carried out with two digitizer channels
connected to P4, one with a 2 MHz sampling rate and the other with a 4 MHz sampling
rate; these are compared in Figs. 4b, c. Averaging all five signals together (thick black line in
plots of Fig. 4), we see that aligning the pressure signal time of arrival preserves the 400 kHz
oscillations and that the fine structure of the pressure history is not random but repeatable.

What is the origin of the high-frequency content in pressure signals of Fig. 4? Here are
some possibilities:

1. Resonant response of the quartz elements in the piezo-electric pressure transducers.
These gages (Piezotronics type 113A23 ) have a resonant frequency of >500 kHz ac-
cording the company-provided information. The gages are also rated to measure shock
rise times of less than 1 µs. Previous use of these gages in shock tube experiments in
our laboratory with very well-defined wave forms do not show these oscillations.

2. Transverse shock waves associated with the detonation instability on the main front.
The transverse wave spacing in these mixtures (Kaneshige and Shepherd, 1997) is on
the order of 0.5 to 1.0 mm so that the the time separating the impingement of the
waves on the transducers will be approximately 0.4-0.8 µs since the burned gas sound
speed (App. C) is approximately 1.2 mm/µs. This corresponds to a frequency of 1.2
to 2.5 MHz, substantially higher than what is observed. The spacing of the transverse
waves is also substantially smaller the active area of the transducer, 5.5 mm diameter,
and the effect of the transverse waves will be averaged out over the face of the sensor.
If the oscillations were due to transverse waves alone, we would expect the phasing of
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Figure 3: a) Detonation velocity computed from the arrival times using pressure data of
tests 30-34. b) Corresponding space-time diagram.

the transverse waves to be random and the features to average out

3. Shock waves that are relics of the initiation process. The initiation process proceeds
by DDT through a Shchelkin spiral and very substantial transverse shock waves are
known to be created by this process. The width of the coils (3 mm) and spacing of
the spring (10 mm) used to construct the spiral is sufficiently smaller than the tube
diameter that a much higher frequency content, on the order of 230-700 kHz, may be
generated as the detonation passes through the final section of the spiral

4. Vibration of tubes coupling into the piezoelectric elements due to non-compensated
accelerations. The tube vibrational frequencies were measured in related experiments
and are on the order of 40 kHz, an order of magnitude lower than the observed frequency
content. The signals are also observed prior to the main shock wave arrival (see P1,
P2, P3 signals in the raw data plots in App. A) when this occurs and that is not the

8



-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1.02 1.04 1.06 1.08  1.1  1.12 1.14 1.16 1.18  1.2

pr
es

su
re

 (M
Pa

)

time (ms)

shot 30
shot 31
shot 32
shot 33
shot 34

avg

a)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.06  1.065  1.07  1.075  1.08  1.085  1.09  1.095  1.1

pr
es

su
re

 (M
Pa

)

time (ms)

shot 30
shot 31
shot 32
shot 33
shot 34

shot 34 4MHz
avg

b)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.06  1.065  1.07  1.075  1.08  1.085  1.09  1.095  1.1

pr
es

su
re

 (M
Pa

)

time (ms)

shot 31 2MHz
shot 34 4MHz

avg

c)

Figure 4: Superimposed pressure traces for shots 30-34.
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case for the P4 signals due to the difference in critical wave speed and gage mounting
technique for P4 and P1-P3.

After considering these possibilities, we conclude that these features are physical in origin
and associated with shock waves due to the initiation process. This conclusion is supported
by a large number of observations in our laboratory on detonation wave propagation which
show very similar features.

Following the initial set of experiments, comparisons of simulated and measured pressure
traces at the various locations were carried out. Although the incident data were very
repeatable and consistent with the CJ values, the measured peak pressures and arrival time
for the reflected wave were not in as good agreement with the simulations. After careful
analysis of the data, we found four main reasons for these discrepancies.

1. The distance between the ignition and the reflecting end was not properly measured.

2. The detonation speed computed based on the incident wave arrival time was slightly
decreasing as the detonation propagated through the tube. This velocity variation was
not considered in the simulations.

3. The five pressure transducers used in these tests had never been recalibrated since they
were purchased.

4. Some pressure transducers were not thermally protected, and the pressure signals con-
tained artifacts.

time (ms)
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Figure 5: Comparison of computations and shot 31 at four stations after addressing problems
1, 2 and 3.
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4 Tests in 2006

4.1 Modifications

To address the deficiencies in the 2005 tests, we made a number of changes (described below)
and carried out new tests.

(1) Recalibration of pressure transducers

The pressure transducers were returned to the factory for evaluation and calibration. Table 3
lists the new conversion factors for the recalibrated pressure transducers.

Table 3: Conversion factors of the re-calibrated pressure transducers.

Station Type Conversion factor
P1 113A24 SN 14835 702.5 mV/MPa
P2 113A24 SN 13277 700.4 mV/MPa
P3 113A24 SN 14771 732.4 mV/MPa
P4 113A24 SN 13909 727.7 mV/MPa

After the first three problems were addressed, the comparison shown Fig. 5 was obtained.

(2) Modification of the reflecting ends.

In order to measure the strain signals close to the reflecting end, the previous slip-on flange
was replaced with two plugs, one fits into the test tube end, and the other one mates with
the collet, see App. D, Fig 35.

