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Abstract

Impulse generation with gaseous detonation requires conversion of chemical energy

into mechanical energy. This conversion process is well understood in rocket engines

where the high pressure combustion products expand through a nozzle generating

high velocity exhaust gases. The propulsion community is now focusing on advanced

concepts that utilize non-traditional forms of combustion like detonation. Such a

device is called a pulse detonation engine in which laboratory tests have proven that

thrust can be achieved through continuous cyclic operation. Because of poor per-

formance of straight detonation tubes compared to conventional propulsion systems

and the success of using nozzles on rocket engines, the effect of nozzles on detonation

tubes is being investigated. Although previous studies of detonation tube nozzles

have suggested substantial benefits, up to now there has been no systematic investi-

gations over a range of operating conditions and nozzle configurations. As a result,

no models predicting the impulse when nozzles are used exist. This lack of data has

severely limited the development and evaluation of models and simulations of nozzles

on pulse detonation engines.

The first experimental investigation measuring impulse by gaseous detonation in

plain tubes and tubes with nozzles operating in varying environment pressures is

presented. Converging, diverging, and converging-diverging nozzles were tested to

determine the effect of divergence angle, nozzle length, and volumetric fill fraction on

impulse. The largest increases in specific impulse, 72% at an environment pressure

of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the

largest diverging nozzle tested that had a 12◦ half angle and was 0.6 m long. Two

regimes of nozzle operation that depend on the environment pressure are responsible



v

for these increases and were first observed from these data. To augment this exper-

imental investigation, all data in the literature regarding partially filled detonation

tubes was compiled and analyzed with models investigating concepts of energy con-

servation and unsteady gas dynamics. A model to predict the specific impulse was

developed for partially filled tubes. The role of finite chemical kinetics in detona-

tion products was examined through numerical simulations of the flow in nonsteady

expansion waves.
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Chapter 1

Introduction

1.1 Overview

This work is an experimental study aimed at understanding impulse generation in

detonation tubes. The tubes are closed at one end, open at the other, and are filled

with a gaseous reactive mixture that is combusted by means of an unsteady detona-

tion wave. The impulse is determined by the chemical energy released by detonation

and the transfer of this energy into accelerating the tube, detonation products, and

gas in the surrounding environment. For the case of a fully filled detonation tube

exhausting into atmospheric air, the impulse has been experimentally (Cooper and

Shepherd, 2002, Zitoun and Desbordes, 1999, Kiyanda et al., 2002, Zhdan et al., 1994,

Falempin et al., 2001) determined for a wide range of initial mixtures and can be ana-

lytically (Wintenberger et al., 2003, Wu et al., 2003) predicted by one-dimensional gas

dynamics within 10% of these measured values. However, addition of an exit nozzle or

variation in the environment conditions alters the distribution of energy between the

tube, product gases, and environment gases such that the impulse is significantly af-

fected. Because of the inherently unsteady and multi-dimensional flow which may also

contain complicated shock wave interactions, standard one-dimensional gas dynamic

analysis methods are of limited value. Currently, there are no experimental or analyt-

ical studies quantifying detonation tube impulse in environments of varied pressure

and composition. Previous studies with exit nozzles have been single-point designs,

not systematic investigations. The purpose of the present research is to conduct a
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systematic experimental investigation of detonation tube impulse for a wide range of

conditions varying the pressure of the environment surrounding the detonation tube

and the exit nozzle shape (converging, diverging, and converging-diverging) in order

to obtain performance bounds at an arbitrary operating condition. We also address

the lack of unifying relationships in the literature by generating a single relationship

from which the impulse of partially filled tubes can be predicted and a relationship

to predict the impulse of tubes exhausting into low environment pressures.

1.2 Motivation: pulse detonation engines

In recent years, a novel propulsive device called a pulse detonation engine (PDE) has

been the focus of many experimental (Cooper and Shepherd, 2002, Falempin et al.,

2001, Zitoun and Desbordes, 1999, Kiyanda et al., 2002, McManus et al., Zhdan et al.,

1994), numerical (Morris, 2004, Cambier and Tegner, 1998, Eidelman and Yang, 1998,

Li and Kailasanath, 2003), and analytical (Wintenberger et al., 2003, Wu et al., 2003)

modeling efforts by both academics and industry which are reviewed in Kailasanath

and Patnaik (2000) and Kailasanath (2001). A PDE is a propulsive device that is

based on intermittent detonation and borrows concepts from rocket engines and air-

breathing propulsion. Figure 1.1 illustrates a conceptual PDE developed at Caltech

that is based on the results of our research efforts.

In this conceptual stand-alone propulsion system, ram air enters the device through

the inlet at the left end of the figure, flowing through a swirler and/or inlet valve.

Fuel enters and mixes with the air stream via a fuel injector creating a combustible

mixture that travels into the main combustion chamber. Mixture ignition is achieved

by means of an annular initiator (Jackson et al., 2003) which uses a unique technique

of an imploding detonation to generate a region of high temperature and pressure

that is capable of initiating a detonation in the flowing combustible mixture within

the main chamber. The detonation propagates through the device, processing the

combustible mixture into products, and emerges from the device through the exit

nozzle at the right end of the figure. The momentum of the exhausting detonation
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Figure 1.1: Illustration of a conceptual PDE device.

products and the pressure differential across the internal components result in thrust.

The time duration of this thrust force is on the order of 0.01L s, where L is the

tube length in meters, and repetitive operation is required in order to obtain quasi-

steady thrust levels. The basic operating cycle must consist of at least four main

steps which are illustrated in Fig. 1.2 for the simplest PDE device formed from a

cylinder that is closed at one end forming the “thrust surface” and open at the other.

A more complex operating cycle containing a step for filling with a purge gas has

been analyzed by Wintenberger (2004).

The first step of the operating cycle consists of initiating a detonation at or near

the thrust surface of the tube. A detonation is a supersonic combustion wave that

consists of a leading shock wave followed by a region of chemical reaction (Fickett and

Davis, 1979). The shock wave processes the reactants to temperatures and pressures

sufficiently high to initiate chemical reactions after an induction period. The energy

release and volumetric expansion that occurs as a result of these chemical reactions

support the leading shock wave. This coupling between the shock wave and reaction

zone occurs on length scales that are orders of magnitude smaller than our experi-

mental facilities eliminating the need to resolve the internal wave structure for our

study. Associated with such detonations are propagation velocities on the order of
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Figure 1.2: Illustration of a PDE operating cycle.

2 km/s and peak overpressures on the order of 10-20 bar.

After the detonation is initiated, it propagates down the tube towards the open

end during the second step. An unsteady expansion called the Taylor-Zeldovich wave

(Fickett and Davis, 1979) sets up behind the detonation wave, expanding the products

from high pressure and velocity just behind the detonation wave to lower pressure

and zero velocity matching the boundary condition at the thrust surface. The blow

down process of step three starts when the detonation wave reaches the open end of

the tube transmitting a decaying shock wave into the surrounding environment. A

reflected wave, propagating back through the product gases to the thrust surface, is

generated due to interaction with the simultaneous area change and mixture interface

at the open end. The fourth step involves filling the tube with a fresh combustible

mixture after completion of the blow down process. Repeating this cycle on the order

of 100 Hz has been experimentally demonstrated and can be used to generate, on the

average, net thrust (Schauer et al., 2001, McManus et al., Hinkey et al., 1997, Brophy

and Netzer, 1999, Farinaccio et al., 2002).

Estimates (Wintenberger, 2004, Wu et al., 2003) of performance for a multi-cycle,
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air-breathing PDE are shown in Fig. 1.3 for the simplest device of a fully filled,

straight tube open directly to the environment. From these results, it is apparent

that these devices are inefficient since, without further expansion of the exit flow,

only a relatively modest amount of the chemical energy is converted into thrust. In

order to obtain performance comparable to existing propulsion systems, it has been

proposed that some type of exit nozzle be used on PDEs. Although there have been

extensive studies on the role of nozzles on steady flow propulsion systems, relatively

little is known about the propagation of detonations and subsequent unsteady flow

development in nozzles. This forms the motivation behind the present study.
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Figure 1.3: Specific impulse of a single-tube, air-breathing PDE compared to the
ramjet operating with stoichiometric hydrogen-air and JP10-air. Predictions from
multi-cycle numerical simulations by Wu et al. (2003) for M0 = 2.1 at 9,300 m altitude
are shown as well as control volume model of multi-cycle operation by Wintenberger
(2004). Experimental data from Schauer et al. (2001) and Wintenberger et al. (2002)
and impulse model predictions by Wintenberger et al. (2003) are also given as a
reference for the static case. See Wintenberger (2004) for model specifics.
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1.3 Detonation basics

A detonation wave is commonly described by the ZND model based on the indepen-

dent contributions of Zel’dovich (1940), von Neumann (1942), and Doering (1943).

This model neglects transport processes, assumes one-dimensional flow, and resolves

the thermochemical state throughout the thickness of the wave. The head of the

detonation wave is a shock wave that propagates through an unreacted mixture caus-

ing a discontinuous increase in fluid temperature and pressure sufficient to initiate

chemical reactions. The chemical reactions progress through the reaction zone to a

near-equilibrium final state at the end of the detonation front. Together, the shock

wave and reaction zone propagate at a constant speed known as the detonation ve-

locity, commonly written as UCJ .

The reaction zone specifics depend on the chemical kinetics of the reactions along

with the equation of state of the reaction products which are utilized to fully deter-

mine the final state. Following the flow from the front to a position well behind the

detonation, a specified rear boundary condition must be satisfied. It is this boundary

condition that determines the thermochemical flow field behind the detonation wave.

In this analysis, we consider only the case of a tube that has one end open and the

other end closed. This implies a rear boundary condition of zero flow velocity at the

closed tube end which must be satisfied by the presence of an unsteady expansion

wave called the Taylor-Zeldovich expansion wave (Fickett and Davis, 1979). The

head of the Taylor wave lies at the final state of the reaction zone and travels at the

detonation velocity. The tail of the Taylor wave lies at some distance down the tube

behind the detonation wave and is followed by a region of fluid at a constant state

with zero flow velocity (measured in the lab-fixed coordinates).

Predictions (Wintenberger et al., 2003) of the impulse are obtained by determining

the flow field within the tube between the initial state upstream of the detonation

wave and the rear boundary condition. There is no need to resolve the state changes

within the detonation wave itself, so a simplified model of a detonation called the

Chapman-Jouguet (CJ) model is used. This simplest theory assumes the flow is one-
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dimensional, the detonation wave is a discontinuity where the shock and chemical

reactions occur instantaneously, and the final state just behind the detonation (called

the CJ state) is in thermochemical equilibrium. The CJ model and the more detailed

ZND model yield identical results for the final state and the detonation velocity since

they both depend only on the equation of state of the reaction products. Thus, it is

important to emphasize that high levels of agreement between model and experiment

require the use of an accurate and realistic product equation of state regardless of

which detonation model is used.

Use of the CJ model enables the entire solution for a steadily-propagating deto-

nation in a tube that is closed only at one end to be constructed piecewise with three

regions, shown on Fig. 1.4: the stationary reactants ahead of the detonation mixture

at pressure P1, the expansion wave behind the detonation that begins to expand the

flow from the CJ pressure, and the stationary products next to the closed end of the

tube at pressure P3. A detailed discussion of how the different states of Fig. 1.4 are

defined is given in Chapter 6.
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Figure 1.4: Detonation propagation in tube with a closed end.
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1.4 Impulse generation

Impulse is defined as the time integral of a force.

I(t) =

∫ t

0

Fdt (1.1)

In common propulsive devices, such as rocket engines, guns, grenades, and other

munitions, the force is generated by converting the stored chemical energy within an

explosive into mechanical energy for the sole purpose of imparting motion to either

the device or a projectile (Corner, 1950, Robinson, 1943). The processes involved in

the conversion of the chemical energy into mechanical energy are of interest to this

work.

The impulse is often normalized by the weight of the explosive to yield the mixture-

based specific impulse which is a measure of impulse per unit mass of the propellant.

The factor g, acceleration of gravity on Earth’s surface, is traditionally included in

order to give specific impulse in units of time.

Isp =

∫ t

0
Fdt

g
∫ t

0
ṁdt

(1.2)

Note that for steady flow devices, Isp = F/gṁ.

1.4.1 Steady combustion

This section considers impulse generation by steady combustion followed by steady,

isentropic product gas expansion. This is the process that occurs in an ideal rocket

engine consisting of a combustion chamber and an exit nozzle (Fig. 1.5). Inside the

combustion chamber, a propellant is burned generating a uniform mixture of gaseous

products with molecular weightW and specific heat ratio γ. The products are initially

at an elevated temperature Ti and pressure Pi at the nozzle inlet and are expanded

through the exit nozzle to a lower pressure Px and a high velocity ux.

A control volume drawn around the device is used to calculate the force F applied
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i x

Figure 1.5: Schematic of idealized, steady rocket engine flying in a uniform environ-
ment.

to the engine by the momentum ṁux of the exhausting products (Sutton, 1992, Hill

and Peterson, 1992).

F = ṁux + (Px − P0)A (1.3)

The engine is assumed to operate in a uniform environment with pressure P0, and the

reactant momentum in the combustion chamber is assumed to be negligible compared

to the momentum of the exhaust products. Steady operation implies that the mass

flow rate ṁ is constant,

ṁ = ρxuxAx (1.4)

and steady, adiabatic flow implies that the total enthalpy ht at any position within

the nozzle remains constant.

ht = h + u2/2 = constant (1.5)

With these relations and a final assumption that the product gases are perfect,

the specific impulse of the engine can be calculated as a function of the state of the

products at the nozzle inlet.

ux =
√

2(hi − hx + u2
i ) (1.6)

Rewriting enthalpy as

∆h = cp∆T = γR∆T/(γ − 1) (1.7)
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where R = R̃/W and substituting into Eq. 1.6 for the exit velocity yields

ux =

√√√√ 2γ

γ − 1
RTi

[
1−

(
Px

Pi

)(γ−1)/γ
]

+ u2
i . (1.8)

This exit velocity applies to the particular case where the area ratio across the nozzle

equals the optimum expansion ratio resulting in full expansion of the product gases

to ambient pressure P0 = Px. From Eq. 1.3, the thrust force then depends entirely

on the momentum of the exhaust gases enabling calculation of the specific impulse

for an arbitrary nozzle inlet state Ti/W = c2/γR̃ = Φ (Fig. 1.6).

Isp =
ux

g
(1.9)

Nozzle pressure ratio (Pi / Px)
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Φ
Φ
Φ

Figure 1.6: Ideal specific impulse as a function of the conditions in the combustion
chamber.

While steady, isentropic expansion of the product gases to perfectly matched con-
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ditions at the exit is possible, it is generally not the case when considering practical

engine operation over a range of altitudes. Conditions may arise where the exhaust

gases become either over- or under-expanded within the nozzle causing the impulse

to vary from these theoretical predictions (Romine, 1998, Welle et al., 2003, Arens,

1963, Arens and Spiegler, 1963, Lawrence and Weynand, 1968, Frey and Hagemann,

2000, Chen et al., 1994). This issue, along with the presence of unsteady nozzle flow,

must also be addressed when analyzing nozzles on detonation tubes. We compare

the specific impulse from this steady, isentropic analysis to our values measured from

detonation tubes with nozzles operating at varying pressure ratios.

1.4.2 Explosive systems

Military applications and weapons research are the primary motivations to study

explosive systems (Davis, 1998). An exhaustive number of studies involving projectile

and early propulsion systems exist that are of historical significance. However, just a

few of the more recent studies relevant to PDEs are highlighted.

A simplified PDE is a cylindrical tube containing an explosive mixture so an

obvious comparison should be made to gunnery. The field of interior ballistics is

concerned with the flow field inside the gun barrel that is responsible for accelerating

the bullet (Robinson, 1943, Cooper, 1996). Explosion of the charge, typically in a

powder form, produces a high pressure gas which applies a force to the backside of the

bullet causing it to accelerate. As the bullet travels down the chamber, the volume

contained by the product gases increases, decreasing the pressure (Fig. 1.7). At the

same time, the gases are working to accelerate the bullet, further expanding the

gases. To completely analyze this situation, the ignition process, rate of explosion of

the propellant, the temperature, species and pressure of the products over time, and

the bullet position must be determined simultaneously because of their interrelation.

A simpler and more versatile model of estimating projectile motion by explosives

was developed by Gurney (1943). His model, derived and discussed in more detail in

Chapter 3, is based on the assumption that before detonation, the explosive charge
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Figure 1.7: Interior ballistics of a gun.

contains chemical energy that is converted into kinetic energies of the product gases

and metal fragments (Fig. 1.8). The Gurney model assumes that the wave reflections

Explosive

Propelled 

fragments

Figure 1.8: Situation considered by Gurney model

within the expanding detonation products occur very fast compared to the fragment

velocities resulting in a linear velocity profile and spatially uniform density in the

products. Models like the Gurney model that consider energy conservation have been

applied to predicting fragments from rock blasting, bombs and shells, and explosive

welding (Davis, 1998).

A detonation tube is a combination of these two explosive systems. Physically,

the tube represents the gun barrel but the goal is not to propel a lighter bullet but

to instead propel the barrel! In other words, the recoil is to be maximized the recoil

(Fig. 1.9). Previous research in cannons and guns has sought to eliminate the barrel
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Figure 1.9: Situation of a detonation tube.

recoil in order to maximize the projectile velocity (Corner, 1950, Ahmadian et al.,

2003).

Early work carried out by Robbins (1805) initially measured muzzle velocities

from cannons before he became interested in trying to measure the velocity of the

gunpowder exhaust gases. These are the first impulse experiments in a tube closed

at one end and open at the other, hung in a ballistic pendulum arrangement. Later

studies by Hoffman (1940) and Nicholls et al. (1958) measured the impulse by gaseous

detonation in tubes with explosive mixtures like those of contemporary facilities. Re-

cently, PDE researchers sought to promote detonation initiation in fuel-air mixtures,

construct operational multi-cycle facilities, and quantify the maximum impulse for

the range of intended operating conditions.

A number of approaches have been investigated regarding detonation initiation

and they can be categorized as studies of mixture sensitization, shock/detonation

wave focusing, and deflagration-to-detonation transition (DDT). The detonation prop-

erties of fuel additives such as methane, acetylene, ethers, and nitrates for sensitizing

the main fuel component were carried out by Austin and Shepherd (2003), Hitch

(2002) and Akbar et al. (2000). Fuel sensitization by catalytic cracking, thermal

cracking, and partial oxidation has been conducted in bench-top reactors (Cooper

and Shepherd, 2003, Green et al., 2001, Davidson et al., 2001). Shock wave and

detonation wave focusing have been investigated by Jackson et al. (2003) for PDE

applications. Similar to these studies are detonation initiation by imploding jets.

These methods seek to generate regions of high temperature and pressure capable of

initiating detonations under the correct conditions. The effect of DDT for different

internal obstacle configurations was carried out by Cooper and Shepherd (2002) in
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1 m tubes. Fundamental studies of the DDT mechanism appear in Knystautas et al.

(1998) and Lindstedt and Michels (1989).

Several research groups have made significant advancements in the development of

multi-cycle facilities. This work has helped to advance the fields of fluid-structure and

fracture mechanics (Chao, 2004) in order to understand the structural response due

to the repetitive traveling loads experienced by the tubes during extended operation.

Advanced concepts are now being investigated such as hybrid engines in which the

PDE replaces the inner stage of a turbojet. In this case, the ability of the detonation

tube exhaust to drive the turbomachinery is investigated (Rasheed et al., 2004).

All of these studies have dealt with different aspects of PDE operation while ad-

dressing the main issue of impulse measurement and optimization. For example, DDT

studies were used to determine the effect of late or no transition to detonation on the

impulse (Cooper and Shepherd, 2002); the effect of a poor inlet valve timing (modeled

as a porous thrust surface) on impulse was investigated (Cooper and Shepherd, 2004);

the effect of the initial pressure, dilution amount, and fuel type on impulse have been

measured. Many unresolved issues affecting the impulse still exist. We have chosen

to address the issue of exit nozzles and environment pressure in this study.

Currently, several studies (Cooper and Shepherd, 2002, Eidelman and Yang, 1998,

Falempin et al., 2001) involving nozzles on detonation tubes have been completed but

they were all carried out in 1 atm pressure environments. This is the first study to ad-

dress the effect of changing the environment pressure on impulse from plain tubes and

tubes with exit nozzles. In addition to completing a systematic experimental study,

the existing ideas of energy conservation from Gurney (1943) and one-dimensional

gas dynamics are used to analyze the data, providing insight into the factors that

affect and ways to maximize the impulse in tubes with nozzles operating in various

environments.
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1.5 Outline

An overview of this work, the motivating concept of a PDE, and background concepts

regarding detonations and impulse generation are presented in Chapter 1.

The experiments presented here consist of single-cycle impulse measurements ob-

tained with a simplified detonation tube hung in a ballistic pendulum arrangement.

The tube was either hung in a blast-proof room where it exhausted into atmospheric

conditions or hung in a large pressure vessel that could be evacuated so the tube ex-

hausted into sub-atmospheric conditions. A series of different nozzle types including a

cylindrical extension, converging nozzles, diverging nozzles, and converging-diverging

nozzles were tested. Both facilities and supporting equipment are discussed in Chap-

ter 2.

Impulse measurements from partially filled detonation tubes exhausting into stan-

dard conditions are the subject of Chapter 3. A compilation of existing data from

other researchers is presented and a unifying relationship between the impulse as a

function of the explosive mixture mass fraction in the tube is proposed. An analytical

model to predict the maximum specific impulse of an infinitely long tube for a given

explosive-inert gas combination is presented.

Experimental data for fully filled tubes exhausting into sub-atmospheric pressures

appear in Chapter 4 and for tubes with an exit nozzle exhausting into sub-atmospheric

pressures appear in Chapter 5. These chapters present the first experimental measure-

ments of impulse under varying environment conditions in plain tubes and in tubes

with exit nozzles. The systematically obtained data generate a substantial database

from which unifying relationships are derived.

Chapter 7 discusses how the reacting flow behind a detonation wave should be

modeled when it is expanded by the Taylor wave. The thermodynamic states of the

gas through the Taylor wave are analyzed considering finite rate chemical kinetics.
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Chapter 2

Experimental setup

This chapter describes experiments carried out to measure the single-cycle impulse of

a tube containing a gaseous mixture. The experimental method consisted of hanging

the detonation tube in a ballistic pendulum arrangement. This apparatus was origi-

nally invented by Robbins (1805) who carried out many experiments studying early

explosives, characterizing the forces imparted to projectiles, and measuring muzzle

velocities. The device he invented consisted of a vertical bar to which he had bolted

a block of wood onto its bottom end. The bar, pinned at its top end to a support

structure, was able to swing freely when a force was applied to the block of wood.

Robbins deduced projectile velocities by launching projectiles of known mass towards

the pendulum, embedding them into the block of wood and measuring the resulting

deflection. His device enabled him to make many contributions to the field of bal-

listics because his measuring technique generated data with uncertainties that were

orders of magnitude less than other methods used at the time. He continued using

the concept of a ballistic pendulum for other studies, eventually fixing the canon di-

rectly on the end on the pendulum in the same fashion as done in the experiments

reported here. Others have since borrowed the idea of hanging munitions in a ballistic

pendulum arrangement in order to “tune” recoilless guns.

Several research groups within the PDE community began using the ballistic pen-

dulum in their laboratories in order to agree upon the maximum single-cycle impulse

obtainable from a simplified detonation tube and combustible mixture at a given set

of initial conditions. The tube, which is the oscillating mass, is suspended from above
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by steel wires and is free to oscillate in a periodic fashion. A measure of the impulse

imparted to the tube is obtained by igniting the initial mixture, allowing the com-

bustion products to expand out the open end, and recording the tube’s maximum

deflection. Because of the relative simplicity in the experimental setup as compared

with other measuring techniques, such as with damped thrust stands or measuring the

time-varying exhaust flow at the exit plane, the impulse values generated have made

significant contributions in recent years to the PDE development effort. Damped

thrust stands are being used primarily for multi-cycle test facilities where a ballistic

pendulum is not practical due to the gas, electrical, and cooling attachments that are

required. For single-cycle impulse measurements however, the damped thrust stand is

difficult to design in order to generate data within the same uncertainty values of the

ballistic pendulum. Measuring the flow at the exit plane and using the control volume

methods of traditional rocket engine analysis is difficult due to the time-varying flow

of the detonation and unsteady Taylor expansion wave.

A control volume analysis with a different control volume, drawn around just the

walls (Figure 2.1), has been used with some success. This eliminates the need of

P
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P
lip


P
lip


Control Volume


Figure 2.1: Illustration of detonation tube with control volume.

characterizing the momentum and velocity of the exhausting detonation products

which are difficult to measure. The force balance is written in the direction of the

tube axis.

F = (Penv − PTS)ATS +
∑

obstacles

∫
Pn · x dA +

∫
τ dS + (Penv − Plip)Alip (2.1)

The first term on the right side of the equation is the force on the thrust surface,

the second term is the drag (due to pressure differentials) over internal obstacles (if
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installed) or rough tube walls, the third term is the viscous drag, and the last term

represents the force over the tube wall thickness. The effect of heat transfer from

the combustion products to the tube walls could also reduce the impulse due to a

reduction of pressure internal to the detonation tube (Radulescu et al., 2004). The

impulse is obtained by integrating this force over a cycle (Eq. 1.1). Unfortunately,

calculating the forces due the shear wall stresses, pressure losses due to internal

obstacles or rough tube walls, forces due to shock diffraction on the wall thickness,

just to name a few, is very difficult.

To calculate the impulse from the measured deflection, consider a pendulum ini-

tially at rest in its natural position. Applying an impulsive force to the pendulum

mass causes it to move with an initial velocity that depends on the magnitude of

the applied force. The pendulum deflects and at the height of its swing reaches a

position of maximum deflection where it momentarily comes to rest before changing

direction to pass back through its initial position. In the detonation tube, the force

applied to the pendulum mass is generated by the high-pressure, detonation products

exhausting from the tube. In these experiments, each support wire was about 1.0

m in length so that the natural period of oscillation was about 2.0 s. During free

oscillations, the maximum horizontal deflection occurs at a time equal to one-quarter

of the period or 500 ms. The time over which the force is applied can be estimated

(Wintenberger et al., 2001) as 10t1, where t1 = L/UCJ is the time required for the

detonation to propagate the length of the tube. For the tube 1 m in length, the

time over which the force is applied is approximately 4.2 ms, which is significantly

less than one-quarter of the oscillation period. Therefore, the classical analysis of an

impulsively-created motion can be applied and the conservation of energy can be used

to relate the maximum horizontal deflection to the initial velocity of the pendulum.

From elementary mechanics, the impulse is given by

I = Mp

√√√√√2gLp

1−

√
1−

(
∆x

Lp

)2
 (2.2)
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This expression is exact given the assumptions discussed above and there are no

limits on the values of ∆x. Actual values of ∆x observed in our experiments were

between 39 and 292 mm. The impulse I measured in this fashion is referred to as the

ballistic impulse, and is specific to a given tube size. Two measures of the impulse

that are independent of tube size are the impulse per unit volume

IV = I/V (2.3)

and the specific impulse based on the total explosive mixture mass (fuel and oxidizer)

Isp =
I

gρ1V
(2.4)

If all of the terms making up F of Eq. 2.1 can be computed or measured, the bal-

listic impulse and the impulse computed from this control volume integration should

be identical. Previous studies by Zitoun and Desbordes (1999) have used Eq. 2.1 to

analyze data from unobstructed tubes neglecting all but the first contribution to the

force. This is a reasonable approximation when fast transition to detonation occurs;

however, in the case of obstacles or very rough tube walls, the net contribution of the

two drag terms may be substantial and using the first term alone can result (Cooper

et al., 2000) in overestimating the force and impulse by up to 50%. Since it is difficult

to estimate or accurately measure all of the terms in Eq. 2.1, direct measurement of

the impulse is the only practical method for tubes with obstructions or other unusual

features such as exit nozzles.

Impulse measurements were carried out with the tube hung in two different facili-

ties which enabled variation of the external environment conditions. The first facility

consisted of the detonation tube hung in a blast-proof room. The second facility

consisted of the detonation tube hung in a large tank. The discussion begins with a

description of the tube followed by a detailed discussion of the tube arrangement and

the supporting equipment comprising each facility. The tested exit nozzles are also

described along with a discussion estimating the experimental uncertainties.
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2.1 Detonation tube

The detonation tube is a cylinder made of 6061-T6 aluminum that is 1.014 m in

length, has an inner diameter of 76.2 mm, and a wall thickness of 12.7 mm. The

dimension of the inner diameter was chosen based on the need to run experiments

with JP-10 and propane (Cooper et al., 2002) mixtures which have cell sizes on

the order of 60 mm at atmospheric initial pressures. The length of the tube was

chosen based on the relationship of Dorofeev et al. (2000) that correlates the mixture’s

cell size to the minimum distance required for deflagration to detonation transition.

While internal obstacles can be installed inside the tube to promote deflagration to

detonation transition (Cooper et al., 2002), the experiments discussed here were all

carried out in a smooth tube.

One end of the tube (Fig. 2.2) is sealed with a plate called the “thrust surface”

and contains the spark plug, a pressure transducer, and a gas-inlet fitting. The other

Port for Pressure 
Transducer (3)

Port for Ionization
gauges (10)

Thrust surface

Ports for spark 
plug, pressure 

transducer, and 
fill line

Exit plane

Figure 2.2: Illustration of the experimental detonation tube.

end of the tube is open, but is initially sealed with a Mylar diaphragm to contain

the combustible mixture prior to ignition. In addition to the pressure transducer

mounted in the thrust surface, two more pressure transducers located 0.58 m and
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0.99 m from the thrust surface and ten ionization gauges (spaced 10.4 cm apart)

were installed. These diagnostics measured wave arrival times and pressure histories

at specific locations within the tube. The pressure transducers were purchased from

PCB (model 113A26) and the ionization gauges were constructed from Swagelok

fittings, teflon inserts, and long sewing needles. See Cooper et al. (2000) for details

of the ionization gauge construction.

