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Abstract

The structural response of a tube to an internal loading of a deflagration-to-detonation

transition (DDT) event is examined in the plastic and elastic regimes. A single degree of

freedom model to used to predict elastic and plastic deformation of the tube. The predicted

deformations based on experimental pressure traces are found to be in good agreement with

the experimentally-measured deformation. The P -I diagrams give a quick overview of the

deformation to be expected for a loading of with a decaying pressure pulse of peak pressure

P and impulse I. The scaling of the maximum strain is discussed using models of energy

absorption by elastic and plastic deformation. Two-dimensional elastic and plastic finite

element simulations are carried out to investigate the effect of the spatial extent of the

loading.
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1 Introduction

An important aspect of the analysis of the consequence of explosion hazards is the prediction

of the structural response, particularly the possibility of either plastic deformation or rupture

of vessels due to internal explosions. The most difficult type of explosion hazard to analyze is

deflagration to detonation transition or DDT. The occurs when a low-speed flame accelerates

due to a combination of flame instability and turbulence generation and the resulting high

speed flame suddenly transitions to detonation.

Previous studies on designing detonation tubes (Shepherd, 1992) have identified plastic

deformation and fracture (Chao and Shepherd, 2005b) as important failure modes that can

result from DDT. One key issue in explosion analysis is the question of the ability of plastic

deformation to accommodate the high pressures produced by DDT without causing catas-

trophic failure, i.e., rupture. This is important for accidental explosions that would result in

the release of hazardous materials. At present, there is no provision within the ASME Boiler

and Pressure Vessel or Piping Codes for designing pressure vessels or piping to withstand

detonations through plastic response. Currently, a standard is under consideration for de-

signing high-explosive containment vessels based on extensive work by Los Alamos (Duffey

et al., 2002, Rodriguez and Duffey, 2004) to formulate ductile failure criteria. Although

focused on high explosives, the material response aspect of the Los Alamos work is quite

relevant to the present study. The most important aspect of this is the reliance on ideas

from modern fracture mechanics (Pellini, 1973) to design vessels that will plastically deform

but not catastrophically fail under extreme impulsive loading.

The first section of this report deals with single degree of freedom models for elastic and

plastic response of tubes. The second section deals with static response of tubes.
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2 Single Degree of Freedom Model

The simplest model of structural response of a tube to explosive loading is to assume a

cylindrical shell structure under an axi-symmetric internal load that has a time dependence

but a fixed spatial extent. Actual explosion loads vary in both time and space but in order

to treat the problem with simple methods, we have ignored the spatial aspects in the present

study. In previous studies (Beltman et al., 1999, Beltman and Shepherd, 2002, Chao and

Shepherd, 2005a) of elastic response of tubes to shock and detonation waves, the spatial-

temporal aspects of the loading were considered in some detail.

The use of simplified models for elastic (Biggs, 1964) and plastic deformation (Jones,

1989) has a long history in mechanics and has been successfully applied to internal explosive

loading of cylinders by Duffey and Mitchell (1973) and Benham and Duffey (1974). The goal

is to find approximate loading models that will simulate the plastic deformations observed

in DDT tests. Detailed considerations of plastic deformation in spherical (Auslender and

Combescure, 2000) and cylindrical shells (Nowacki, 1978) reveal that on the time scale of the

structural vibrations, stress wave propagation in the radial direction is fast and inertia can

be neglected in the computation of radial stress. For example, for a 1.5 mm thick steel tube

that is 63.5 mm in radius, the axi-symmetric radial vibrations (Blevins, 1979, Chap. 12) of

a long (axially unconfined) cylinder have a fundamental frequency of

f =
1

2πR

√
E

ρ(1− ν2)
, (1)

which results in a frequency of

f = 13.7 kHz (2)

corresponding to an oscillation period of

T = 1/f (3)

which is numerically equal to

= 73.1 µs . (4)
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The time required for elastic wave transit time through the thickness h is

τwave = h/cl , (5)

where the longitudinal sound speed cl = 6100 m/s for steel, so that

τwave = 0.25 µs (6)

or

τwave � T . (7)

This circumstance greatly simplifies the mathematical treatment of thin cylinders since vari-

ation of stress in the radial direction can be either treated quasi-statically (Auslender and

Combescure, 2000) or eliminated from consideration entirely by using methods of shell theory

(Jones, 1989, Duffey and Mitchell, 1973, Benham and Duffey, 1974)

Assuming radially symmetric and axially uniform loading of an infinite tube structure

corresponds to a single degree of freedom (SDOF) model where only radial displacement x of

the thin shell structure is permitted, Fig. 1. This loading condition is identical to a circular

ring under uniform internal radial pressure. The dynamic behavior of the SDOF model is

governed by the balance of force equation in the radial direction (Jones, 1989, Chap. 5) based

on the simplest shell theory, neglecting the effects of axial stress, bending or rotary inertia,

ρh
∂2x

∂t2
= − 1

R
Nθ + P (t) . (8)

The density of the tube material is ρ, h is the wall thickness of the tube, R the tube radius

and P (t) the time dependent internal pressure loading. The membrane force per unit length

(stress resultant) Nθ is usually given in term of the average membrane stress σ as

Nθ = hσ (9)

so that the force balance can be written

ρh
∂2x

∂t2
+
h

R
σ = P (t) . (10)
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In general, the membrane (hoop) stress σ is considered to be a function of the radial strain

ε, and rate of strain ε̇,

σ = σ(ε, ε̇) , (11)

and in the most general formulations, the thermodynamic state, particularly the tempera-

ture.

We will treat the cases of elastic and plastic motions separately. The plastic case is more

complex and we defer that until later. For elastic motions, the stress-strain relationship can

be substantially simplified although obviously the results are limited in application to small

strains (ε ≤ 0.002) resulting in stress states within the yield surface, roughly speaking σ

≤ σy, the yield stress. For the simple geometry we are considering, the membrane stress

resultant in a cylinder can be written in terms of the hoop strain as (Soedel, 2004, p. 94)

Nθ = Kεθ (12)

where the membrane stiffness is defined as

K =
Eh

1− ν2
. (13)

The membrane stress is

σ =
E

1− ν2
εθ (14)

where the hoop strain is

εθ =
x

R
(15)

and E the modulus of elasticity (Young’s modulus). The radial deflection can therefore be

modeled as a forced harmonic oscillator,

∂2x

∂t2
+ ω2x =

P (t)

ρh
, (16)

where the oscillator natural frequency (radian/s) is

ω =

√
k̄

m̄
(17)
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h

x
R

P(t)

Figure 1: Single degree of freedom model of cylindrical tube structure; radius R, internal
pressure P (t), wall thickness h, and radial displacement x.

in terms of the reduced mass m̄ = ρh and the reduced stiffness k̄ = Eh/R2(1− ν2). This is

related to the usual oscillator frequency f in Hz through

ω = 2πf (18)

and f is given by Eq. 1.

Table 1 summarizes the dimensions and natural periods for two tubes used for detonation

and DDT studies at Caltech.

R h R/h T Material
(mom) (mom) (µs)

CIT thin 63.5 1.6 38 73 C1010 cold rolled
CIT thick 63.5 12.7 5 73 316 SS

Table 1: Dimensions and periods of tube structures under consideration in this study.

2.1 Elastic regime

The SDOF model for elastic systems is discussed in great detail by Biggs (1964, Chap. 2)

for a variety of forcing functions and specifically for high explosives in spherical vessels by

Duffey et al. (2002, Part 1.). We only sketch out the essential results here for a single type

of forcing function, the rectangular pulse. Results for other pulse shapes, the inclusion of

damping, and elasto-plastic models are discussed in depth by Biggs (1964). Applications of

SDOF modeling to shock and blast loading are given by Baker et al. (1983).