(3) Modification of clamps for mounting the pressure transducers

The critical wave speed (Beltman and Shepherd, 2002) for the detonation initiation tube
(Fig 6) is about 2200 m/s, which is within 8% of the CJ detonation speed (2373.6 m/s)
for C2H4+3O2 mixtures at an initial pressure of 100 kPa and temperature of 23◦C. As
discussed in Beltman and Shepherd (2002), this will result in a resonant response of the
tube wall that can produce artifacts in the pressure signals due to acceleration sensitivity of
the piezoelectric pressure gauges. This is manifested as high-frequency oscillations observed
ahead of the detonation front and superposed on the detonation wave pressure in the pressure
traces of Fig. 5. To decrease the magnitude of the accelerations, we locally increased the
tube stiffness with two new clamp assemblies (see App. D, Fig. 34) to hold the transducers
to the tube. Pressure transducers were mounted on the top half of the clamp and the bottom
half was mounted to the stiff work table. The improvement for the pressure signals was not
as good as we expected, so we made further changes, discussed below.

(4) Improvement of reflecting pressure transducer signal

We added a piece of rubber between the test tube and the end cap to dampen the effect of
tube oscillation on the pressure transducer mounted in the end cap.
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Table 4: Notes for shots 1-7.

shot P0 (bar) T0 (K) Mixture Notes
1 0.4 295 0.3H2+0.7N2O changes 1-2
2 0.4 296 0.3H2+0.7N2O changes 1-2
3 0.4 296 0.3H2+0.7N2O changes 1-2
4 0.99 297 C2H4+3O2 changes 1-3
5 1.0 295 C2H4+3O2 changes 1-4
6 0.9974 296 C2H4+3O2 changes 1-2, 4-5
7 0.9995 297 C2H4+3O2 changes 1-2, 4-5

(5) Modification of mounting pressure transducers

In the previous tests, pressure transducers were directly mounted on the tube and the seals
were copper rings. We added a Swagelok adaptor between the tube and the pressure trans-
ducer. The rubber o-ring seal between the tube and the adaptor dampened the tube oscil-
lation significantly.

Figure 6: Tube dimensions for shots 1-7 performed in 2006.

4.2 Results

A total of 7 shots ware carried out with the modified setup, see Table 4 and 5 and Figs 23- 32.
Shots 1-3 were performed only for validation of the initial tube setup. Shots 4-7 were used
for comparison with the computations. Signals in shots 6 and 7 have the best quality of all
the shots that were performed. The locations of the pressure transducers for these tests are
listed in Table 6.

4.2.1 Experimental Uncertainties

The detonation wave arrival time data shown in Fig. 7 indicates that there is some variability
in the DDT process that results in some scatter of the wave arrival at the first transducer.
Subtracting the arrival time at gauge 1 from all subsequent gauges for a given test enables
use to better compare tests. On this basis, the data are extremely consistent from test-to-
test and the results can be represented as the average over all four tests. This is shown in
Fig. 7 as the points labeled average.
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Table 5: Arrival time of the incident wave as determined by time of peak pressure for shots
4-7.

t1 P1,max t2 P2,max t3 P3,max t4 P4,maxshot
(ms) (MPa) (ms) (MPa) (ms) (MPa) (ms) (MPa)

4 0.425 3.26 0.603 4.22 0.781 3.78 1.20 8.88
5 0.455 4.41 0.634 5.77 0.802 4.85 1.24 9.02
6 0.396 5.02 0.566 6.44 0.738 5.86 1.16 10.60
7 0.361 4.96 0.531 5.46 0.701 6.00 1.130 9.82

Table 6: Location of gauges.

Station X (in) X (m)
P1 15 0.38
P2 30.75 0.78
P3 46.5 1.18
P4 84.5 2.146

Although the data appear to be adequately fit by the straight line shown in Fig. 7, careful
analysis shows that the wave speed is slightly decreasing as the wave propagates from gauge
1 to 4. Using a parabolic curve fit, a velocity of 2286.0 m/s is obtained at gauge 1 and
2100.9 m/s at gauge 4. These correspond to a deficit, (U - UCJ)/UCJ , of -3.7% gauge 1
and -11.5% at gauge 4. The estimated single-sample uncertainty of the computed velocity
between stations 1–2, 2–3 is 28 m/s and between stations 3–4 is 11 m/s. Given these values
of the uncertainty in the individual observations, we conclude that the decrease in velocity
between stations 1 and 4 is a real effect which is consistent with the data shown in Fig. 3. The
deceleration of the wave is also consistent with observations on deflagration-to-detonation
transition Ciccarelli and Dorofeev (2008) that show the detonation wave is overdriven, U >
UCJ , upon emerging from the transition event. The variation in wave velocity with distance
is not accounted for in the simulations but instead an average value is used. A linear least-
squares fit to the time-shifted data for shots 4–7 yields an average velocity of 2284 m/s with
a standard deviation of 12 m/s. Compare this with the value obtained in 2005 (Section 3
of 2357 ±12 m/s. The systematic difference of 73 m/s far exceeds the standard deviation
computed for either set of data.

We have also considered the influence of the uncertainty in the initial conditions using
computations of the CJ wave speed for a range of initial compositions, pressures, and tem-
peratures that correspond to the estimated range that results from the uncertainty in the
facility operation and instrumentation. The composition is set using the method of partial
pressures with an electronic capacitance pressure gauge (MKS Baratron Model 121A) with
a full scale range of 1000 Torr and an accuracy of 0.5% of the reading and minimum res-
olution of 0.5 Torr. From these values we estimate the ethylene mole fraction to be 0.25
±0.002. The average initial temperature was 23◦C with a typical variation of 1◦C and an
additional instrument uncertainty of 1◦C, so that the initial temperature range is 23 ± 2◦C.
The estimated range in initial pressure is 100 ± 0.5 kPa. The effect of individual variations
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of each of these parameters on the computed (Browne et al., 2004) CJ velocity and pressure
is shown in Table 7. A sample output from the program is given in Appendix C. From this
sensitivity study, we observe that the potential variation in composition will contribute the
most to uncertainty in the detonation velocity, UCJ = 2373.6 ± 5 m/s. The effect of initial
temperature and initial pressure variations on the computed CJ velocity are an order of
magnitude smaller than the composition effects.