2.2 Ignition system

Mixture ignition occurs by discharging a 5µF capacitor charged to 110 V through

a standard aircraft spark plug. This system has a discharge energy of 30 mJ. The

critical energy for direct ignition of hydrocarbon mixtures is on the order of 10-100 kJ

(Shepherd and Kaneshige, 1997, rev. 2001). Thus, the low ignition energy provided

by the spark plug results in igniting an initial deflagration that must transition to

a detonation after propagating some distance down the tube. Previous research of

Kiyanda et al. (2002) has shown that the impulse measured between mixtures in which

a detonation was achieved via the mechanism of deflagration to detonation transition

or via direct initiation are the same as long as all of the combustible mixture burns

within the tube. In cases with late or no transition to detonation, the propagating

deflagration compresses the unburned gas ahead of the flame. This unburned gas

compression is sufficient to rupture the thin diaphragm causing a considerable part

of the mixture to be ejected outside the tube. Observations made by Jones and

Thomas (1991) clearly demonstrate the gas motion and compression waves ahead of

an accelerating deflagration. This effect was observed in these experiments and is

discussed later in Chapter 4.

2.3 Facility I: Blast proof room

The first impulse facility consisted of hanging the detonation tube from the ceiling

of a blast-proof room which has an inner volume of approximately 50 m3. Four steel
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wires located the tube 1.5 m below the ceiling. The detonation products were free to

expand from the tube’s open end into the room which contained atmospheric air.

In this facility, two methods were used to fill the detonation tube with the com-

bustible mixture. The first method used two gas lines attached to the tube. The

method of partial pressures was then used to fill the fuel, oxidizer, and diluent di-

rectly into the tube from the gas bottles. A circulation pump located on the gas line

outside the tube was operated for at least 5 minutes to ensure homogeneity. After

mixing, the fill lines were removed and the tube was ready for mixture ignition.

The second fill method used a single gas line attached to the tube and an external

vessel containing the mixed fuel, oxygen, and diluent. The pressure vessel was filled

directly from the gas bottles by the method of partial pressures and subsequently

mixed with a brushless fan located inside the vessel to ensure homogeneity. The

resulting premix was then plumbed to the tube directly, eliminating the need for an

external circulation pump. The pressure vessel was constructed from a cylinder of

A106B seamless pipe with a XXH wall thickness (2.2 cm). It had an outer diameter

of 16.8 cm (6.625 in) and a length of 76.2 cm (30 in). Two 680 kg (1500 lb) weld-on

flanges, onto which a 680 kg (1500 lb) blind flange with a metal o-ring was bolted,

were attached to each end. One of the blind flanges had through-holes drilled for

the attachment of a gas line, an electrical feed-through to power the brushless fan,

and a connection to a static pressure gauge (Ashcroft Precision Digital Test Gauge

Type 2089, Model 30-2089-SD-02L-Abs 3.5 Bar). The vessel was certified to 6.9 MPa

(1000 psi). In general, the vessel was filled with the combustible mixture to an initial

pressure of 3 bar. Because its internal volume is 9.25 L, the detonation tube could

be filled approximately four times to an initial pressure of one bar before the premix

vessel had to be evacuated and refilled with a fresh batch of the combustible mixture.

After the tube was filled, the gas line was removed and the tube was ready for mixture

ignition.

Although the gas fill line(s) were removed from the tube prior to ignition, the

spark plug cable, ionization wires, and pressure gauge cables were still attached. The

added resistance to the tube’s periodic motion provided a damping force that reduced
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the maximum measured deflection. An experimental analysis was carried out (§2.6.1)

to quantify this error.

2.4 Facility II: Large tank

The second series of single-cycle impulse measurements were carried out in a large

tank. The tank, actually the test section and dump tank of Caltech’s T5 hypersonic

wind tunnel facility, contained the hanging detonation tube as illustrated in Fig. 2.3.

Tank test section

Tank

Detonation tube
NozzleRuler

Feedthrough plate

Window

Wires

Tank 

door

Figure 2.3: Schematic of Facility II.

The detonation tube could be sealed within the tank. The volume internal to

the tank but external to the detonation tube is referred to as the “environment”

and is air at pressure P0 while the initial pressure of the combustible mixture is at

pressure P1. The environment pressure could be varied between 100 and 1.4 kPa, thus

extending the capabilities of the ballistic pendulum method to obtain accurate single-

cycle impulse measurements at a variety of operating conditions. The diaphragm

separated the environment gases from the combustible mixture and is denoted in

Fig. 2.3 by a dashed line separating the detonation tube from the nozzle (if attached).

The tank has an internal volume of approximately 12,500 L and is roughly the

shape of a horizontal cylinder with an inner diameter of 2 m and a length of 4 m.
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The attached test section (labeled in Fig. 2.3) is a cylinder approximately 0.7 m in

diameter and 1.3 m in length. It contained two windows on each side through which

the tube’s motion was observed. A ruler extending off the front of the detonation

tube and into view of the test section windows was filmed by a digital camera situated

outside the tank (Fig. 2.4). From this recording of the tube’s periodic motion, the

maximum deflection was converted into impulse. A door on the end of the tank

downstream of the detonation tube exhaust was used for access inside the tank to

install a new diaphragm between each experiment.

Figure 2.4: Photograph of the outside of the tank and attached test section.

2.4.1 Support structure

The inner surface of the large tank was smooth and so a support structure was built

from which the detonation tube could be hung. It was fabricated out of unistrut bars

and aluminum plates cut into triangular shapes for stability at the corners.

The support structure consisted of two faces, each forming a six-sided polygon

(Fig. 2.5). One of the six-sided, unistrut polygons was positioned in the tank close

to the attached test section. It was secured by extending four threaded rods that
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Figure 2.5: Schematic of unistrut support structure used to hang detonation tube
within tank.

were attached to the unistrut such that they pressed against the tank’s inner surface.

A second six-sided, unistrut polygon was positioned approximately halfway down the

length of the tank. It was again secured by extending four threaded rods that were

attached to the unistrut against the tank’s inner surface. Three long unistrut bars

running parallel to the axis of the tank were used to connect the two polygon faces

together. Two of these bars were bolted to the top horizontal bar of Fig. 2.5 and

were used for attaching the wires from which the tube was hung. A single bar was

bolted to the bottom horizontal bar of Fig. 2.5 to provide additional rigidity to the

structure.

Figure 2.6 shows the detonation tube hanging within the tank from the support

structure with the exhaust end of the tube in the foreground. The ionization gauges

can be seen extending off the left side of the tube and the solenoid valve is seen

mounted on the tube at the top of the image. Portions of the unistrut frame are also

visible.
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Figure 2.6: Photograph of detonation tube hanging in the ballistic pendulum ar-
rangement within the T-5 dump tank. The exhaust end of the tube is located in the
foreground.

2.4.2 Fill station

A fill station consisting of stainless steel tubing, pressure gauges, and valves was

built to manage the filling of the premix vessel and the evacuation and filling of the

detonation tube. A schematic of the gas plumbing for the facility appears in Fig. 2.7.

The components that make up the fill station, detonation tube, and large tank are

noted. One vacuum pump, attached to the large tank, was used to reduce its internal

air pressure. A bleed-up valve on the tank enabled fine tuning of the environment

pressure. A second vacuum pump was attached to the detonation tube and mixing

vessel via the fill station.

2.4.3 Feed-through plate

A feed-through plate located on the bottom of the tank’s test section (Fig. 2.3) was

used to connect the gas lines and electrical connections through the tank wall to the

detonation tube. One gas line connected the building air supply to the solenoid valve
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Figure 2.7: Schematic of fill station and plumbing connections to the tube.

mounted on the tube and was used to cycle the valve. A second gas line connected the

fill station to the gas inlet fitting on the detonation tube through the solenoid valve.

The electrical connections through the feed-through plate consisted of low voltage

connections that powered the solenoid valve and diagnostics, while a high voltage

feed-through was used to fire the spark plug. A teflon insert with two terminals

made out of copper rods were used to pass the high voltage spark signal through the

feed-through plate.

2.4.4 Test procedure

The initial combustible mixture was created in the external mixing vessel. From the

fill station, the vacuum pump was applied to the premix vessel and its contents were

evacuated until a pressure of at least 0.003 bar. The vacuum pump isolation valve is

closed and the fill valves to the ethylene and oxygen bottles are opened individually.

The premix vessel is filled with the ethylene and oxygen gases based on the partial

pressure of the desired mixture. The attached pressure gauge is monitored and final

pressure is recorded. The mixing vessel isolation valve is closed and mixing fan is

turned on to mix the contents, ensuring homogeneity. This mixture is filled into the

detonation tube over multiple tests until it was emptied, after which the vessel is

evacuated and the above steps were repeated to refill the premix vessel.

With the mixture prepared and stored in the premix vessel, the tank and deto-
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nation tube are prepared for a test. Preparation involves aligning the camera and

light source such that the ruler is clearly visible and the VCR is ready for recording.

The back door of the tank is opened and a new diaphragm is installed on the tube.

The back door is sealed and the tube solenoid valve is opened. If a low environment

pressure experiment is to be conducted, the tank vacuum pump is turned on and

the tank contents are evacuated until the desired tank pressure is reached. The test

section isolation valve is closed during this process to ensure the diaphragm prop-

erly seals. Once the tank has reached the desired pressure and no leak occurs at

the diaphragm, the vacuum pump isolation valve is opened and the external vacuum

pump is applied to the detonation tube via the fill station. The detonation tube and

associated plumbing is evacuated to 133 Pa.

The vacuum isolation valve is turned off and the mixing vessel isolation valve

is opened such that the premixed ethylene-oxygen gases flow directly through the

fill station plumbing into the detonation tube. A fill gauge is used to monitor the

increase in tube pressure. The mixing vessel isolation valve and tube solenoid valve

are closed when the desired pressure is reached within the detonation tube. The

vacuum pump isolation valve is again opened to evacuate the combustible mixture

from the fill station plumbing between the two isolation valves. The test is initiated

by starting the visual recording of the detonation tube’s ruler and powering up the

ignition system. The spark is fired to ignite the mixture. After the detonation event is

complete. The VCR is stopped, the contents of the tank are purged, and preparations

for the next test begin.
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2.5 Extensions

The exit condition of the detonation tube was modified by attaching a nozzle or ex-

tension on the end of the tube opposite of the thrust surface. The diaphragm was

positioned between the exit plane of the tube and the inlet to the nozzle so that

the nozzle contained air at the environment conditions. Impulse measurements were

carried out with four types of extensions attached to the tube; conical converging noz-

zles, conical diverging nozzles, conical converging-diverging nozzles, and a cylindrical

extension. Descriptions of the extensions follow.

2.5.1 Converging nozzles

Two conical converging nozzles were constructed of equal length and varying exit

area. The general shape of the nozzle is illustrated in Fig. 2.8 and the specific dimen-

sions appear in Table 2.1. The area ratios (Aexit/Ainlet) varied between the most
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Figure 2.8: Schematic of a general converging nozzle. Refer to Table 2.1 for the exact
dimensions.

Description Length (mm) φ (◦) Dexit (mm) Aexit/Ainlet

Noz-0.50 63.5 10 54.0 0.50
Noz-0.75 63.5 5 66.0 0.75

Table 2.1: Dimensions of the tested converging nozzles. Refer to Fig. 2.8 for the
corresponding labels.

restrictive value of 0.50 to the least restrictive value of 0.75.
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Although the converging nozzles are short relative to the tube length, a finite mass

of the environment air is contained within the nozzle volume. Impulse experiments

with the converging nozzles were carried out in a tube that exhausted into atmospheric

pressure only.

2.5.2 Diverging nozzles

Three conical diverging nozzles were constructed by rolling 6061-T6 aluminum sheet

with a thickness of 0.16 cm into the general shape illustrated in Fig. 2.9 and the seam

was welded shut. The corresponding dimensions for each nozzle appear in Table 2.2.

L
en

gt
h

3.00

Exit Diameter

Figure 2.9: Schematic of a general diverging nozzle. Refer to Table 2.2 for the exact
dimensions.

Description Length (m) φ (◦) Dinlet (mm) Dexit (mm) Aexit/Ainlet

8◦-0.3 m 0.3 8 63.5 152.0 5.7
12◦-0.3 m 0.3 12 76.2 194.0 6.5
12◦-0.6 m 0.6 12 76.2 311.0 16.7

Table 2.2: Dimensions of the diverging nozzles. Refer to Fig. 2.9 for the corresponding
labels.

A mounting flange containing through-holes for bolts to attach the nozzle to the

detonation tube was welded to the small end of the nozzle. Rings with a thickness

of 0.64 cm and different inner diameters were constructed and spot welded to the
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outer surface of the nozzle. These rings provided rigidity to the welded seam and

maintained the nozzle’s shape under the transient gas dynamic loads. The rings and

spot welds are visible in the photographs of Fig. 2.10.

(a) (b)

Figure 2.10: Photographs of the three diverging nozzles; a) left: 12◦ - 0.3 m, right:
8◦ - 0.3 m; b) left: 12◦ - 0.3 m, right: 12◦ - 0.6 m

The nozzles differed in terms of their length (either 0.3 m or 0.6 m) and in terms

of their half angle (either 8◦ or 12◦), the combination of which determines the exit

area and the corresponding area ratio. The nozzle inlet area was held constant at an

area equal to the tube cross-sectional area.

2.5.3 Converging-diverging nozzles

The effect of a throat restriction upstream of a diverging nozzle was tested by attach-

ing a separate throat section onto the diverging nozzles with a 12◦ half angle. Each

throat section had an inlet area that equal to the detonation tube cross-sectional

area, followed by a decrease in area to the throat area. After the throat, the area

increased until it equaled the tube cross-sectional area (also equal to the inlet area of

the diverging nozzles). This created a single converging-diverging nozzle that had a
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continuous increase in area from the throat to the nozzle exit. An illustration of the

general shape of the converging-diverging throat section appears in Fig. 2.11 and the

exact dimensions are tabulated in Table 2.3.

76.2 mm

Throat Area


76.2 mm


Length


45o

12o

Figure 2.11: Illustration of a general converging-diverging throat section that was
attached between the detonation tube exit and the diverging nozzle inlet. Refer to
Table 2.3 for the exact dimensions.

Description Length (mm) Dthroat (mm) Athroat/Ainlet

CD-0.75 29.0 66.0 0.75
CD-0.54 57.9 55.9 0.54
CD-0.36 86.9 45.7 0.36

Table 2.3: Dimensions of the converging-diverging throat sections. Refer to Fig. 2.11
for the corresponding labels.

The converging part of the throat had a 45◦ half angle while the half angle after

the throat was 12◦ to match the diverging nozzles. This enabled the three different

converging-diverging sections to be installed on the two diverging nozzles with a 12◦

half angle for a total of 6 test configurations. A photograph of one of the throat

sections installed on the 12◦-0.6 m nozzle appears in Fig. 2.12.

Because the inlet and exit half angles of the converging-diverging section were

fixed, the length of each fixture varied in order to obtain the desired throat area.

Thus, the section with the smallest throat area had the longest length as illustrated

in Table 2.3.
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Figure 2.12: Photograph of 12◦-0.6 m nozzle with a converging-diverging throat sec-
tion installed.

2.5.4 Straight extension

A cylinder with the same cross-sectional area as the detonation tube was also exam-

ined. It had a length of 0.6 m and is referred to as either the straight extension or

a diverging nozzle with a 0◦ half angle. Figure 2.13 is a photograph of the hanging

tube with the straight extension attached. Because the cross-sectional area of the

detonation tube and extension are equal, the entire device can be thought of as a long

detonation tube that is only partially filled with the explosive mixture.

2.6 Analysis of experimental uncertainties

A number of sources of uncertainty exist due to the experimental facility, initial con-

ditions, and procedure. These are discussed and when possible, are quantified using

the standard method for estimating error propagation. As discussed in Bevington

(1969), the variance ∆X associated with the measured quantity X (x1, ...xn) can be
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Figure 2.13: Photograph of the detonation tube with the straight extension (or 0◦-
0.6 m nozzle) installed.

estimated as

∆X =

√(
∂X
∂x1

)2

(∆x1)2 + ...

(
∂X
∂xn

)2

(∆xn)2 .

2.6.1 Ballistic pendulum technique

Using the expression for ballistic impulse in Eq. 2.2, the uncertainty in the direct

experimental measurements of the impulse per unit volume can be quantified. The

estimated uncertainties in the pendulum arm length, measured pendulum deflection,

pendulum mass, and the tube volume are given in Table 2.4. From this analysis, the

total uncertainty in the direct impulse measurements due to the experimental setup

was calculated to be at most ±1.3%.

Quantity Range of values Uncertainty
Lp 1.0-1.55 m ±0.0016 m
∆x 39-292 mm ±0.5 mm
Mp 12.808-31.558 kg ±0.001 kg
V 4.58×10−3 m3 ±4.5×10−8 m3

Table 2.4: Uncertainties used in determining the error for experimentally measured
impulse.
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The ballistic pendulum arrangement is a popular method (Cooper et al., 2002,

Zhdan et al., 1994, Harris et al., 2001, Kiyanda et al., 2002) with which accurate

impulse measurements from a detonation tube can be obtained due to its simplicity

as compared to measurements made with damped thrust stands. But to the author’s

knowledge, the error in the impulse measurements due to non-ideal processes within

the pendulum itself have not been quantified in its contemporary use to measure

detonation tube impulse. While this measure of ballistic impulse includes all the gas

dynamic processes acting on the tube to change its displacement, a real experiment

is never ideal and a fraction of these forces are lost due to losses associated with the

pendulum. Experiments of the pendulum motion were carried out and are discussed

in the next section.

2.6.1.1 Fundamentals of pendulum motion

The motion of a pendulum is periodic in time and can be characterized by its natural

frequency. This frequency depends only on the pendulum’s arm length Lp and gravity

g.

ωn =
√

g/Lp (2.5)

An ideal pendulum, once in motion, would continue to swing forever, passing by

a stationary observer every 2π/ωn seconds. However, the real pendulums used in

our laboratory experiments experience frictional forces or damping that decrease the

maximum deflection over time and eventually bring the pendulum to rest. The rate

at which the maximum deflection of the pendulum decreases over time depends on

the amount of damping in the device.

The published experimental impulse values of Cooper et al. (2002), Zhdan et al.

(1994), Harris et al. (2001), and Kiyanda et al. (2002) gave no mention to the amount

of damping that existed in each experimental setup. It must be assumed that the

reported impulse data were measured from a damped system and actually underesti-

mate the initial impulsive force imparted to the tube by the detonation process. For

an exact measurement of the impulse, the pendulum damping should be zero such
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that all the gas-dynamic energy goes into changing the location of the tube. For the

two facilities described in §2.3 and in §2.4, a potential source of damping are the fill

lines and electrical connections that remain attached to the tube during its motion.

The pendulum’s response to a general force F (t) is represented by

Mpy
′′ + cy′ + ky = F (t) (2.6)

where Mp is the pendulum mass, c is the damping, and k is a constant. This is a

constant coefficient, second-order differential equation in which an exponential solu-

tion for the deflection y(t) of the form A exp(λt) is assumed. Three types of system

responses are possible depending on the level of damping; an underdamped system,

an overdamped system and a critically damped system. The value of λ dictates the

system’s response. For the application discussed here, we are only concerned with

the case of an underdamped system and a system with no damping.

When the system has no damping (c = 0 in Eq. 2.6), the value of λ has only an

imaginary part and the deflection is written in terms of a sine function.

yc=0(t) = C sin(ωnt + φ) (2.7)

The constant C and the phase shift φ are determined from the initial conditions.

When the system is underdamped (c > 0 in Eq. 2.6), the value of λ has a real and

imaginary part which enables the deflection to be written in terms of an decaying

exponential factor and a sine term.

yc>0(t) = C exp(−βωnt) sin(ωdt + φ) (2.8)

The constant C and the phase shift φ depend on the initial conditions as before. The

period of the system now depends on the damped frequency ωd instead of the natural

frequency ωn as in Eq. 2.7. These two frequencies are related to each other by the
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damping factor β.

ωn =
ωd√

(1− β2)
(2.9)

The unknown parameters of the underdamped expression Eq. 2.8 can be experimen-

tally determined from the pendulum position recorded over time.

2.6.1.2 Experiments measuring pendulum motion

While the tube was hung in Facility II (§2.4), its pendulum motion was recorded

during several separate experiments. The motion was recorded from the tube only

(no extension or nozzle was attached), the tube with the 0◦-0.6 m straight extension,

and the tube with the 12◦-0.6 m diverging nozzle. All electrical connections and

plumbing connections were attached as in the actual experiment. The camera and

VCR recorded the deflection through the test section windows over time.

The procedure for each experiment began by starting the VCR to record. The

tube was initially stationary at a deflection of zero from its neutral or natural resting

position. The back of the tube was given a sharp push and allowed to swing for several

oscillations. The force imparted to the tube varied between tests. Data was obtained

by re-playing the video tape frame by frame and recording the ruler measurement

and frame number at the point of maximum positive displacement from its neutral

position. Because of the camera’s field of view, only half of the pendulum’s periodic

motion was observable. Since 1/30th of a second elapses between each frame, the

number of elapsed frames between successive maximum deflections could be converted

into an equivalent time.

The experimental data from all tests appears in Fig. 2.14.

The elapsed time between the data points is the damped natural period τd and

was used to calculate the damped frequency.

ωd =
2π

τd

(2.10)

An estimate of β was obtained from the experimental data by determining its loga-
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Figure 2.14: Experimental data of pendulum motion.

Parameter Tube only Tube and 0◦-0.6 m extension Tube and 12◦-0.6 m nozzle
C 325.37 135.00 224
β 0.0085 0.0059 0.0052
ωn 3.220116 3.230056 3.230042
ωd 3.22 3.23 3.23

Table 2.5: Parameters of Eq. 2.8 characterizing each pendulum configuration.

rithmic decrement as discussed in Ginsberg and Genin (1995),

β =
ln(y1/y2)√

ln(y1/y2)2 + 4π2
(2.11)

where y1 and y2 are two successive maximum deflections. Now the natural frequency

of the system was calculated from β and ωd by Eq. 2.9 and was found to equal, within

the experimental uncertainty, the value calculated from Eq. 2.5 based on the measured

pendulum arm length. The constant C in Eq. 2.8 varied with the value of the initial

impulse force F (t) to match the initial maximum deflection. The phase shift φ in

Eq. 2.8 equaled zero since the pendulum always started its motion from the neutral

position. Table 2.5 shows the resulting parameters for each tube configuration.

These parameters are substituted into Eq. 2.8 to yield a continuous function de-
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scribing the pendulum motion over time. Similarly, these parameters can be used

in Eq. 2.7 to yield a continuous function describing the ideal pendulum motion over

time if there is no damping.

Plots of the motion yc>0(t) and the experimental data for the three tube config-

urations appear in Figs. 2.15, 2.16, and 2.17. Additional experiments with the same

tube configuration that had a smaller maximum initial deflection were time shifted

to fit onto the analytical curve of the system. After matching this initial point for

all tests, the other data points for the successive pendulum oscillations were found to

match the curve well.
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Figure 2.15: Experimental pendulum motion data for the tube only plotted with the
solution of the damped second-order differential equation Eq. 2.8 using the parameters
listed in Table 2.5.

The original second-order differential equation Eq. 2.6 of each case can also now be

determined if the pendulum’s mass is known. The resulting equations are tabulated

in Table 2.6. The corresponding second order equation for the undamped case follows

since c must equal zero (Table 2.7). The constant k is calculated from the natural
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Figure 2.16: Experimental pendulum motion data for the tube with the 0◦-0.6m
straight extension plotted with the solution of the damped second-order differential
equation Eq. 2.8 using the parameters listed in Table 2.5.
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Figure 2.17: Experimental pendulum motion data for the tube with the 12◦-0.6m
nozzle plotted with the solution of damped second-order differential equation Eq. 2.8
using the parameters listed in Table 2.5.
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Configuration Damped equation
Tube only 16.417 y” + 0.8987 y’ + 170.230 y = 0

Tube and 0◦-0.6 m extension 31.171 y” + 1.1881 y’ + 325.215 y = 0
Tube and 12◦-0.6 m nozzle 23.556 y” + 0.7913 y’ + 245.764 y = 0

Table 2.6: Second-order differential equation of underdamped periodic motion.

Configuration Undamped equation
Tube only 16.417 y” + 170.230 y = 0

Tube and 0◦-0.6 m extension 31.171 y” + 325.215 y = 0
Tube and 12◦-0.6 m nozzle 23.556 y” + 245.764 y = 0

Table 2.7: Second-order differential equation of undamped periodic motion.

frequency and the mass while the damping c is calculated from k, M , and β.

k = ω2
nMp and c = 2

√
kMpβ (2.12)

2.6.1.3 Evaluating the deflection for each case

The difference between the impulse values obtained in an ideal and non-ideal exper-

iment is determined by evaluating the difference in the maximum initial deflections

predicted by the undamped solution yc=0 and the underdamped solution yc>0. The

difference is calculated by evaluating each solution at the time of maximum deflection

given the same initial conditions. Because of the damping in the non-ideal case, the

time of maximum deflection tmax occurs earlier as compared to the undamped case.

We evaluate tmax by setting the derivative of the deflection y′(t) equal to zero.

y′c>0(tmax) = −Cβωn exp(−βωntmax) sin(ωdtmax)

+ ωdC exp(−βωntmax) cos(ωdtmax) = 0

βωn sin(ωdtmax) = ωd cos(ωdtmax)

(tmax)c>0 =
1

ωd

tan−1

(
ωd

βωn

)
(2.13)
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This same procedure is followed for the undamped equation yc=0(t).

y′c=0(tmax) = Cωn cos(ωntmax) = 0

(tmax)c=0 =
π

2ωn

(2.14)

The constant C for each system is calculated based on the same initial velocity im-

parted to the pendulum.

y′c>0(0) = −Cβωn exp(−βωn ∗ 0) sin(ωd ∗ 0)

+ ωdC exp(−βωn ∗ 0) cos(ωd ∗ 0)

Cc>0 =
y′c>0(0)

ωd

(2.15)

This same procedure is followed for the undamped equation yc=0(t).

y′c=0(0) = Cωn cos(ωn ∗ 0)

Cc=0 =
y′c=0(0)

ωn

(2.16)

We use the deflection relationship Eq. 2.8 with the desired parameters that model

the experimental system from Table 2.5 to evaluate the initial velocity y′(t) as the

pendulum passes through the neutral position y(t) = 0 that must have been imparted

to the pendulum to yield a maximum deflection y(t + τd/4) one quarter of a period

later.

This initial velocity is now used with Eqs. 2.8, 2.13, and 2.15 to evaluate the

maximum deflection for the damped system and Eqs. 2.7, 2.14, and 2.16 and for

the undamped system. The results are plotted in Fig. 2.18 as a function of the

maximum measured deflection for each tube configuration. The difference in the

maximum deflection for the damped and undamped system should be applied to the

experimental data to correct for the non-ideal, dissipative effects in the pendulum

(Fig. 2.19). The slope of these lines are 0.0134 for the tube only, 0.0093 for the
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Figure 2.18: The maximum deflection of the damped system versus the maximum
deflection of the undamped system for the same initial conditions.

0◦-0.6 m straight extension, and 0.0082 for the 12◦-0.6 m nozzle. Thus, the effect of

damping results in an error of 1.34%, 0.93%, and 0.82% in the deflection measurement

for the different tube configurations tested in our laboratory. The corresponding error

in the normalized impulse is calculated by evaluating Eq. 2.2 and is shown in Fig. 2.20.

The slope of these lines are 0.1522 for the tube only, 0.2011 for the 0◦-0.6 m straight

extension, and 0.1105 for the 12◦-0.6 m nozzle.

Thus, the error in the impulse measurement due to dissipative forces in the experi-

mental pendulum can be determined by characterizing the system with a second-order

differential equation. This error in the normalized impulse is at most 2% for our im-

pulse facility and depends only slightly on the pendulum mass.

Combining the error due to the damping forces with the uncertainty in the ballistic

pendulum measurement, we determine a total uncertainty in the normalized impulse

measurement of 2.8%.
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Figure 2.19: The correction in the deflection to correct the experimental data to
represent an undamped system.
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Figure 2.20: The correction in the normalized impulse to correct the experimental
data to represent an undamped system. This is the correction for the experimental
setup of the low-environment-pressure impulse facility.
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2.6.2 Measured UCJ and P3 values

Measured data also included the CJ velocity and plateau pressure P3. The CJ velocity

was calculated from the ionization gauge data at each initial mixture pressure. The

average measured velocity, the difference between the maximum and the minimum

measured values, the standard deviation from the mean, and the value predicted by

Stanjan (Reynolds, 1986) appear in Table 2.8. The relative differences between the

P1 UCJ from Average UCJ Max - Min UCJ Std. Dev. of UCJ

(kPa) Stanjan (m/s) Exps. (m/s) Exps. (m/s) Exps. (m/s)
100 2376 2375 63 24
80 2365 2366 63 21
60 2351 2350 90 32
40 2331 2351 12 6
30 2317 2352 221 93

Table 2.8: Measured UCJ data tabulated for different initial mixture pressures.

measured and predicted detonation velocities are less than 0.05% for the mixtures

with an initial pressure 60 kPa and greater. Larger differences are observed for the

mixtures with lower initial pressures, but this is expected due to the longer time

required for transition to detonation.