A program was written using MATLAB and Simulink1 to numerically solve the equation

of motion of the SDOF model, Eq. 16, for arbitrary forcing functions P (t). As an example,

1Simulink is a platform for multidomain simulation and Model-Based Design for dynamic systems and
is integrated with MATLAB, a high-level language and interactive environment. Both are available from
http://www.mathworks.com
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Figure 2: Predicted (SDOF model) response of CIT “thick tube” to a rectangular pressure
pulse of 10 MPa and various pulse durations τ a) τ = 5 µs. b) τ = 10 µs. c) τ = 50 µs. d)τ
= ∞, step function.

we examined the response of the CIT thick-tube to a rectangular-pulse pressure loading

profile with a peak pressure of Pp = 10 MPa. The response to pulse durations of 5, 10, 50,

and ∞ µs are shown in Fig. 2. In all cases, we see that an oscillatory motion of the tube

radius is produced. Of greatest interest for the structural failure analysis is the peak value

of the strain. For a fixed peak pressure, the peak strain increases with increasing duration

of the pulse. There are two extreme cases, long and short pulses. Long or short is measured

by comparing the pulse duration with the shell natural oscillation period, 76 µs for the CIT

thick-tube.

2.1.1 Long pulse

When the pulse duration is comparable to or longer than the period of the natural oscillation

frequency of the tube, the peak amplitude of the strain appears to be independent of the load
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duration. This is sometimes referred to as the sudden or step-loading regime. This should

not be confused with the static loading regime, which can be approached either by adding

damping to the SDOF model with step loading or slowly ramping the applied pressure up

to a constant value.

For infinite pulse duration, Fig. 2d, it can be shown analytically (Biggs, 1964) that the

peak hoop strain εmax is equal to twice the hoop strain εstatic for static response with a

constant internal pressure equal to the peak loading pressure Pm. The overshoot is due to

the inertia of the tube, lack of any damping, and the resulting oscillatory nature of the SDOF

solution. The conventional way to characterize the strains in the SDOF model is to define a

Dynamic Load Factor (DLF )

DLF = εmax/εstatic (19)

where the static strain for a thin shell is determined from the static solution (see Section 3)

to Eq. 10 with a constant pressure P = Pm

σstatic = Pm
R

h
, (20)

and the corresponding hoop strain is defined by Eq. 14

σstatic =
E

1− ν2
εstatic , (21)

so that the static strain is

εstatic =
1− ν2

E
Pm

R

h
(22)

and actual peak strain can be expressed as

εmax = DLF
1− ν2

E
Pm

R

h
. (23)

For a step-load, the maximum strain occurs on the first cycle of oscillation (Biggs, 1964,

p. 46) and DLF = 2.

2.1.2 General Case

For more complex loads and real structures, interference between modes of vibration can

result in the peak strain occurring on a later cycle, a phenomena referred to as strain growth
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Figure 3: Dynamic Load Factor for a rectangular pulse in elastic regime as function of pulse
duration τ .

by Duffey et al. (2002). In general, the DLF will be less than 2 and depends on the details

of the forcing function. A wide range of values and dependence on the forcing function

parameters is observed for general pulse shapes (Biggs, 1964). For the present case, the

DLF can be expressed solely as a function of τ/T (See Appendix A) and is a monotonic

function. Computation for a wide range of values of τ/T results in the functional dependence

shown in Fig. 3. For long pulses, τ > 0.4T , the DLF → 2 independent of τ for sufficiently

long pulses. For short pulses, τ < 0.3T , the DLF decreases with decreasing pulse duration,

this is the impulsive regime, discussed next.

2.1.3 Short pulse

If the rectangular pulse duration is shorter than approximately one-half the natural period

of the shell structure, the observed peak strain is smaller than the 2εstatic, Fig. 2a and b,

and decreases linearly with decreasing τ . The nearly linear dependence between peak strain

and pulse duration τ shown in Fig. 3 can be best explained using the concept of energy

conservation from elementary mechanics.

A short pulse will impart an impulse to the shell and set the shell into radial motion. If

the duration of the pulse is sufficiently short, then the shell will not move during this time

and the effect of the impulse is to set up an initial velocity, corresponding to the transfer

of kinetic energy to shell. In the case of elastic motion, the total energy is made up of

both kinetic energy and the elastic strain energy of the structure. At the point of maximum

deformation, the kinetic energy is converted entirely to strain energy. This concept can be

used to determine the relationship between impulse and maximum strain and extended to
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also deal with the plastic deformation case.

The mechanical impulse per unit area on the shell is

I =

∫ ∞

0

P (t) dt (24)

which for a rectangular pulse is just

I = Pmτ . (25)

From the force balance, this imparts a velocity

vo =
I

m̄
(26)

to the shell. The kinetic energy K per unit shell area after absorbing the impulse I is given

by

K =
1

2
m̄v2

o

or

=
I2

2ρh
. (27)

The strain energy Se per unit shell area is

Se =
1

2
k̄x2

max

=
1

2R2

Eh

1− ν2
(εmaxR)2

or

=
1

2

Eh

1− ν2
ε2max, (28)

where xmax is the maximum displacement, and εmax the corresponding maximum strain. For

an elastic system, the sum of the strain energy and kinetic energy is the total energy, a

constant since energy is conserved. Initially, the energy is all kinetic at the instant just after

the impulse is delivered to the system. When the system reaches the maximum deflection,

the energy is all strain. This enables the computation of the peak strain by equating the

13



initial kinetic energy K and the peak strain energy Se

I2

2ρh
=

1

2

Eh

1− ν2
ε2max , (29)

which shows that the peak strain depends linearly on the impulse in this limit

εmax =

√
1− ν2

Eh2ρ
I . (30)

For rectangular-pulse loading, this is

=

√
1− ν2

Eh2ρ
Pmτ , (31)

yielding a linear dependence of the maximum strain on the pulse duration τ for a fixed

peak pressure Pm, which is what is observed in the impulsive regime of Fig. 3. Using the

definition of dynamic load factor, Eq. 19 and the frequency of oscillation, Eq. 1, the dynamic

load factor can be expressed analytically as

DLF = 2π
τ

T
, τ ≤ 0.4T (32)

for the rectangular pulse, showing explicitly the dependence on the ratio τ/T in the impulsive

regime.

2.2 Plastic regime

If the stress exceeds a critical value, the stress and strain are no longer proportional. For

steels used in pressure vessels, this typically occurs when the strains exceed 0.001-0.002 (0.1-

0.2%) and the stress is in excess of the yield stress σy which is on the order of 30-70 ksi

(200-480 MPa). Computing structural response in the plastic regime requires considering

both the nonlinear characteristics of the stress-strain relationship for σ > σy and the large

deformation of the material, particularly the thinning in the direction transverse to the

largest principal stress.

Examples of the stress-strain relationships for mild steel, typical of the tubes used in the

present experiments, are shown in Fig. 4a. These curves are plotted using engineering stress

and strain units typical of tensile test data. For tension in one dimension, the increment in

true strain is defined in terms of the fractional increase in length d` in the direction of the
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applied stress.

dε =
d`

`

ε =

∫ L

Lo

d`

`

= ln(L/Lo) , (33)

and the engineering strain is defined in terms of the fractional extension relative to the

original length

e = (L− Lo)/Lo , (34)

and the true strain is

ε = ln(1 + e) . (35)

The true stress σ is higher than the engineering stress σe, which is calculated from the applied

force F and the original cross-sectional area Ao,

σe = F/Ao . (36)

For stresses encountered in the plastic regime, the solid can be treated as incompressible so

that the volume of the sample is constant

LA = LoAo (37)

and the true stress

σ = F/A (38)

can be written in terms of the engineering stress and strain as

σ = σe(1 + e) . (39)

Reducing engineering test data such as that shown in Fig. 4a to true stress and true strain

requires some care since under large deformations, multi-dimensional “necking” of tensile

stress samples will occur, and the material will be in a state of three-dimensional (tri-
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axial) stress rather than one-dimensional (uni-axial) stress. For the purposes of numerical

simulation, the relationship between true stress and true strain is required. An example of

a true stress-true strain curve for a modern pressure vessel steel is shown in Fig. 4b.