Table 7: Computed variation of CJ velocity and pressure as a function of the initial param-
eters.

P0 T0 Xethylene UCJ PCJ
(kPa) (K) (m/s) (MPa)
100.0 296.1 0.250 2373.6 3.361
100.0 296.1 0.252 2368.3 3.347
100.0 296.1 0.248 2378.9 3.374
100.5 296.1 0.250 2373.8 3.378
99.5 296.1 0.250 2373.3 3.343
100.0 298.1 0.250 2373.2 3.337
100.0 294.1 0.250 2374.0 3.384

Based on these uncertainty estimates, it appears that there is a systematic difference
in the velocities between the two sets of data in 2005 and 2006 that cannot be explained
by variations in composition or initial conditions. Other potential significant sources of
uncertainty are the gage locations and arrival time measurements. Consider computing
velocity from two gages located a distance X apart with the wave arrival time difference of
T . From the arrival time velocity computation, we can compute the velocity uncertainty as

δU

U
=
δX

X
− δT

T
(1)

where δX is the uncertainty in the gage position difference and δT is the uncertainty in the
pressure arrival time difference.

Consider a typical gage spacing of X = 500 mm and a nominal wave speed of approxi-
mately 2300 m/s, which gives a nominal arrival time difference T = 215 µs. If the arrival
times were measured precisely, then the observed wave speed difference δU/U = -0.03 be-
tween 2005 and 2006 corresponds to a gage spacing difference of δX = -15 mm. If the gage
spacing was measured precisely, then the observed wave speed difference corresponds to an
arrival time difference of +6.45 µs. Based on the measurement capabilities in the lab, the
gage spacing should have been known to ±1 mm and for a sampling speed of 2 MHz, the
wave arrival time should be determined within ±1 µs.1 This means that the measurement
uncertainty should be at most ±5 m/s due to spatial location uncertainty and ± 12 m/s
due to arrival time uncertainty. The observed difference is a factor of 4 times larger than

1The main source of uncertainty in this measurement is the selection of which peak to assign as the arrival
time when the signals are noisy. This is most important for the gage on the reflecting end.
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the maximum possible combined uncertainty which indicates a systematic error occurred in
one of these sets of experiments. Based on post-test visual inspection and the location of
witness marks made by the collets on the specimen tubes, we concluded that the error was
in the position measurements for the 2005 tests.

4.3 Simulation Method

The simulations were carried out using AMROC Deiterding et al. (2006b) with a rigid con-
fining tube. The detonation was simulated using a CV-burn model (see Deiterding et al.
(2006a)) which gives product pressure profiles and detonation wave speeds that are very sim-
ilar to the computationally more complex one-step model of reaction described by Deiterding
et al. (2007). The CV-burn model has been extensively used in high-explosive simulations
as discussed by Bdzil et al. (2001) and although the details of the reaction process are not
resolved, this technique is computationally efficient for a problem where the dynamics of the
detonation products are of interest. This is the case in the present problem.

The flow is simulated using the one-dimensional Euler model of a perfect gas with energy
addition. The specific energy release used to simulate the detonation was q = 4,704,080 J/kg
and the ratio of specific heats was constant γ = 1.24. The computed CJ detonation velocity
using these parameters is 2291.7 m/s, which is selected to approximate the observed average
velocity of 2285 m/s shown in Fig. 7. The parameters are not completely consistent with the
thermodynamics of the products but give the best results for the comparison of the data and
simulation. As discussed by Radulescu and Hanson (2005) and Wintenberger et al. (2004)
and also used in previous computations (Shepherd et al., 1991) of wave motion in detonation
products, the appropriate values of the specific heat ratio is closer to the equilibrium value
of 1.14 rather than the post-shock frozen value of 1.24.

4.4 Comparison

Data from Shots 4 and 7 are compared with simulation results in Fig 8 and Fig 9. The
measured arrival times of the incident waves at four stations, as well as the pressure history,
now show excellent agreement with simulations for incident waves. The experiment peak
pressures are substantially higher than the simulated values but this is typical of unfiltered
experimental data which shows large amplitude pressure fluctuations superposed on the gen-
eral trend of a shock followed by an expansion wave. The high frequency signals are not
noise but a combination of secondary shock waves (transverse waves and transients from the
initiation) and artifacts due to the acceleration sensitivity of the gauges and vibration of the
tube wall. The experimentally measured pressure behind the reflected wave is systemati-
cally lower than the simulated values. The agreement between experiment and simulation
is now reasonable for the reflected waves but there remain systematic differences between
simulations and data for the arrival time and amplitudes.

There are several possible explanations for the remaining systematic differences between
simulation and experiment that we have considered:

1. The fluid dynamics model is highly idealized and does not account for heat loss to the
tube walls. Radulescu and Hanson (2005) show that this effect is significant in tubes
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of this length and can result in up to a 10% difference in the thermodynamic state of
the products that the reflected waves are propagating through.

2. The thermodynamic model of the detonation products does not account for the correct
relationship between enthalpy (or internal energy) and temperature. A two-gamma or
detailed model of the thermochemistry would be needed to resolve this.

3. The simulation does account for the turbulent motion and nonuniform state that must
exist sufficiently far behind the detonation front. The turbulent flow will be asso-
ciated with a spatially nonuniform thermodynamic state and will cause more rapid
attenuation of the reflected shock waves than predicted by the idealized simulation.