The same procedure was followed for the measured plateau pressures P3 at the

thrust surface. Experimental values were obtained by averaging the measured pres-

sure histories. The relative difference between the measured and predicted plateau

P1 P3 from Average P3 Max - Min P3 Std. Dev. of P3

(kPa) Model (MPa) Exps. (MPa) Exps. (MPa) Exps. (MPa)
100 1.222 1.202 0.046 0.016
80 0.970 0.982 0.035 0.012
60 0.720 0.746 0.048 0.015
40 0.472 0.523 0.009 0.004
30 0.351 0.398 0.056 0.024

Table 2.9: Measured P3 data tabulated for different initial mixture pressures. The
model values correspond to the predictions of Wintenberger et al. (2003).

pressures is less than 4% for the mixtures with an initial pressure of 60 kPa and
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greater. The difference is less than 14% for the mixtures with a smaller initial pres-

sure.

The average measured values for the detonation velocity and plateau pressure were

used to normalize the experimental impulse data and were found to be independent

of the environment pressure.

2.6.3 Mixture preparation

Uncertainties in the initial conditions were also quantified. Uncertainty in the initial

pressure P1 is due to the gauge precision of ±0.1 kPa and uncertainty in the environ-

ment pressure P0 is due to the gauge precision of ±0.345 kPa. The largest measured

leak rate was 200 Pa/min from an initial pressure of 133 Pa. Because a premix vessel

was used to fill the tube, less than 5 s elapsed between removing the vacuum pump

from to tube and filling the tube with the combustible mixture. Mixture contamina-

tion due to incomplete evacuation of the tube results in a worst-case air contamination

of 133 Pa. Mixture contamination due to incomplete evacuation of the premix vessel

results in a worst-case air contamination of 150 Pa. Before refilling the mixing vessel

at most 0.003 bar air could not be evacuated. A total of 4 experiments could be run

from each batch of the ethylene-oxygen mixture in the premix vessel. Combining, the

total worst-case air contamination is approximately 280 Pa.

A study to identify the mixture most affected by this leak rate found stoichiometric

ethylene-oxygen at an initial pressure of 30 kPa and initial temperature of 295 K to

be the most sensitive case. An error analysis was then performed for this mixture to

find the maximum uncertainty in initial conditions for all experiments. The analytical

model of Wintenberger et al. (2003) can be used to express IV as a function of UCJ ,

P3, and c3. The quantity ∆UCJ is the difference in the Chapman-Jouguet velocity for

a mixture containing an additional 280 Pa of air. STANJAN (Reynolds, 1986) was

used to calculate UCJ in each case. ∆P3 and ∆c3 can then be found from differences in

P3 and c3 for the two mixtures, where P3 and c3 are given by the relationships below,

which are derived by using the method of characteristics to relate flow properties on
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either side of the Taylor wave (Wintenberger et al., 2003),

P3

P2

=

(
c3

c2

) 2γ

γ − 1 =

(
γ + 1

2
− γ − 1

2

UCJ

c2

) 2γ

γ − 1
. (2.17)

Table 2.10 lists the calculated maximum changes in the flow parameters due to the

leak rate. Also shown are the largest possible contributions due to uncertainty in

the initial pressure because of gauge precision (±0.1 kPa) and due to uncertainty

in the initial temperature (295-298 K). All uncertainties shown are calculated for

comparison with the same ideal case specified above.

Ideal Dilution Pressure Temperature
P1 (kPa) 30.0 30.0 30.1 30.0
T1 (K) 295 295 295 298

UCJ (m/s) 2317.9 2311.7 2307.5 2317.3
P2 (kPa) 970.2 964.3 965.4 960.0
c2 (m/s) 1249. 1245. 1243. 1249.

γ 1.14 1.14 1.14 1.14
P3 (kPa) 354.8 352.2 352.7 351.2
c3 (m/s) 1174. 1170. 1168. 1174.

∆UCJ(m/s) - 6.2 10.4 0.6
∆P3 (Pa) - 2577 2008 3525
∆c3 (m/s) - 4. 6. 0.

∆IV - 0.9% 0.9% 1.1%

Table 2.10: Variations in flow parameters resulting from uncertainty in initial con-
ditions due to error in dilution (leak rate), initial pressure, and initial temperature
as described in the text. The mixture chosen is stoichiometric C2H4-O2 at an initial
pressure of 30 kPa, which corresponds to the worst case of all the mixtures consid-
ered in experiments. The percentage error in IV is based on the model predicted
impulse.Wintenberger et al. (2001)

Combining the results in Table 2.10, the uncertainty in the impulse measurement

due to the initial conditions is found to contribute at most ±2.9%, resulting in an

overall maximum uncertainty of ±3.8% in ballistic measurements of the impulse (in-

cluding damping error of 2% and uncertainty in ballistic impulse of 1.3%).

Experimental repeatability was also considered. For experiments in which fast

transition to detonation occurred, the impulse was repeatable to within ±0.7%. In
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cases where late DDT or fast flames were observed, the impulse in repeat experiments

varied by as much as ±17% due to the turbulent nature of the flow during the initi-

ation process. Additional experiments were conducted to verify that no out-of-plane

motion existed during the initial pendulum swing.
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Chapter 3

Partially filled tubes at standard
conditions

3.1 Introduction

The impulse from a partially filled detonation tube is investigated. A detonation

tube is considered to be partially filled if a portion of the tube near the thrust surface

contains the combustible mixture while the remaining portion of the tube contains

an inert mixture. This chapter studies cylindrical tubes that are closed at one end,

open at the other, and partially filled with an inert gas at standard pressure of 1 atm.

Chapter 5 discusses the partial fill effect in non-cylindrical tubes, such as tubes with

nozzles.

In the laboratory, there are several ways to construct a partially filled detonation

tube. The most common method is to add cylindrical extensions of varying lengths

onto a cylinder of constant length. The constant-length cylinder is filled with the

combustible mixture which is initially sealed inside by a diaphragm. On the other

side of the diaphragm and attached onto this tube are extensions of varying length.

Thus, the distance separating the thrust surface and diaphragm is held constant while

the total tube length varies depending on the extension’s length. A second method

uses a constant length tube comprised of many shorter segments. This enables the

diaphragm location to be varied while the total tube length remains constant. A third

method, used in multi-cycle facilities, is to dynamically fill the tube by switching the
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inlet gas stream between the combustible mixture and the inert gas (Schauer et al.,

2001). In all of these situations, the volume fraction of the tube filled with the

combustible mixture and the volume fraction of the tube filled with the inert mixture

can be used as a quantitative measure of comparison between different facilities.

A number of researchers have previously studied the partial fill effect. The pio-

neering experiments in partially filled detonation tubes were carried out by Zhdan

et al. (1994) with acetylene-oxygen mixtures at standard conditions in detonation

tubes having an inner diameter of 0.107 m. They added cylindrical extensions to

a constant-length tube containing the combustible mixture so that the total tube

length varied between 0.125 m and 1.00 m. An initiation tube and reflector was used

to initiate a detonation. Direct impulse measurements were obtained with a ballistic

pendulum arrangement and their findings were extended with two-dimensional nu-

merical modeling of the nonsteady gas dynamics assuming chemical equilibrium to

predict the thrust wall pressure history.

Zitoun and Desbordes (1999) carried out experiments with four tubes of different

lengths all having an inner diameter of 0.05 m and containing ethylene-oxygen mix-

tures at standard conditions. Cylindrical extensions 0.011 m in length were added to

the four tubes so that the total tube lengths varied from 0.061 m to 0.436 m. Deto-

nations were directly initiated with approximately 35 J of energy and they calculated

the impulse by integrating the thrust surface pressure differential.

Cooper et al. (2001) and Falempin et al. (2001) both used a ballistic pendulum

to experimentally measure the single-cycle impulse of ethylene-oxygen mixtures ig-

nited with a weak spark. Both studies used a constant length tube containing the

combustible mixture and added extensions of varying length. The total tube lengths

varied between 0.065 m and 0.439 m and had an inner diameter of 0.05 m in the facil-

ities of Falempin et al. (2001) whereas the total tube lengths varied between 1.014 m

and 1.614 m and had an inner diameter of 0.0762 m in the facilities of Cooper et al.

(2001). Cooper et al. (2001) extended their tests to study the effect of diluent amount

in the combustible mixture.

Eidelman and Yang (1998) numerically studied the partial-fill effect in acetylene-
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air mixtures at standard conditions. The modeled a 6 cm diameter tube with varia-

tions in the total length from 15 cm to 30 cm. Their model solved the nonsteady gas

dynamic equations using a one-step Arrhenius law equation model for the chemical

reactions and heat release. The increase in impulse they predict for the partially filled

tubes is approximately 50% greater than the other studies. This is attributed to their

numerical method of detonation initiation and as a result we do not consider their

data in the following analyzes.

Li and Kailasanath (2003) numerically modeled the partial fill effect in tubes with

a constant length of 1350 mm filled with ethylene-oxygen mixtures and tubes with

a constant length of 1000 mm filled with ethylene-air mixtures. They investigated

a wide range of lengths filled with the combustible mixture which enabled them

to obtain data at small fill fractions where experimental data is not available. An

exponential curve fit was applied to their data relating the fuel-based specific impulse

to the amount of the tube length filled with the explosive mixture.

Sato et al. (2004) numerically predict the impulse of partially filled tubes with

mixtures of hydrogen-air and ethylene-oxygen at standard conditions. They varied

the equivalence ratio, inert gas amount and type (Air, He, Ar) at 1 atm, and inert gas

temperature. They present a mass-based model of partial-filling. A faster pressure

decay rate at the thrust surface was observed with an inert gas of helium as compared

to inert gases of air or argon due to its higher sound speed. As will be discussed later

in §3.4.2 the critical parameters that affect the pressure decay rate are the sound

speed ratio for the explosive-inert gas combination.

Endo et al. (2004) analytically predict the impulse of partially filled tubes by

calculating an equivalent homogeneous mixture representative of the explosive and

inert mixtures. With the redefined homogeneous mixture, they predict the impulse

for a fully filled tube with their analytical model. The resulting impulse values are

comparable within 25% of their two-dimensional hydrogen-oxygen simulations with

inert gases of helium or air, but there is no correlation between the predicted thrust

surface pressure histories. This leads them to conclude that the impulse of a partially

filled detonation tube is dominated only by the mixture energetics.
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The general conclusions of these studies are that adding a constant-area exten-

sion onto a constant length tube filled with the combustible mixture will increase the

mixture-based specific impulse. The impulse will continue to increase until the max-

imum value for the specific explosive-inert combination is reached. This maximum

impulse has not been conclusively determined for any of the mixtures. If the total

tube length remains constant and the amount of combustible mixture filling the tube

decreases, the total impulse also decreases. The unsteady gas dynamics indicate that

the internal flow field is affected by wave reflections from the mixture interface and

the open tube end which in turn affect the thrust surface pressure history and the

observed impulse. Experimental and numerical data from previous researchers along

with new analysis presented here are used to evaluate the effect of partially filling a

detonation tube. The limiting case of an infinite length tube is studied to predict the

maximum specific impulse possible for a given explosive-inert gas combination.

3.2 Experimental and numerical data

The experimental data published prior to 2002 and the numerical data of Li and

Kailasanath (2003) are plotted in Fig. 3.1 as a function of the fractional tube volume

filled with the combustible mixture. This volume fraction V/V ◦ is defined as the fill

fraction, where V is the tube volume filled with the combustible mixture and V ◦ is

the total tube volume. To non-dimensionalize, the impulse I is divided by the impulse

I◦ for a tube of equal total length and fully filled with the combustible mixture. The

predictions of our single-cycle impulse model (Wintenberger et al., 2003) for a fully

filled tube were used to normalize the experimental data of Zitoun and Desbordes

(1999) since experimental data for I◦ were not available. In all cases, the tubes

exhaust into air at 1 atm.

Sample pressure traces appear in Fig. 3.2(a) for a fully filled tube and in Fig. 3.2(b)

for a partially filled tube with V/V 0 = 0.625. The y-axis of Figs. 3.2(a) and 3.2(b) are

in units of pressure and distance. In each experiment, the pressure from the thrust

surface and two intermediate distances along the tube length were recorded. These
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Figure 3.1: Normalized impulse I/I0 from published data of Falempin et al. (2001),
Cooper et al. (2002), Zhdan et al. (1994), Zitoun and Desbordes (1999), and Li
and Kailasanath (2003) versus the fill fraction V/V 0 for tubes with constant cross-
sectional area. The partial fill correlation discussed in §3.3.1.1, the curve fit of Li and
Kailasanath (2003) discussed in §3.3.1.2, and the modified impulse model discussed
in §3.3.2 are also plotted.

three different pressure histories have been offset along the y-axis by a distance equal

to their location from the thrust surface in the experimental setup. Thus, the bottom

trace corresponds the thrust surface pressure history, the middle trace corresponds

to the pressure history approximately in the middle of the tube, and the top trace

corresponds to the pressure just before the tube exit. The black squares correspond

to time of combustion wave arrival at the ten ionization gauge locations down the

tube length.

As shown in Fig. 3.1, the maximum impulse from a detonation tube is obtained by

completely filling it with the explosive mixture. In other words, filling only a fraction

of the tube volume with the explosive mixture results in obtaining only a fraction of

the maximum possible impulse for that length tube. This total impulse I is affected by
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Figure 3.2: Experimental pressure traces in ethylene-oxygen mixtures with an initial
pressure of 80 kPa, environment pressure of 100 kPa and a 105 µm diaphragm. The
black squares correspond to the combustion wave arrival time at each ionization gauge
location.
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the combined masses of the combustible mixture and the inert gases contained in the

tube which vary as the fill fraction varies depending on their relative initial densities,

n = ρmix/ρinert. For the experimental data discussed above, the densities of the

combustible mixture (ethylene-oxygen or acetylene-oxygen at standard conditions)

and inert gas (atmospheric air) are approximately equal (n ≈ 1). This means that the

total mass within a constant-length tube remains approximately constant regardless

of fill fraction. By decreasing the amount of combustible mixture in the tube, a

corresponding decrease in the stored chemical energy occurs decreasing the impulse

imparted to the tube. A tube containing only inert gases (V/V 0=0) produces zero

impulse since the stored chemical energy equals zero. A fully filled tube produces the

maximum impulse since the useful stored chemical energy is maximized.

The impulse data of Fig. 3.1 are plotted in terms of the specific impulse in Fig. 3.3.

The specific impulse is found to increase as the explosive mixture mass decreases

indicating a specific performance increase even though the total impulse decreases.

In the limit as the explosive mass tends to zero, the specific impulse ratio tends to

a constant value as indicated by the numerical data of Li and Kailasanath (2003).

This increase in specific impulse is attractive to designers who are concerned about

fuel consumption and not concerned about device size limitations.

3.3 Models

In an effort to develop a unifying relationship for the impulse of a partially filled

detonation tube, two correlations, modifications to our impulse model, and a mass-

based model have been developed.

3.3.1 Curve fit to data

3.3.1.1 Partial Fill correlation

The partial-fill correlation shown in Figs. 3.1 and 3.3 is a piece-wise linear fit of the

plotted data. It should be noted that the data on which this correlation is based
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Figure 3.3: Normalized impulse Isp/I
0
sp from published data of Falempin et al. (2001),

Cooper et al. (2002), Zhdan et al. (1994), Zitoun and Desbordes (1999), and Li
and Kailasanath (2003) versus the fill fraction V/V 0 for tubes with constant cross-
sectional area. The partial fill correlation discussed in §3.3.1.1, the curve fit of Li and
Kailasanath (2003) discussed in §3.3.1.2, and the modified impulse model discussed
in §3.3.2 are also plotted.

were obtained in ethylene-oxygen mixtures except that of Zhdan et al. (1994) which

were obtained in acetylene-oxygen mixtures. Zhdan et al. (1994) first suggested the

existence of a correlation between impulse and fill fraction, but it was not until several

years later that enough experimental data was available to fully validate the claim.

The following discussion follows that of Cooper et al. (2002).

For the range of experimentally tested fill fractions (0.15 < V/V ◦ < 1), a linear

relationship exists between the impulse fraction and the fill fraction

I/I◦ = 0.814 (V/V ◦) + 0.186 (3.1)

The experimental data lie within 15% of this line for that range of fill fractions.

Numerical simulations by Li and Kailasanath (2003) were used to determine the
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behavior of the partial-fill correlation at fill fractions close to zero (V/V ◦ < 0.15)

where experimental data was not available. They found that the impulse behavior

near the origin in Fig. 3.1 can be approximated as

I/I◦ = 3.560 (V/V ◦) (3.2)

The intersection of these two linear relations, Eqs. (3.1) and (3.2), occurs at a fill

fraction of 0.0676 determining the range of applicability for each equation.

Equations (3.1) and (3.2), written in terms of impulse, can be rewritten as the

mixture-based specific impulse Isp = I/gρ1V normalized by the specific impulse I◦sp

of the fully filled tube (Fig. 3.3). The initial explosive mixture density is represented

by ρ1 and g is the standard gravitational acceleration. For 0.0676 < V/V ◦ < 1

Isp/I
◦
sp = 0.814 + 0.186 (V ◦/V ) (3.3)

and for 0 < V/V ◦ < 0.0676

Isp/I
◦
sp = 3.560 (3.4)

Our partial-fill correlation in terms of specific impulse is compared to multi-cycle

experiments by Schauer et al. (2001) in hydrogen-air mixtures (Fig. 3.4). Data were

obtained for a variety of tube dimensions, fill fractions, and cycle frequencies. Impulse

and thrust measurements were taken with a damped thrust stand and, for our cor-

relation, we assume that multi-cycle operation is equivalent to a series of ideal single

cycles. This data were not considered in the development of the partial fill correlation

enabling an independent test to experimental data for validation purposes.

The fill fractions in Fig. 3.4 greater than one correspond to over-filling the deto-

nation tube, and in this case, the specific impulse is reduced since only the mixture

within the tube contributes to the impulse. The impulse I of an over-filled tube is

equal to the impulse I◦ of a fully filled tube. This can be simply accounted for by
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Figure 3.4: Comparisons between the fuel-based specific impulse for the partial-fill
correlation and multi-cycle experimental data (Schauer et al., 2001) are plotted as a
function of the volumetric fill fraction V/V 0.

computing the specific impulse as

Isp/I
◦
sp =

I

V

V ◦

I◦
= V ◦/V (3.5)

when V/V ◦ > 1. This relation is precise and valid for all fill fractions greater than

one. The hydrogen-air experimental data is within 25% of the partial fill correlation

for fill fractions less than one and within 10% for fill fractions greater than one.

The partial-fill correlation consists of the two relationships, Eqs. (3.1) and (3.2)

for impulse or alternatively, Eqs. (3.3) and (3.4) for specific impulse. This correlation

is empirical in nature and is derived from a limited amount of experimental and

numerical data. However, it compares well with multi-cycle data over a wide range

of fill fractions. Its advantages are that it is simple and in conjunction with our

previous models of fully filled tubes (Wintenberger et al., 2003), provides a rapid

means of estimating the ideal impulse of partially filled detonation tubes exhausting
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into 1 atm air and n ≈ 1.

3.3.1.2 Li and Kailasanath (2003)

Li and Kailasanath (2003) proposed a correlation for the specific impulse of par-

tially filled tubes based on an exponential curve fit with data from their numerical

simulations in ethylene-oxygen and ethylene-air mixtures

Ispf/I
◦
spf = a− (a− 1)

exp

(
L◦/L− 1

8

) (3.6)

The constant a is determined to have values between 3.2 and 3.5. They attribute

these values to the maximum specific impulse available in the ethylene mixtures they

analyzed as the value of L goes to zero. Their curve fit is based on a length ratio

and not a volume ratio, but this difference is not important since presently we are

analyzing only tubes with a constant cross-sectional area.

Equation (3.6) in terms of the volumetric fill fraction is compared with our partial-

fill correlation in Fig. 3.1. Both relationships predict zero impulse at a fill fraction of

zero as expected, and both tend to a constant specific impulse value in the limit of

zero explosive mixture.

3.3.2 Modified impulse model

Previously, an impulse model that predicts the one-dimensional, unsteady gas dynam-

ics within a fully filled detonation tube was developed by Wintenberger et al. (2003).

An idealized thrust surface pressure history is calculated for the case where the en-

vironment pressure P0 equals the initial combustible mixture pressure P1 (Fig. 3.5)

and the impulse is determined by integrating the area under the curve.

I = A

[
(P3 − P0)t1 + (P3 − P0)t2 +

∫ ∞

t1+t2

∆P (t)dt

]
(3.7)

The terms of this integral are considered for the case of a partially filled detonation
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Figure 3.5: Idealized thrust surface pressure history modeled by Wintenberger et al.
(2003) where the initial mixture pressure equals the environment pressure.

tube. The time t1 = L/UCJ corresponds to the time required by the detonation wave

to travel through the combustible mixture filling a length L of the tube with total

length L0.

I0→t1 = A(P3 − P0)L/UCJ (3.8)

The time t2 corresponds to the time for the reflected wave from the mixture interface

to reach the thrust surface. Because this time depends on the length of the tube filled

with the combustible mixture L and the product sound speed behind the Taylor wave

c3, it can be scaled with a non-dimensional parameter α.

t2 = αL/c3 ⇒ It1→t2 = A(P3 − P0)αL/c3 (3.9)

This value of α can be analytically determined by tracking the first reflected char-

acteristic of the Taylor wave and was found to be approximately 1.1 (Wintenberger

et al., 2003) for a wide range of fuels and compositions.

After time t2 the rate of pressure decay at the thrust surface is determined by the
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environment pressure and the relative sound speeds in the gases.

It1+t2→∞ =

∫ ∞

t1+t2

(P (t)− P0)dt (3.10)

As was previously done in the original impulse model, this pressure integral is non-

dimensionalized in terms of c3, (P3 − P0), and here the total tube length L0.

∫ ∞

t1+t2

(P (t)− P0)dt =
(P3 − P0)L

0

c3

∫ ∞

τ1+τ2

Π(τ)dτ (3.11)

The non-dimensional integral on the right-hand side of Eq. 3.11 depends on the other

non-dimensional parameters of the flow and is defined to equal β. In particular, in

§3.4.2 we determine that both the ratio of the product sound speed to the environment

sound speed, and the ratio of the product γ to the environment γ affect the pressure

decay. Additionally, in §4.2 we determine that the pressure ratio P3/P0 affects the

pressure decay.

β =

∫ ∞

τ1+τ2

Π(τ)dτ (3.12)

For simplicity, we use the value of β = 0.53, determined (Wintenberger et al., 2003) by

integrating the pressure decay history from experimental data of Zitoun and Desbor-

des (1999) for tubes containing an initial mixture of stoichiometric ethylene-oxygen

exhausting into atmospheric air. It is assumed a constant value of β suffices for fuel-air

detonations over a limited range of compositions close to stoichiometric (Wintenberger

et al., 2003) and this assumption is revised in the next chapter.

With the value of β, a characteristic time t3 is defined and represents the hatched

region in Fig. 3.5 where

∫ ∞

t1+t2

(P (t)− P0)dt = (P3 − P0) = (P3 − P0)β
L0

c3

(3.13)

The components of the impulse integral, Eq. 3.8 from 0 < t < t1 and Eq. 3.9 from

t2 < t < t2 and Eq. 3.13 from t1 + t2 < t < t3, are summed to yield the total impulse

as a function of the tube length filled with the combustible mixture L and the total
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tube length L0.

I =
V (P3 − P0)

UCJ

[
1 + α

UCJ

c3

+ β
L0

L

UCJ

c3

]
(3.14)

Here the volume V is the tube volume filled with the combustible mixture. For

constant cross-sectional tubes as considered here, the length fraction L/L0 in Eq. 3.14

can be replaced with the volumetric fill fraction V/V 0.

The terms in the brackets of Eq. 3.14 are labeled as the model parameter K. In

the original impulse model, K is a constant value of 4.3 (Wintenberger et al., 2003).

In the case of a partially filled tube, the value of K changes with the fill fraction

(Fig. 3.6).

K =

[
1 + α

UCJ

c3

+ β
UCJ

c3

L0

L

]
(3.15)

The initial mixture pressure and environment pressure are equal in this calculation

as is the case with the experimental data considered in this chapter. In Chapter 4 we

evaluate the behavior of K when P0 6= P1.

L / L0

K
(L

/L
0 )

0 0.25 0.5 0.75 10
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Figure 3.6: Variation of model parameter K for partially filled tubes that have P0 =
P1 exhausting into atmospheric pressure as a function of the fill fraction.
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The impulse Eq. 3.14 is divided by the original impulse model (Wintenberger

et al., 2003) and is plotted in Fig. 3.1.

I/I0 =
V

V 0

[
1 + α

UCJ

c3

+ β
UCJ

c3

L0

L

]
[
1 + (α + β)

UCJ

c3

] (3.16)

The model represents the decrease in impulse as the fill fraction decreases. However,

the model predicts a value of I/I0 ≈ 0.2 at a fill fraction of zero which is clearly not

correct.

The mixture-based specific impulse is determined in the usual fashion.

Isp =
I

V ρ1g
=

(P3 − P0)

ρ1gUCJ

[
1 + α

UCJ

c3

+ β
UCJ

c3

L0

L

]
(3.17)

Dividing by the original impulse model (Wintenberger et al., 2003) for a fully filled

tube, the specific impulse fraction is determined and is plotted in Fig. 3.3.

Isp/I
0
sp =

[
1 + α

UCJ

c3

+ β
UCJ

c3

L0

L

]
[
1 + (α + β)

UCJ

c3

] (3.18)

The model represents the increase in the mixture-based specific impulse as the fill frac-

tion decreases. However, the model approaches infinity as the fill fraction approaches

zero. Numerical simulations indicate that the specific impulse should become finite

as the fill fraction approaches zero. To understand the partial fill effect better, we

consider energy conservation in the following sections.

3.3.3 Energy considerations

While the previous correlations and impulse model do characterize trends in the data,

more insight can be gained by applying some elementary principles of mechanics. A

control volume is drawn around the partially filled tube (Fig. 3.7) and we predict the

impulse from the average velocity of the exhaust gases. As labeled in Fig. 3.7, the
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Mixture (C)

Inert Mixture (N)
u

Control Volume

Tube (M)

Figure 3.7: Illustration of partially filled detonation tube with a control volume.

initial mass of the combustible mixture is C, the mass of the inert gas, also called the

tamper, is N and the tube mass is M . From these three masses, two mass ratios can

be defined and are used in the following discussions. The tamper mass ratio N/C

is the ratio of the tamper mass to the combustible mixture mass and the tube mass

ratio M/C is the ratio of the tube mass to the combustible mixture mass.

The combustible mixture has a constant amount of stored chemical energy E per

unit mass. We assume that all of this chemical energy is converted into kinetic energy

of the exhaust gases. The exhaust gases consist of the product gases and the inert

gases.

CE = (N + C)u2/2 (3.19)

Analysis of the x-direction forces on the control volume equate the impulse to the

momentum of the exhaust gases if they are assumed to be pressure matched to the

ambient conditions.

I =

∫
Fdt = (N + C)u (3.20)

As in the rocket engine analysis of § 1.4.1, the specific impulse is related to the velocity

of the exhaust gases.

Isp =
u

Cg
= [

√
2E(N/C + 1)]/g (3.21)

This simple analysis based on first principle for the specific impulse of a partially

filled tube (Eq. 3.21) is observed to depend on two quantities. The first is a param-

eter
√

2E that is a measure of the useful stored chemical energy in the system and

has units of velocity. The quantity E is commonly referred to as the Gurney energy
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(Gurney, 1943). The Gurney energies of high explosives are well known from care-

fully conducted experiments and can be easily approximated with simple relations

that depend on the explosive’s detonation parameters (Kennedy, 1998). However,

these relations are not applicable for the gaseous mixtures used in PDE situations.

To further complicate matters, the energy available for mechanical work is often sen-

sitive to variations in initial density, temperature, and degree of confinement (Cooper,

1996). Several analytical methods have been proposed to predict the energy E for

gaseous detonations. One method uses traditional thermodynamic cycle analysis with

the Jacobs cycle (Fickett and Davis, 1979) for a detonation to predict the maximum

possible work. A second method analyzes a detonation and associated Taylor wave

expansion after it has propagated an arbitrary distance down a tube that is closed

at one end. Summing the total thermal and kinetic energy of the fluid particles from

the closed tube end to the instantaneous detonation location yields the total energy

of the detonation. Both of these methods were first proposed by Jacobs (1956) and

are discussed in greater detail in Cooper and Shepherd (2002) and Wintenberger

(2004). The second parameter of importance in Eq. 3.21 is the explosive mass frac-

tion C/(N + C). This parameter is used in §3.3.4 to correlate the experimental data

and models into a single relationship for the effect of partial filling.

A similar relationship to Eq. 3.21 was obtained by Back and Varsi (1974) in ana-

lyzing their experimental results detonating a charge of high explosive in nozzles filled

with inert substances of different densities and pressures. They studied the feasibility

of detonative propulsion in the high-pressure environments of other planets. Unlike

the constant cross-sectional area detonation tubes we consider, they measured the

impulse imparted to a conical diverging nozzle with a flat end wall. The entire nozzle

assembly was submerged in a tank so that the type and pressure of the substance

surrounding their device could be varied. Gaseous environments of nitrogen, helium,

air, and carbon dioxide with pressures ranging from 1 bar up to 69 bars were tested.