The data of Fig. 4 illustrate several significant issues with plastic response under dynamic

loading conditions. First, as shown in Fig. 4a, the yield point depends on the rate of

strain, conventionally denoted ε̇. A pronounced upward shift in the yield point is observed

as a function of increasing strain rate. At strain rates of 100-300 s−1, typical of gaseous

detonation loading, the yield point can be almost a factor of three higher than under static

loading conditions. Second, as the material yields, the stress increases, an effect known as

strain hardening. The extent of strain hardening depends strongly on the temperature of the

material, Fig. 4b, with larger effects being observed at lower temperatures. Third, the nature

of the behavior near the yield point depends strongly on the material. In Fig. 4a, the yield

point is quite distinct and followed by a plateau of constant stress, which is very typical of

mild steels. In Fig. 4b, the yield point is less distinct and strain hardening occurs immediately

so that there is a certain amount of arbitrariness in the definition of yield point. Fourth,

the combination of strain hardening with the necking that occurs during plastic deformation

results in the phenomenon of plastic instability. Plastic instability is manifested by the peak

in the engineering stress-strain curve of Fig. 4a. Physically, this translates to a maximum

load that the material can support prior to catastrophic failure. For strains less than the

plastic instability limit, the structure becomes stronger with increasing load, for strains

greater than the plastic instability limit, the structure becomes weaker with increasing load.

Plastic instability is what determines the ultimate or rupture strength of a ductile pressure

vessel, (Harvey, 1974, Section 2.10.3), under static loading conditions. The limiting value will

depend on the material and the geometrical configuration of the vessel, see the discussion in

Section 3. For simple tension, plastic instability occurs when σ = σu, the ultimate or tensile

stress. For cylindrical and spherical vessels, instability occurs for σθ ≈ σu (see Section 3),

the precise value depending on the strain hardening characteristics.

Rigid-plastic model In our analysis of plastic response, we will consider various approx-

imate models of the stress-strain relationship. In the context of dynamic loading, the need

to consider plastic response depends on the maximum strain created by the load. Just as

in the elastic regime, the maximum strain will depend on the entire time history of the

loading with limiting cases of impulsive and step loading. The simplest model for plastic

material behavior is the rigid, perfectly plastic, stress-strain relationship, shown graphically

in Fig. 5a. In this model, the material is rigid (no deformation) until the stress reaches the
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a) b)

Figure 4: Stress-strain relation for a) mild steel (Hampton and Bitner, 2005). b) alloy steel
2.25%Cr 1% Mo (Moosbrugger, 2002).

yield stress

ε = 0 for σ < σy (40)

and then the stress is constant and the material permanently deforms with a constant stress

for forces that produces stresses in excess of the yield value

σ = σy for ε > 0 . (41)

If the stress does not exceed σy, there is no motion. The rigid-plastic model is useful in

obtaining analytical results that give a qualitative guide to behavior. However, more real-

istic models that include elasticity, strain hardening, and strain rate effects are required for

quantitative studies.

Strain-hardening model A more realistic model of plastic deformation needs to include

the effects of strain (work) hardening, which are shown in Fig. 4. There are various approx-

imate methods to do this, the simplest being a power law

σ = Kεn , (42)
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Figure 5: Stress-strain relation for a) rigid perfectly plastic material. b) elastic piecewise
linear plastic material.

where the exponent n is known as the strain-hardening exponent. This equation and more

realistic variations, such as the Swift model

σ = K(ε◦ + ε)n , (43)

are evaluated against experimental data for stainless steel in Hampton and Bitner (2005),

p. 62. For numerical simulations, a common approximation to the stress-strain relationship

is the elastic, piecewise-linear plastic, stress-strain relationship, Fig. 5b. As shown, the stress

is approximated as a piecewise linear function of strain. The simplest version is to divide the

stress-strain curve into two segments, with the material approximated as elastic for small

strains

σ = Eε for σ < σy , (44)

and an effective modulus E1 is used for larger (plastic) strains

σ = σy + E1(ε− εy) for σy < σ . (45)

In general, more segments can be used for the plastic portion in order to more accurately

fit the actual material response. The material used in the CIT thin tube was cold-rolled
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steel (C1010), and the yield strength given by the distributer (Marmon Keystone) is σy =

210 MPa, and the tensile strength is σt = 310 MPa. In our model, the elastic portion of the

response extends from 0< ε <0.1%, and the yield point is set to be σy=210 MPa. Young’s

modulus is correspondingly E = 210 GPa. If the stress exceeds the yield stress, the material

plastically deforms along the piecewise linear curves until the ultimate stress of σu = 300

MPa is reached. Note that the stress-strain relation shown in Fig. 5b represents the true

stress-strain relationship or flow-curve. The piecewise-linear plastic stress-strain relationship

as shown in Fig. 5b is used in all the numerical simulations carried out in this report.

Strain-rate model To further refine the material model, strain rate effects have to be

taken into account. Experimental results (Fig. 4 demonstrate that the stress depends not

only on the strain ε, but also on the strain rate ε̇. The simplest model for accounting for

strain rate effects is the Cowper-Symonds model (Cowper and Symonds, 1957), which scales

the static yield stress with the factor β,

σy(ε̇) = σy,staticβ (46)

where for the present study, the following empirical formula for mild steel is used

β = 1 +

(
ε̇

40

)0.2

. (47)

Strain rate effects have a significant influence on the simulation results for strain rates on

the order of ε̇ < 100 s−1, Fig. 6, since yield strength increases by more than 50% for these

conditions. Both the yield stress and ultimate stress increase with increasing strain rate

(Hampton and Bitner, 2005, p. 164). Other models for the strain-rate dependence have been

proposed and fit to data (Hampton and Bitner, 2005, p. 165-6), notably the Johnson-Cook

and Zerilli-Armstrong models.

2.2.1 Static vs. Dynamic Response

For pressure vessels or tubes in the plastic regime, catastrophic failure associated with ductile

tearing or plastic instability is usually termed “rupture”. For static loading this occurs

at the burst pressure (Duffey et al., 2002) which depends crucially on the details of the

ductility of the material. For dynamic loading, the situation is considerably more complex

and depends on the details of the pressure waveform (Florek and Benaroya, 2005) and not just

the peak pressure. For high-ductility steels like those used in the present study, substantial

deformation and energy absorption can take place in the process of stretching the material
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up to the point of rupture.

Duffey et al. (2002) suggest that for dynamic loads it is this ability of a structure to

absorb energy through plastic deformation that is most important to designing fracture safe

vessels to contain explosive loading. Therefore, they propose that design criteria based on

specifying safe levels of plastic strain are most relevant. In the present study, plastic strains

of up to 28% are observed without rupture although we are certainly not advocating this as

a design limit. An extensive discussion of proposed ductile failure criteria is given by (Duffey

et al., 2002).

In a static loading situation, discussed in Section 3, the onset of plastic behavior in the

wall of pressure vessel occurs when internal pressure exceeds a critical value, Py and at a

somewhat higher pressure, Pp, the entire vessel wall will be in a state of plastic deformation.

If the material exhibits significant strain hardening, then the pressure that results in the

onset of the yielding for a structure can be substantially lower than the pressure Pburst that

results in rupture or burst of the vessel.

In a dynamic loading situation, it is more useful to focus on the peak deformations

than the pressures. For elastic analyzes, we introduced the concept of dynamic load factor

and used this to estimate peak deformations for a given waveform and peak pressure. For

plastic analyzes, the details of the waveform are more important than in the elastic case

and it is necessary to consider the motion of the material up to the onset of yielding, the

duration of the plastic deformation period, and the subsequent elastic oscillations once plastic

deformation has ceased.
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Collapse Pressure For thin-tubes, the onset of yielding and fully-plastic state are prac-

tically indistinguishable. If strain hardening and elasticity are neglected (rigid plastic model

of response) then a single value of internal pressure, the “collapse pressure”, can be used to

characterize the plastic response. The terminology “collapse” originated in studies of plastic

deformation of structures constructed from beams and the formation of mechanisms due

to the creation of ”plastic hinges” (Jones, 1989). When the applied load exceeds a critical

value, the structure is observed to collapse due to the rotation about the hinges. For pres-

sure vessels, a bulge will be created in the wall and in the absence of strain hardening, no

quasi-static solution is possible, so the bulge will grow until extensional limit of the material

is reached and a rupture is created by a crack extending completely through the wall of the

vessel.