4. There are heat transfer and gauge response effects on the measured peak pressures.
Heat transfer becomes increasingly important at longer time scales.

5. The pressure transducer signals still show significant contamination due to acceleration
sensitivity and vibration in the tube walls.
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Figure 7: Arrival time of the incident wave (peak pressure time) vs. location of the pressure
gauges. X = 0 is the ignition location. Prior to averaging, the time values were shifted by
subtracting the arrival time at gauge 1 for each shot. The trend line is a linear least-squares
fit to the average values of arrival time.
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5 Ideal Detonation Model

The Chapman-Jouguet (CJ) model of an ideal detonation (Fickett and Davis, 1979) can
be combined with the Taylor-Zeldovich (TZ) similarity solution (Zel’dovich and Kompa-
neets, 1960, Taylor, 1950) to obtain an analytic solution to the flow field behind a steadily-
propagating detonation in a tube.2 The most common situation in laboratory experiments
is that the detonation wave starts at the closed end of the tube and the gas in the tube is
initially stationary, with flow velocity u1 = 0. This solution can be constructed piecewise
by considering the four regions shown on Figure 10; the stationary reactants ahead of the
detonation mixture (state 1); the detonation wave between states 1 and 2; the expansion
wave behind the detonation (between states 2 and 3); and the stationary products next to
the closed end of the tube, state 3.

UCJ

distance

P3

PCJ = P2

P1

reactantsproducts

Taylor wave

pr
es

su
re

u1 = 0
u2

detonation

u3 = 0

Figure 10: Detonation propagation in tube with a closed end.

In this model, the detonation travels down the tube at a constant speed U , equal to
the Chapman-Jouguet velocity UCJ . The corresponding peak pressure, P2, is the Chapman-
Jouguet pressure PCJ . The structure of the reaction zone and the associated property vari-
ations such as the Von Neumann pressure spike are neglected in this model. The detonation
wave instantaneously accelerates the flow and sets it into motion u2 > 0, then the expansion
wave gradually brings the flow back to rest, u3 = 0. As an ideal detonation wave propa-
gates through the tube, the expansion wave increases in width proportionally so that the
flow always appears as shown in Fig. 10 with just a change in the scale of the coordinates.
This is true only if we neglect non-ideal processes like friction and heat transfer within the
expansion wave. If the tube is sufficiently slender (length/diameter ratio sufficiently large),

2This section is condensed from Browne et al. (2004). See that report for a more in-depth discussion and
more references.
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friction and heat transfer will limit the growth of the expansion wave.

6 Detonation Wave Relationships

The equations of mass, momentum and energy conservation across the wave (Thompson,
1972) are most conveniently solved in a coordinate system that moves with the detonation
wave speed U . The velocity components are

w1 = U − u1 (2)

and

w2 = U − u2 . (3)

The jump conditions are simply the conservation of mass, momentum and energy in this
frame:

ρ1w1 = ρ2w2 , (4)

P1 + ρ1w
2
1 = P2 + ρ2w

2
2 , (5)

h1 +
w2

1

2
= h2 +

w2
2

2
, (6)

s2 ≥ s1 . (7)

The mass and momentum conservation equations can be combined to obtain a relationship
between pressure and velocity as a function of wave speed known as the Rayleigh line

P2 − P1 = − (ρ1w1)
2 (v2 − v1) (8)

and this result can be combined with mass and energy conservation equations to obtain the
Hugoniot curve

h2 − h1 =
1

2
(P2 − P1) (v2 + v1) . (9)

Instead of the wave or flow velocities, the Mach number

M = w/a (10)

is more convenient for analytical formulas. The sound speed a is defined as

a =

√
∂P

∂ρ

)
s

. (11)

The solution to the jump conditions can be graphically represented (Fig. 11) in the
pressure-velocity plane as the intersection of the Hugoniot curve (9) and Rayleigh lines (8).
As shown, there are no solutions for wave speeds U < UCJ , one solution possible for U =
UCJ , and two for U > UCJ . From this geometrical construction, the minimum wave speed
corresponds to a point of tangency between the Hugoniot curve and Rayleigh line.
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Figure 11: Hugoniot curve and three representative Rayleigh lines illustrating the minimum
wave speed character of the CJ solution.

6.1 Chapman-Jouguet Conditions

For a detonation, the flow upstream of the wave is supersonic M1 > 1 and the flow down-
stream is either subsonic or sonic, M2 ≤ 1.3 Ideal detonation waves are assumed to prop-
agate at the minimum possible speed that is consistent with the conservation relationships
for a steady wave (Fickett and Davis, 1979). This minimum detonation wave speed is the
Chapman-Jouguet (CJ) velocity, Umin = UCJ shown on Fig. 11. At the minimum speed,
Hugoniot and Rayleigh lines are tangent at the CJ point

PCJ − P1

vCJ − v1

=
∂P

∂v

)
Hugoniot

= −w
2
2

v2
2

. (12)

By combining the Hugoniot curves with the fundamental relationship of thermodynamics,
the entropy can be shown Fickett and Davis (1979), Thompson (1972) to be a minimum at
the detonation CJ point. This means that the Hugoniot and isentrope are also tangent at
the CJ point

∂P

∂v

)
Hugoniot

=
∂P

∂v

)
s

= −a
2
2

v2
2

. (13)

3For sufficiently fast waves, U > UCJ , it is theoretically possible to find two solutions for the downstream
state, one is subsonic M2 < 1 (state “S” on Fig. 11) and one is supersonic M2 > 1 (state “W” on Fig. 11).
Only in exception cases can the supersonic solution be obtained and we will restrict our considerations to
the conventional solution with M2 ≤ 1.
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Combining these two expressions, we find that the product velocity is sonic relative to the
wave at the CJ point is

w2,CJ = a2 , (14)

or

M2 = 1 when M1 = MCJ . (15)

This version of the CJ condition is used subsequently in the analytic solution of the jump
conditions to obtain an explicit expression for the CJ speed.