The impulse measurements were obtained by measuring the maximum vertical dis-

placement of the device due to the exhausting product and inert gases. They observed

an increase in specific impulse as the environment pressure increased for the higher
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molecular weight gases (CO2, N2, Air). At the lower environment pressures tested,

the difference in the specific impulse values for the different gases were negligible.

The specific impulse for these two limiting cases can be evaluated with Eq. 3.21.

One limit is reached when the mass of the inert environment is significantly smaller

than the explosive mass, as in the case of a near fully filled tube or a partially

filled detonation tube containing a low-density inert gas. The tamper mass fraction

approaches zero (N/C → 0), the average exhaust gas velocity is maximized (from

Eq. 3.19),

u(N/C→0) =
√

2E (3.22)

and the specific impulse approaches a constant (from Eq. 3.21).

Isp(N/C→0) =
√

2E/g (3.23)

A different limit exists when the inert gas mass is significantly greater than the ini-

tial explosive mass, as in the case of a near empty tube or a partially filled detonation

tube containing a high-density inert gas. The tamper mass fraction N/C becomes

large causing the average exhaust gas velocity to become small (from Eq. 3.19).

u(N/C large) =
√

2EC/N (3.24)

Although the exhaust gas velocity becomes small, it is the exhaust gas momentum

that influences the impulse and as the tamper mass increases, so does their momen-

tum.

(N + C)u ≈ Nu =
√

2ENC (3.25)

When considered on a unit mass basis, the specific impulse increases as the tamper

mass increases.

Isp(N/C large) =
√

2EN/C/g (3.26)

If we consider the extreme limiting case where the tamper mass fraction approaches

infinity, the average exhaust gas velocity approaches zero, and the specific impulse
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approaches infinity. We will show later in §3.4.2 that the specific impulse actually does

not approach infinity but in fact reaches a finite value. Understanding the tamper

compressibility is crucial to finding the limiting specific impulse in this case.

3.3.3.1 Gurney model

The previous energy considerations are extremely simplified for application to a par-

tially filled detonation tube, and in particular do not account for motion of the

tube. The chemical energy released by detonation not only goes into accelerating

the product gases and the tamper, but also into accelerating the tube mass. The

ideas previously developed can be extended to cover this case. This derivation fol-

lows the work of Gurney (1943) who used both energy and momentum conservation

to predict the terminal velocities of metal fragments propelled by detonation of high

explosives. Gurney’s original ideas have been applied to many different geometries

including open-faced, symmetric, and asymmetric sandwiches, cylindrical, spherical,

and grazing detonation which are discussed in Kennedy (1998) and Henry (1967).

The situation we consider for application to a partially filled detonation tube is

that which contains three masses; the explosive mixture mass C, the tamper mass N ,

and the tube mass M . The explosive is sandwiched between the tube and tamper as

illustrated in Fig. 3.8 and has an initial density ρ0. The explosive contains a constant

M C N

x=0 xN

t = 0

t > 0 M C vNNvM

x

Figure 3.8: Schematic of asymmetric sandwich.

amount of chemical energy E per unit mass. To simplify the analysis, the tube and

tamper mass are modeled as rigid plates (Gurney, 1943) so that simultaneously solving

the energy and momentum equations will yield their terminal velocities.
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For times greater than zero, the high-pressure detonation products expand, apply-

ing a force to the tube and the tamper “plates,” driving them apart (Fig. 3.8). The

numerous wave reflections within the expanding product gases are assumed (Kennedy,

1998) to occur very fast as compared to the plate velocities resulting in a constant

velocity gradient and spatially uniform, but time-dependent density ρ = ρ(t). After

a long time, the plates reach their terminal velocities vM and vN .

The conservation of momentum is

0 = −MvM + NvN + ρ0

∫ xN

0

v(x′)dx′ (3.27)

and the approximate conservation of energy is

CE = 1/2Mv2
M + 1/2Nv2

N + 1/2ρ0

∫ xN

0

v(x′)2dx′ (3.28)

where the internal energy of the detonation product gas is neglected. The velocity

profile in the detonation products is assumed (Kennedy, 1998) to be a linear function

of position between the tube and tamper masses.

v(x) = (vM + vN)x/xN − vM (3.29)

Solving Eqs. 3.27-3.29 yields the terminal velocity vM of the tube mass which is

found to be a function of the previously defined Gurney velocity
√

2E, the tamper

mass ratio N/C, and the tube mass ratio M/C (Kennedy, 1998). This is also equal

to the impulse normalized by the tube mass which is plotted as a function of the two

mass ratios in Fig. 3.9.

vM√
2E

=
I

M
√

2E
=

[√
(1 + A3)/[3(1 + A)] + (N/C)A2 + (M/C)

]−1

(3.30)

where

A = (1 + 2M/C)/(1 + 2N/C) (3.31)
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Figure 3.9: Impulse I/M
√

2E predictions with the Gurney model versus (a) the
tamper mass ratio N/C and (b) the tube mass ratio M/C.

The effect of increasing the tamper mass ratio N/C while the tube mass ratio

M/C remains constant is shown. Starting from very small values of the tamper mass

ratio N/C in Fig. 3.9a, increasing N/C does not affect the impulse until this ratio

is approximately one. When the tamper mass ratio N/C increases above a value of

one, the impulse increases to a value which depends on the tube mass fraction M/C.

For example, increasing the tamper mass ratio N/C from 1 to 100 causes a greater

increase in impulse if the tube mass ratio M/C is large (i.e., > 1000) whereas a very

small (negligible) increase in impulse is observed if the tube mass ratio is small (i.e.,

< 1000). Once the tamper mass ratio N/C has increased to equal the tube mass

ratio M/C, resulting in the situation of a symmetric sandwich, no additional gains

in impulse occur if the tamper mass ratio continues to increase. In other words, for

a given tube mass ratio, the impulse can be increased by adding tamper mass but

the impulse is maximized when the tamper is large enough such that its mass ratio

N/C equals the tube mass ratio M/C. These same observations can be made through

inspection of Fig. 3.9b plotted as a function of the tube mass ratio M/C.

The maximum value for the impulse in the limit of infinite N/C and fixed M/C
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ratios is evaluated from Eq. 3.30. From the definition of A,

A ≈ (M/C)/(N/C)→ 0 as N/C →∞ (3.32)

and a Taylor series expansion of Eq. 3.30 about A = 0 yields a finite maximum value.

I/M
√

2E u (1/3 + M/C)−1/2 (3.33)

We compare Eq. 3.33 to the symmetric sandwich solution for the impulse (Eq. 3.34),

which can be derived from Eqs. 3.27-3.29 assuming that M = N .

I/M
√

2E = (1/3 + 2M/C)−1/2 (3.34)

The impulse for a symmetric sandwich (Eq. 3.34) is plotted as the dashed line

Fig. 3.9a,b. The maximum impulses for infinitely tamped asymmetric sandwiches

(Eq. 3.33) are plotted as dots for the different M/C ratios in Fig. 3.9a.

The other limit for the impulse occurs at N/C = 0 and is plotted as dots in

Fig. 3.9a for very small N and the different tube mass ratios. A final limiting case to

consider is when both mass ratios, N/C and M/C, approach infinity simultaneously.

In this case A approaches one and a Taylor expansion of the impulse equation for an

assymetrical sandwich yields a leading order solution of

I/M
√

2E = (1/3 + N/C + M/C)−1/2 (3.35)

Equation 3.35 is plotted as a single point at a mass ratio of N/C = M/C = 1E10 in

Fig. 3.9b and is only slightly different than the above limit of infinite N/C at fixed

M/C (Eq. 3.33).

The impulse plots of Fig. 3.9 are plotted in Fig. 3.10 in terms of specific impulse.

Isp/
√

2E = I/C
√

2E = I/M
√

2E(M/C) (3.36)

This scaling reorders the relationship of impulse in Fig. 3.10 as compared to
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Figure 3.10: Specific impulse Isp/
√

2E predictions with the Gurney model versus (a)
the tamper mass ratio N/C and (b) the tube mass ratio M/C.

Fig. 3.9. The symmetric sandwich solution is plotted by dashed line and the lim-

iting values at N/C ratios of zero and infinity at the different values of M/C are

shown by the solid dots. The specific impulse is unaffected by changes in N/C until

it exceeds a value of one. For larger N/C ratios, the specific impulse increases until

N/C equals the tube mass ratio M/C. When the two mass ratios are equal, the

specific impulse is maximized at a value that agrees with the Taylor series analysis

at infinite N/C and fixed M/C.

In the plots of impulse (Fig. 3.9) and specific impulse (Fig. 3.10), the results

depend on the constant energy per unit mass of the explosive E. This dependence on

the explosive’s energy can be removed by normalizing the impulse (specific impulse)

by the impulse I0 (specific impulse I0
sp) when the tamper mass equals zero. The

results of this normalization appear in Fig. 3.11 as a function of the different mass

ratios.

The results of Fig. 3.11 show that the normalized impulse fraction I/I0 and the

specific impulse fraction Isp/I
0
sp are identical and the dependence on M/C and N/C is

interchangeable. Increasing the tamper mass, increasing the tube mass, or decreasing

the explosive mass have no effect of the impulse until the mass ratios N/C or M/C
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Figure 3.11: I/I0 and Isp/I
◦
sp predictions with the Gurney model versus (a) the tamper

mass ratio N/C and (b) the tube mass ratio M/C.

are greater than one. At a constant tamper mass ratio (Fig. 3.11a) or a constant tube

mass ratio (Fig. 3.11b), the largest gains in impulse are achieved for the largest mass

ratios. In our experiments, the tube mass varied between approximately 12 kg and

32 kg. The explosive mixture mass of the stoichiometric ethylene-oxygen mixtures

varied between approximately 1.5 g to 5.8 g depending on its initial pressure. This

implies tube mass ratios M/C were between approximately 8,000 and 22,000. In

our experiments, an extension 0.6 m in length was used with atmospheric air as the

tamper. Thus, the tamper mass ratios N/C varied between 0 and 3.

Values of N/C and their effect on the specific impulse fraction are tabulated in

Table 3.1 for our experimental range in tube mass ratios M/C. For either value of

M/C N/C I/I0 or Isp/I
0
sp (Fig. 3.11) M/C N/C I/I0 or Isp/I

0
sp(Fig. 3.11)

8000 ∞ 103 22000 ∞ 171
8000 7E4 98 22000 2E5 162
8000 75 10 22000 75 10
8000 18.5 5 22000 18.5 5
8000 2.5 2 22000 2.5 2

Table 3.1: Specific impulse fraction predicted with Gurney model for range of M/C
ratios in our experiments.
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M/C, the impulse can be increased up to 10 times by adding a tamper with a mass of

75 times C. The more reasonable tamper mass ratios (up to N/C ≈ 2.5) that could be

obtained with air at standard conditions in a modest length extension ( 3 m) added to

our tube would result in only doubling the impulse over the case without a tamper. So

while the partial fill effect seems to have limited benefit for the smaller scale laboratory

facilities, the concept is important to propulsive applications where sufficiently large

tamper mass ratios are possible. Detonation propulsion in high-density environments

would benefit from higher tamper mass ratios N/C without requiring large nozzles

or extensions to contain the tamper. This is the motivation behind the work by Back

and Varsi (1974) in which they studied detonative propulsion in very high pressure

environments in order to predict engine performance in the atmosphere of Jupiter.

For the situations of moderately sized laboratory detonation tubes and the gaseous

explosive mixtures, the M/C ratios are essentially infinite when compared to realistic

tamper mass ratios (Table 3.1).

3.3.4 Comparison of models

Figures 3.9 through 3.11 were generated by varying one independent mass ratio while

the other independent mass ratio is fixed. Varying both mass ratios simultaneously

and independently defines a three-dimensional surface. To apply these results to the

situation of a detonation tube, both the tube mass ratio and the tamper mass ratio

vary as the volumetric fill fraction varies. It is the relative changes of these two

mass ratios that defines a path on this three-dimensional surface enabling a direct

comparison of the mass-based models to the partial fill data in terms of volumetric

fill fraction.

The relationship between the masses and fill fractions depend on the density ratio
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n = ρmix/ρinert between the combustible and inert gases.

C = ρmixV (3.37)

M/C =

(
M

ρmixV ◦

)
V

V ◦ (3.38)

N/C =
ρair

ρmix

(
V ◦

V
− 1

)
= n

(
V ◦

V
− 1

)
(3.39)

Because in this chapter we analyze only the data of partially filled tubes exhausting

into an inert gas environment at 1 atm, different density ratios n are obtained for a

given explosive mixture by changing the tamper type (i.e. helium, nitrogen, air, or

carbon dioxide). For the experimental data mentioned in §3.1, the relative density

ratios are approximately one (Table 3.2).

Explosive Inert gas n
C2H4-O2 Air 1.08
C2H2-O2 Air 1.06
C2H4-Air Air 1.00
C2H2-Air Air 1.00

H2-O2 He 3.00
H2-O2 Air 0.42

Table 3.2: Density ratios for several explosive-inert gas combinations currently inves-
tigated. All explosive and inert gases were considered to be at 1 atm, 300 K.

The mass-based Gurney model is plotted (Fig. 3.12) in terms of the equivalent

volumetric fill fraction for different values of n and compared to the initial results of

Fig. 3.1. Also shown are additional numerical (Sato et al., 2004) and experimental

(Kasahara, 2003) data that have recently become available. The scatter in the

experimental data, numerical data, and the predicted curves for different values of

n clearly shows that a correlation based on the volumetric fill fraction is only valid

for one specific explosive-inert gas combination. The original volumetric partial fill

correlation was primarily based on experimental data of ethylene-oxygen mixtures

exhausting into atmospheric air but some data used in the correlation were from

acetylene-oxygen mixtures exhausting into air. From Table 3.2, the two explosive-

inert combinations have a density ratio of 1.0 and so the dependence of the partial
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Figure 3.12: Specific impulse fraction versus fill fraction for all mixtures.

fill effect on the explosive-inert gas combination was not initially identified.

Instead of plotting in terms of a volume fraction, the same data of Fig. 3.12 is

plotted in Fig. 3.13 in terms of the mass fraction C/(N + C) using Eqs. 3.37-3.39

for the conversion. Also plotted is the Gurney model where now the curves for

different values of n collapse onto a single curve. The scatter in the experimental

data is reduced but not eliminated and all the data lie below the ideal curve of the

Gurney model. In the laboratory experiments, heat transfer to the tube walls and

other unsteady gas dynamic processes not accounted for in the Gurney model act to

reduce the impulse below the ideal case.

The Gurney model is a useful correlation but fails in the limit where the volumetric

fill fraction and the mass fraction approach zero. This deficiency is corrected in the

next section.
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Figure 3.13: Specific impulse fraction versus mass fraction

3.4 Gas dynamic effects

The previous models do not correctly predict the partial fill effect in the limit as

N/C → 0. The failure occurs because nonsteady gas dynamics and relative gas

compressibility dominate in this regime. Several previous studies have attempted to

modify the Gurney model to account for gas compressibility, but these have only been

applied to open sandwiches where the one-dimensional wave dynamics are solved for in

the high explosive. Jones et al. (1980) extended the initial work of Gurney to include

the product gas equation of state in the energy equation. An ordinary differential

equation for the plate motion could be derived and solved for the acceleration and

plate position over time. These results for an open sandwich configuration can be

compared to an exact analytical solution by Aziz et al. (1961). In his study, a block

of high explosive is bounded on one end by a plate. The detonation is initiated at

the other end. Aziz et al. (1961) analyzes the one-dimensional gas dynamics of the

detonation reflecting off of the explosive-plate interface assuming a product equation
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of state equal to E = Pv/(γ − 1) where an exact solution using the method of

characteristics is found for a γ of 3. A finite difference calculation is conducted for

other values of γ between 2.5-3.5. Comparison between the exact solution of Aziz et al.

(1961) and the simplified calculation of the Gurney model by Jones et al. (1980), both

for a product γ of 3, yield similar histories for the plate motion but a difference of

approximately 15% in the predicted terminal velocity. Jones et al. (1980) conclude

that, for the case of an open sandwich, the assumptions regarding the product gas

energy are at least as good as the Gurney model assumptions to obtain the terminal

velocity.

The conclusions of Aziz et al. (1961) are similar to the initial conclusions of Gurney

in that the plate motion does not depend strongly on the detonation parameters or

product gas gamma. The final plate velocity is found to depend almost entirely on

the initial chemical energy of the explosive and the ratio of explosive mass to plate

mass. Fickett (1987) rescaled the equations of Aziz et al. (1961) in order to determine

a simpler explicit solution for all values of gamma. He observed the same effect of

the detonation parameters, product gamma, and explosive mass to plate mass ratio.

A study by Duvall et al. (1969) analyzed a similar open sandwich, explosive-plate

configuration but in their case the plate to be driven was spaced an arbitrary distance

from the high explosive and was of variable size. The gas dynamics were analyzed

using the method of characteristics and the force on the plate was determined from a

simple drag formula. The terminal velocity of the plate was found to increase as the

acceleration parameter Q increased. When a rigid backing was applied to the side of

the explosive opposite of the plate, the terminal velocity of the plate increased over

the case with no backing on the explosive.

In the present application, it is more important to include the wave processes in the

tamper. We do that in the next section with the development of an analytical model of

an expanding bubble that highlights the effect of the tamper compressibility. Special

attention is paid to determining the specific impulse in the limit of zero explosive.
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3.4.1 Modeling a compressible tamper

To effectively model the situation of a partially filled detonation tube, the compress-

ibility of both the explosive products and tamper gas in an asymmetric sandwich

must be considered. To do this, we use a simplified analysis of the unsteady gas

dynamics in the explosive products and tamper gas. The goal of this model is to

predict the thrust surface pressure decay as a function of the product and inert gas

thermodynamic states.

Consider an infinitely long tube that is partially filled to a distance XCV from the

thrust surface with the initial explosive substance as illustrated in Fig. 3.14. This

Hot

Products

Inert Mixture

XCV

Figure 3.14: Schematic for analysis of an expanding “bubble” of hot products in an
infinite length tube.

situation models the limit of a nearly empty tube where the open end is far from

the mixture interface or equivalently, a very thin layer of explosive in a finite length

tube; N/C → ∞ in either case. This configuration eliminates the reflections from

the open end such that the dynamics of the expanding products are independent of

the events associated with the area change at the tube exit. We refer to this as the

“bubble” model in analogy to the one-dimensional models of gas bubbles in liquids

(Brennen, 1995, Shepherd, 1980), which are the inspiration for this approach. A

characteristic length scale is determined from the initial length XCV filled with the

explosive mixture. A characteristic time T is defined by scaling with the inert gas

sound speed c0.

T = XCV /c0 (3.40)

This can be used to define a non-dimensionalized time τ = t/T .

An additional simplification is to assume the combustion products are obtained

by constant volume combustion instead of a propagating detonation wave. If a deto-
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nation wave propagates through a closed volume, after multiple wave reflections the

products have no fluid motion and have thermal energy equal to that of constant vol-

ume combustion. This was verified with Amrita (Quirk, 1998) simulations carried out

by Wintenberger (2004). We apply this to our bubble situation assuming that mul-

tiple wave reflections have occurred, yielding constant volume combustion conditions

before significant motion of the contact surface begins. Thus, a large pressure differ-

ence ∆P between the combustion products and the inert gas mixture initially exists

and the product gas expansion can be written as a function of this initial pressure

difference as it decays in time.

P (τ) = ∆Pf(τ) (3.41)

Evaluating the impulse requires integrating the pressure decay over time

I = A

∫ ∞

0

P (t)dt = AT

∫ ∞

0

P (τ)dτ = AT∆PF (3.42)

where

F =

∫ ∞

o

f(τ)dτ . (3.43)

The specific impulse is determined by normalizing the impulse with the initial mass

of the combustible mixture.

Isp =
∆PF

gρCV c0

(3.44)

As long as P (t) decays faster than 1/t, the integrated pressure decay function F and

the specific impulse will be finite. If this is the case, then this model will enable us to

determine a finite value for impulse in the limit of zero fill fraction, unlike the results

of the Gurney model or the modified impulse model.

3.4.2 Analysis of expanding bubble with 1-D gas dynamics

The situation of an expanding “bubble” of products is analyzed in more detail with

one-dimensional nonsteady gas dynamics. The hot products just after constant vol-
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ume combustion are defined to be at pressure PCV , density ρCV , and have a specific

heat ratio of γCV . The inert gas initial conditions are pressure P0, density ρ0, and

specific heat ratio γ0. The initial position of the mixture interface is located a distance

XCV from the tube’s thrust surface which is located at X = 0.

As time increases, the hot products expand into the region previously filled with

the inert gases. This process is illustrated on the distance-time diagram of Fig. 3.15.

Acoustic waves are assumed to reverberate sufficiently rapidly between the solid thrust

x

t

Thrust

wall

Hot Products

contact 

surface

transmitted

shock

0 0
2

Inert Gas

C-

C+

Figure 3.15: Distance-time diagram for expanding hot products from constant volume
combustion in a partially filled tube.

surface and the contact surface, so that the pressure in the hot products is assumed

to be spatially uniform. After time t = 0, the hot products expand, transmitting

a shock wave into the inert mixture. The contact surface between the post-shock

inert gas and the hot products follows behind the shock wave, slowing down at a

faster rate than the shock decays. An expansion wave, centered at the initial location

of the mixture interface, propagates towards the thrust surface accelerating the hot

products away from the thrust surface. We assume that the transmitted shock is

weak so that the Riemann invariant remains constant on the C− characteristic from

the undisturbed inert mixture ahead of the shock to the contact surface behind the
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shock.

The speed of the propagating contact surface is related to the thermodynamic

state at the interface by the Riemann invariant J− on the C− characteristic.

u− 2c/(γ0 − 1) = −2c0/(γ0 − 1) (3.45)

Assuming a weak leading shock, we approximate the compression as isentropic in

order to relate the sound speed to the pressure at the interface.

P/P0 = (c/c0)
2γ0/(γ0−1) (3.46)

Substituting back into Eq. 3.45 results in an ordinary differential equation for the

contact surface position as a function of the hot gas pressure.

u =
dx

dt
=

2c0

γ0 − 1

[(
P/PCV

P0/PCV

)2γ0/(γ0−1)

− 1

]
(3.47)

To relate the time-varying pressure P at the contact surface to the initial pressure of

the expanding hot products PCV , we assume isentropic expansion of the hot products.

PxγCV = PCV XγCV

CV (3.48)

Substituting this into Eq. 3.47 for P/PCV results in a differential equation for the

instantaneous contact surface location x.

dx/dt = 2c0/(γ0 − 1)
[
(x/XCV )γCV (1−γ0)/2γ0 (PCV /P0)

(γ0−1)/2γ0 − 1
]

(3.49)

This equation is scaled based on the non-dimensional parameters X = x/XCV

and τ = c0t/XCV to obtain

dX/dτ = 2/(γ0 − 1)
[
X γCV (1−γ0)/2γ0 (PCV /P0)

(γ0−1)/2γ0 − 1
]

(3.50)

The solution τ(x) can be written in terms of an integration since the variables are
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separable.

τ =

∫ τ

0

dτ ′ = (γ0 − 1)/2

∫ X

1

dX ′

(X ′)γCV (1−γ0)/2γ0 (PCV /P0)
(γ0−1)/2γ0 − 1

(3.51)

Equation 3.51 was numerically integrated using Mathematica for all times until the

contact surface remains stationary. This is represented as a vertical line in the

distance-time plane. Sample contact surface trajectories are shown in Fig. 3.16 for

initial pressure ratios PCV /P0 of 13 and 25 between the hot products and inert gases.

Also investigated were variations in γCV . The γ0 in the inert gas was always assumed

to be that of air and equal to 1.4. A total of 36 cases were analyzed where γ was either

1.0, 1.1396, or 1.4 and the initial pressure ratios varied between 2 and 100. The

x / XCV

tc
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5 10 15 200
25
50
75
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325 PCV/P0 = 25, gammaCV = 1.0

PCV/P0 = 25, gammaCV = 1.1396
PCV/P0 = 25, gammaCV = 1.4
PCV/P0 = 13, gammaCV = 1.0
PCV/P0 = 13, gammaCV = 1.1396
PCV/P0 = 13, gammaCV = 1.4

Figure 3.16: Distance-time diagram illustrating contact surface trajectory of the
boundary between the expanding hot products and the inert gases.

pressure decay as a function of time plotted for the initial pressure ratios of 13 and

25 appear in Fig. 3.17 and were determined from Eq. 3.48 once the contact surface

trajectory is known.
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Figure 3.17: Pressure-time diagram illustrating pressure decay of hot products as a
function of initial pressure ratio and product gamma.

Integration of this pressure decay over time yields the predicted impulse.

I = PCV A

∫ ∞

0

(P/PCV − P0/PCV ) dt

=
PCV AXCV

c0

∫ ∞

0

(P/PCV − P0/PCV ) dτ (3.52)

Isp =
PCV

c0ρCV g

∫ ∞

0

(P/PCV − P0/PCV ) dτ (3.53)

The integral in Eq. 3.53,

F (∞) =

∫ ∞

0

(P/PCV − P0/PCV ) dτ (3.54)

is plotted as a function of the initial pressure ratio PCV /P0 for values between 1 and

100 and values of γCV of 1.0, 1.1396, and 1.4 in Fig. 3.18. In all cases, F (∞) is

finite. It is noted that Eq. 3.53 for the specific impulse has the same functional form
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Figure 3.18: Non-dimensional pressure integral as a function of the initial pressure
ratio and product gamma.

as the dimensional analysis result of Eq. 3.44 given earlier. Because of the sound

speed relation c2 = γP/ρ, the maximum specific impulse in the limit of an infinitely

long tube can be expressed in terms of the sound speed ratio between the products

and inert gases.

Isp =
cCV

c0

· cCV

g

1

γCV

F (∞) (3.55)

Increasing the tamper gas sound speed relative to the product gas sound speed

results in decreasing the maximum specific impulse because the pressure decays at a

faster rate. If the combustion products and tamper are initially at the same pressure

PCV = P0, then Eq. 3.55 can be written in terms of densities.

Isp =
ρ0

ρCV

· F (∞)

g

√
P0

γ0ρ0

(3.56)

Now, we see the same dependence on impulse due to the relative densities as in the
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Gurney model analysis where an increase in the density of the tamper results in

increasing the maximum specific impulse.

To determine the limiting specific impulse for an arbitrary explosive-inert combi-

nation, the relationship of Eq. 3.55 is used along with Fig. 3.18 for the non-dimensional

pressure integrals. The constant volume combustion parameters, cCV and γCV , for the

mixtures considered were calculated with Stanjan (Reynolds, 1986) and the results are

tabulated in Table 3.3. The predictions of the maximum specific impulse for a given

Explosive Inert gas cCV /c0 γCV PCV /P0 F (∞) Isp/I
◦
sp

C2H4-O2 Air 3.55 1.132 16.6 1.53 3.68
C2H2-O2 Air 3.63 1.144 17.0 1.49 3.65
C2H4-Air Air 2.78 1.163 9.34 1.36 2.73
C2H2-Air Air 2.83 1.155 9.71 1.37 2.77

H2-O2 Air 4.29 1.124 9.56 1.45 4.46

Table 3.3: Limiting fraction of specific impulse as the explosive mixture mass goes
to zero for partially filled tubes exhausting into 1 atm air. The explosive initial
conditions were pressure 100 kPa, 300 K. The inert gas was air at 1 atm, 300 K. The
predictions of Wintenberger et al. (2003) were used for the fully filled impulse value
I◦sp.

explosive-inert gas combination are plotted in Figs. 3.19-3.21 for ethylene-oxygen,

ethylene-air, and hydrogen-oxygen combustible mixtures with available experimen-

tal and numerical data. It should be noted that the maximum impulse predictions

from the “bubble” model are valid for the limit when C/(N + C) → 0. However,

in Figs. 3.19-3.21 the maximum impulse predictions are shown to span the range of

explosive mass fractions from zero until reaching the Gurney model predictions. This

method results in overestimating the impulse for a small range of mass fractions for

the mixtures investigated, as illustrated by comparisons with the numerical predic-

tions of Li and Kailasanath (2003) in Fig. 3.19. However, extending the range of

application for the “bubble” model predictions enables a prediction to be made for

all explosive mass fractions from zero to one.

These tabulated values of the maximum specific impulse are the limiting results

for the impulse when the effect of gas compressibility dominates. In the other regime,
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Figure 3.19: Comparison of “bubble” model predictions with the available experi-
mental and numerical data for ethylene-oxygen mixtures exhausting into air.

the momentum and energy conservation dominate and the Gurney model can be used

for estimates. There is some transition region at low mass fractions (and also low

fill fractions) where the impulse lies somewhere between the two cases. This can be

determined by full gas dynamic simulations or experiments.

3.5 Summary

This chapter has examined the issue of predicting the impulse of partially filled deto-

nation tubes with a constant cross-sectional area exhausting into 1 atm environments.

Using experimental and numerical data for tubes partially filled with a variety of fuel

and oxidizer combinations, the effect of partial filling can be correlated to the relative

densities of the explosive mixture and the inert mixture. Estimates of the impulse

imparted to the detonation tube as a function of the tube mass, explosive mass, and

inert gas mass were generated using the energy and momentum conservation and
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Figure 3.20: Comparison of “bubble” model predictions with the available experi-
mental and numerical data for acetylene-oxygen mixtures exhausting into air.

following the analysis of Gurney (1943). A unifying relationship exists between the

predictions of the Gurney model and the experimental data when plotted on a mass

basis. Different explosive and inert combinations can be represented by a single value

of the density ratio and for an arbitrary initial mass fraction within the tube, the

impulse can be predicted. This model successfully correlates data over a range of

explosive and inert gas mixtures. While we have currently only considered partially

filled tubes exhausting into atmospheric conditions, it is possible that the analysis

could be extended to treat higher or lower pressure environments.