In shells, the relationship of the collapse pressure to the membrane forces is not completely

straightforward (Jones, 1989, pp. 43-59), but the simplest notion is that collapse begins when

the membrane stress reaches the yield strength σy of the material. In a static situation, from

the time-independent version of the force balance, Eq. 8, we find the often-used approximate

relationship for the collapse pressure,

Pc =
h

R
σy . (48)

2.2.2 Long Pulse Limit

In the absence of strain hardening, the results can be completely characterized by the the

magnitude of the step pressure Pm relative to the collapse pressure Pc corresponding to the

onset of yielding.

Elastic, Pm < 1/2Pc For the case of a step load in the elastic regime, we found that the

onset of plastic deformation would actually occur for a step pressure Pm that was one-half of

the collapse pressure due to the inertia of the shell causing a factor of two overshoot (DLF

= 2) in the strain.

Elasto-Plastic, 1/2Pc < Pm < Pc For a step load in the plastic regime, plastic behavior

will commence once the step pressure exceeds one-half of the collapse pressure but only

limited plastic deformation will occur as long as the step pressure is less than the collapse

pressure. The solution to the ideal elastic-plastic SDOF system is given in Section 2.7 of

Biggs (1964). The solution consists of three temporal stages: 1) initial elastic deformation

up to the onset of yielding. 2) plastic deformation from the onset of yielding up to the
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maximum displacement. 3) elastic oscillations following the achievement of the maximum

deflection.

Plastic-rupture, Pm > Pc The plastic deformation continues without bound and the tube

ruptures once the extensional limit is reached.

If the material has a significant strain-hardening effect, then the upper limit for elasto-

plastic behavior (the rupture limit) will be determined by the rupture or burst pressure of

the vessel instead of the onset of yielding.

2.2.3 General Solution

The approximate solution of the SDOF model for a general pulse shape has been considered

by a number of authors including Duffey and Mitchell (1973), Benham and Duffey (1974),

Hodge (1956), Duffey (1971), Duffey and Krieg (1969), Fanous and Greiman (1988) and

others cited in the review by Florek and Benaroya (2005). Under certain assumptions and

loading regimes, analytical solutions are possible. We follow the presentation of Benham and

Duffey (1974), who neglect the axial stress resultant and bending moment, consistent with

a purely radial motion. The equation of motion is the same as Eq. 10

ρh
∂2x

∂t2
+
h

R
σ = P (t) .

In order to solve this model, a stress-strain σ(ε) relationship is required. In general, this

requires considering the time history of the deformation if plastic deformation can occur.

The plastic deformation is irreversible and changes only when the stress state has reached

the yield condition while the elastic component is reversible. The specification of the yield

surface and computation of the plastic strain evolution is discussed in Chap. 5 of Johnson

and Mellor (1983) and the application to explosively loaded cylinders is given by Duffey and

Krieg (1969).

For the cases considered in this study, the loading is quite simple and plastic deformation

usually only occurs for a limited duration during the primary pressure pulse associated with

the detonation wave. There is an initial elastic phase that initiates the yielding, followed

by plastic flow until deformation stops, and then elastic unloading. Strain rate effects are

primarily confined to the initial transient and the strain rate has a single characteristic

value determined by the resonant frequency of the tube and maximum strain, ε̇ ≈ εmax/T .

With these considerations, a simple empirical rule for the flow stress can be used during the
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yielding phase of the motion (ε > εy and ε̇ > 0)

σ = σD
y (1 + λε) , (49)

and the dynamic yield stress value σD which depends on the strain rate. A simple approxi-

mation for this is the Cowper-Symonds model mentioned earlier (Eq. 47)

σD
y = σy

[
1 +

(
ε̇

D

)1/p
]
. (50)

where the values of the parameters D and p are determined by fitting experimental data.

Hodge (1956) considers the solution for the case of rigid-plastic model with an arbitrary

pressure loading history P (t) and although he was able to make progress, he was unable to

find analytical solutions for loads of practical importance. By introducing other approxima-

tions, Benham and Duffey (1974) were able to solve the problem analytically by assuming

a rigid-plastic linear-hardening model and that the dynamic yield stress was a constant.

Including the strain rate dependence of the yield stress required a numerical solution. The

inclusion of elastic loading and unloading is discussed by Duffey and Krieg (1969), Duffey

(1971). An approximate solution for the final shape of impulsively-loaded long cylinders was

obtained by Duffey and Mitchell (1973) for rigid-plastic model with strain hardening and

rate effects. Approximate solutions for the maximum deformation of several types of shells

under impulsive loading were obtained by Fanous and Greiman (1988). For the present

study, instead of carrying out numerical solutions of Eq. 10 directly, we have used a com-

mercial finite-element simulation program to obtain solutions for specific pressure histories

of interest and an empirical flow rule for the materials of interest. The results are given

subsequently in Section ??.

2.2.4 Short Pulse Limit

In the impulsive regime, the peak pressure can be comparable to or higher than the collapse

pressure and the response can still be in the elastic regime if the impulse is sufficiently low.

The purely elastic case was covered in Section 2.1 and some of the same considerations apply

here. The impulse I results in an initial velocity v◦ = I/ρh and the subsequent motion of

the shell is governed by the unforced equation of motion

ρh
∂2x

∂t2
+
h

R
σ = 0 .
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This can be integrated from the initial time up to the maximum displacement to obtain

1

2
ρv2
◦ =

∫ εmax

0

σ dε , (51)

which we can interpret as the conversion of the initial kinetic energy (left-hand side) into

strain energy (right-hand side). The amount of energy that can be absorbed by elastic

motion is limited by the onset of yield at ε = εy∫ εy

0

σ dε =
σyεy
2

. (52)

For higher strains, the additional energy is absorbed by elastic deformation until the cylinder

wall comes to rest. The total amount of plastic work is∫ εmax

εy

σ dε . (53)

If the maximum deformation is significantly larger than the yield value, then the energy

absorbed by the elastic motion can be neglected in comparison to the plastic deformation.

With this approximation, the peak deformation can be estimated from the conservation of

energy using the rigid plastic material model

1

2
ρv2
◦ ≈

∫ εmax

0

σy dε

= σyεmax . (54)

solving for the maximum displacement,

εmax =
ρ

2σy

(
I

ρh

)2

εmax =
P 2

m τ
2

2σyρh2
. (55)

Based on this simplified material behavior, the maximum strain scales with the square of

the impulse I rather than linearly as found in the plastic regime. For a material with

strain-hardening and an elastic regime, the maximum displacement can be determined from

integration of Eq. 51 and solving the resulting relationship between impulse and maximum

strain.
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3 Static Cylindrical Tube Response

The static elastic and plastic response of a cylindrical tube is given in in standard textbooks

on elasticity, Timoshenko and Goodier (1970), pressure vessel design, Harvey (1974), strength

of materials, Ugural and Fenster (1987), and plasticity, Johnson and Mellor (1983). We

summarize the formulation and key results here.

3.1 Elastic Response

The elastic response of a cylinder under pressure starts by considering the stress-strain

relationships for an elastic solid, the generalized Hooke’s law, in a cylindrical coordinate

system (r, θ, z) - see Fig. 7.

εr =
1

E
[σr − ν(σθ + σz)] (56)

εθ =
1

E
[σθ − ν(σr + σz)] (57)

εz =
1

E
[σz − ν(σθ + σr)] (58)

R

r

z

h

u

vw
θ

Figure 7: Coordinate system for analysis of cylinder response to internal pressure loading.
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For a cylinder, there are two special solutions for the case of a uniform internal and

external pressure loads:

1. Plane stress, σz = 0. This corresponds to the ends of the cylinder being free to move

so that no stress exists in the longitudinal direction. Physically, this corresponds to

the case of a ring with no axial confinement so that the axial stress is zero at the

boundaries and either exactly (pure 2-d flow) or approximately zero in the interior.