6.2 Ideal gas model

The properties downstream of the wave can be determined analytically (Thompson, 1972)
by using an ideal gas equation of state and assuming constant heat capacity to solve the
jump conditions that treat the detonation as a discontinuity. A widely used version of this
model uses different properties in the reactants and products (pp. 347-359 of Thompson,
1972) and assumes a value of the energy release q, different values of γ and R in reactants
and products. These parameters can be determined by equilibrium computations based on
realistic thermochemical properties and a mixture of the relevant gas species in reactants
and products. Examples of the results of these computations are given in Shepherd and
Schultz. The model equations are:

h1 = cp1T , (16)

h2 = cp2T − q , (17)

P1 = ρ1R1T1 , (18)

P2 = ρ2R2T2 (19)

where

cp1 =
γ1R1

γ1 − 1
, (20)

cp2 =
γ2R2

γ2 − 1
, (21)

R1 =
R
W1

, (22)

R2 =
R
W2

, (23)

a1 =
√
γ1R1T1 , (24)

a2 =
√
γ2R2T2 , (25)

M1 = w1/a1 , (26)

M2 = w2/a2 . (27)
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Substitute the ideal gas model into the jump conditions and after some algebra, we obtain
the following relationships between properties upstream and downstream of the detonation
wave:

P2

P1

=
1 + γ1M

2
1

1 + γ2M2
2

, (28)

v2

v1

=
γ2M

2
2

γ1M2
1

· 1 + γ1M
2
1

1 + γ2M2
2

, (29)

T2

T1

=
γ1R1

γ2R2

·

1

γ1 − 1
+

1

2
M2

1 +
q

a2
1

1

γ2 − 1
+

1

2
M2

2

. (30)

6.3 Ideal-gas Two-γ CJ Model

Substituting the CJ condition (15) into the analytic solution for the detonation jump con-
ditions yields an expression for the detonation4 CJ velocity or Mach number

MCJ =

√
H +

(γ1 + γ2)(γ2 − 1)

2γ1(γ1 − 1)
+

√
H +

(γ2 − γ1)(γ2 + 1)

2γ1(γ1 − 1)
, (31)

where the parameter H is the nondimensional energy release

H =
(γ2 − 1)(γ2 + 1)q

2γ1R1T1

. (32)

The other properties can be found by substitution into the general solutions given above

PCJ
P1

=
γ1M

2
CJ + 1

γ2 + 1
, (33)

ρCJ
ρ1

=
(γ2 + 1)

γ2

· 1

(1 +
1

γ1M2
CJ)

, (34)

TCJ
T1

=
PCJ
P1

· R1ρ1

R2ρCJ
, (35)

uCJ = U

(
1− ρ1

ρ2

)
. (36)

7 Relationship of Ideal Model parameters to Real Gas

Properties

The two-γ model contains six parameters (R1, γ1, R2, γ2, q, UCJ or MCJ) that have to be
determined from computations with a realistic thermochemical model and chemical equi-
librium in the combustion products. This can be done with the programs provided in the

4There are two solutions to the equations, one is the detonation solution M1 > 1, the other is the
deflagration solution M1 < 1. The deflagration solution is a limiting case of a subsonic flame and is not
relevant to ideal detonations.

22



Shock and Detonation Toolbox which uses the Cantera software for carrying out the ther-
mochemical and equilibrium computations. The theory and use of the programs is described
by Browne et al. (2004).

The parameters are:

R1 =
R
W1

, (37)

where the universal gas constant (SI units) is

R = 8314. J · kmol−1 ·K−1 . (38)

The mean molar mass is computed from the composition of the gas and the mixture formula

W =
K∑
i−1

XiWi (39)

where Xi is the mole fraction of species i and Wi is the molar mass of species i. The value
of γ for the reactants can be interpreted as the ratio of the specific heats

γ1 =
Cp,1
Cv,1

. (40)

This is identical to the logarithmic slope of the frozen isentrope

γfr = − v
P

∂P

∂v

)
s,fr

=
a2
fr

Pv
, (41)

where the subscript fr indicates that the composition is held fixed or frozen. In order to
compute the downstream state 2, we need to first find the CJ velocity which requires using
software like the minimum velocity CJ algorithm implemented in Python or Matlab in the
Shock and Detonation Toolbox.

Once the CJ conditions have been computed, the CJ state must be evaluated. This can
be done using the jump condition solution algorithm implemented in Python or Matlab in
the Shock and Detonation Toolbox. The CJ state includes the mean molar mass W2 and
the value of the parameter γ2 can be obtained from the logarithmic slope of the equilibrium
isentrope

γeq = − v
P

∂P

∂v

)
s,eq

, (42)

where the subscript eq implies that the derivative is carried out with shifting composition
to maintain equilibrium. The value of the equilibrium sound speed can be used to find the
numerical value of γeq

γeq =
a2
eq

Pv
. (43)
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Once these parameters have been defined, the value of the parameter q can be obtained
by solving the two-γ relationships (34), (35), and (36) to eliminate pressure, volume and
temperature

q = a2
1

[
(1 + γ1M

2
1 )2

2(γ2
2 − 1)

(
γ2

γ1

)2
1

M2
1

− 1

γ1 − 1
− M2

1

2

]
. (44)