The Gurney model does fail in the limit of zero explosive mixture, where the

nonsteady gas dynamics and the compressibility of the inert gas should be consid-

ered. An analytical model of an expanding “bubble” of products demonstrates that

the specific impulse reaches a limiting value for a range of product γ’s and initial

pressure ratios expected in detonation tubes. To accurately determine the maximum

specific impulse, this value would have to be numerically simulated or experimentally
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Figure 3.21: Comparison of “bubble” model predictions with the available experi-
mental and numerical data for hydrogen-oxygen mixtures exhausting into air.

measured under these conditions and will depend on the specific explosive-inert gas

combination. An upper bound to this value was predicted with the bubble analysis

for partially filled tubes exhausting into atmospheric air and matches very well with

the available experimental and numerical data.
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Chapter 4

Fully filled tubes at
sub-atmospheric conditions

4.1 Introduction

The impulse of a fully filled detonation tube exhausting into sub-atmospheric envi-

ronments is experimentally investigated. The tube was filled with a stoichiometric

mixture of ethylene-oxygen and no extension or nozzle was attached. These experi-

ments measured impulse as a function of environment pressure in order to establish

the baseline performance for the later purpose of quantifying the effect of nozzles.

Operation of a practical PDE is expected to extend over a range of altitudes

implying that the detonation products will exhaust into sub-atmospheric pressures.

Variations in pressure between 100 kPa and 1.4 kPa simulates altitudes from sea level

up to 29 km. Under these varying environment conditions, the nozzle is expected

to affect the detonation tube impulse but quantitative data are lacking. Historically,

single-cycle ballistic pendulum experiments have been instrumental in quantifying the

maximum impulse obtained for a specific operating condition which, until now, have

only investigated in-tube parameters such as the initial pressure, equivalence ratio and

diluent of the explosive mixture, internal obstacle configurations, and ignition sources.

We have carried out the first experimental study to measure single-cycle impulse as

a function of the environment pressure. This contribution to the PDE community

supplies critical data demonstrating the effect of the environment conditions on the
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impulse.

4.2 Modified impulse model

We return to our previous discussion of the modified impulse model in §3.3.2, now

considering cases where the tube is fully filled L = L0 and the initial mixture pressure

P1 does not equal the environment pressure P0. The idealized thrust surface pressure

history is illustrated in Fig. 4.1 and the impulse is determined by integrating the area

under the curve but the result differs from that of Eq. 3.14.

t1 t2 t3

tIgnition

P3

P1

P2

P

P0

Figure 4.1: Idealized thrust surface pressure history for tubes with P1 not equal to
P0.

To understand, we return to the control volume analysis from which the impulse

integral is derived and analyze it with regard to our laboratory experiments. We

consider the same control volume as before (Fig. 4.2) where a time varying pressure

P (t) is applied to one side of the thrust surface and the environment pressure P0

is applied to the other side. In the laboratory setup, a diaphragm is used to seal

the combustible mixture inside the tube. The control surface passes through this

diaphragm, which will have a pressure differential across it if P1 6= P0.

Before mixture ignition, the tube is not moving so the impulse must be zero.
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P1 P1P0 P0

Figure 4.2: Illustration of detonation tube control volume when the initial combustible
mixture is sealed inside the tube with a diaphragm at the open end.

Integration of the thrust surface pressure differential alone yields a non-zero impulse.

This discrepancy is because of the force provided by the diaphragm that must be

considered. When the diaphragm is present, it generates a force on the control volume

that is equal to the pressure differential acting across the thrust surface.

I = 0 =

∫
(P1 − P0)dt + FD ⇒ FD = −

∫
(P1 − P0)dt (4.1)

Even after mixture ignition, the force FD still acts on the control volume until the

detonation wave reaches the open end and bursts the diaphragm. The time t1 =

Reactants

Control Volume

Diaphragm

FD

P3 P1P0 P0Products

Detonation and TW

Figure 4.3: Illustration of detonation tube control volume when the initial combustible
mixture is sealed inside the tube with a diaphragm and the detonation wave has not
reached the open end.

L/UCJ corresponds to the time required by the detonation wave to travel through

the combustible mixture. So, the impulse integral from ignition at t = 0 to the time

when the diaphragm breaks is

It1 =

∫ t1

0

(P3 − P0)dt + FD =

∫ t1

0

(P3 − P1)dt (4.2)
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After time t1 and before the time t2, the thrust surface pressure history can be

integrated directly.

It1→t1+t2 =

∫ t1+t2

t1

(P3 − P0)dt = (P3 − P0)t2 (4.3)

The time t2 corresponds to the time for the reflected wave from the mixture interface

(also the open end of the tube) to reach the thrust surface and is scaled with a

non-dimensional parameter α as was done in §3.3.2.

t2 = αL/c3 (4.4)

The value of α depends only on the parameters behind the Taylor wave which are

not affected by changes in P0 (see §2.6.2) so the constant value of 1.1 (Wintenberger

et al., 2003) previously determined for a wide range of fuels and compositions is still

valid here.

After time t2 the rate of pressure decay at the thrust surface is determined by the

environment pressure and the relative sound speeds in the gases.

It1+t2→∞ =

∫ ∞

t1+t2

(P (t)− P0)dt (4.5)

As was previously done in the original impulse model, this pressure integral is non-

dimensionalized in terms of c3, P3 − P0, and the length L.

∫ ∞

t1+t2

(P (t)− P0)dt =
(P3 − P0)L

c3

∫ ∞

τ1+τ2

Π(τ)dτ (4.6)

The non-dimensional integral on the right-hand side of Eq. 4.6 depends on the other

non-dimensional parameters of the flow and is defined to equal βLP .

∫ ∞

t1+t2

(P (t)− P0)dt = (P3 − P0)βLP
L

c3

= (P3 − P0)t3 (4.7)

With the value of βLP , a characteristic time t3 is defined that represents the hatched
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region in Fig. 4.1. In §3.3.2 the pressure decay integral was assumed to have a

constant value of β = 0.53 (Wintenberger et al., 2003). As the environment pressure

decreases, the blow down time should increase. To account for this increase in time

t3, the corresponding values βLP , and KLP should also increase. Our experimental

data in this chapter shows this to be the case.

The components of the impulse integral, Eq. 4.2 from 0 < t < t1 and Eq. 4.3 from

t1 < t < t1 + t2 and Eq. 4.7 from t1 + t2 < t < t1 + t2 + t3, are summed to yield the

total impulse as a function of P3/P1 and P0/P1.

I =
V (P3 − P0)

UCJ

[
(P3 − P1)

(P3 − P0)
+ α

UCJ

c3

+ βLP
UCJ

c3

]
(4.8)

Here the volume V = AL is the tube volume filled with the combustible mixture.

The terms in the brackets of Eq. 4.8 are labeled as the model parameter KLP .

KLP =

[
(P3 − P1)

(P3 − P0)
+ α

UCJ

c3

+ βLP
UCJ

c3

]
(4.9)

The measured impulse values from Fig. 4.7 and 4.9 were used along with the measured

values of UCJ and P3 from Tables 2.8 and 2.9 to determine the relationship of KLP .

The values of KLP are plotted in Fig. 4.4 without error bars and in Fig. 4.5 with error

bars.

KLP =
IV UCJ

(P3 − P0)
(4.10)

Also plotted by the dotted curve is the previously documented constant value of

K = 4.3 determined by Wintenberger et al. (2003).

The scatter in the data of Figs. 4.4 and 4.5 correspond to the different diaphragm

thicknesses. The open symbols correspond to the 25 µm diaphragm, the solid black

symbols correspond to the 51 µm diaphragm, and the grey symbols correspond to

the 105 µm diaphragm. A curve fit through the data of Fig. 4.4(a) yields a relation-

ship between KLP and the pressure ratio P0/P1 which is plotted by the solid line.

Alternatively, a relationship between KLP and the pressure ratio P3/P0 is shown in
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Figure 4.4: Determination of model factor KLP as a function of (a) P0/P1 and (b)
P3/P0. Solid lines are the curve fit equations. Open symbols correspond to 25 µm di-
aphragm, solid black symbols correspond to 51 µm diaphragm, and solid grey symbols
correspond to 105 µm diaphragm.
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Figure 4.5: Determination of model factor KLP as a function of (a) P0/P1 and (b)
P3/P0 with error bars. Solid lines are the curve fit equations. Open symbols corre-
spond to 25 µm diaphragm, solid black symbols correspond to 51 µm diaphragm, and
solid grey symbols correspond to 105 µm diaphragm.
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Figs. 4.4(b) and 4.5(b).

KLP = 4.904 (P0/P1)
−0.017 (4.11)

KLP = 4.904 [(P3/P0)× (P1/P3)]
0.017 (4.12)

With Eq. 4.9, the value of βLP is calculated from the experimental data of KLP

and is plotted in Fig. 4.6 with the experimental data. By substituting this new

P3 / P0

β
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0.75
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1.25

1.5
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2

Figure 4.6: βLP as a function of P3/P0. Open symbols correspond to 25 µm di-
aphragm, solid black symbols correspond to 51 µm diaphragm, and solid grey symbols
correspond to 105 µm diaphragm.

relationship for βLP into the impulse model of Eq. 4.8 the mixture-based specific

impulse is determined in the usual fashion.

Isp =
I

V ρ1g
=

(P3 − P0)

ρ1gUCJ

[
(P3 − P1)

(P3 − P0)
+ α

UCJ

c3

+ βLP
UCJ

c3

]
(4.13)
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4.3 Experimental data

The detonation tube without a nozzle was hung in a ballistic pendulum arrangement

within Facility II (§2.4). The initial combustible mixture pressure P1 was varied

between 100 kPa and 30 kPa. The environment pressure P0 outside the tube varied

between 100 kPa and 1.4 kPa. Mylar diaphragms with thicknesses of 25, 51, and

105 µm were used to separate the initial combustible mixture from the surrounding

air in the tank.

4.3.1 Specific impulse versus P1

4.3.1.1 Data obtained with 25 and 51 µm diaphragms

Impulse data obtained with the 25 and 51 µm thick diaphragms are plotted in Fig. 4.7

as a function of P1. Appearing in the figure is a series of data obtained at an environ-

ment pressure of 100 kPa. This data are comparable to previous experimental data

(Cooper et al., 2002) obtained from the same detonation tube in Facility I (§2.3).

Two additional series of data are shown for environment pressures of 54.5 kPa and

16.5 kPa. The lines are polynomial curve fits to the data at each environment pres-

sure.

At an environment pressure of 100 kPa, the specific impulse decreases as the

initial mixture pressure decreases. This trend is well-known (Cooper et al., 2002,

Wintenberger et al., 2003) and can be attributed to the increasing importance of

dissociation as the initial pressure decreases. Experimental pressure traces are plotted

in Fig. 4.8 to illustrate the effect of the initial pressure on the DDT process.

As stated in the experimental setup, all mixtures were ignited by a spark with a

discharge energy (30 mJ) less than the critical energy required for direct initiation of a

detonation (approximately 56 kJ for ethylene-air mixtures (Shepherd and Kaneshige,

1997, rev. 2001) at 100 kPa). Thus, detonations were obtained only by transition

from an initial deflagration. The presence of a deflagration is denoted by a gradual

rise in the pressure histories as the unburned gas ahead of the flame is compressed due
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Figure 4.7: Specific impulse data in tubes with a 25 (solid symbols) or 51 µm (open
symbols) thick diaphragm. The initial mixture pressure varied between 100 and
30 kPa and the environment pressure was 100 kPa, 54.5 kPa, or 16.5 kPa.

to the expansion of the burned gases behind the flame. If the correct conditions exist,

this initial deflagration can transition to a detonation wave. Otherwise, transition

will not occur and the deflagration wave will travel the entire length of the tube.

An abrupt pressure jump (∆P > 2 MPa for hydrocarbon fuels) is indicative of this

transition which can be quantified in terms of both the DDT time (from spark firing)

and DDT distance (axial distance from ignition source location) required for the event

to occur.

Previous studies (Cooper et al., 2002) have quantified DDT times and distances

with experiments varying the initial mixture and internal obstacles within the tube.

Several combustion regimes including the DDT process were identified. As in the

previous work (Cooper et al., 2002), the pressure transducers were protected by a

layer of thermally-insulating vacuum grease. While this delays the onset of heating of

the gauge surface, our experience is that eventually thermal artifacts will be produced



98

Time (ms)

Pr
es

su
re

(M
Pa

),
D

is
ta

nc
e

(d
m

)

0 1 2 3 4 5 6-2

0

2

4

6

8

10

12

14

16 Shot 4
No Extension
P1 = 60 kPa
P0 = 100 kPa
25 um diaphragm

Time (ms)

Pr
es

su
re

(M
Pa

),
D

is
ta

nc
e

(d
m

)

0 1 2 3 4 5 6-2

0

2

4

6

8

10

12

14

16 Shot 9
No Extension
P1 = 100 kPa
P0 = 100 kPa
25 um diaphragm

(a) (b)

Time (ms)

Pr
es

su
re

(M
Pa

),
D

is
ta

nc
e

(d
m

)

0 1 2 3 4 5 6-2

0

2

4

6

8

10

12

14

16 Shot 7
No Extension
P1 = 30 kPa
P0 = 100 kPa
25 um diaphragm

Time (ms)

Pr
es

su
re

(M
Pa

),
D

is
ta

nc
e

(d
m

)

0 1 2 3 4 5 6-2

0

2

4

6

8

10

12

14

16 Shot 6
No Extension
P1 = 20 kPa
P0 = 100 kPa
25 um diaphragm

(c) (d)

Figure 4.8: Experimental pressure traces illustrating different regimes of (a) and (b)
fast DDT, (c) slow DDT, and (d) fast flames.

in the signal. Although we have not quantified this for the present experiments, the

pressure signals are reproducible and physically reasonable.

These different combustion regimes are categorized as fast transition to detonation

(Fig. 4.8a, b), slow transition to detonation (Fig. 4.8c), and fast flames (Fig. 4.8d).

Figures 4.8(a, b) illustrate the case of fast transition to detonation, defined by an

abrupt pressure increase before the first pressure transducer along the tube axis and

the low DDT time. Figure 4.8(c) illustrates a slow transition to detonation case.

An accelerating flame produces a gradual increase in pressure with time at the first

pressure transducers, and transition to a detonation occurs before the second pressure
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transducer. In this case, the transition occurs late in the tube resulting in a longer

DDT time. Figure 4.8(d) illustrates the case of a fast flame. The flame speed is fast

enough to create significant compression waves. Transition does occur, only in the

last 10 cm of the tube after the last pressure transducer.

For cases when transition to detonation did occur, the slope of the ionization gauge

data in Fig. 4.8 equals the Chapman-Jouguet detonation velocity, UCJ . When the

detonation wave passes by the location of each individual ionization gauge, the time

is recorded and plotted as a black square. This method illustrates the combustion

wave trajectory over time for cases of slow acceleration in Fig. 4.8(d) and prompt

transition to a detonation in Figs. 4.8(a, b). The relative ability of the mixture

to transition to detonation can be related to (Dorofeev et al., 2000, 2001) mixture

properties such as the detonation cell size, expansion ratio, and deflagration speed.

Necessary conditions for DDT are that the cell width be smaller than a specified

fraction of the tube or obstacle dimensions, the expansion ratio (ratio of burned to

unburned gas volume) must be larger than a minimum value, and that the deflagration

speed exceeds a minimum threshold. For cases of an unobstructed straight tube,

transition to detonation is possible only if the detonation cell width is smaller than

the tube diameter. We observed DDT in our unobstructed tube for mixtures with

initial pressures between 30 and 100 kPa. Since cell size increases with decreasing

initial pressure, the largest cell size was about 0.5 mm (Shepherd and Kaneshige,

1997, rev. 2001) corresponding to ethylene-oxygen at 30 kPa. Because the purpose

of this study was not to investigate DDT phenomena, all the tests were carried out

with values of P1 greater than and equal to 60 kPa where transition to a detonation

occurred within the first 4 cm of the tube. The reader is referred to the work of

Dorofeev et al. (2000, 2001) and Lindstedt and Michels (1989) for investigations of

the DDT process in tubes.

Impulse data does not appear in Fig. 4.7 for initial mixture pressures below 60 kPa

at an environment pressure of 16.5 kPa due to poor experimental repeatability. At

the lower initial mixture pressures, transition to detonation occurs later in the tube

after a period of flame acceleration and the leading compression waves cause the
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diaphragm to rupture, spilling some of the unburned mixture outside of the tube.

This effect has been previously observed (Cooper et al., 2002) for initial pressures

below 30 kPa, but here we observed this effect for initial pressures below 60 kPa

when the environment pressure was reduced. In an effort to prevent early diaphragm

rupture as the environment pressure is reduced further, a thicker diaphragm of 105 µm

was used.

4.3.1.2 Data obtained with 105 µm diaphragms

Impulse data obtained in tubes sealed with a 105 µm thick diaphragm as a function

of the initial mixture pressure appear in Fig. 4.9. The data at P1 = 100 kPa with a
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Figure 4.9: Specific impulse data in tubes with a 105 µm diaphragm as a function
of the initial mixture pressure. Data is plotted for environment pressures between
100 kPa and 1.4 kPa.

105 µm thick diaphragm does not follow the same trend as shown in Fig. 4.7. This

is due to the thicker diaphragm which does not break quickly when the environment

pressure is not low. The additional time required by the combustion wave to rupture
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the diaphragm results in an energy loss due to heat transfer to the tube walls affecting

the shot-to-shot repeatability. Evidence of diaphragm melting was observed after the

experiments at P0 = 100 kPa by examining the remaining diaphragm material that

did not get destroyed by the detonation wave but appeared to be melted at the edges.

At the lower environment pressures, evidence of diaphragm melting disappeared and

repeated shots generated impulse values within the range of experimental uncertainty.

4.3.2 Specific impulse versus P0

The impulse data at initial pressures of 100, 80, and 60 kPa in Figs. 4.7 and 4.9 is

plotted in Fig. 4.10-4.12 as a function of the environment pressure. For each initial

pressure, the impulse increases as the environment pressure decreases. Also plotted

are the model predictions of Eq. 3.14 with a constant value of β = 0.53 as predicted

by Wintenberger et al. (2003). From Eq. 4.8, the specific impulse can be written as

Isp =
1

ρ1gUCJ

[
(P3 − P1) +

UCJ

c3

(α + β)(P3 − P0)

]
(4.14)

A constant β implies that Isp varies linearly with P0 for a fixed P3 and P1. This is

what is being tested by plotting the model with a new, constant value of β to match

the experimental data at P0 = 100 kPa. The values of β to match the experimental

data are 0.73 for P1 = 100 kPa, 0.70 for P1 = 80 kPa, and 0.66 for P1 = 60 kPa. The

experimental data clearly shows an increase in the specific impulse greater than what

is predicted if the blow down time t3 or equivalent β is kept constant. The experi-

mental data is predicted if a variable βLP is used in the model. Sample experimental

pressure traces appear in Fig. 4.13 for environment pressures of 100 kPa and 1.4 kPa

but differences are difficult to distinguish.
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Figure 4.10: Specific impulse data as a function of P0 for an initial mixture pressure
of 100 kPa.

4.4 Non-dimensionalized impulse data

A non-dimensionalization of the experimental data arises from the key relationship

of the impulse model (Eq. 4.8).

IV = KLP (P1/UCJ) [(P3/P2)(P2/P1)− P0/P1] (4.15)

where the non-dimensional group IV UCJ/P1 appears. The ratio P3/P2 has been shown

to have an average value of 0.35 for a wide range of compositions and initial condi-

tions (Wintenberger et al., 2003). The Chapman-Jouguet pressure ratio P2/P1 and

detonation velocity UCJ depend on the initial mixture parameters (Table 4.1). This

scaling results in a single relationship plotted as a function of the pressure ratio P0/P1

in Fig. 4.14.

All data of Figs. 4.7 and 4.9 are shown in Fig. 4.14 and the scatter in the data

is due to the different diaphragm thicknesses. Alternatively to Eq. 4.15, the impulse
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Figure 4.11: Specific impulse data as a function of P0 for an initial mixture pressure
of 80 kPa.

can be written as

I = K (V P1/UCJ) [(P3/P0)(P0/P1)− P0/P1]

= K (V P1/UCJ) (P0/P1) [(P3/P0)− 1] (4.16)

where the non-dimensional group IV UCJ/P1 again appears along with an important

P1 P3 from P2 P3/P2 P2/P1

(kPa) Model (MPa) Stanjan (MPa)
100 1.222 3.327 0.367 3.327
80 0.970 2.640 0.367 4.159
60 0.720 1.959 0.368 3.265
40 0.472 1.286 0.367 3.215
20 0.23 0.626 0.367 3.13

Table 4.1: Pressure ratios of P3/P2 and P2/P1 for ethylene-oxygen mixtures tabulated
for different initial pressures. Values of P3 are from the original impulse model of
Wintenberger et al. (2003).
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Figure 4.12: Specific impulse data as a function of P0 for an initial mixture pressure
of 60 kPa.
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Figure 4.13: Experimental pressure traces obtained in a tube with a 105 µm di-
aphragm and at environment pressures of (a) 100 kPa and (b) 1.4 kPa.
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Figure 4.14: Non-dimensionalized impulse data plotted as a function of P0/P1. Data
correspond to initial mixture pressures between 100 and 30 kPa, environment pres-
sures between 100 kPa and 1.4 kPa, and diaphragm thickness of 25 (open symbols),
51 (solid black symbols), and 105 µm (solid grey symbols).

pressure ratio P3/P0. We replot the data of Fig. 4.14 as a function of P3/P0 in

Fig. 4.15. Also plotted in this figure are numerical simulations performed using AM-

RITA (Quirk, 1998). The simulation solved the nonreactive Euler equations using a

Kappa-MUSCL-HLLE solver in the two-dimensional (cylindrical symmetry) compu-

tational domain, consisting of a tube of length L closed at the left end and open to a

half-space at the right end. The Taylor wave similarity solution (Fickett and Davis,

1979) was used as an initial condition, assuming the detonation has just reached the

open end of the tube when the simulation is started. This solution was calculated

using a one-γ model for detonations (Fickett and Davis, 1979) for a non-dimensional

energy release q/RT1 = 112 across the detonation and γ = 1.1396 for the reactants

and products. This value of the non-dimensional energy release was chosen to match

the plateau pressure P3 measured in the experiments, however this resulted in a cal-
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culated CJ velocity of approximately 12% greater than the measured values.
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Figure 4.15: Non-dimensionalized impulse data plotted as a function of P3/P0. Data
correspond to initial mixture pressures between 100 and 30 kPa, environment pres-
sures between 100 kPa and 1.4 kPa, and diaphragm thickness of 25 (open symbols),
51 (solid black symbols), and 105 µm (solid grey symbols).

The difference between the model curve and the AMRITA predictions does not

exceed 8% over the range of P3/P0 tested. The AMRITA simulations do exhibit a

greater increase in impulse for a given increase in the pressure ratio and this can be

attributed to the fact that a single value for γ is used for both the products and

environment gases in the simulations. In reality, the inert gas has a γ equal to 1.4

whereas the detonation products have a γ equal to 1.1396. The previously discussed

“bubble” model shows that at large pressure ratios, the effect of the inert gas γ can

have in some cases a significant effect on the normalized pressure integration. While

we do not expect this effect to significantly affect a fully filled tube because of the sonic

outflow condition at the open end, the experiments are not accurately represented by

the simulations using the one-γ detonation model.
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Plotting the non-dimensional impulse data as a function of the pressure ratio

P3/P0 more clearly shows the effect of environment pressure. In Fig. 4.14, it is

difficult to distinguish the individual data points at pressure ratios P0/P1 < 0.5.

With our intention of studying the effect of nozzles on detonation tubes, we compare

the pressure ratio P3/P0 in a detonation tube to the pressure ratio Pi/Px across a

steady flow nozzle. For a lack of any other comparison of nozzle performance for

unsteady devices, we propose a comparison between the detonation tube impulse and

the impulse obtained from at theoretical, ideal steady flow rocket engine with an ideal

nozzle. This ideal impulse of Fig. 1.6 is plotted with the experimental data from the

plain detonation tube in Fig. 4.16 for two values of Φ. For Φ = 152, the nozzle inlet

conditions are representative of state 3 in the detonation tube for an initial pressure of

80 kPa. As the pressure ratio across the nozzle increases, the difference between the

experimental data and the ideal steady flow impulse curve increase indicating the lack

of full product gas expansion to the lower environment pressures. This experimental

data of a detonation tube at different environment pressures serves as a baseline from

which the effect of adding a nozzle can be quantified.

4.5 Summary

This study obtained the first experimental data quantifying the effect of environment

pressure on the single-cycle impulse of a fully filled detonation tube. The data was

obtained for stoichiometric mixtures of ethylene-oxygen at initial pressures between

100 and 30 kPa and environment pressures between 100 kPa and 1.4 kPa. The specific

impulse increased as the environment pressure decreased at a constant initial mixture

pressure. This increase in impulse was not predicted by the original impulse model

(Wintenberger et al., 2003) which used a constant value of K and β. At the lowest

environment pressures, the increased time required to blow down the tube caused

the impulse to increase approximately 11% greater than the predictions. New model

parameters KLP and βLP were defined to be functions of the environment pressure and

were determined from the experimental data. The pressure ratio P3/P0, if compared
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Figure 4.16: Specific impulse data plotted as a function of P3/P0. Data correspond
to initial mixture pressures between 100 and 30 kPa, environment pressures between
100 kPa and 1.4 kPa, and diaphragm thickness of 25 (open symbols), 51 (solid black
symbols), and 105 µm (solid grey symbols). Thin solid curves corresponds to ideal
impulse from a steady flow nozzle for values of Φ = 129 and 152. Thick solid curve
corresponds to the model predictions with variable βLP .

to the nozzle pressure ratio in the steady flow case, enables a direct comparison

between the detonation tube impulse data and the theoretical ideal maximum impulse

based on isentropic, steady-flow expansion. These results indicate the detonation

products are underexpanded, motivating further research into the effect of nozzles,

which is the subject of the next chapter.
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Chapter 5

Variable-area nozzles

5.1 Introduction

The previous chapter presented single-cycle impulse data from fully filled detonation

tubes exhausting into sub-atmospheric environments. Comparisons of the data to

the steady flow impulse predictions based on isentropic expansion showed that the

products exhausting from a straight tube are underexpanded. In an effort to promote

additional gas expansion and hopefully recover some of the lost energy, experiments

with nozzles were carried out. Each nozzle was attached to the end of the deto-

nation tube which was hung in a ballistic pendulum arrangement within Facility II

(described in §2.4). A Mylar diaphragm separated the combustible mixture inside

the tube from the environment air in the nozzle. The tested nozzles included conical

converging nozzles, conical diverging nozzles, and conical converging-diverging noz-

zles. A straight extension, categorized as a “diverging” nozzle with a 0◦ half angle,

was also tested.

Previous experimental and numerical studies have investigated nozzles on deto-

nation tubes. The first study was carried out by Cambier and Tegner (1998) who

numerically studied contoured diverging nozzles on detonation tubes. The effect on

the impulse was quantified in hydrogen-oxygen mixtures at 1 atm and 350 K. Ei-

delman and Yang (1998) carried out a numerical calculations to study the effect of

converging and diverging nozzles on tubes with a 6 cm inner diameter and a length

of 15 cm in acetylene-air mixtures at 1 atm pressure. The nozzles contained air at
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standard conditions. The converging nozzles were found to cause multiple shock re-

flections and longer blow down times. A relatively long converging nozzle with a

small half angle increased the impulse over the baseline case of a plain tube, but

this is most likely due to the partial fill effect. Very short converging nozzles showed

no significant increase in impulse. Two conical diverging nozzles and a bell shaped

nozzle with an area ratio of 5, designed for full expansion to atmospheric conditions,

were examined. However, the flow overexpanded in the nozzle decreasing the impulse

below the ideal value.

Yang et al. (2001) carried out numerical calculations studying the impulse for

a converging, diverging, and plug nozzle in hydrogen-air mixtures at 0.29 atm and

228 K. The nozzle contained air at the same conditions. The conical converging and

diverging nozzles had 10◦ half angles and area ratios of Aexit/Atube of 1.25 and 0.75,

respectively. They observed a limited performance gain with the diverging nozzle

over the case of a straight extension.

Guzik et al. (2002) carried out a numerical study using the method of characteris-

tics to solve the flow field within a detonation tube containing a fixed area nozzle and

a variable area nozzle. They assume the detonation products for the propane-oxygen

mixture, initially at 1 atm and 295 K, are frozen at the CJ equilibrium conditions.

The variable area nozzle was a diverging nozzle with “flexible” cross section in order

to fully expand the flow. The fixed area nozzle had an exit area equal to the tube

cross-sectional area and a converging-diverging throat section. For a detonation initi-

ated at the thrust surface, they found that the optimum area ratio Athroat/Atube was

0.54. The throat restriction was observed to delay the time at which the maximum

impulse was observed over that of the plain tube. They concluded that a variable

nozzle can always be added to extract more thrust.

Morris (2004) carried out a numerical investigation using a quasi-one-dimensional,

finite-rate chemistry computational fluid dynamics model for pulse detonation rocket

engines in hydrogen-oxygen mixtures. Four different geometries were analyzed in-

cluding a plain detonation tube, a straight extension, and two converging-diverging

nozzles with different throat restrictions and 15◦ half angles for the converging and
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diverging sections. The converging-diverging nozzles were found to always be more

effective than at straight extension at increasing the impulse for initial pressure ratios

P1/P0 between 10 and 1000. This is contrary to the findings of this study.