For plane stress, the strain-stress relations are:

εr =
1

E
(σr − νσθ) , (59)

εθ =
1

E
(σθ − νσr) , (60)

εz = − ν

E
(σθ + σr) . (61)

Note that the stresses (σr, σθ) completely determine the solution for all strains. Solving

for the stresses in terms of the strains, we have

σr =
E

1− ν2
(εr + νεθ) , (62)

σθ =
E

1− ν2
(εθ + νεr) . (63)

2. Plane strain, εz = 0. The corresponds to the ends of the cylinder being fixed so that no

axial displacement occurs. Physically, this corresponds to the case of a long cylinder or

perfect axial confinement of a ring so that the displacement is zero at the boundaries

and either exactly (pure 2-d flow) or approximately zero in the interior.

σz = ν(σθ + σr) , (64)

εr =
(1 + ν)

E
[(1− ν)σr − νσθ] , (65)

εθ =
(1 + ν)

E
[(1− ν)σθ − νσr] . (66)

Note that the stresses (σr, σθ) completely determine the solution and the stress σz is

a consequence of the strains in the other directions. Solving for the stresses in terms
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of the strains, we have

σr =
E

(1 + ν)(1− 2ν)
[(1 + ν)εr + νεθ] , (67)

σθ =
E

(1 + ν)(1− 2ν)
[(1 + ν)εθ + νεr] . (68)

Even with these restrictions on the z-direction, it is also possible for there to be shear γrθ

and a shear stress τrθ in the in the r-θ plane; these are related by

γrθ =
τrθ

G
(69)

where G is the shear modulus

G =
E

2(1 + ν)
. (70)

The material displacements are (u, v, w) and from the definition of strain, the strains are

given by

εr =
∂u

∂r
, (71)

εu =
u

r
+

1

r

v

θ
, (72)

γrθ =
∂v

∂r
+

1

r

∂u

∂θ
− v

r
. (73)

If we suppose that the displacement is only in the r direction (corresponding to symmetry in

the circumferential direction), then v =0, ∂/∂θ = 0, and γrθ = 0, and the equation of force

equilibrium in the radial direction is

∂σr

∂r
+
σr − σθ

r
+ Fr = 0 . (74)

For static problems in which no external body forces (e.g., the weight of the vessel) are

considered, Fr = 0. The radial displacement u(r) can be determined by substituting into

Eq. 74 the expressions (Eq. 68 or 63) for the stresses in terms of the strains (expressed in

terms of the displacements, Eq. 73). The boundary conditions on the radial stresses are

given by the applied pressures to the interior (r = a)

σr(r = a) = −Pi (75)
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and exterior (r = b) of the cylinder

σr(r = a) = −Po . (76)

The cases of plane strain and plane stress will be considered separately. These solutions are

known as the Lamé solutions to the elastic thick cylinder problem.

3.1.1 Plane Strain

The stresses are

σr =
E

1− ν2

(
du

dr
+ ν

u

r

)
(77)

and

σθ =
E

1− ν2

(
u

r
+ ν

du

dr

)
. (78)

Substituting in the force equation, we have

0 =
d2u

dr2
+

1

r

du

dr
− u

r2
(79)

which has as solutions

u = c1r +
c2
r

(80)

where c1 and c2 are constants to be determined by applying the boundary conditions on the

radial stress. Doing this, we find the stresses to be

σr =
a2Pi − b2Po

b2 − a2
− (Pi − Po)a

2b2

(b2 − a2)r2
, (81)

and

σθ =
a2Pi − b2Po

b2 − a2
+

(Pi − Po)a
2b2

(b2 − a2)r2
, (82)
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and the radial displacement is

u =
1− ν

E

(a2Pi − b2Po)r

b2 − a2
+

1 + ν

E

(Pi − Po)a
2b2

(b2 − a2)r
. (83)

The strain in the z-direction is independent of the coordinate r and is equal to

εz = −2ν

E

(
a2Pi − b2Po

b2 − a2

)
. (84)

Since the shear stress τrθ = 0, the principal stresses are σθ and σr and the maximum

shear stress is

τmax =
1

2
(σθ − σr) (85)

or

=
(Pi − Po)a

2b2

(b2 − a2)r2
. (86)

The maximum value of the shear stress occurs at the inner surface.

Thin tube approximation The results can be considerably simplified for large internal

pressures Pi � Po and thin-walled tubes b - a = h � R = (b+a)/2. The radial stress is

always on the order of the applied pressure difference

σr ∼ ∆P . (87)

Applying order-of-magnitude analysis to the radial force equilibrium equation, we find that

the tangential stress must be of the order

σθ ∼
R

h
∆P . (88)

Algebraic manipulation of the exact solution verifies these order of magnitude estimates and

the tangential stress is approximately equal the value given by the membrane theory

σθ ≈
R

h
∆P (89)
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and the maximum shear stress is

τmax ≈
R

2h
∆P . (90)

This approximation improves with increasing values of R/h.

3.1.2 Plane Stress

The relationships for plane stress can either be derived as in the plane strain case or else

transformed from the plane strain results using the transformation given in most texts on

elasticity, see Table 3.1 on p 71 of Ugural and Fenster (1987). For a thin tube, the key

difference is the presence of a stress in the z direction,

σz ≈
R

2h
∆P . (91)

3.2 Plastic Deformation

The onset of plastic deformation first occurs at the inner most portion of the cylinder. The

exact pressure at which yielding first takes place depends on the criteria used to define the

yield surface (Ugural and Fenster, 1987, p. 268). A simple condition is that yielding takes

place when the maximum shear stress exceeds the shear strength τy = σy/2 of the material.

For a thick cylinder under internal pressure only, the innermost “fibers” will yield when

τy =
b2

b2 − a2
Pi , (92)

and in the thin cylinder approximation, yielding will first occur when

∆Py =
h

R
2τy (93)

=
h

R
σy . (94)

For a tube with internal pressure only, the yielding will start at the inner surface and

with increasing pressure, spread to the outer surface. The radial stress distribution can be

obtained for the fully plastic cylinder by approximating the yield condition. Recognizing

that the maximum shear stress is

τmax =
1

2
(σθ − σr) , (95)
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we can rewrite the radial force equilibrium as

dσr

dr
=

2τmax

r
. (96)

If we approximate the yield surface with the Tresca condition, τmax = τy, and neglect strain

hardening, τy = constant, we can integrate this to obtain

σr = 2τy ln(r/b) , (97)

where we have used the approximate conditions that σr ∼ 0 at r = b. Then, the pressure

for which the cylinder is fully plastic is

Pp = 2τy ln
b

a
. (98)

For a thin tube, expansion of the logarithm yields

Pp ≈ 2τy

[
h

R
+

1

3

(
2h

R

)3

+ . . .

]
. (99)

This implies that for a thin tube, the yielding spreads very quickly through the tube wall and

there is little difference between the pressure needed for the onset of yielding and the fully

plastic state. Once the tube has fully yielded, if the material is approximated as a perfectly

plastic material it will continue to deform as long Pi > Pp. There is no static solution in

this case since the tube will enlarge until it ruptures once the maximum elongation of the

material is reached. A slightly smaller value of critical pressure for fully plastic deformation

will be found if the von Mises yield surface is used.

On the other hand, if the material exhibits appreciable strain hardening, then the de-

formation will reach a static equilibrium as long as the internal pressure is less than some

maximum value. If the failure mode is purely ductile, then maximum pressure that the tube

can statically withstand will be determined by the onset of plastic instability, which requires

considering the details of the actual strain hardening curve. However, it is possible to make

a simple estimate of the static burst pressure by assuming that at burst, the shearing stresses

are uniform over the thickness and equal to the ultimate shearing strength τu and that the

dimensions of the deformed tube are not too drastically different from the original

Pburst = 2τu ln
b

a
, (100)
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which for a thin tube is

Pburst ≈ σu
h

R
. (101)

If the strain hardening curve can be approximated with a simple power law form, then it is

possible to improve on this estimate of bursting pressure by accounting for the change in the

thickness of the tube during plastic deformation and for the actual stress distribution. A

solution using Hencky’s stress-strain relationships is given on p. 396 of Ugural and Fenster

(1987); a solution using Lévy-Mises incremental strain relationships is given on p. 402 of

Ugural and Fenster (1987) and Chap. 10 of Johnson and Mellor (1983).