If the one-γ model is used, then this expression simplifies to

q =
a2

1

2(γ2 − 1)

(
MCJ −

1

MCJ

)2

. (45)

7.1 Example: Ethylene-Oxygen Detonation

A stoichiometric mixture of ethylene and oxygen has the composition

C2H4 + 3O2

so that XC2H4 = 0.25 and XO2 = 0.75. The results of using the Cantera program CJs-
tate isentrope to compute the CJ velocity and state for initial conditions of 295 K and 1 bar
are:

Initial pressure 100000 (Pa)

Initial temperature 295 (K)

Initial density 1.2645 (kg/m3)

a1 (frozen) 325.7368 (m/s)

gamma1 (frozen) 1.3417 (m/s)

Computing CJ state and isentrope for C2H4:1 O2:3.01 using gri30_highT.cti

CJ speed 2372.1595 (m/s)

CJ pressure 3369478.0035 (Pa)

CJ temperature 3932.4868 (K)

CJ density 2.3394 (kg/m3)

CJ entropy 11700.9779 (J/kg-K)

w2 (wave frame) 1282.1785 (m/s)

u2 (lab frame) 1089.9809 (m/s)

a2 (frozen) 1334.5233 (m/s)

a2 (equilibrium) 1280.6792 (m/s)

gamma2 (frozen) 1.2365 (m/s)

gamma2 (equilibrium) 1.1388 (m/s)

From the program output and gas objects computed by Cantera, we find the following
parameters in Table 8
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Table 8: Parameters for a CJ detonation in stoichiometric ethylene-oxygen computed by the
Shock and Detonation Toolbox.

W1 (kg/kmol) 31.0
a1 (m/s) 325.7
γ1 1.342
W2 (kg/kmol) 23.45
a2 (m/s) 1280.
γ2 1.139
UcJ (m/s) 2372.
MCJ 7.28
q (MJ/kg) 9.519

8 Taylor-Zeldovich Expansion Wave

The properties within the expansion wave can be calculated by assuming a similarity solution
(Zel’dovich and Kompaneets, 1960, Taylor, 1950) with all properties a function f(x/Ut).
For a planar flow, the simplest method of finding explicit solutions is with the method of
characteristics . There are two5 sets of characteristics, C+ and C− defined by

C+ dx

dt
= u+ a , (46)

C−
dx

dt
= u− a . (47)

On the characteristics the Riemann invariants J± are defined and are constants in the smooth
portions of the flow. In an ideal gas, the invariants are (Thompson, 1972):

on C+ J+ = u+ F , (48)

on C− J− = u− F . (49)

The Riemann function F is defined as

F =

∫ P

P◦

dP ′

ρa
, (50)

where P◦ is a reference pressure and the integral is computed along the isentrope s◦ passing
through states 2 and 3. For an ideal gas, the integral can carried out and the indefinite
integral is equal to

F =
2a

γ − 1
. (51)

5There are actually three, but the third one corresponding to the flow speed u does not have to be
considered if we assume the flow in the expansion wave is isentropic.
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In this section, the value of γ is everywhere taken to be the equilibrium value in the detonation
products.

The solution proceeds by recognizing that within the expansion fan, a3 ≥ x/t ≥ UCJ , the
C+ characteristics are simply rays emanating from the origin of the x-t coordinate system
and between the end of the expansion fan and the wall, 0 ≥ x/t ≥ a3, the characteristics are
straight lines (Thompson, 1972).

dx

dt
= u+ a =

x

t
for a3 <

x

t
< UCJ , (52)

dx

dt
= a3 for 0 <

x

t
< a3 .

The characteristics C− span the region between the detonation and the stationary gas and
on these characteristics the Riemann invariant J+ is constant. Evaluating J− at states 2
and 3 yields the value of the sound speed in region 3 in terms of the properties of state 2,
the CJ state,

J− = u− 2

γ − 1
a = − 2

γ − 1
a3 = u2 −

2

γ − 1
a2 . (53)

From the CJ condition we have
u2 = UCJ − aCJ , (54)

and the sound speed in region 3 is

a3 =
γ + 1

2
aCJ −

γ − 1

2
UCJ . (55)

The variation of properties within the expansion wave can be determined using the similarity
properties of the C+ characteristics and the relationship between velocity and sound speed
on the C− characteristics:

a

a3

= 1− γ − 1

γ + 1

(
1− x

a3t

)
. (56)

The other properties within the expansion fan can be found using the fact that the flow is
isentropic in this region.

a

a3

=

(
T

T3

) 1
2

;
P

P3

=

(
ρ

ρ3

)γ
;

T

T3

=

(
ρ

ρ3

)γ−1

(57)

where T is the temperature, ρ is the density and P is the pressure. The subscript 3 refers
to the conditions at the end of the expansion wave. The pressure P3 is calculated from

P3 = PCJ

(
a3

aCJ

) 2γ
γ−1

. (58)

This finally gives for the pressure in the expansion wave

P = P3

(
1−

(
γ − 1

γ + 1

)[
1− x

c3t

]) 2γ
γ−1

. (59)
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8.1 Determining Realistic TZ parameters

The states on the product isentrope need to be determined numerically, starting at the CJ
point and extending to state 3. This is carried out in the program CJstate isentrope to
numerically determine the value of thermodynamic properties such as density, sound speed,
and temperature

ρ = ρ(P, s = sCJ) , (60)

a = a(P, s = sCJ) , (61)

T = T (P, s = sCJ) , (62)

and also velocity in the TZ wave,

u = u2 +

∫ P

PCJ

dP ′

(ρa)s=sCJ
, (63)

parametrically as a function of pressure. The state 3 can be found by numerically solving
the integral equation

u2 =

∫ P3

PCJ

dP

(ρa)s=sCJ
(64)

obtained by equating the Riemann invariant on the characteristic connecting states 2 and 3.
In the program, the integral is carried out by using the trapezoidal rule with on the order
of 100-200 increments on the isentrope. Interpolation is used to find state 3.