Cooper et al. (2002) previously carried out an experimental investigation measur-

ing impulse from a 1 m long detonation tube exhausting into atmospheric air with

a conical diverging nozzle. The nozzle had a length of 0.3 m and an 8◦ half angle.

The impulse measurements were obtained in ethylene-oxygen mixtures at 100 kPa

initial pressure with different nitrogen dilutions. A ballistic pendulum arrangement

was used and the tube contained internal obstacles to promote DDT in the diluted

mixtures. A constant increase in impulse of approximately 1% over the plain tube

case was observed for nitrogen dilutions between 0% and 40%.

Falempin et al. (2001) experimentally investigated the effect of diverging nozzles on

impulse with a ballistic pendulum arrangement in ethylene-oxygen mixtures. They

tested conical diverging nozzles, bell shaped nozzles, and straight extensions. The

nozzles contained air at ambient conditions and they attributed the measured increase

in impulse primarily due to the partial fill effect.

Additional studies have investigated the effect of ejectors on performance (Allgood

and Gutmark, 2002, Allgood et al., 2004). Allgood and Gutmark (2002) carried

out two-dimensional, reactive numerical calculations of ejectors on detonation tubes

predicting the thrust as a function of the ejector dimensions. Allgood et al. (2004)

carried out an experimental study using a high-speed shadowgraph imaging system

to visualize the flow from their two-dimensional ejector. No experimental thrust

measurements were obtained for the different ejector configurations in the later work

of Allgood et al. (2004). Ejectors are designed to entrain additional environment air

into the flow to increase the exhaust gas momentum and the thrust. While the use of

ejectors attached to the end of detonation tubes is an interesting problem, it is out

of the scope of this work.

The behavior of detonations propagating through variable area geometries has

also been investigated. In particular, Tzuk et al. (1993) and Grigor’ev (1996) have

experimentally studied the expansion of detonation products through diverging noz-
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zles that were seeded with particles in order to visualize the flow. They both observed

an increase in particle velocities as the flow expanded through the diverging nozzle.

As in our experiments, the combustible mixture in their experiments did not fill the

nozzle, however they did not measure thrust. An experimental study carried out by

Thomas and Williams (2002) investigated the behavior of a detonation wave in two-

dimensional curved channels and diverging nozzles. The channels and nozzles were

completely filled with the combustible mixture and sooted foils were used to record

the detonation behavior as the geometry changed. Akbar et al. (1995) studied the

propagation of detonations through converging channels and extended Whitham’s

method of shock dynamics to the detonation case in order to design the channel. In

the work of Thomas and Williams (2002) and Akbar et al. (1995), there was no effort

to measure impulse.

While the studies of Cambier and Tegner (1998), Eidelman and Yang (1998),

Yang et al. (2001), Guzik et al. (2002), Morris (2004), Cooper et al. (2002), and

Falempin et al. (2001) have studied nozzles on detonation tubes, this experimental

data is the first to take a systematic look at the effect of nozzles on impulse under

varying environment pressures. With the nozzles tested here, the effect of divergence

angle, volumetric fill fraction, and nozzle length are investigated.

5.2 Experimental data

The next sections present the experimental impulse data obtained with the converg-

ing, diverging nozzles, and converging-diverging nozzles. A brief description of each

nozzle is also included. Each nozzle was attached to the detonation tube and the

impulse was measured as the environment pressure varied between 100 and 1.4 kPa.

The combustible mixture was stoichiometric ethylene-oxygen at an initial pressure

of 80 kPa and the thickest diaphragm of 105 µm was used to improve experimental

repeatability at low environment pressures. The results for the are presented in the

following sections.
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5.2.1 Converging nozzles

Two converging nozzles were tested to determine their effect on impulse as the en-

vironment pressure was varied between 100 kPa and 1.4 kPa. An illustration of the

detonation tube with a converging nozzle appears in Fig. 5.1. The nozzle described

as “Noz-0.50” had an area ratio At/A = 0.50 and the nozzle described as “Noz-0.75”

had an area ratio At/A = 0.75. Additional nozzle details appear in Table 2.1. The

measured impulse data is presented in Fig. 5.2.

Tube

Thrust surface
Converging nozzle

A At

Diaphragm

Figure 5.1: Illustration of a converging nozzle on the detonation tube.

The effect of the converging nozzles on impulse is modest. The relatively short

length of the nozzles as compared to the length of the detonation tube L/L0 = 0.9

results in volumetric fill fractions for both nozzles of 0.96. The nozzle with the largest

exit area (Noz-0.75) is observed to increase the impulse 2.3% at 100 kPa environment

pressure over the plain tube case. For this volume ratio, the partial fill model predicts

an increase of 2%. The impulse from the nozzle with the smallest exit area (Noz-0.75)

is observed to slightly decrease below the plain tube case at 100 kPa environment

pressure. This is due to the pressure acting on the internal surface of the nozzle

generating a pressure force in the direction opposite of that generated by the pressure

force across the thrust surface. These results are in agreement with other studies on

short converging nozzles (Eidelman and Yang, 1998, Yang et al., 2001).

As the environment pressure is decreased, the tamper mass in the nozzle goes to

zero and the partial fill effect is eliminated. The impulse is observed to increase for

both nozzles over the plain tube case and this can be attributed to the quasi-steady

flow through the restriction that delays the rate of pressure decrease at the thrust
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Figure 5.2: Specific impulse for the converging nozzles as a function of the environ-
ment pressure. Data for the tube without a nozzle is also plotted along with the
modified impulse model (Eq. 4.13).

surface. Thrust surface pressure histories from the plain tube and the nozzle with the

smallest exit area (Noz-0.50) are plotted in Fig. 5.3 for environment pressures of (a)

100 kPa and (b) 1.4 kPa. Multiple wave reflections due to the convergent geometry

of the nozzle are observed during the pressure decay process.

5.2.2 Diverging nozzles

Three conical diverging nozzles and the straight extension were added to the deto-

nation tube and their effect on the impulse was measured for environment pressures

between 100 kPa and 1.4 kPa. An illustration of the detonation tube with a diverging

nozzle appears in Fig. 5.4. The nozzles had half angles φ ranging from 0 to 12 and

lengths of 0.3 m and 0.6 m (Table 2.2). Over the range of tested environment pres-

sures, the addition of a diverging nozzle always increased the specific impulse over

the case of a plain tube. The effect of each nozzle on the impulse is discussed in the
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Figure 5.3: Thrust surface pressure histories for the plain tube and the converging
nozzle with an area ratio At/A = 0.50 at an environment pressure of (a) 100 kPa and
(b) 1.4 kPa.

following sections.

Tube

Thrust surface
Diverging nozzle

A Ax

φ

Diaphragm

Figure 5.4: Illustration of the detonation tube with a diverging nozzle.

5.2.2.1 0◦-0.6 m nozzle

The impulse obtained with the straight extension (characterized as a diverging nozzle

with a 0◦ half angle) is plotted as a function of the environment pressure in Fig. 5.5.

The percent increases in the specific impulse Isp over the case of a tube without nozzle

I0
sp at each environment pressure are tabulated in Table 5.1.

At 100 kPa, the largest increase in specific impulse over the plain tube case is

observed. This can be attributed to the partial fill effect and the presence of the
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Figure 5.5: Specific impulse for the 0◦-0.6 m nozzle as a function of the environment
pressure. Data for the tube without a nozzle is also plotted along with the modified
impulse model (Eq. 4.13).

P0 Tamper Mass Mass Fraction ∆Isp/I
0
sp Measured

(kPa) Ratio N/C C/(N + C) From Fig. 5.5(%)
100 0.73 0.58 26
54 .5 0.39 0.72 16
16.5 0.12 0.89 10
5.2 0.04 0.96 9
1.4 0.01 0.99 13

Table 5.1: Percent increases in specific impulse for the 0◦-0.6 m nozzle.

tamper that is exhausted from the tube in addition to the detonation products. As

the environment pressure decreases, a corresponding decrease in the tamper mass

results and the impulse decreases as predicted by the partial fill model. For the lowest

environment pressure P0 = 1.4 kPa, the tamper mass has gone to zero (C/(N +C)→

1). In this case, the increase in impulse does not go to zero but instead increases by

13% over the case of a plain tube. Now, the extension acts to confine the exhaust

flow and slow the rate of pressure decrease at the thrust surface.
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Figure 5.6: Pressure traces obtained with the 0◦-0.6 m nozzle for P0 equal to (a)
100 kPa and (b) 1.4 kPa.

Figure 5.6 plots the experimental pressure traces along the tube length at an

environment pressure of 100 kPa and 1.4 kPa. Differences in the traces are difficult

to distinguish unless the two thrust surface pressure histories are superimposed as

in Fig. 5.7. In Fig. 5.7, a faster pressure decay from the P3 value is observed at the

lower environment pressure of 1.4 kPa than at 100 kPa. Additionally, the pressures

are observed to reach different limiting values at large times, greater than 10 ms, due

to the different environment pressures.

5.2.2.2 8◦-0.3 m nozzle

The impulse obtained with the 8◦-0.3 m diverging nozzle is plotted as a function of

the environment pressure in Fig. 5.8. The percent increases in the impulse over the

case of a tube without nozzle are tabulated at each environment pressure in Table 5.2.

Although this nozzle has half the length of the straight extension, it has a similar

mass fraction at an environment pressure of 100 kPa. While the partial fill model

predicts that the same impulse should result from the two nozzles, only a 6.4% in-

crease in impulse is observed with the 8◦-0.3 m nozzle whereas the straight extension

observed a 26% increase. This illustrates that the partial fill effect is more efficient at
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Figure 5.7: Thrust surface pressure history obtained with the 0◦-0.6 m nozzle for P0

equal to 100 kPa and 1.4 kPa.

increasing the impulse in one-dimensional geometries than two-dimensional geome-

tries. Unlike the straight extension, the impulse of the 8◦-0.3 m nozzle increases as

P0 decreases. At P0 = 1.4 kPa, the impulse increases 29% over the plain tube and

16% over the straight extension.

P0 Tamper Mass Mass Fraction ∆Isp/I
0
sp Measured

(kPa) Ratio N/C C/(N + C) From Fig. 5.8(%)
100 0.65 0.61 6.4
54.5 0.41 0.71 10
16.5 0.13 0.89 19.8
5.2 0.038 0.96 25
1.4 0.016 0.99 29

Table 5.2: Percent increases in specific impulse for the 8◦-0.3 m nozzle.
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Figure 5.8: Specific impulse for the 8◦-0.3 m nozzle as a function of the environment
pressure. Data for the tube without a nozzle is also plotted along with the modified
impulse model (Eq. 4.13).

5.2.2.3 12◦-0.3 m nozzle

The impulse obtained with the 12◦-0.3 m diverging nozzle is plotted as a function of

the environment pressure in Fig. 5.9. The percent increases in the impulse over the

case of a tube without nozzle are tabulated at each environment pressure in Table 5.3.

P0 Tamper Mass Mass Fraction ∆Isp/I
0
sp Measured

(kPa) Ratio N/C C/(N + C) From Fig. 5.9(%)
100 1.17 0.46 26
54.5 0.63 0.61 22
16.5 0.20 0.83 28
5.2 0.058 0.94 31
1.4 0.016 0.98 36

Table 5.3: Percent increases in specific impulse for the 12◦-0.3 m nozzle.

The impulse with the 12◦-0.3 m nozzle remains constant as the environment pres-
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Figure 5.9: Specific impulse for the 12◦-0.3 m nozzle as a function of the environment
pressure. Data for the tube without a nozzle is also plotted along with the modified
impulse model (Eq. 4.13).

sure decreases from 100 kPa to 54 kPa. As previously observed with the straight

extension, the impulse is affected by the tamper mass contained in the nozzle. As

the environment pressure decreases, the tamper mass N decreases and does so at a

faster rate the larger the nozzle volume.

∆N =
∆P0V

RT0

(5.1)

Thus, for a given decrease in the environment pressure P0, the change in the tamper

mass is greater for the larger nozzle volume. When the environment pressure has

decreased sufficiently and the tamper is small, quasi-steady flow exists in the nozzle. It

is the competition between these two effects that ultimately determine the impulse. In

the case of the 12◦-0.3 m nozzle, as the environment pressure decreases from 100 kPa

to 54 kPa these two effects are balanced and no net change in the measured specific

impulse is observed.
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As the environment pressure decreases below 54 kPa, the tamper mass is suffi-

ciently low and the effect of quasi-steady flow within the nozzle acts to increase in

the impulse over the case of the plain tube. At the lowest environment pressure of

P0 = 1.4 kPa, the 12◦ half angle nozzle generates more impulse than the smaller

nozzle with an 8◦ half angle and the same length.

Sample pressure traces for the 12◦-0.3 m nozzle appear in Fig. 5.10 for environment

pressures of (a) 100 kPa and (b) 1.4 kPa. The thrust surface pressure histories are

superimposed in Fig. 5.11. The only noticeable deviation is in the final values due to

the different environment pressures.
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Figure 5.10: Pressure traces obtained with the 12◦-0.3 m nozzle for P0 equal to (a)
100 kPa and (b) 1.4 kPa.

5.2.2.4 12◦-0.6 m nozzle

The impulses obtained with the 12◦-0.6 m diverging nozzle are plotted as a function of

the environment pressure in Fig. 5.12. The percent increases in the impulse over the

case of a tube without nozzle are tabulated at each environment pressure in Table 5.4.

Sample pressure traces for the 12◦-0.6 m nozzle appear in Fig. 5.13 for environment

pressures of (a) 100 kPa and (b) 1.4 kPa. The thrust surface pressure histories are
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Figure 5.11: Thrust surface pressure history obtained with the 12◦-0.3 m nozzle for
P0 equal to 100 kPa and 1.4 kPa.

superimposed in Fig. 5.14. The only noticeable deviation is in the final values due to

the different environment pressures.

The 12◦-0.6m nozzle has the largest volume of all the nozzles tested and also

generates the largest increases in impulse. At an environment pressure of 100 kPa, a

72% increase in impulse is observed and this is due to the large tamper mass contained

in the nozzle. As P0 decreases, the tamping action of the nozzle gas decreases and

the impulse decreases. This was observed previously with the 0◦-0.6 m nozzle and

P0 Tamper Mass Mass Fraction ∆Isp/I
0
sp Measured

(kPa) Ratio N/C C/(N + C) From Fig. 5.12(%)
100 5.0 0.17 72
54.5 2.7 0.27 59
16.5 0.9 0.54 43
5.2 0.3 0.80 39
1.4 0.1 0.93 43

Table 5.4: Percent increases in specific impulse for the 12◦-0.6 m nozzle.
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Figure 5.12: Specific impulse for the 12◦-0.6 m nozzle as a function of the environment
pressure. Data for the tube without a nozzle is also plotted along with the modified
impulse model (Eq. 4.13).
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Figure 5.13: Pressure traces obtained with the 12◦-0.6 m nozzle for P0 equal to (a)
100 kPa and (b) 1.4 kPa.
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Figure 5.14: Thrust surface pressure history obtained with the 12◦-0.6 m nozzle for
P0 equal to 100 kPa and 1.4 kPa.

the shorter 12◦ half angle nozzle. However, a smaller change in impulse was observed

in response to a change in the environment pressure as compared to the 12◦-0.6m

nozzle because of their smaller volumes. When the environment pressure reaches

approximately 10 kPa, the impulse is observed to reach a minimum. At this point

the tamper mass is sufficiently small such that the partial fill effect is negligible. The

nozzle expands the flow and the walls of the nozzle experience a positive pressure

difference which also contributes to increase the impulse. For environment pressures

less than 10 kPa, the impulse increases with decreasing environment pressure. As

expected, the shorter 12◦ half angle nozzle expands the flow less than that longer one

does. Note that the maximum increase in impulse due to flow expansion at the lowest

P0 is less than the increase in impulse due to the partial fill effect at P0 = 100 kPa.

This is likely due to significant flow separation from the nozzle walls at P0 = 100 kPa

as is discussed in §5.3.4
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5.2.3 Converging-diverging nozzles

The two diverging nozzles with a 12◦ half angle were tested with the three converging-

diverging sections described in §2.5.3. The experimental data appears in Fig. 5.15 for

the 0.3 m nozzle and in Fig. 5.16 for the 0.6 m nozzle as a function of the environment

pressure.
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12 deg - 0.3 m with CD-0.75
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Figure 5.15: Specific impulse data for the 12◦ half angle nozzles with converging-
diverging sections as a function of the environment pressure.

Analyzing the control volume shown in Fig. 5.17 for the case with a converging-

diverging nozzle requires consideration of the nozzle surfaces that have x-direction

components such as the thrust surface ATS, the converging portion of the nozzle AC ,

and the diverging portion of the nozzle AD. The total force on the tube depends not

only on the time-varying pressure on the thrust surface, but also the time-varying
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Figure 5.16: Specific impulse data for the 12◦ half angle nozzles with converging-
diverging sections as a function of the environment pressure.
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Figure 5.17: Control volume for a tube with a converging-diverging nozzle.

pressure on these additional areas.

I =

∫∫
ATS

[PTS(t)− P0]x̂ · n̂ dAdt

+

∫∫
AC

[P0 − PC(t)]x̂ · n̂ dAdt

+

∫∫
AD

[PD(t)− P0]x̂ · n̂ dAdt (5.2)

Where pressure PC acts on area AC , pressure PD acts on area AD, n̂ is a unit vector
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normal to each surface, x̂ is a unit vector aligned with the x-axis which is the desired

direction of motion.

The relative size of these three force contributions determines the impulse. When

the environment pressure is large, the impulse decreases as the throat area decreases.

This can be attributed to the presence of large regions of separated flow in the di-

verging portion of the nozzle and so the contribution of the third term in Eq. 5.2

is small. The second term is negative and increases in absolute magnitude as the

throat becomes smaller resulting in a net decrease in impulse. For the nozzle with a

length of 0.3 m, a maximum loss impulse of 27% was observed with the most restric-

tive converging-diverging section whereas a 42% loss in impulse was observed for the

0.6 m long nozzle. Estimating the loss in impulse by decreasing the throat area by

36% (as is the case for the data of CD-0.36 in Figs. 5.15 and 5.16) results in a 36%

loss in impulse if the impulse model is used I = KV/UCU(P3 − P0) where V = AL

and the state 3 pressure is assumed to equal the pressure on the convergent portion

of the nozzle AC .

As the environment pressure decreases, the effect of the converging-diverging re-

strictions decreases such that at P0 = 1.4 kPa, each nozzle configuration gives ap-

proximately the same value of impulse. In this situation, the large pressure ratio

across the nozzle dominates the impulse. While the second term of Eq. 5.2 acts to

decrease the impulse, the flow expansion and a positive pressure differential across

the diverging nozzle walls is significantly greater and the third term of Eq. 5.2 acts

to increase the impulse.

Sample thrust surface pressure histories are presented in Fig. 5.18 for the 12◦-

0.3 m nozzle with the most and least restrictive converging-diverging sections and

environment pressures of (a) 100 kPa and (b) 1.4 kPa. Multiple wave reflections are

observed for the most restrictive converging-diverging section.
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Figure 5.18: Specific impulse data for the 12◦-0.3 m nozzles with converging-diverging
sections for environment pressures of (a) 100 kPa and (b) 1.4 kPa.

5.2.4 Comparisons

The diverging nozzles with the 8◦ and 12◦ half angles are plotted together in Fig. 5.19

illustrating the effect of the half angle (compare data for the 8◦-0.3 m and 12◦-0.3 m

nozzles) and the effect of nozzle length (compare data for the 12◦-0.3 m and 12◦-0.6 m

nozzles).

The partial fill effect has been previously observed for the different nozzles as the

environment pressure decreases from 100 kPa. The nozzle with the largest volume

generates the largest increases in impulse over the baseline case of a plain tube. As

previously observed, the nozzle dimensions also affect how quickly the impulse de-

creases as the environment pressure decreases. For example, the impulse from the

12◦-0.6 m with the largest volume experiences the largest decrease in impulse as com-

pared to the other diverging nozzles when the environment pressure decreases from

100 to 54.5 kPa. The impulse from the 12◦-0.3 nozzle which has the second largest

volume is actually observed to remain constant as the environment pressure decreases

from 100 to 54.5. The impulse from the 8◦-0.3m nozzle which has the smallest volume

of the diverging nozzles is just observed to increase as the environment pressure de-
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Figure 5.19: Specific impulse as a function of environment pressure for detonation
tubes with diverging nozzles.

creases. In this case, the increase in impulse due to the increased pressure differential

across the thrust surface is sufficiently large enough to exceed the decrease in impulse

caused by a reduction in the tamper mass as the environment pressure decreases from

100 to 54.5 kPa.

For each diverging nozzle there is an environment pressure where neither the

tamper mass or the flow expansion of the nozzle dominate the impulse. This point

is observed most clearly for the large 12◦-0.6m nozzle between environment pressures

of 16.5 and 5.2. For the shorter 12◦-0.3m nozzle this occurs between 100 and 54.5

kPa. This point is not observed for the 8◦-0.3m nozzle as the expansion by the nozzle

seems to always dominate the impulse.

Comparison of the 8◦-0.3m nozzle and the straight extension clearly show the

effect of these competing processes for two nozzles with the same volume. Their

impulse data are plotted in Fig. 5.20. These two nozzles have approximately the

same explosive mass fraction at P0 = 100 kPa, yet the straight extension generates
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a higher impulse. As P0 decreases and the tamper mass goes to zero, the diverging

nozzle generates higher values of impulse due to the flow expansion provided by the

divergent shape.
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Figure 5.20: Specific impulse as a function of environment pressure for detonation
tubes with the straight extension and the 8◦-0.3 m nozzle.

5.3 Data analysis assuming quasi-steady nozzle flow

The experimental impulse data suggests that quasi-steady flow expansion occurs

within the nozzles at the lowest environment pressures tested where the partial fill

effects due to the tamper mass are negligible (Fig. 5.19). Based on this observation

and the lack of other analysis methods for nozzles on detonation tubes, it is of value

to analyze the measured impulse data assuming that quasi-steady nozzle flow is es-

tablished. For this analysis to be reasonable, several crucial assumptions have be

made about the detonation tube nozzle flow.

First, it is assumed that quasi-steady flow is established within the nozzle for a



131

significant portion of the blowdown process. This implies a rapid startup time and

that the time of unchoking at the nozzle inlet occurs late in the blowdown process.

The startup time is defined as the time between when the transmitted shock enters

the nozzle inlet until the establishment of quasi-steady flow and is known (Amann,

1969, Smith, 1966) to depend on the initial nozzle pressure ratio. At large values of

P0 where the pressure ratio P3/P0 is small, the establishment of quasi-steady nozzle

flow is not expected to occur. However, at the lowest values of P0 and large values

of P3/P0, rapid startup of the nozzle is expected and the majority of the blowdown

process proceeds with quasi-steady nozzle flow.

Second, it is assumed that the decrease in pressure upstream of the nozzle in-

let does not significantly affect the quasi-steady nozzle flow and that this pressure

decrease can be modeled. In steady flow devices with constant-rate combustion oc-

curring upstream of the nozzle, the nozzle inlet conditions are constant in time. This

is not the case for a detonation tube which contains the unsteady processes of deto-

nation propagation and the subsequent unsteady blowdown to ambient pressure.

If these effects are assumed to be minor or can be reasonably modeled, then the

impulse from a detonation tube with a nozzle can be compared to the impulse from an

ideal, steady flow nozzle with the same dimensions. In the case of a steady flow nozzle,

the exhaust gas velocity at the nozzle exit plane determines the specific impulse if

the exhaust gases are pressure matched to the environment and the total force on the

engine equals ṁux.

Isp =
I∫ t

0
ṁgdt

=

∫ t

0
ṁuxdt∫ t

0
ṁgdt

=
ux

g
(5.3)

This force is determined by drawing a control volume around the device as illustrated

in Fig. 5.21 and recognizing that the mass flow of the exhaust ṁ is constant in time.

When this same control volume is applied to a detonation tube, the unsteadiness

of the flow must be considered. The general unsteady mass conservation for the

control volume is
dM
dt

+ ṁ(t) = 0 (5.4)
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Figure 5.21: Control volume surrounding engine.

The general unsteady momentum conservation for the control volume consists of the

pressure forces and the exhaust gas momentum.

F (t) = ṁ(t)ux(t) + Ax[Px(t)− P0] +
d

dt

∫
V

ρudV (5.5)

When the nozzle inlet flow is choked, the mass flow rate depends on the throat area,

the upstream pressure, and the product gas state Ti/W . The detonation tube pressure

decreases through the blowdown process and so the mass flow rate will also decrease.

For pressure-matched nozzle exit conditions, the middle term of Eq. 5.5 is zero. The

last term corresponds to the unsteady variation of momentum inside the control

volume. This term is typically considered to be zero in steady flow devices where the

combustion chamber cross section is large compared to the nozzle section. In this

case, the nozzle approach velocity is typically small and the change in momentum

due to this increase in velocity can be neglected (Sutton, 1992). In the case of a

detonation tube, not only is the tube diameter equal to the nozzle inlet diameter

but the unsteady waves inside the tube alter the gas momentum over time. The

detonation wave increases the gas momentum which is subsequently decreased by

expansion through the Taylor wave. Particles behind the Taylor wave are at state

3 and have zero velocity and their unsteady variation of momentum is zero. Their

momentum is increased after they pass through the reflected wave from the open tube

end and they accelerate away from the thrust surface and out of the tube. Thus, the

third term of Eq. 5.5 is expected to be positive when considering a detonation tube

but, for the later purpose of using the analysis of steady nozzle flows, this term is
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assumed to be small.

As discussed, the assumptions that have been made are numerous but necessary

in order to use the standard equations of ideal, steady flow analysis to analyze the

experimental data for detonation tubes with nozzles. To do so, the experimental

measurements of specific impulse are converted into an average exhaust velocity ux

with Eq. 5.3 that is comparable to the constant exhaust velocity ux of the steady flow

analysis. The merit of conducting this analysis is to generate an ultimate measure

of performance for detonation tubes with nozzles. Analysis methods that consider

all the unsteadiness of the device would require detailed numerical calculations for

each specific configuration. Therefore, steady flow through the nozzle is presently

assumed and the methods of calculation appear in the next section. The non-ideal

processes such as the change in the nozzle inlet conditions, boundary layer separation,

the partial fill effects, and the transient flow startup time that can be modeled or

estimated are discussed in more detail in later sections.

5.3.1 Steady flow nozzle calculations

The inlet state to the detonation tube nozzle must be carefully chosen to facilitate

an appropriate comparison between the calculated exhaust gas velocity from Eq. 5.3

using the experimental data and the predicted exhaust gas velocity based on steady

flow expansion. This choice is complicated by the unsteady wave processes that

propagate through the tube. In the case of a finite length tube, a reflected expansion

wave is generated that propagates through the products towards the thrust surface

once the detonation wave reaches the open end of the tube. This unsteady expansion

accelerates the flow from zero velocity at state 3 to a nonzero velocity out of the tube.

For a tube without a nozzle, the flow is accelerated to sonic conditions at the open

end. When a nozzle is attached, sonic conditions are assumed to exist at the nozzle

inlet. The flow velocity at this sonic point is calculated assuming the flow steadily and

adiabatically expands from state 3 to sonic conditions such that the total enthalpy
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remains constant and equal to the enthalpy at state 3.

u(P ) =
√

2[h3 − h(P )] (5.6)

From the sonic point, the flow is steadily expanded by the nozzle and the ther-

modynamic states throughout the nozzle can be calculated in three ways. First, the

extreme assumptions of either equilibrium or frozen flow can be made and thermody-

namic computations carried out to obtain the enthalpy as a function of pressure on

the isentrope. Second, elementary perfect gas relationships can be used to get analytic

formulas for exhaust velocity as a function of pressure. Third, steady flow simulations

with a detailed chemical reaction mechanisms for specific nozzle geometries can be

carried out to find exit conditions and specific impulses.

With the extreme assumptions of either equilibrium or frozen composition, the

nozzle flow is calculated using STANJAN (Reynolds, 1986). The results of flow ve-

locity as a function of pressure are plotted in Fig. 5.22 starting from state 3, expanding

to the sonic point, and then through the nozzle. A limiting velocity and specific

impulse is predicted from the expansion to low pressures.

u→ umax = lim
P→0

√
2[ht − h(P )] (5.7)

In general, since h = h(Y, T ), species and temperature variations need to be related

to the pressure variation in order to predict h.

The second method for calculating the nozzle flow is with the perfect gas relation-

ships, the result of which (Eq. 1.8) is rewritten in Eq. 5.8.

ux =

√√√√ 2γ

γ − 1
RTi

[
1−

(
Px

Pi

)(γ−1)/γ
]

+ u2
i (5.8)

Equation 5.8 can be solved for any known inlet conditions Pi, ui, γ, Ti/W . The

corresponding temperature at any state is determined from the isentropic relation

T ∼ P (γ−1)/γ and the area is determined from the mass equation d(ρuA) = 0. How-
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Figure 5.22: Acceleration of flow from state 3 through the sonic point and subsequent
nozzle assuming either equilibrium or frozen composition.

ever, Eq. 5.8 uses a constant value of γ and product gas molecular weight, so the

effect of species variation within the expansion is not considered.

Finally, the third method for calculating nozzle flows utilizes detailed chemical

reaction mechanisms and finite rate kinetics. In the case of steady supersonic flow

through rapidly diverging nozzles, the effects of finite rate kinetics can significantly

affect the exit state and therefore, the measured impulse (Scofield and Hoffman, 1971).