For example, using the Lévy-Mises formulation and Swift’s form of the strain hardening

rule

σ = K(ε◦ + ε)n , (102)

Johnson and Mellor (p. 264) show that the ordinary or ultimate tensile strength (determined

by plastic instability in simple tension) is

σu = Knn exp(ε◦ − n) , (103)

while the hoop stress for a thin-walled pipe (internal pressure with closed ends, case of plane

stress) at instability is

σθ = P
R

h
(104)

= K
2√
3

(
n√
3

)n

. (105)

The straining of the cylinder increases the radial dimension

R = R◦ exp(εθ) (106)

and makes the wall thinner

h = h◦ exp(−εθ) , (107)
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where the hoop strain at instability is equal to

εθ =

√
3

2

(
n√
3
− ε◦

)
. (108)

The internal pressure at the point of plastic instability is therefore

P =
h◦
R◦
K

2√
3

(
n√
3

)n

exp(
√

3ε◦ − n) , (109)

which can be written in terms of the ordinary tensile strength as

P =
h◦
R◦
σuψ (110)

where ψ is

ψ =
2

(
√

3)n+1
exp ε◦(

√
3− 1) . (111)

The factor ψ is a function of the strain hardening parameters ε◦ and n. For small values of

n, ψ > 1 and for large values, ψ < 1. For a given n, the value of ψ increases for increasing ε◦.

For typical values of the parameters, ψ can be as much as 15% higher or lower than unity.

This shows that basing the burst pressure on the tensile strength (the simplest estimate) can

either under- or over-estimate the burst pressure. For example, in 304 SS, the parameters

are n = 0.561, ε◦ = 0.07, and K = 1.55 GPa; in this case ψ = 0.89 and σu = 685 MPa.

An empirical formula for the bursting pressure of cylindrical vessels is (Harvey, 1974)

Pburst =

[(
0.25

n+ 0.227

) ( e
n

)n
]
σu ln

b

a
, (112)

which for thin tubes, reduces to the expression given above with ψ equal to the term in the

square brackets. The effective strain hardening exponent n is linearly correlated to the ratio

of σy/σu (Harvey, 1974, Fig. 2.26) and the numerical values of ψ have similar trends with n

as in the model results of Johnson and Mellor (1983).
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4 Peak Pressure-Impulse Damage curves

In general, in order to estimate the extent of plastic deformation from a specific pressure

history, it is necessary to carry out numerical simulations for that case. In a hazard analysis,

it is desirable to examine the consequences of a range of pressure waveforms that bound the

possible outcomes of postulated accident events. For this purpose, a more rapid means of

analysis is desirable in order to make bounding estimates. One technique that is widely used

(Baker et al., 1983, Florek and Benaroya, 2005) in blast wave loading and structural damage

prediction is to characterize the pressure waveform with the peak pressure P and impulse I.

A pressure waveform shape is assumed, parameterized with P and I, and computations are

carried out to obtain contours of constant damage or iso-damage (deformation in the present

case) as a function of these two parameters.

These iso-damage maps are known as P -I diagrams and are widely used in hazard analysis

to evaluate the potential for damage to structures and people from blast loading. For large

values of P or I, the results appear to relatively independent of the waveform shape (Baker

et al., 1983, Florek and Benaroya, 2005) which makes this technique very appealing for quick

evaluation of hazards. The results are also in reasonable agreement with experimental data

and simple structural models that show damage can be correlated with exceeding critical

values of either peak pressure (long pulse limit) or impulse (short pulse limit). However,

for intermediate values of P and I, the results are strongly waveform shape dependent,

particularly for plastic deformation (Florek and Benaroya, 2005). The reason for the extreme

sensitivity of the deformation to loading in the plastic regime is due to the shallow slope of

the strain hardening curve, Fig. 5, leading to large differences in final deformation for modest

changes in peak pressure. Another way to conceptualize this is that the effective modulus

for plastic deformation is much smaller than for elastic deformation.

Based on the appearance of the experimental data, we have assumed a pressure pulse

that consists of a jump followed by an exponential decay

P (t) = Pmax exp (−t/τ), (113)

where τ is the characteristic decay time of the pressure signal and Pmax is the peak pressure.

To create a contour-plot of the iso-damage curves in the P -I plane, a set of calculations has

to be carried out. In Fig. 8a, the range of parameters was 0 < I < 15 kPa·s and 0 < Pmax

< 70 MPa in increments of ∆I =0.25 kPa·s and ∆Pmax = 1 MPa. Also shown in Fig. 8 as

a dotted line is the pressure level P = (σyh)/(2R), below which no plastic deformation is

possible. This pressure is based on a dynamic load factor of two and a fixed value of yield

stress.
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Figure 8: Pressure impulse diagram showing iso-damage curves for CIT “thin tube” geome-
try. Note the different scale for (a) and (b). a) With strain rate effects. b) Without strain
rate effects.
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The iso-damage curves become steeper for lower impulses, which correspond to shorter

decay times. This is characteristic of the short pulse or impulse regime and the peak strain is

mainly dependent on the impulse and much less dependent on the peak pressure. For larger

impulses, and correspondingly larger pulse lengths τ , the iso-damage curves are flatter. This

indicates that the resulting strain is more dependent on the peak pressure than the total

impulse, characteristic of the long-duration pulse loading regime. The CIT “thin tube”

experiments are in the intermediate regime.

Note that the experimental pressure signal does not exactly follow the exponential decay,

but the parameters peak pressure Pmax and decay time τ seem to capture the characteristics

which govern the plastic deformation. In order to demonstrate the large influence of the strain

rate effects in the material model, Fig. 8b shows the same iso-damage curves assuming no

strain rate effects. Note the different scale of the axis in Fig. 8a and b, as the same damage

is predicted for much lower impulse and peak pressure when the strain rate effects are

neglected. Clearly, strain rate effects are significant for these tests and must be included to

obtain realistic values of the final deformation.
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5 Two Dimensional Simulations

The simulations presented in the previous section were all one-dimensional, assuming an

axially uniform load on the cylindrical shell. In the experiments, the loads due to DDT are

observed to be localized and only extend over a finite axial distance. Following the DDT

event, a propagating detonation is produced that results in a traveling load. In the present

study, we have focused on the loads due to the DDT event. There is extensive discussion

for the elastic situation of a traveling load in Beltman et al. (1999), Beltman and Shepherd

(2002), Chao and Shepherd (2005a) and we do not consider this further in the present study.2

In this section, the results of two-dimensional simulations for static and transient loads

of a finite-axial extent are presented. The simulations were carried out with the commercial

finite element code LSDYNA. The material properties were taken to be identical to the ones

presented in the previous section (Fig. 5). In a DDT event, the load is not uniform over

the entire tube length, but is only imparted on a restricted portion of the shell structure.

The purpose of the calculations presented in this section are to quantify the influence of the

length of the loaded section (w in Fig. 9) on the maximum strain. The 1D case corresponds to

infinite load length. As in the previous chapter, rotational symmetry of the load is assumed.

A parametric study for various load lengths, peak pressures, and pulse durations is carried

out for the CIT “thin tube” and “thick tube” geometries for the elastic and plastic regimes.

A rectangular pulse pressure-time history with peak pressure Pmax and pulse duration τ is

assumed. The parameters examined were load lengths w/D =10, 2.5, 1.2, 0.6, 0.3 and 0.15;

pulse durations τ =1, 5, 10, 50, 100 and 1000 µs; and pressures Pmax = 3, 10 and 30 MPa.