For the stoichiometric mixture of ethylene and oxygen discussed previously, the compu-
tation of state 3 using the Shock and Detonation Toolbox gives the following values.

Generating points on isentrope and computing Taylor wave velocity

State 3 pressure 1225686.0898 (Pa)

State 3 temperature 3608.3006 (K)

State 3 volume 1.0434 (m3/kg)

State 3 sound speed (frozen) 1253.7408 (m/s)

State 3 sound speed (equilibrium) 1201.0748 (m/s)

State 3 gamma frozen) 1.2291 (m/s)

State 3 gamma (equilibrium) 1.128 (m/s)

We note that there is a small change in γ2 with the change in pressure on the isentrope and
the pressure at state 3 is approximately 0.36PCJ .

9 Approximating the TZ Wave

The property variations within the ideal detonation wave are now completely specified. For
example, the exact solution for the pressure profile is

P (x, t) =


P1 UCJ < x/t <∞

P3

(
1−

(
γ−1
γ+1

) [
1− x

a3t

]) 2γ
γ−1

a3 < x/t < UCJ

P3 0 < x/t < a3

. (65)
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In analytical studies, it is useful to approximate the dependence of the pressure within the
expansion wave with a simpler function. Experimenting with several functional forms shows
that an exponential can be used to represent this variation. This was used by Beltman and
Shepherd (2002) as a model of the loading function for elastic wave computations. At a fixed
point in space, the variation of pressure with time can be represented by

P (x, t) =

{
P1 0 < t < t0
(P2 − P3) exp (−(t− to)/τ) + P3 t0 < t <∞ , (66)

where t0 is the time it takes for a detonation to travel from the origin to the measurement
location x. For an ideal detonation wave t0 = x/UCJ , for non-ideal waves or matching with
experimental data, t0 can be specified to match experimental or computed arrival times.
The time constant τ can be determined by fitting the exponential relationship to the exact
expression. The exact expression for pressure in the expansion wave can be rewritten as

P (x, t) = P3

[
1 +

γ − 1

γ + 1

(
UCJ/c3 − 1− t′/tCJ

1 + t′/tCJ

)] 2γ
γ−1

, (67)

where t′ = t - tCJ . This form of the TZ solution is particularly useful for comparison with
experimental data if we equate t′ = t - t0, where t0 is the arrival time of the wave at the
station of interest. The parameter UCJ/c3 does not have to be computed independently if
PCJ , P3 and γ are known or can estimated. Setting t′ = 0 in (67), we find that

UCJ
c3

=
γ + 1

γ − 1

[(
PCJ
P3

) γ−1
2γ

− 2

γ + 1

]
. (68)

By inspection of the argument in (67), we conclude that the time constant τ should have
the form

τ = tCJf(γ, UCJ/c3) , (69)

where f is a nondimensional function of the variables γ and UCJ/c3. Computations of the
two parameters using the one-γ model shows that 1.9 < a3/UCJ < 2 for a wide range of
values of γ and detonation Mach numbers 5 < MCJ < 10. Fitting the exponential function
to the pressure variation in the expansion wave for this range of parameters yields 0.31 <
τ/tCJ < 0.34. A useful approximation is

τ ≈ tCJ
3

. (70)

In actual practice, if we are trying to represent the variation of pressure over a limited portion
of a detonation tube, it is sufficient to take τ to be a constant and this can be evaluated at
some intermediate location within the portion of the tube that is of interest.

The analytic Taylor-Zeldovich wave and the approximate fit are compared to the averaged
data for transducer station 4 shots 30-34 in Fig. 12. The time origin for the analytic and
approximate solutions has been shifted to the experimental wave arrival time of 1.081 ms
to enable direct comparison of the waveforms. The experimental data are shown only up
to the time of arrival of the reflected shock wave. The computed CJ pressure (3.37 MPa),
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detonation velocity (2372.2 m/s), plateau pressure (1.226 MPa), and equilibrium value of
γ = 1.1388 were used to evaluate the exact solution. The CJ pressure was adjusted to 3.1
MPa, the plateau pressure kept as 1.226 MPa, and the time scale of 0.276 ms was used in
the approximate solution. The slight decrease (8%) in peak pressure yields better agreement
between the approximate solution and the data. The time constant choice of τ = tcj/3
appears to be reasonable.
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Figure 12: Comparison of average pressure signals from location 4 (1.964 m) in shots 30-34
with exact Taylor-Zeldovich solution and approximate fit.

10 Comparison of Two-Gamma and Real gas models

For the stoichiometric ethylene-oxygen example discussed in the text, the two-γ and real gas
results are compared in detail in Table 9.

Table 9: Comparison of real gas and two-γ results for a CJ detonation in stoichiometric
ethylene-oxygen.