To evaluate this extent of chemical kinetics on the impulse in nozzles with dimensions

similar to these experiments, the steady flow conservation equations in one-dimension

with the species equation are solved.

d

dx
(ρuA) = 0 (5.9)

ρu
du

dx
+

dP

dx
= 0 (5.10)
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d

dx

(
h +

u2

2

)
= 0 (5.11)

u
dYi

dx
= Ωi (5.12)

For an adiabatic change, the energy equation can be written in terms of the

thermicity.
dP

dt
= c2dρ

dt
+ ρc2σ̇ (5.13)

The thermicity term σ̇ corresponds to the pressure change due to chemical reaction

and c is the frozen sound speed. In the absence of chemical reaction, Eq. 5.13 reduces

to dP = c2dρ, the usual relationship for nonreactive isentropic flow.

Equation 5.13 is substituted into Eqs. 5.9-5.12 and the derivatives with respect to

position are converted into derivatives with respect to time with the transformation

dt = dx/u (Eqs. 5.14-5.17). This means that a single particle is tracked, recording its

state as a function of time. Since the flow field is steady, all particles have the same

history.

dP

dt
=

ρu2

1−M2

(
u

A

dA

dx
− σ̇

)
(5.14)

dρ

dt
=

ρ

1−M2

(
M2 u

A

dA

dx
− σ̇

)
(5.15)

dYi

dt
= Ωi (5.16)

dx

dt
= u (5.17)

The Mach number M equals u/c. The area terms are solved from the prescribed

nozzle shape AN normalized by the throat area which equals the tube cross-section
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A is these experiments.

AN(x)

A
=

(
1 +

x tan(α)

R0

)2

(5.18)

The equations 5.14-5.18 are simultaneously integrated and the GRI3Mech mech-

anism is used to obtain real gas enthalpies and reaction rates. A series of computa-

tions with different nozzle half angles between 2.5◦ and 13.2◦ were carried out for an

ethylene-oxygen mixture with 80 kPa initial pressure. The starting condition for the

calculation is the state parameters and species amounts at the sonic point (Fig. 5.22).

The resulting gas velocity through the nozzle as the pressure decreases is plotted in

Fig. 5.23 for the different half angles with the equilibrium and frozen composition

results of Fig. 5.22.
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Figure 5.23: Comparison of flow velocity considering finite rate kinetics compared
to thermodynamic calculations considering equilibrium and frozen composition as a
function of pressure.

The flow expansion considering finite rate chemical kinetics follows that of the

equilibrium predictions until the pressure has decreased to approximately 10 kPa. At
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this point, the flow velocity calculated with finite rate kinetics is greater than the

velocity predicted with frozen composition but less than the velocity predicted with

equilibrium composition. Investigation of the species mole fractions as a function

of pressure identify that the mole fractions of H2O stop changing once the pressure

reaches approximately 10 kPa and the mole fractions of CO2 stop changing once

the pressure reaches approximately 1 kPa (Fig. 5.24). As the pressure continues to

decrease, these species amounts are frozen at values between 0.32 and 0.34 for H2O

and 0.25 and 0.30 for CO2 depending on the nozzle half angle. Variations in the OH

mole fractions (Fig. 5.25a) for the different nozzle half angles are small by comparison.

Pressure (kPa)

X
H

2O

10-4 10-3 10-2 10-1 100 101 102 1030.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

2.5 deg
4.0 deg
6.1 deg
8.0 deg
12.0 deg
13.1 deg

Pressure (kPa)

X
C

O
2

10-4 10-3 10-2 10-1 100 101 102 1030.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

2.5 deg
4.0 deg
6.1 deg
8.0 deg
12.0 deg
13.1 deg

(a) (b)

Figure 5.24: Mole fractions of (a) H2O and (b) CO2 molecules as a function of pressure
for different half angle diverging nozzles.

At equilibrium, the mole fractions for both H2O and CO2 should approach 0.5,

C2H4 + 3O2 → 2H2O + 2CO2

but this is not the case when the finite chemical reaction rates are considered as

observed in Fig. 5.24. The nozzle with the smallest half angle of 2.5◦ yields the

highest mole fractions for H2O and CO2 due to the slower rate of pressure decrease

(Fig. 5.26) unlike that of the nozzle with a large half angle. As the flow expands, the

recombination and dissociation reactions are important. The recombination reactions
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Figure 5.25: Mole fractions of (a) OH and (b) CO molecules as a function of pressure
for different half angle diverging nozzles.

release energy into the flow, elevating the temperature and pressure over the case with

no chemical reaction. This recombination results in an increase in the amounts of

H2O and CO2 (Fig. 5.24) and a decrease in the amount of OH and CO (Fig. 5.25).

The mole fractions for the species of Figs. 5.24 and 5.25 do not sum to one for any

of the half angles. The missing atoms are found to be in smaller amounts in the O,

H, and O2 species.

Also plotted on Fig. 5.23 are points corresponding to the area ratios of the ex-

perimental nozzles. These points indicate the predicted pressure and velocity of the

product gases at the exit plane of each nozzle assuming steady expansion and pressure

matched conditions. Their locations on the velocity-pressure curve indicate that, in

the present experiments, the products are in equilibrium throughout the entire ex-

pansion process. Another method to estimate whether or not the products are in

equilibrium throughout the nozzle is to predict the Damkohler numbers for each noz-

zle. The Damkohler number is used to describe the extent of chemical non-equilibrium

in terms of the characteristic timescales of chemical reaction and fluid motion and is
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Figure 5.26: Pressure as a function of (a) area ratio and (b) distance from the nozzle
throat for different half angles assuming finite reaction rates.

discussed in more detail in Chapter 6.

Da =
tchem

tflow

(5.19)

High nozzle divergence results in fast flow expansion so the pressure decreases at a rate

that is much faster than the time required for the chemical reactions to respond. The

species amounts do not adjust, the flow is said to be chemically frozen, and Da� 1.

Alternatively, low nozzle divergence results in slow expansion of the flow. Under this

modest pressure decrease, the chemical reactions are able to adjust sufficiently fast

and remain in near equilibrium. In this case, Da� 1. At the nozzle inlet the chemical

timescale tchem behind the detonation wave is estimated from the eigenvalue analysis

with a method described in Chapter 6 and the timescale of fluid motion is estimated

with c3/L where L is the nozzle length (Table 5.5). The Damkohler numbers are less

than one or close to one indicating that equilibrium composition is expected for the

nozzles in this study, which is in agreement with Fig. 5.23.

The experimental values of ux determined from the measured values of Isp are

plotted in Fig. 5.27 with the steady flow predictions of velocity as a function of
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P1 − 60 kPa P1 = 100 kPa
tchem 420 µs 160 µs

tflow for L = 0.3 m 252 µs 249 µs
tflow for L = 0.6 m 504 µs 498 µs
Da for L = 0.3 m 1.67 0.64
Da for L = 0.6 m 0.83 0.32

Table 5.5: Tabulated timescales in expanding flow through a nozzle.

pressure. The experimental values of ux are observed to increase with decreasing

environment pressure as do the predictions based on steady nozzle flow. However, as

expected, the experimental values are lower than the steady predictions due to the

unsteadiness of the flow and the fact that the exhaust gases are not pressure-matched

to the environment pressure during the entire blowdown event as is assumed when

using Eq. 5.3. The next sections discuss in more detail some of the non-ideal effects
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Figure 5.27: Steady flow predictions of velocity as a function of pressure. Also plotted
are the experimental data of exhaust velocity calculated with Eq. 5.3.

present in detonation tube nozzles.
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5.3.2 Changing nozzle inlet state

The unsteadiness of the detonation tube means that the nozzle inlet state that was

previously based on state 3 is not constant in time. After the first characteristic of

the Taylor wave reflects off the open tube end and reaches the thrust surface, the

pressure is decreasing at all locations within the tube. Thus, calculation of the inlet

state based on state 3 is not reasonable. A better choice from which to start the

expansion to the sonic point is to determine an intermediate pressure that represents

the average pressure within the tube over the entire cycle. Averaging the experimental

pressure traces obtained for mixtures with an initial pressure of 80 kPa yields an

intermediate value of 400 kPa. Starting the expansion with this average value for

the pressure results in steady flow predictions that better represent the experimental

data as shown in Fig. 5.28. Here it is significant to note that several of the data
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Figure 5.28: Equilibrium and finite rate calculations starting from an average tube
pressure of 400 kPa compared with equilibrium calculations starting from the state 3
pressure of 970 kPa.

points, in particular those for the 12◦-0.6m nozzle and pressures greater than 10 kPa
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and those for the 12◦-0.3m nozzle and pressures greater than 50 kPa, do not follow

the trend of the other data for the same nozzle. For these data points, the tamper

mass of the nozzle is large enough such that the partial fill effect discussed in Chapter

3 can be seen to dominate the impulse.

5.3.3 Partial fill effects

The explosive mass fractions for each nozzle and environment pressure were given in

Tables 5.1-5.4 and the data is plotted with the Gurney model (Eq. 3.30) in Fig. 5.29.

The experimental data with nozzles is normalized by I◦sp = 173 s which is the experi-

mentally measured value from a fully filled tube without a nozzle and a 105 µm thick

diaphragm at an initial pressure of 80 kPa.
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Figure 5.29: Normalized specific impulse as a function of the explosive mass fraction.
The Gurney model of Eq. 3.30 is plotted with the experimental data for tubes with
nozzles.

The experimental data of Fig. 5.29 can be divided into three groups. The first

group has mass fractions less than 0.4. This data corresponds to the highest en-
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vironment pressure and the largest nozzle. The partial fill model is based on one-

dimensional geometries and overpredicts the impulse obtained with a tube and a

diverging nozzle. Thus, when the partial fill effect of the tamper dominates the im-

pulse a larger increase in impulse is gained with a straight extension rather than a

diverging nozzle. For these cases of large nozzles and high environment pressures,

the partial fill effect is of greatest importance. This effect lessens as the environment

pressure decreases and the explosive mass fraction increases.

For intermediate mass fractions between 0.4 and 0.75, the partial fill model is in

reasonable agreement with the data. This data corresponds to the nozzles with the

smallest volumes where the effect of the divergent shape is minimized and the larger

environment pressures. The data of the straight extension at the larger environment

pressures is observed to be best predicted by the partial fill model for this range of

explosive mass fractions.

The data at the highest mass fractions, greater than 0.75, correspond to all of the

nozzles and the lowest environment pressures. It is obvious that the experimental

results are uncorrelated with the explosive mass fraction for this situation. In this

regime, quasi-steady flow is important and the analysis of the previous section applies.

The partial fill model is not able to model the increased blowdown time and flow

expansion that occurs within the nozzle.

5.3.4 Boundary layer separation

Sutton (1992) states that a rough criterion for jet separation is when the nozzle exit

pressure is less than or equal to 0.4 times the environment pressure. In other words,

as long as the nozzles exhaust at a pressure that is greater than 0.4 × P0, then flow

separation of the boundary layer from the nozzle walls is not expected. Sutton (1992)

states that other factors such as the pressure gradient, nozzle contour, boundary

layer, and flow stability affect separation in addition to the nozzle exit pressure and

the environment pressure.

Due to the dearth of research of flow through detonation tube nozzles, the general
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relationship for flow separation must suffice. An estimation of the nozzle exit pressure

is obtained from the previous steady flow predictions with finite rate kinetics at the

area ratios that correspond to the experimental nozzles. Since the results based on

an average tube pressure for the nozzle inlet condition (Fig. 5.28) best represent the

experimental data, these results are used to determine the pressure. The pressure

decrease through the nozzle is plotted in Fig. 5.30 along with points corresponding

to the area ratios of the experimental nozzles. The separation criteria for each of the

experimentally tested environment pressures between 100 kPa and 1.4 kPa are also

indicated.
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Figure 5.30: Pressure decay in nozzles assuming steady flow and comparisons to the
expected separation pressure in the experimental tests.

It is important to note that the relationship between for the pressure-area ratio

relationship of Fig. 5.30 is for a nozzle inlet pressure equal to the average tube pres-

sure. Towards the end of the blowdown process this nozzle inlet pressure may be

sufficiently lower than the average pressure such that Fig. 5.30 is no longer valid.

Instead, the curve will be shifted to lower pressures increasing the likelihood that
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separation will occur and to occur closer to the nozzle inlet. As the tube pressure

continues to decrease, the separation point will travel closer to the nozzle throat.

When the separation point passes through the nozzle inlet, unchoking occurs and

the flowfield becomes entirely subsonic. This event is assumed to occur late in the

blowdown process.

For the initial times when Fig. 5.30 applies, the 8◦-0.3 m nozzle is expected to

separate when operated in environment pressures of 54.5 kPa and greater. For all

environment pressures below 54.5 kPa, Fig. 5.30 predicts that no separation will

occur. These same results are also valid for the shorter 12◦ nozzle. The longer 12◦

nozzle is expected to separate when operated in all environment pressures greater

than 5.2 kPa. Only at the two lowest environment pressures tested of 5.2 and 1.4 kPa

is separation not expected.

Overexpansion of the flow is predicted for the 12◦-0.3 m nozzle exhausting into

P0 = 16.5 kPa and for the 12◦-0.6 m nozzle exhausting into P0 = 5.2 kPa. This is

observed by comparing the predicted nozzle exhaust pressure (indicated by the solid

dots in Fig. 5.30) to the environment pressure P0 and to the expected separation

pressure 0.4× P0. If the predicted nozzle exit pressure lies between P0 and 0.4× P0

then the flow overexpands in the nozzle. Overexpansion of the flow is not desirable

because the established pressure differential across the nozzle walls generates a force

in the opposite direction of the pressure differential across the thrust surface. For

this reason, separation within the nozzle is often preferred. Sutton (1992) states

that nozzles with high area ratios that are typically designed for high altitude flight

actually have a larger thrust when operated at sea level when separation is present

than when operated at the design altitude. This similar effect is observed in the

experimental data (Fig. 5.12) for the 12◦-0.6 m nozzle where the impulse at 100 kPa

is an average of 300 s while at P0 = 5.2 kPa the impulse is 275 s. However, when

the flow is highly separated, a large portion of the nozzle is not utilized so flight

performance will suffer due to the additional engine weight and size.
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5.3.5 Startup time

The nozzle startup time is defined as the time from when the transmitted shock wave

enters the nozzle throat until time when quasi-steady flow is established. The presence

of this transient nozzle flow has previously been studied in shock tunnels and rocket

nozzles. A shock tunnel, illustrated in Fig. 5.31, uses a driver tube containing high

pressure gas and a driven tube containing a low pressure gas. The two chambers

Nozzle
Test sectionDriven tubeDriver tube

Primary

diaphragm

Secondary

diaphragm

Figure 5.31: Schematic of shock tunnel facility.

are separated by the primary diaphragm that is ruptured generating a planar shock

wave that is transmitted through the low pressure driven gas. This shock reaches

the end of the driven tube and ruptures a second diaphragm at the nozzle inlet.

This second diaphragm separates the low pressure gas in the driven tube from the

evacuated conditions of the nozzle and test section.

Testing time is limited by the time needed to establish quasi-steady flow in the

nozzle and the time when the contact surface between the driver and driven gases

arrives at the nozzle inlet (Jacobs and Stalker, 1991). The time required for the

contact surface to reach the nozzle inlet and contaminate the test gas depends on

the dimensional specifics of the facility and the gas dynamics between the driver and

driven tube. The nozzle startup time depends on the initial pressure ratio across the

secondary diaphragm.

Early observations of the nozzle starting process were recorded in images taken by

Amann (1969) and Smith (1966) in reflected shock tunnels. Successive shadowgraph

images were used to measure the wave trajectories in the experiments of Amann

(1969). The experiments were carried out in two–dimensional reflection nozzles with

a 15◦ half angle. The nozzle inlet was either sharp or rounded. The incident shock
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was of Mach 3. The schlieren images of Smith (1966) were taken downstream of

the nozzle exit in an axisymmetric reflection nozzle with a 10◦ half angle with an

incident shock wave of Mach 3.0 and 5.7. Wave trajectories were measured with

thin-film heat transfer gauges and a pitot pressure gauge. In a more recent study

by Saito and Takayama (1999), double exposure laser holographic interferometry was

used to visualize the flow of a Mach 2.5 incident shock wave within a 15◦ half angle,

two-dimensional reflection nozzle.

The starting processes observed in the nozzles were qualitatively similar in each

study. Three important features observed in these flows are the primary shock, the

secondary shock, and the contact surface. AMRITA simulations carried out with

a Mach 3 incident shock wave and a 15◦ half angle nozzle illustrate these features

(Fig. 5.32).

(a) (b) (c)

Figure 5.32: Frames from AMRITA inviscid simulation of starting process in a 15◦

half angle nozzle with an incident Mach 3 shock wave. Waves to note are the primary
shock, contact surface, secondary shock, oblique expansions at throat, and forming
of an incident shock in Frame c).

The transmitted primary shock and contact surface propagate through the nozzle

with a decreasing velocity as a result of the divergent cross-section. Expansion fans

originate behind the transmitted shock at the corners of the nozzle inlet and reflect

on the nozzle axis. A secondary shock wave forms between the contact surface and

nozzle inlet. This left-facing shock wave moves upstream relative to the fluid and is

needed to match the high Mach number, low pressure flow exhausting from the inlet

to the low Mach number, high pressure flow behind the primary shock. A model and

subsequent calculation using the method of characteristics by Smith (1966) identifies
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that an unsteady expansion must exist downstream of the nozzle inlet. Because the

primary shock and contact surface decelerate, the characteristics in the post-shock

flow rotate and become convergent resulting in the formation of the secondary shock

at the tail of the unsteady expansion. Successful starting of the nozzle occurs when

this secondary shock is swept downstream and out of the nozzle. At this time, quasi-

steady flow exists within the nozzle. Failure of the nozzle to start occurs when the

flow velocity coming from the inlet is not sufficient to prevent the secondary shock

from reaching the nozzle inlet; the condition of sonic flow no longer exists at the

throat and the downstream portion of the nozzle flow is completely subsonic.

Viscosity has also been shown to effect this starting process. The inviscid simula-

tions of Igra et al. (1998) accurately model the experiments of Amann (1969) which

lead them to conclude that the short startup time of their situation is not signifi-

cantly affected by viscosity. However, in the experiments of Amann (1969) and Saito

and Takayama (1999) which were also numerically simulated by Saito and Takayama

(1999) and Tokarcik-Polsky and Cambier (1994), the secondary shock wave was ob-

served to bifurcate at the wall creating a region of separated flow. While the numerical

simulations correctly predicted the shock bifurcation at the wall, the downstream re-

gion of separated flow was not accurately modeled. This was attributed to the use of

a laminar boundary layer model in the simulations. A Reynolds number calculation

by Saito and Takayama (1999) suggests that the boundary layer is actually turbulent.

While shock tunnel experimenters strove to reduce the nozzle start time to max-

imize the test time, rocket nozzle developers sought to reduce the nozzle start time

in order to prevent structural damage (Chen et al., 1994). Flow instabilities during

engine startup and shutdown generate large pressure fluctuations along the nozzle

walls that can ultimately damage the nozzle. The flow transient during rocket engine

startup is different than that of shock tunnel startup. During rocket engine startup

at sea level, the pressure ratio across the nozzle increases as the combustion chamber

increases to its steady state operating value. The rate of this pressure increase af-

fects the startup process. If this process occurs instantaneously, we would expect the

starting process to be closer to that of a shock tunnel nozzle discussed previously. For
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these flows in rocket engine nozzles during startup, the effect of viscosity is substan-

tial. Numerical simulations by Chen et al. (1994) of the startup of 1/16-scale nozzle

of a J-2S rocket engine using a time-accurate compressible Navier Stokes solver with

a turbulence model predict the ratio of wall pressure to chamber pressure over the

nozzle length for a range of nozzle pressure ratios. In these cases, the predicted point

of flow separation at the wall strongly agrees with the experimental data and occurs

near the nozzle inlet.

For detonation tube nozzle flows, the startup process is certainly affected by vis-

cosity at the low pressure ratios and is likely to also be affected by the Taylor wave

pressure profile that exists behind the shock wave after it just enters the nozzle inlet.

For simplicity, an estimate of the detonation tube nozzle startup time is made from

the time taken by a particle as it travels under steady flow conditions from the inlet

to the exit of the nozzle. The startup time is assumed to equal three durations of this

steady flow time which is then compared to the total single-cycle time of the deto-

nation tube. The time duration from ignition to the end of the blowdown process is

approximately 4000 µs for the 8◦-0.3m nozzle, 4500 µs for the 12◦-0.3m, 5000 µs for

this 12◦-0.6m. Three durations of the steady flow time determined from the previous

finite rate calculations yield values of approximately 252 µs for the 8◦-0.3m nozzle,

354 µs for the 12◦-0.3m, 642 µs for this 12◦-0.6m nozzle. Thus, the startup time is

expected to range between 6% and 12% of the total cycle time. Visualization experi-

ments or numerical simulations are required to better estimate the effect of viscosity

and the nozzle flow field in order to obtain more reasonable estimates of the startup

time as a function of the environment pressure.

Multi-cycle operation would reduce this nozzle startup time and also reduce the

amount of pressure decay experienced at the end of each cycle such that the average

exhaust velocity would be greater than in the single-cycle case. As a result, the

performance would likely increase closer to the theoretical steady flow predictions.
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5.3.6 Comparison of experiments and steady flow analysis

With calculation of the effective nozzle inlet state, the specific impulse from the

predicted exhaust velocity is determined using Eq. 5.3. This is plotted with all ex-

perimental data for tubes with and without a nozzle as a function of the pressure

ratio across the nozzle (P3/P0 for the detonation tube data and Pi/Px for the steady

flow predictions). The steady flow predictions are shown both for the nozzle inlet

state based on state 3 (Fig. 5.23) and for the nozzle inlet state based on the average

pressure during the cycle (Fig. 5.28).
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Figure 5.33: Specific impulse as a function of the nozzle pressure ratio. The steady
flow predictions based on isentropic expansion are also plotted.

5.4 Summary

Experiments were carried out to measure the impulse from detonation tubes with

exit nozzles as a function of the environment pressure. Adding a nozzle onto the

tube was found to increase the impulse over the case of a tube without a nozzle at
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all the environment pressures. Observations of the experimental data determined

that the partial fill effect dominates the impulse for the largest environment pressures

tested and that this effect decreases as the tamper mass and environment pressure

decrease. In this case, a straight extension is more effective at increasing the impulse

than a diverging nozzle for tubes with equivalent explosive mass fractions. At the

lowest environment pressures, quasi-steady flow is established within the nozzle and

the effect of the nozzle divergence expands the flow. In this case, a diverging nozzle

is more effective at increasing the impulse over a straight extension.

To better understand the effect of nozzles on detonation tubes at low environment

pressures, the experimental data was analyzed assuming that quasi-steady flow was

established in the nozzle. This modeling is reasonable when the environment pressure

is sufficiently low such that separation does not occur in the nozzle and the startup

time is only a small fraction of the entire blowdown time. Because the detonation

tube pressure upstream of the nozzle inlet decreases in time, the average tube pressure

from which to determine the nozzle inlet condition was found to best represent the

experimental data. Comparisons of the steady flow nozzle predictions based on the

average detonation tube pressure modeled the data for all of the diverging nozzles

at the lowest environment pressures. The steady flow predictions did not model the

data for the larger nozzles at the largest environment pressures due to the influence

of the tamper mass.

Thus, nozzles on detonation tubes have been shown to increase the impulse over

the baseline case of a plain tube but their performance depends on the pressure ratio

across the nozzle and the nozzle shape. Large nozzles operating under small initial

pressure ratios are in the regime where unsteady gas dynamics and the partial fill

effects of the tamper mass are important. This effect is of decreasing importance as

the nozzle size is reduced. All nozzles operating under large initial pressure ratios are

in the regime where quasi-steady flow exists in the nozzle and the usual steady flow

analysis techniques can be used to predict upper bounds to the performance.
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Chapter 6

Non-equilibrium chemical effects

6.1 Introduction

This chapter investigates the effect of finite rate chemistry in expanding detona-

tion products. The motivation is to investigate the assumption made in the original

impulse model (Wintenberger et al., 2003) that the detonation products can be rep-

resented by a polytropic equation of state throughout the Taylor wave. The goal is

to develop bounding estimates based on realistic chemical kinetics for the thermody-

namic state of detonation products and apply these to impulse calculations.

In the original impulse model of Wintenberger et al. (2003), a polytropic approxi-

mation P ∼ ργ is used to represent the isentrope in the detonation products in order

to analytically predict the impulse. This method has been previously used in other

studies of nonsteady flow in equilibrium detonation products (Shepherd et al., 1991)

and to compare computed blast and expansion waves with experimental data. The

thermochemical basis of this approximation has been examined (Fomin and Trotsyuk,

1995, Zajac and Oppenheim, 1969, Nikolaev and Fomin, 1982) assuming “shifting”

equilibrium in the products to compute the dependence of internal energy and molar

mass on temperature and density for adiabatic flow. These studies demonstrate that

there is a limited range of thermodynamic states over which the approximation of

polytropic behavior is quantitatively reliable.

Previous studies have investigated the extent of equilibrium in detonation prod-

ucts (Borisov et al., 1991, Eckett, 2001). Borisov et al. (1991) first noted differences
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between the cases of fuel-air and fuel-oxygen detonation and the extent of chemical

equilibrium in the products. He investigated unconfined gaseous clouds, determining

the critical radius at which the detonation products can be considered to be in equilib-

rium. We investigated this issue in cylindrical tubes closed at one end by numerically

solving the species evolution based on detailed chemical kinetics and a prescribed

pressure-time history approximated by the similarity solution for the Taylor wave

following a detonation. This study looks at the extent of chemical equilibrium just

through the Taylor wave expansion.

6.2 Ideal detonation waves and the CJ state

To begin the analysis, we consider the role of finite reaction rates in the detonation

process itself. In the standard model of an ideal detonation wave, the shock and

reaction zone are treated as a single front or discontinuity, and the chemical reactions

are assumed to occur sufficiently fast (Fickett and Davis, 1979) such that the flow is in

equilibrium before the expansion begins (Fig. 6.1). The properties behind the front
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Figure 6.1: Detonation propagation in tube with a closed end.

are determined by solving conservation equations, also known as jump conditions,

across the discontinuity. The equations are most conveniently solved in a coordinate

system that moves with the detonation wave speed UCJ . The velocity components
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are

w1 = UCJ − u1 (6.1)

w2 = UCJ − u2 (6.2)

and the conservation of mass, momentum, and energy in this frame are

ρ1w1 = ρ2w2 (6.3)

P1 + ρ1w
2
1 = P2 + ρ2w

2
2 (6.4)

h1 +
w2

1

2
= h2 +

w2
2

2
(6.5)

s2 ≥ s1 (6.6)

State 1 refers to the reactants and state 2 refers to the products. The products are

described by the ideal gas equation of state P = ρRT where R = R̃/W for a mixture

of species.

W =
(∑

Yi/Wi

)−1

(6.7)

h =
∑

Yihi(T ) (6.8)

s =
∑

si(T, P, Yi) (6.9)

hi = ∆hf +

∫ T

T ◦
cpi(T

′)dT ′ (6.10)

Combining the continuity (Eq. 6.3) and the momentum (Eq. 6.4) equations yields the

Rayleigh line

P2 − P1 = −(ρ1w1)
2(v2 − v1) (6.11)

which when substituted into the energy (Eq. 6.5) equation yields the Rankine-Hugoniot

equation (Thompson, 1988).

h2 − h1 = 1/2(P2 − P1)(v2 + v1) (6.12)
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The species at state 2 are determined from an equilibrium computation where the

species Yi = Y eq
i (T, P ). Complete definition of state 2 (P2, T2, Y

eq
2 ) requires that the

the jump conditions (Eq. 6.11 and Eq. 6.12) and the equilibrium species be solved

simultaneously given w1. Because the slope of Eq. 6.11 in the P −v plane is less than

the slope of the isentropes, the detonation velocity w1 is always supersonic. If u1 = 0,

this implies w1 ≥ UCJ and w1 ≡ UCJ is the experimentally observed detonation

velocity. At this CJ state, the Isentrope, Hugoniot, and Rayleigh lines are all tangent

P2 − P1

v2 − v1

=
∂P

∂v

)
Hugoniot

=
∂P

∂v

)
s,Y eq

(6.13)

implying that the product velocities are sonic relative to the detonation wave.

w2 = ceq
2 or M2 = 1 (6.14)

The value of UCJ and P2 and T2 of the products are determined from a numer-

ical solution of the jump conditions and an equilibrium computation that is based

on realistic thermochemical properties for the mixture of relevant gas species in the

reactants and the products. One such program is STANJAN (Reynolds, 1986) which

utilizes realistic representations of the specific heat temperature dependence and en-

thalpies of formation. For detonations, it is important to include species such as O,

H, and OH in the products in addition to the major species H2O, CO2, CO, H2, and

N2 as is done in Schultz and Shepherd (2000). Generally, the relevant gas species at

the CJ state depend on the types of atoms, the pressures, and the temperatures. For

a wide range of hydrocarbons, the species mentioned above are adequate.

To eliminate the need for a detailed chemical thermodynamic model, the jump

conditions of Eqs. 6.3, 6.4, and 6.5 are simplified by using the “2-γ model” of det-

onations. The level of modeling accuracy is influenced by the choice of parameters

representing the upstream and downstream CJ conditions. Improper parameter selec-

tion can affect the computed CJ state and influence the subsequent product expansion

through the Taylor wave (Fig. 6.1) resulting in predicting inaccurate values of P3, c3,

and the impulse (Eq. 4.8).
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6.2.1 2-γ Model

The 2-γ model is a simplification of the detonation jump equations in which the

reactants and products are approximated as perfect gases with constant but distinct

values of γ and cp. A fixed specific energy difference q is assumed to exist between

reactants and products.

h1 = cp1T1 (6.15)

h2 = cp2T2 − q (6.16)

P1 = ρ1R1T1 (6.17)

P2 = ρ2R2T2 (6.18)

cp1 =
γ1R1

γ1 − 1
(6.19)

cp2 =
γ2R2

γ2 − 1
(6.20)

Substituting these relations into the jump conditions of Eqs. 6.3, 6.4, and 6.5 and

making use of the fact that M2 = 1 yields the pressure ratio, density ratio, and

temperature ratio across the detonation wave.