The impulse for the exponentially decaying pulse is just I = Pmaxτ .

w

2R

t

P(t)

Figure 9: Long cylindrical tube loaded over a length w with circumferentially symmetric
pressure P (t).

5.1 Static solution

As a first step, the static solution to a long, thin-walled cylindrical shell under axi-symmetric

radial load P over length w was calculated, Fig. 9. An analytical elastic solution to this

2Note that the previous studies were all carried in the elastic regime and the situation of a traveling load
in the plastic regime is the subject of ongoing study.
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Figure 10: Analytic elastic solution to thin cylindrical shell with a finite length internal load.
The peak pressure is chosen to result in the same strain ε = 500µ for infinite load length in
all cases. a) CIT “thin tube” geometry, P = 3 MPa. b) CIT “thick tube”, P = 23 MPa. c)
ARA facility geometry, P = 38 MPa. d) Full scale reactor geometry, P = 8 MPa.

problem is given by Young and Budynas (2002). The resulting hoop strain for various load

lengths for all four tube geometries under consideration is shown in Fig. 10. The pressures

for the different tube geometries shown in Fig. 10a-d are chosen to result in the same strain

of ε = 550 µ for infinite load length w. This strain corresponds to the 1D static result of

ε1D static given in Appendix 3. For a sufficiently large load length, the deflection is close to

the one dimensional result. The peak deflection decreases with decreasing load length once

the load length is less than a critical value. For all cases, the highest strain is observed close

to the center of the loaded region. Plotting the maximum strain, normalized by the one

dimensional solution, as a function of the load length w shows qualitatively similar behavior

of all geometries, Fig. 11a. We refer to the normalized strain as a “Load Length Factor”
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as a function of normalized load length w/D. b) Load length factor collapsed by scaling the
load length with λ.

(LLF = εmax/ε1D) since describes the influence of the load length w. For large w, LLF =

1 and the one dimensional solution is recovered. For decreasing w, the LLF decreases. For

the CIT “thin tube” the load length has to be w < 0.2D in order to see an influence of the

load length on the resulting maximum elastic strain. The LLF curves of all geometries can

be collapsed, Fig. 11b and Appendix B, if the load length is scaled not by the tube diameter

but instead (Young and Budynas, 2002) with the parameter λ

λ =

(
3(1− ν2)

R2h2

)1/4

. (114)

This parameter is widely used in the analysis of cylindrical shells to determine the effect of

end conditions and other localized bending loads. The physical interpretation is that the

distance λ−1 is the characteristic length over which localized bending loads decay. When wλ

> 5, the peak deflection becomes independent of the length of the load and deformation in

the center of the loaded region can be quantitatively predicted using simple one-dimensional

models that treat the loading as being infinite in axial extent, i.e., neglecting the bending

due to the finite extent of the load.

5.2 Dynamic elastic calculations

The two-dimensional dynamic simulations were carried out for a tube length of L = 1.24 m,

corresponding to the size of the CIT “thin tube” and “thick tube” used in the experiments.

The loaded section is always centered at the half tube length of x= 0.62 m. Built-in boundary
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Figure 12: Time sequence of displacements for a two-dimensional finite element simulation
of the CIT “thick tube”, tube length L = 1.24 m, w = 0 .155 m, τ = 50 µs, Pmax = 10 MPa
(rectangular pulse). The actual displacements are scaled by a factor of 2000 for visibility.
The fringe component in the images and scale given on the right correspond to the hoop
stress in Pa.

conditions at the tube ends were used for the all calculations, allowing no translational

movement for the nodes at the boundary. In the elastic regime, peak pressures of Pmax = 3

and 10 MPa were used for the “thin” and “thick tube”, respectively. The rapid application

and finite duration of the load makes the solution essentially different from the static case.

The history of the deformation is shown as a series of snapshots in Fig. 12. Initially the tube

section in the centrally loaded region is displaced outward and the deformation superficially

(Fig. 12, t = 25 µs) resembles the static case. After the load is removed at 50 µs, flexural

waves are observed to propagate away from the loaded section, and toward the ends where

they reflect. The reflected and incident waves interfere with each other, resulting in a complex
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Figure 13: Maximum strain for rectangular pressure pulse of Pmax = 10 MPa applied to the
CIT “thick tube” as a function of normalized load length w/D for various pulse durations
τ .

displacement pattern. The maximum displacement and strain are observed near the center

of the loaded tube section shortly after the pressure pulse is applied. For statically-loaded

cylindrical shell structures, the maximum stress is observed on the inner surface of the tube,

see Appendix 3. For the CIT “thick tube” geometry, the difference between the stress on

the inner and outer surface is 18%, whereas the difference is found to be negligible for the

“thin tube”.

Plotting (Fig. 13) the maximum strain as a function of w for various pulse durations τ

shows that for the “thick tube”, the maximum strain is fairly independent of w for w/D > 0.5.

This is to be expected based on the static load length factor, which is also approximately

constant (LLF ≈ 1) in this regime, Fig. 11a. For a long pulse duration, τ ≥ 50 µs, the

sudden loading regime with a dynamic load factor of 2 is reached, Fig. 3. The maximum

strains for those cases in which τ ≥ 50 µs, are nearly identical over the entire range of load

lengths examined. Motivated by these two observations, we propose to treat the effects of

load length w and pulse duration τ independently. For an estimate of the maximum strain

εmax, we propose that this can be based on the product of the load-length and dynamic load

factors times the one-dimensional static deformation,

εmax = ε1D static LLF (w) DLF (τ). (115)

The peak strain estimate based on Eq. 115 is in good agreement with the two dimensional

finite element simulations, Fig. 14. We conclude that in the elastic regime, the effects of load

length and pulse duration can be treated independently.

41



 0

 0.5

 1

 1.5

 2

 2.5

 0.1  1  10

no
rm

al
ize

d 
m

ax
im

um
 s

tra
in

  ε
m

ax
/ε s

ta
tic

w/D

Based on LLF x DLF

Based on 2D dynamic
simulations LSDYNA

τ=1µs
τ=5µs

τ=10µs
τ=100µs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1  1  10

no
rm

al
ize

d 
m

ax
im

um
 s

tra
in

  ε
m

ax
/ε s

ta
tic

w/D

Based on LLF x DLF

Based on 2D dynamic
simulations LSDYNA

τ=1µs
τ=5µs

τ=10µs
τ=100µs

(a) (b)

Figure 14: Maximum strain for rectangular pressure pulse of a) Pmax = 10 MPa applied to
the CIT “thick tube” and b) Pmax = 3 MPa applied to the CIT “thin tube” as a function of
normalized load length w/D for various pulse durations τ compared to the estimate based
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5.3 Dynamic plastic calculations

The computations of the previous section were repeated using high pressures and the strain-

hardening model of an elastic-plastic solid used in previous sections; no strain rate effects

were included.
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Figure 15: a) Final plastic deformation of “thin tube”, Pmax = 30 MPa, τ = 50 ms, w =
0.15 m. Displacements scaled by a factor of 30, wall thickness not to scale. b) Hoop strain
history in center of loaded region 0.54 m < x < 0.69 m and outside the loaded region at x
= 0.75 m, Pmax = 30 MPa, τ = 50 ms, w = 0.15 m.

In order to create plastic deformation in the simulations using the “thin tube” geometry,

the peak pressure of the rectangular pulses was increased to Pmax = 30 MPa, ten times larger
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Figure 16: Maximum plastic deformation as a function of w/D for the CIT “thin tube”,
Pmax = 30 MPa. a) Linear scale b) Logarithmic scale.

than the peak of 3 MPa used in the elastic regime. The plastic deformation is observed to

take place only in the immediate vicinity of the loaded section, Fig. 15a. Outside the loaded

section, only elastic flexural waves are observed, Fig. 15b. Plotting the maximum plastic

strain as a function of load length shows that for τ = 100 µs, the maximum strain decreases

by 50% for a load length of w/D = 0.15 compared to infinite load length, Fig. 16a. This

is a substantial reduction compared to the elastic load length factor LLF ≈ 1 for w/D >>

0.15. Based on this limited comparison, the plastic deformation seems to more affected by

the load length than in the corresponding elastic case. The decrease in deformation with

decreasing load length is more pronounced for larger pulse durations and correspondingly

larger deformations. For τ ≤ 50 µs, the plastic deformation is fairly independent of w. We

have not attempted to extend the proposed elastic approximation (Eq. 115) to correlate

deformation in the plastic regime.
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A Dynamic Load Factor

The dynamic load factor for a rectangular pulse on an elastic single-degree-of-freedom system

is derived by (Biggs, 1964, p. 42). We reproduce the results here for completeness. The load

is applied for a duration τ and the resonant frequency of the system is ω = 2π/T .