Parameter SD Toolbox Value 2-γ Model
MCJ 7.282 7.287
P2/P1 33.69 33.78
ρ2/ρ1 1.850 1.852
T2/T1 13.33 13.80
a3 (m/s) 1201.1 1206.2
P3 (MPa) 1.225 1.242
T3 (K) 3608.3 3603.0
ρ3 0.9584 0.9726
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11 Summary

A series of tests were carried out to generate data that can be used to validate the CV-burn
model and Euler equation simulation of detonation propagation. The motivation is to vali-
date the fluid mechanical model that is being used in fluid-structure interaction simulations
carried out with the Virtual Test Facility in Caltech’s ASC Center. Preliminary experiments
identified a number of issues with the experiments and simulations in 2005. A second round
of experiments and simulations were carried out in 2006 and significant improvement in the
comparison was demonstrated. Some systematic differences in simulations and measured
quantities remain, particularly in the long-time reflected waves. Several simulation and ex-
perimental issues are offered as explaining the residual differences. Ideal detonation theory
and an approximate relationship for the Taylor wave following a detonation were compared
to the measured pressures. By adjusting the peak and plateau pressures, a reasonable fit
can be obtained and used as a loading function for structural analysis.
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A Pressure histories for shots 30-34 in 2005
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Figure 13: Pressure signals of shot 30 with a short time scale.
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Figure 14: Pressure signals of shot 30.
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Figure 15: Pressure signals of shot 31 with a short time scale.
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Figure 16: Pressure signals of shot 31.
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Figure 17: Pressure signals of shot 32 with a short time scale.
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Figure 18: Pressure signals of shot 32.

39



-1
 0
 1
 2
 3
 4
 5

 0  0.5  1  1.5  2  2.5  3
time (ms)

Slot 2 Chan 1 Typ P Distance 0.400m

shot 33, Pressure transducer (MPa)

-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

Slot 2 Chan 2 Typ P Distance 0.800m

shot 33, Pressure transducer (MPa)

-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

Slot 2 Chan 3 Typ P Distance 1.200m

shot 33, Pressure transducer (MPa)

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0  0.5  1  1.5  2  2.5  3

Slot 3 Chan 0 Typ P Distance 1.964m

shot 33, Pressure transducer (MPa)

 0
 2
 4
 6
 8

 10
 12

 0  0.5  1  1.5  2  2.5  3

Slot 3 Chan 1 Typ P Distance 2.416m
shot 33, Pressure transducer (MPa)

Figure 19: Pressure signals of shot 33 with a short time scale.
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Figure 20: Pressure signals of shot 33.
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Figure 21: Pressure signals of shot 34 with a short time scale.
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Figure 22: Pressure signals of shot 34.
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B Pressure histories for shots 1-7 in 2006

44



-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5
time (ms)

Slot 2 Chan 0 Typ P Distance 0.38m

shot 1, Pressure transducer (MPa)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

Slot 2 Chan 1 Typ P Distance 0.78m

-1

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

Slot 2 Chan 2 Typ P Distance 1.18m

-1

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5

Slot 2 Chan 3 Typ P Distance 2.153m

Figure 23: Pressure signals of shot 1 with a short time scale.
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Figure 24: Pressure signals of shot 2 with a short time scale.

46



-2
-1
 0
 1
 2
 3
 4
 5
 6

 0  0.5  1  1.5  2  2.5  3
time (ms)

Slot 2 Chan 0 Typ P Distance 0.38m

shot 3, Pressure transducer (MPa)

-2

-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

Slot 2 Chan 1 Typ P Distance 0.78m

-2
-1
 0
 1
 2
 3
 4
 5
 6

 0  0.5  1  1.5  2  2.5  3

Slot 2 Chan 2 Typ P Distance 1.18m

-2

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3

Slot 2 Chan 3 Typ P Distance 2.153m

Figure 25: Pressure signals of shot 3 with a short time scale.
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Figure 26: Pressure signals of shot 4 with a short time scale.
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Figure 27: Pressure signals of shot 4.
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Figure 28: Pressure signals of shot 5 with a short time scale.
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Figure 29: Pressure signals of shot 5.
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Figure 30: Pressure signals of shot 6 with a short time scale.
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Figure 31: Pressure signals of shot 6.
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Figure 32: Pressure signals of shot 7.
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Figure 33: Pressure signals of shot 7 with a short time scale.
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C Computed CJ and Isentrope States

The CJ state and isentrope in the products was computed using the demo_CJState-isentrope.m
program of the Shock and Detonation Toolbox (Browne et al., 2004). The output for the
nominal 100 kPa, 296 K initial conditions is given below.

Initial pressure 100000 (Pa)

Initial temperature 296 (K)

Initial density 1.2601 (kg/m3)

a1 (frozen) 326.2423 (m/s)

gamma1 (frozen) 1.3412 (m/s)

Computing CJ state and isentrope for C2H4:1 O2:3.001 using gri30_highT.cti

CJ speed 2373.4354 (m/s)

CJ pressure 3361533.9338 (Pa)

CJ temperature 3932.9145 (K)

CJ density 2.3313 (kg/m3)

CJ entropy 11710.4445 (J/kg-K)

w2 (wave frame) 1282.9257 (m/s)

u2 (lab frame) 1090.5097 (m/s)

a2 (frozen) 1335.3324 (m/s)

a2 (equilibrium) 1281.4276 (m/s)

gamma2 (frozen) 1.2366 (m/s)

gamma2 (equilibrium) 1.1388 (m/s)

Detonation CJ Mach number) 7.2751 (m/s)

2-gamma energy parameter q 9526253.129 (J/kg)

Generating points on isentrope and computing Taylor wave velocity

State 3 pressure 1222649.2705 (Pa)

State 3 temperature 3608.6255 (K)

State 3 volume 1.0471 (m3/kg)

State 3 sound speed (frozen) 1254.4746 (m/s)

State 3 sound speed (equilibrium) 1201.7509 (m/s)

State 3 gamma frozen) 1.2292 (m/s)

State 3 gamma (equilibrium) 1.1281 (m/s)
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D Modified Fixture Engineering Drawings

Figure 34: Modified clamp.
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Figure 35: Modified end plugs.
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