The normalized deflection X/Xs where Xs is the static response to the same load, is

given by

X/Xs = 1− cosωt (116)

= 1− cos 2π
t

T
(117)

for t ≤ τ and by

X/Xs = cosω(t− τ)− cosωt (118)

= cos 2π(
t

T
− τ

T
)− cos 2π

t

T
(119)

for t ≥ τ . The maximum deflection can be determined from these expressions by numerically

solving for the time of maximum deflection.

dX

dt
(tmax) = 0 (120)

which results in the simple implict equation for tmax

sin(ωtmax − ωτ) = sinωtmax (121)

Xmax = X(tmax) . (122)

The functional dependence of the solution on the combination of ωτ clearly shows that both

Xmax and tmax are functions of only ωτ or equivalently τ/T . Evaluating the scaled deflection

at tmax yields the dynamic load factor

DLF = Xmax/Xs (123)

The results for the DLF as a function of scaled load duration are given in Fig. 3 and Table 2

below. Note that for τ > 0.5T , the DLF = 2 independent of the load duration. In other

words, as long as the pulse length is greater than one-half of the period of oscillation, the

peak deflection is the same as if the pulse length were infinite.
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Table 2: Dynamic Load factor for rectangular pulse on a SDOF structure.

τ/T DLF

0.0502 0.3062
0.0596 0.3614
0.0694 0.4287
0.0791 0.4801
0.0890 0.5434
0.0987 0.6028
0.1191 0.7257
0.1416 0.8645
0.1650 0.9913
0.1844 1.1024
0.2004 1.1897
0.2288 1.3286
0.2611 1.4754
0.3043 1.6421
0.3473 1.7730
0.3963 1.9039
0.4843 1.9949
0.5832 2.0000
0.6926 2.0000
0.8873 2.0000
0.9838 2.0000
1.4868 2.0000
2.9589 2.0000
9.9327 2.0000
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B Load-Length Factor

The load length factor for a finite length axi-symmetric load can be computed using the

elastic solution presented in Young and Budynas (2002). The parameters that enter into

this computation are

Y radial displacement

w load length

R tube radius

h tube thickness

E Young’s modulus

ν Poisson ratio

The reciprocal of the shell scaling length is

λ =

[
3(1− ν2)

R2h2

]1/4

. (124)

The shell flexural rigidity is

D =
Eh3

12(1− ν2)
. (125)

The deflection of a one-dimensional shell subject to an internal load pressure P is

X1D =
R2P

Eh
(126)

=
P

4Dλ4
. (127)

The load length factor is defined as

LLF =
X

X1D

(128)

The results are given in graphical form in Fig. 11 and in the following table using material

parameters corresponding to the mild steel used in the thin-tube experiments.
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Table 3: Load length factor as a function of normalized load width.

wλ LLF

0 0
0.125539 0.062661399
0.251078 0.124863625
0.376617 0.186200514
0.502156 0.246320223
0.627695 0.304921431
0.753234 0.361749601
0.878773 0.416593348
1.004312 0.469280914
1.129851 0.519676761
1.25539 0.567678301
1.380929 0.613212769
1.506468 0.656234244
1.632007 0.696720819
1.757546 0.734671932
1.883085 0.770105851
2.008624 0.803057319
2.134163 0.83357535
2.259702 0.861721185
2.385241 0.887566397
2.51078 0.911191139
2.636319 0.932682542
2.761858 0.952133245
2.887397 0.969640059
3.012936 0.985302761
3.138475 0.999223003
3.264014 1.01150334
3.389553 1.022246364
3.515092 1.031553941
3.640631 1.03952654
3.766170 1.046262659
3.891709 1.051858325
4.017248 1.056406676
4.142787 1.059997613
4.268326 1.062717514
4.393865 1.064649015
4.519404 1.065870836
4.644943 1.066457662
4.770482 1.066480067
4.896021 1.066004474
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wλ LLF

5.02156 1.065093157

5.147099 1.063804266

5.272638 1.062191885

5.398177 1.060306113

5.523716 1.058193159

5.649255 1.055895464

5.774794 1.053451827

5.900333 1.050897552

6.025872 1.048264594

6.151411 1.045581722

6.27695 1.04287468

6.402489 1.040166353

6.528028 1.037476936

6.653567 1.034824102

6.779106 1.032223168

6.904645 1.029687258

7.030184 1.027227469

7.155723 1.024853025

7.281262 1.022571428

7.406801 1.02038861

7.53234 1.018309071

7.657879 1.016336017

7.783418 1.014471486

7.908957 1.012716474

8.034496 1.011071048

8.160035 1.009534457

8.285574 1.008105232

8.411113 1.006781282

8.536652 1.005559987

8.662191 1.004438273

8.78773 1.003412694

8.913269 1.002479497

9.038808 1.001634689

9.164347 1.000874094
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wλ LLF

9.289886 1.000193407

9.415425 0.999588237

9.540964 0.999054153

9.666503 0.998586721

9.792042 0.998181538

9.917581 0.997834257

10.04312 0.997540617

10.168659 0.997296463

10.294198 0.997097764

10.419737 0.996940627

10.545276 0.996821313

10.670815 0.99673624

10.796354 0.996682

10.921893 0.996655357

11.047432 0.996653251

11.172971 0.996672803

11.29851 0.996711313

11.424049 0.99676626

11.549588 0.996835298

11.675127 0.996916253

11.800666 0.997007121

11.926205 0.997106059

12.051744 0.997211383

12.177283 0.99732156

12.302822 0.997435203

12.428361 0.997551061

12.553900 0.997668015

12.679439 0.997785071

12.804978 0.997901351

12.930517 0.998016085

13.056056 0.998128606

13.181595 0.998238344

13.307134 0.998344814

13.432673 0.998447614
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wλ LLF

13.558212 0.998546416

13.683751 0.99864096

13.80929 0.99873105

13.934829 0.998816543

14.060368 0.99889735

14.185907 0.998973426

14.311446 0.999044765

14.436985 0.999111398

14.562524 0.999173389

14.688063 0.999230824

14.813602 0.999283818

14.939141 0.999332501

15.06468 0.999377022

15.190219 0.999417543

15.315758 0.999454235

15.441297 0.999487279

15.566836 0.999516861

15.692375 0.999543169

15.817914 0.999566397

15.943453 0.999586734

16.068992 0.999604373

16.194531 0.999619499

16.32007 0.999632299

16.445609 0.999642952

16.571148 0.999651631

16.696687 0.999658507

16.822226 0.99966374

16.947765 0.999667486

17.073304 0.999669893

17.198843 0.9996711

17.324382 0.99967124

17.449921 0.999670439

17.57546 0.999668813

17.700999 0.999666471
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wλ LLF

17.826538 0.999663515

17.952077 0.99966004

18.077616 0.999656133

18.203155 0.999651873

18.328694 0.999647334

18.454233 0.999642581

18.579772 0.999637676

18.705311 0.999632673

18.83085 0.999627621

18.956389 0.999622561

19.081928 0.999617534

19.207467 0.999612572

19.333006 0.999607704

19.458545 0.999602955

19.584084 0.999598347

19.709623 0.999593896

19.835162 0.999589618

19.960701 0.999585523

20.08624 0.99958162

20.211779 0.999577916

20.337318 0.999574414

20.462857 0.999571116

20.588396 0.999568023

20.713935 0.999565134

20.839474 0.999562445

20.965013 0.999559953
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