P2

P1

=
1 + γ1M

2
1

1 + γ2

(6.21)

ρ1

ρ2

=
γ2

γ1M2
1

(
1 + γ1M

2
1

1 + γ2

)
(6.22)

T2

T1

=
γ2R1

γ1M2
1 R2

(
1 + γ1M

2
1

1 + γ2

)2

(6.23)

Evaluation of the reactant (state 1) properties is straightforward since the composition

is fixed and the standard thermodynamic relationships for an ideal gas mixture can

be used.
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The normalized effective heat release q/R1T1 can be computed

q

R1T1

=
γ2

γ2 − 1

γ2

γ1

(
1 + γ1M

2
CJ

1 + γ2

)2
γ2 + 1

2M2
CJ

− γ1

γ1 − 1

(
1 +

γ1 − 1

2
M2

CJ

)
(6.24)

given the value of MCJ = UCJ/c1 which is found through the chemical equilibrium

solution with realistic thermodynamic properties. The remaining CJ state parameters

are computed with Eqs. 6.25-6.28. In these equations, knowledge of the downstream

γ2 and R2 are required.
PCJ

P1

=
1 + γ1M

2
CJ

1 + γ2

(6.25)

ρCJ

ρ1

=
γ1M

2
CJ

γ2

(
1 + γ2

1 + γ1M2
CJ

)
(6.26)

TCJ

T1

=
PCJ

P1

R1ρ1

R2ρCJ

(6.27)

uCJ = UCJ

(
1− ρ1

ρ2

)
(6.28)

This model can be simplified further by using a common value of γ and R to

represent the reactants and products. The resulting equations are calculated from

Eqs. 6.24-6.28 where γ2 = γ1. Although this approximation is used in some analytical

treatments of detonation, it is not sufficiently accurate for engineering models or

analysis of laboratory experiments and so we do not discuss it further here.

6.3 Chemical reactions in expansion waves

We now consider the effect of chemical reaction in the flow (Fig. 6.1) behind the

detonation front. The issue can be understood by considering a small mass of fluid,

idealized as a point in the flow (x, t) but containing enough mass to be characterized

by the state variables, as it passes from the CJ point to state 3. The state variables

are changing through the Taylor wave and the chemical reaction rates Ω(T, P,Y) are
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known to be strong functions of these properties so that in general, the full set of

equations for an adiabatic flow without diffusive transport,

Mass:
Dρ

Dt
+ ρ∇ · u = 0 (6.29)

Momentum: ρ
Du

Dt
+∇P = 0 (6.30)

Energy: ρ
Dh

Dt
=

DP

Dt
(6.31)

Species:
DY

Dt
= Ω (6.32)

have to be solved simultaneously to determine the flow field P (x, t), ρ(x, t), T (x, t),

Y(x, t), and u(x, t). The vector Y has components Yi corresponding to the species i.

There are two limiting cases for chemical reaction:

1. Frozen composition (Y = Y◦ = Y ◦
i = constant)

This occurs when the reaction rates are so slow that Ω ≡ 0 for all species. In this

case,

Cp =
∂h

∂T

)
P

=
∑

Y ◦
i Cpi(T ) since

∑
hi

∂Y ◦
i

∂T

)
P

= 0 (6.33)

where Y ◦
i represents the constant mass fraction of species i.

2. Equilibrium composition (Y = Yeq = Y eq
i (T, P ))

This occurs when disturbances from equilibrium re-adjust so fast that |Yi−Y eq
i (T, P )|

remains relatively small. Yi − Y eq
i (T, P )

Y eq
i (T, P )

� 1 (6.34)

Cp =
∂h

∂T

)
P

=
∑

Y eq
i Cpi(T ) +

∑
hi

∂Y eq
i

∂T

)
P

(6.35)

6.3.1 Non-equilibrium flow

Each element of fluid described by the conservation equations 6.29, 6.30, 6.31 is

assumed locally to be in partial thermodynamic equilibrium with respect to all degrees
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of freedom except chemical reaction (Fickett and Davis, 1979). Thus, temperature,

pressure, and in general Yeq depend on x and t. This is a generalization of the usual

idea of thermodynamic equilibrium which occurs only after a long time and therefore

makes sense for processes that have a time-independent, spatially-uniform final state.

Consider an element of fluid that is initially in chemical equilibrium. If the state of

the fluid (T, P ) is suddenly changed as illustrated in Fig. 6.2(a), then a finite amount

of time tchem is required for the chemical reactions to adjust the species mass fractions

back to local equilibrium. In this case, the chemical timescale is significantly larger

T
Yeq

i
Yi

tchem

T Yeq
i

Yi

tflow

(a) (b)

Figure 6.2: Schematic of (a) rapid flow changes and (b) continuous flow changes with
the corresponding chemical transient.

than the timescale of fluid motion tflow.

Now consider the opposite situation where the state of the fluid (T, P ) changes

in a very slow, continuous fashion as illustrated in Fig. 6.2(b). As long as the char-

acteristic time of fluid motion is significantly greater than the time required by the

chemical reactions to adjust, the composition will be in local thermodynamic equi-

librium (LTE).

The extent of chemical non-equilibrium is most conveniently specified in terms of

the Damkohler number,

Da =
tchem

tflow

(6.36)

where Da� 1 implies frozen flow and Da� 1 implies equilibrium flow. We evaluate

tchem in ethylene-oxygen and ethylene-air mixtures by reformulating the species equa-

tion assuming that the flow is nearly in equilibrium and then examining the response

to a small disturbance. The specifics are discussed in the following sections.
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6.4 Polytropic approximation

Adiabatic expansion of the detonation products is modeled with a single value for γ.

This simple polytropic model of the gas behavior,

Pρ−γ = constant (6.37)

where γ is a fitting parameter chosen to best approximate the actual behavior of the

mixture, must be checked in each individual case. As discussed previously, the two

limiting cases are to either assume shifting equilibrium composition γ = γe or frozen

composition γ = γf in the products.

The equilibrium γe and the frozen γf are each associated with a corresponding

sound speed c. In the context of the classical Chapman-Jouguet model of detonation,

c2 (Eq. 6.14) is the equilibrium sound speed ce.

c2
e =

∂P

∂ρ

)
s,Y eq

i

(6.38)

In shifting equilibrium, changes in the state variables result in a shift in the species

compositions so that chemical equilibrium is restored Yi = Y eq
i (T, P ). This is what

all standard thermochemical programs such as STANJAN (Reynolds, 1986) use to

compute the CJ state and is equivalent to determining the minimum wave speed

UCJ that will satisfy the conservation relations for a steady supersonic wave. The

corresponding γe is then

γe =
ρ

P
c2
e (6.39)

The equilibrium sound speed is distinct from the frozen sound speed cf , in which

the differentiation is carried out with fixed species amounts Yi = Y 0
i .

c2 =
∂P

∂ρ

)
s,Y 0

i

(6.40)
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The corresponding γf is then

γf =
ρ

P
c2
f =

Cp(T )

Cv(T )
(6.41)

The value of γe (and the corresponding ce) is smaller than the value of γf (and the

corresponding cf ) by an amount that depends on the degree of dissociation in the gas

and the Gibbs energy of reaction associated with the dissociation-recombination reac-

tions (Fickett and Davis, 1979). The differences between the equilibrium and frozen

states are much more significant for the high-temperature, low-pressure mixtures of

detonation products generated from the fuel-oxygen mixtures used in laboratory ex-

periments than for low-temperature, high-pressure mixtures of combustion products

generated from the fuel-air mixtures used in engine combustors.

We calculate the fitting parameter γ in Eq. 6.37 required to model the equilibrium

and frozen isentropes from the CJ state in an ethylene-oxygen and an ethylene-air

mixture initially at 1 bar and 300 K. The parameter γ can be interpreted as the slope

of the isentrope in logarithmic coordinates.

γ =
∂ ln P

∂ ln v
(6.42)

The isentropes, plotted in Fig. 6.3 in the P -v plane, Fig. 6.4 in the T -v plane, and

Fig. 6.5 in the P -T plane, were computed with STANJAN (Reynolds, 1986) using

a set of 31 species (AR, CH4, C4H10, H2O2, CH, CO, C8H18, N, CH2, CO2, H,

NO, CH2O, C2H, HCO, NO2, CH2OH, C2H2, HO, N2, CH3, C2H4, HO2, O, CH3O,

C2H6, H2, O2, CH3OH, C3H8, H2O).

Equations 6.43-6.45 are derived from Eq. 6.37 and are used to calculate γ from

Figs. 6.3 - 6.5. The results are tabulated in Table 6.1.

ln P = −γ ln v + constant (6.43)

ln T = (1− γ) ln v + constant (6.44)

ln P =
γ

γ − 1
ln T + constant (6.45)
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Figure 6.3: P versus v for an ethylene-oxygen and ethylene-air mixture with an initial
pressure of 1 bar and an initial temperature of 300 K. The solid lines correspond to
shifting equilibrium composition and the dashed lines correspond to frozen composi-
tion.

The γ determined by the pressure-volume fit is closest in value to γe at the CJ

γ C2H4 + 3O2 C2H4 + AIR
γf at CJ state 1.2356 1.1717
γe at CJ state 1.1397 1.1611

γ from P-v fit of eq. isentrope 1.1338 1.1638
γ from T-v fit of eq. isentrope 1.0967 1.1466
γ from T-P fit of eq. isentrope 1.0853 1.1260

Table 6.1: Tabulated values of γ determined by fitting isentropes with either equilib-
rium or frozen composition in ethylene-oxygen or -air mixtures.

state. For most simple detonation problems, it is sufficient to have an approximate

representation of the equation of state of the products in the vicinity of the isentrope

that originates at the CJ state. The usual practice is to approximate the products as

being in chemical equilibrium at each point along the isentrope. The molar mass of

the products will change as the composition shifts with pressure and temperature but
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Figure 6.4: T versus v for an ethylene-oxygen and ethylene-air mixture with an initial
pressure of 1 bar and an initial temperature of 300 K. The solid lines correspond to
shifting equilibrium composition and the dashed lines correspond to frozen composi-
tion.

for the present purposes, we assume the composition is fixed at the values obtained

for the CJ state.

From Table 6.1, we see that in general it is not possible to approximate the prop-

erties of the expanding detonation products in the Taylor wave region as a polytropic

process with a single, unique value of γ. In particular, due to the importance of

energy exchange in recombination-dissociation equilibrium, the values of γe for the

T − v and T − P relationships are significantly different than for the P − v rela-

tionship, particularly for the ethylene-oxygen case. Since the pressure only changes

by a factor of two in the Taylor wave, a common short cut is to simply use γe at

the CJ state for γ. To validate this assumption for different mixtures, we carried

out a study to compare the chemical reaction times assuming finite reaction rates to

the characteristic times of fluid motion throughout the Taylor wave calculated with

the similarity solution (Fickett and Davis, 1979). In §6.6 below, we compare the
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Figure 6.5: P versus T for an ethylene-oxygen and ethylene-air mixture with an
initial pressure of 1 bar and an initial temperature of 300 K. The solid lines corre-
spond to shifting equilibrium composition and the dashed lines correspond to frozen
composition.

timescales between ethylene-oxygen and ethylene-air mixtures with initial tempera-

tures of 300 K and initial pressures of 20, 60, and 100 kPa. If the expansion of the

products to lower pressures is important, a more elaborate treatment, including the

possibility of “freezing” of the composition, may need to be undertaken. Addition-

ally, in situations where strong shock waves may occur in the products, then a more

sophisticated approach needs to be taken.

6.5 Taylor-Zeldovich expansion wave

The Taylor wave expands the moving flow behind the detonation wave to zero velocity

at the closed tube end as illustrated on the distance-time diagram of Fig. 6.6. Here we

assume an ideal detonation traveling at the CJ velocity with instantaneous detonation

initiation. The decrease in flow velocity is associated with a corresponding decrease
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Figure 6.6: Schematic of Taylor wave showing characteristics and a representative
particle path through a detonation propagating from the closed end of a tube into
stationary gas.

in pressure (Figure 6.1) and a growing region of fluid at rest extends behind the

end of the Taylor wave to the closed end of the tube. The properties within the

expansion wave are calculated assuming a similarity solution using the method of

characteristics for this case of planar flow (Taylor, 1950, Zel’dovich, 1940). Similarity

solutions also exist in cylindrical and spherical flows behind ideal detonations initiated

instantaneously from a point. These flow fields can be computed by numerical solution

of the governing equations in similarity coordinates as discussed by Taylor (1950),

Sedov (1971-72), Stanyukovich (1960), and other textbooks.

Although our previous discussion has shown that a single value of γ defining the

polytropic relationship may not be a good assumption for all mixtures, especially

those far from equilibrium, we assume that the approximation is adequate so that

the usual gas dynamic equations apply in order for us to be able to model the flow

through the Taylor wave. There are two relevant sets of characteristics, C+ and C−,



167

defined by

C+ : dx/dt = u + c (6.46)

C− : dx/dt = u− c (6.47)

The detonation front and some representative characteristics in the products are

shown on Fig. 6.6. On the C+ characteristics,

dx

dt
=


x/t = c3 for 0 < x/t < c3

u + c = x/t for c3 < x/t < UCJ

(6.48)

where state 3 defines the region from the end of expansion wave x = c3t to the wall

at x = 0. The flow in this region is uniform and stationary with constant properties.

The Riemann invariant J− is constant on the C− characteristics that span the

region between the detonation x = UCJt and state 3.

J− = u−
∫ P

PCJ

dP

ρc
(6.49)

Given numerical solutions for ρ(P ) and c(P ), Eq. 6.49 can be integrated from the

CJ reference state to state 3 where the flow velocity is zero to determine u(P ) in the

Taylor wave. From the polytropic relation P ∼ ργ and Ω = 0, the integral in Eq. 6.49

can be reduced to 2c/(γ − 1).

J− = u− 2

γ − 1
c = − 2

γ − 1
c3 = u2 −

2

γ − 1
c2 (6.50)

Equation 6.50 is solved for c3 as a function of the CJ parameters where u2 = UCJ− c2

or alternatively, the flow velocity u through the Taylor wave.

c3 =
γ + 1

2
c2 −

γ − 1

2
UCJ (6.51)

u =
2

γ − 1
(c− c3) (6.52)
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At this point, we introduce the similarity variable η = x/c3t which equals η =

UCJ/c3 at the CJ state and decreases to one at the end of the Taylor wave. Starting

with the C+ Riemann invariant relationship of Eq. 6.48, the sound speed is evaluated

at an arbitrary point in the flow by substituting Eq. 6.52 for u.

x/t = u + c

x/t =
2

γ − 1
(c− c3) + c

c/c3 =
2

γ + 1
+

(
γ − 1

γ + 1

)
η (6.53)

For all distances behind the detonation wave, the sound speed in the products is

written as

c =


c3 for 0 < x/t < c3

c3 [2/(γ + 1) + (γ − 1)/(γ + 1)η] for c3 < x/t < UCJ

(6.54)

and is plotted for the ethylene-oxygen and ethylene-air mixtures in Fig. 6.7 as a

function of η through the Taylor wave.

The flow velocity is calculated by substituting Eq. 6.54 into Eq. 6.52.

u =
2

γ − 1

[(
c

c3

)
c3 − c3

]
=

2

γ − 1

[
2

γ + 1
+

(
γ − 1

γ + 1

)
η

]
c3 −

2

γ − 1
c3

=
2c3

γ + 1
(η − 1) (6.55)

As before, the piecewise function of the flow velocity behind the detonation wave can

be written explicitly and is plotted in Fig. 6.8 as a function of η through the Taylor
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Figure 6.7: Sound speed versus η through the Taylor wave calculated with γe and
fixed composition for an ethylene-oxygen and ethylene-air mixture with an initial
pressure of 100 kPa. The solid square symbols correspond to the CJ state.

wave for the two mixtures considered.

u =


0 for 0 < x/t < c3

2c3 (η − 1) /(γ + 1) for c3 < x/t < UCJ

(6.56)

The flow velocity within the Taylor wave decreases linearly with increasing dis-

tance behind the detonation front. The location where the flow velocity decreases to

zero is located a distance of c3/UCJ behind the detonation wave. From the detonation

jump conditions and the Riemann invariant relation, this distance is

c3

UCJ

=
γ + 1

2

ρ1

ρ2

− γ − 1

2
(6.57)

In limit of large MCJ , the density ratio is given by ρ1/ρ2 = γ/(γ + 1) and the end
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Figure 6.8: Velocity versus η through the Taylor wave calculated with γe and fixed
composition for an ethylene-oxygen and ethylene-air mixture with an initial pressure
of 100 kPa. The solid square symbols correspond to the CJ state.

of the Taylor wave is located exactly half-way between the detonation and the wall.

Experience with computations using realistic values of the properties indicates that

this is a fairly reliable rule of thumb for the extent of the Taylor wave.

The remaining flow properties for the temperature T , density ρ, and pressure P

are found from the following isentropic relations where c ∼
√

T , P ∼ ργ, and T ∼ ργ−1

are all constant. For example, the pressure P is related to the sound speed by

P =


PCJ (c3/c2)

2γ/(γ−1) for 0 < x/t < c3

P3 [2/(γ + 1) + (γ − 1)/(γ + 1)η]2γ/(γ−1) for c3 < x/t < UCJ

(6.58)

and is plotted in Fig. 6.9.

A characteristic timescale of fluid motion is determined from the rate of change
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of pressure along a particle path (sketched in Fig. 6.6)

tflow = − P

DP/Dt
(6.59)

where the pressure-time derivative is computed from the similarity solution with the

chain rule.
DP

Dt
=

dP

dη

Dη

Dt
(6.60)

From the definition of η, we have

Dη

Dt
= −1

t

(
η − u

c3

)
(6.61)

Replacing u in Eq. 6.61 with Eq. 6.52 results in an ordinary differential equation in
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terms of η and t.

Dη

Dt
= −1

t

[
η − 2

γ + 1

(
c

c3

− 1

)]
= − 2

t(γ + 1)

[
(γ − 1)

2
η + 1

]
(6.62)

Integrating Eq. 6.62 results in Eq. 6.63 which is used to calculate the six different

particle paths of Figs. 6.10(a) and 6.10(b).

η =
2

γ + 1

[(
t

tCJ

)−(γ−1)/(γ+1) (
γ − 1

2

UCJ

c3

+ 1

)
− 1

]
(6.63)

A path is determined from the initial particle location in the tube. For example,

consider a particle that is initially located a distance X from the thrust surface.

The particle does not move, as noted by a vertical line in the distance-time plots,

until the detonation wave reaches the particle at time tCJ = X/UCJ . For times

greater than tCJ the particle is instantaneously accelerated by the detonation wave

and then decelerated by the Taylor wave to zero flow velocity where the particle path

is a vertical line for all later times. Six particle paths, for initial positions X =

0.05, 0.25, 0.5, 1, 2.5, 5 m from the thrust surface, were determined using Eq. 6.63 for

the two mixtures investigated. The particle initially located the furthest (X = 5 m)

from the thrust surface remained in the Taylor wave longer than the particles initially

located closer to the thrust surface.

From Eq. 6.58, the derivative of P with respect to η is taken,

dP

dη
=

2P3γ

γ − 1

(
2

γ + 1
+

γ − 1

γ + 1
η

)(γ+1)/(γ−1)

(6.64)

and then combining with Eq. 6.62 yields the variation of pressure along a particle

path.

DP

Dt
= − 2

t(γ + 1)

[
(γ − 1)

2
η + 1

]
2P3γ

γ − 1

(
2

γ + 1
+

γ − 1

γ + 1
η

)(γ+1)/(γ−1)

(6.65)
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Figure 6.10: Paths of six particles that travel through the Taylor wave plotted on a
distance-time diagram for an (a) ethylene-oxygen and (b) ethylene-air mixture with
initial pressure of 100 kPa and initial temperature of 300 K.

The results are plotted in Fig. 6.11 as a function of η for the ethylene-air mixture.

Each particle experiences the largest rate of change of pressure just behind the

detonation wave (η = UCJ/c3). As η decreases and the particle moves through the

Taylor wave, the rate of change of pressure decreases (becomes less negative). Addi-

tionally, the extent of the Taylor wave grows as the detonation wave propagates down

the tube so that the rate of change of pressure is highest for those particles initially

located closest to the thrust surface.

Integrating Eq. 6.65 yields the variation of pressure with respect to time along a

particle path. The pressure-time curves plotted in Fig. 6.12 for the six particle paths

studied are normalized by PCJ and time shifted by tCJ for comparison. This means

that a particle initially at position X, which is not processed by the detonation wave

until t = tCJ = X/UCJ , is time-shifted to the left by tCJ seconds.

Now, the characteristic timescales of fluid motion are plotted in Fig. 6.13 and

later compared to the chemical timescales. Just behind the detonation wave, the flow

times are at a minimum and they increase through the Taylor wave.
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function of the similarity variable η. The equilibrium γ was used in the calculations
and the solid symbols correspond to the CJ state.

6.5.1 Computing the chemical timescale

In this section we describe the method used to compute the characteristic timescales

for relaxation to equilibrium due to the finite rate chemical reactions. The species

equation (Eq. 6.32) can be reformulated (Eq. 6.68) by assuming that only small

deviations Y′ = Y − Yeq, where |Y′| � |Yeq|, from equilibrium exist. For LTE,

Ωeq = 0.
DY

Dt
= Ω(Y, T, P ) (6.66)

D(Y′ + Yeq)

Dt
= Ω(Y′ + Yeq, T, P ) = Ω′ + Ωeq (6.67)

DY′

Dt
= Ω′ (6.68)
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Figure 6.12: Normalized pressure versus time through the Taylor wave along six
different particle paths corresponding to particles at different initial positions along
the tube in an (a) ethylene-oxygen and (b) ethylene-air mixture.
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Figure 6.13: Characteristic times of fluid motion through the Taylor wave along six
different particle paths corresponding to particles at different initial positions along
the tube in an (a) ethylene-oxygen and (b) ethylene-air mixture.

Expanding Ω in a Taylor series in Y yields

Ω u
∑ ∂Ωi

∂Yk

(Y ′
k) + ... (6.69)
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Combining the leading term in the Taylor series of Eq. 6.69 with Eq. 6.68 yields

DY′

Dt
=

∑ ∂Ωi

∂Yk

Y ′
k (6.70)

which can be written as a matrix equation

DY′

Dt
= JY′ (6.71)

where Jik = ∂Ωi/∂Yk is the Jacobian matrix. This matrix specifies how the reaction

rates Ωi vary in response to changes in the mass fractions and can be diagonalized,

det(J −λI) = 0 to obtain a set of eigenvalues λi. The number of nonzero eigenvalues,

or independent reaction progress variables, is equal to the difference between the

number of species and the number of atoms. The real parts of the nonzero eigenvalues

equal the reciprocals of the characteristic time tchem determining the time required

for the associated progress variables to relax to equilibrium after a disturbance. In

general, a distinct value of tchem is associated with each of the 31 and 48 independent

progress variables considered for the ethylene-oxygen and ethylene-air mixtures in

this study for each time increment through the Taylor wave.

Comparison of these chemical timescales to the flow timescale (Eq. 6.59) is used

to test the assumption of chemical equilibrium as discussed in §6.3.1. The calculated

values of Da for each time increment through the Taylor wave are based on the

corresponding, instantaneous values of tchem and tflow and are presented in the next

section for the ethylene-oxygen and ethylene-air mixtures investigated at different

initial pressures.

6.6 Results

The extent of non-equilibrium and the chemical timescales were computed by nu-

merical simulation of chemical reaction and energy conservation on a particle path
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through the Taylor wave. The energy equation (Eq. 6.31)

ρ
dh

dt
=

dP

dt
(6.72)

is written in terms of the temperature derivative where h is comprised of contributions

from all the species

h =
∑

hi(T )Yi (6.73)

ρ
∑

Yi
dhi

dT

dT

dt
+ ρ

∑
hi

dYi

dt
=

dP

dt
(6.74)

Cp
dT

dt
= −

∑
hi

dYi

dt
+

1

ρ

dP

dt
(6.75)

and the species are determined by integrating the rate equations

dYi

dt
= Ωi(T, P,Y) . (6.76)

In general, P has to be determined by simultaneously solving the energy equation

with the equations of motion. To avoid this complication and estimate the effect

of chemical reactions within the Taylor wave, we use the pressure decrease from the

similarity analysis to solve the energy equation. An approximate form of the pressure

profile for each particle path is obtained by fitting

ln

(
P

PCJ

)
= At2 + Bt + C (6.77)

to each particle path in Figs. 6.12(a) and 6.12(b). The Ωi = dYi/dt term in the

energy equation is obtained from a detailed model of the chemical kinetics using the

local temperature and pressure. The reaction mechanism, GRIMech 3.1 in this case,

includes all the relevant product species, elementary reactions, and corresponding

rate constants. The calculation is initiated from the CJ state given the species,

species mole fractions, CJ temperature, and CJ pressure. The species mass fractions
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and state parameters (T, ρ) as a function of time are determined through the Taylor

wave.

A total of six cases were investigated: ethylene-air and ethylene-oxygen mixtures

at an initial temperature of 300 K and initial pressures of 100 kPa (Fig. 6.14), 60 kPa

(Fig. 6.15), and 20 kPa (Fig. 6.16). Visual comparison of the state changes along

a specific particle path to the frozen and equilibrium isentropes highlight the effect

that finite rate chemical kinetics can have on fluid particles as they are expanding.
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Figure 6.14: Temperature versus pressure for the six particle paths through the Taylor
wave for an (a) ethylene-oxygen and (b) ethylene-air mixtures at an initial pressure
of 100 kPa. Also plotted are the frozen and equilibrium isentropes.

The expanding detonation products in the ethylene-oxygen mixtures (Figs. 6.14(a),

6.15(a), and 6.16(a)) effectively lie on the equilibrium isentrope and only a slight de-

viation from equilibrium is observed when P1 = 20 kPa. The effect of pressure is

also observed through comparison of the air mixtures (Figs. 6.14(b) , 6.15(b), and

6.16(b)) where the CJ temperature only varies on the order of 100 K. The particles

deviate more from equilibrium than in the oxygen mixtures. As the pressure de-

creases, the particle paths are not modeled by the equilibrium isentrope such that

when P1 = 20 kPa (Fig. 6.16(b)), the particles initially located closest to the thrust

surface are better modeled by the frozen isentrope.
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Figure 6.15: Temperature versus pressure for the six particle paths through the Taylor
wave for an (a) ethylene-oxygen and (b) ethylene-air mixtures at an initial pressure
of 60 kPa. Also plotted are the frozen and equilibrium isentropes.
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Figure 6.16: Temperature versus pressure for the six particle paths through the Taylor
wave for an (a) ethylene-oxygen and (b) ethylene-air mixtures at an initial pressure
of 20 kPa. Also plotted are the frozen and equilibrium isentropes.

The mole fractions at the end of the Taylor wave for the oxygen (Table 6.2) and

the air (Table 6.3) mixtures are compared. Since the oxygen mixtures can be modeled

with the equilibrium isentrope, differences in the final species amounts for different
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particle paths at the same initial pressure are not observed but rather, only depend

on the initial pressure.

X [m] P1 [kPa] H2 H O O2 OH H2O CO CO2

1 100 0.054 0.049 0.061 0.105 0.110 0.244 0.246 0.131
1 20 0.057 0.064 0.069 0.108 0.106 0.227 0.248 0.122

0.05 100 0.054 0.049 0.061 0.105 0.110 0.244 0.246 0.131
0.05 20 0.057 0.064 0.071 0.108 0.105 0.227 0.247 0.121

Table 6.2: Tabulated mole fractions for ethylene-oxygen mixtures, different particles
and different initial pressures.

In contrast, the species amounts at the end of the Taylor wave in the ethylene-air

mixtures (Table 6.3) yield more variation than the oxygen mixtures. This is expected

since the state changes along a particle path approximate the equilibrium isentrope

if X = 5 m and P1 = 100 kPa, whereas the state changes along a particle path

approximate the frozen isentrope if X = 0.05 m and P1 = 20 kPa.

X [m] P1 [kPa] H2 H O O2 OH H2O CO CO2 NO N2

1 100 0.006 0.000 0.000 0.008 0.006 0.121 0.025 0.105 0.008 0.720
1 20 0.006 0.003 0.003 0.014 0.008 0.115 0.034 0.095 0.008 0.714

0.05 100 0.006 0.000 0.000 0.011 0.006 0.119 0.028 0.099 0.011 0.720
0.05 20 0.006 0.003 0.003 0.014 0.008 0.115 0.034 0.095 0.008 0.714

Table 6.3: Tabulated mole fractions for ethylene-air mixtures, different particles and
different initial pressures.

At each time step, the values of tchem found from the eigenvalues of the Jacobian

(§6.5.1) are divided by the timescale of fluid motion yielding the Damkohler number

for each reaction progress variable through the Taylor wave. These results are plotted

for all progress variables for two initial particle positions of X = 0.05 m and X = 5 m

in the ethylene-oxygen and ethylene-air mixtures with initial pressures of 20 kPa

(Fig. 6.17) and 100 kPa (Fig. 6.18).

The Damkohler numbers for the ethylene-oxygen mixtures at 100 kPa (Fig. 6.18(c))

are much less than one for particles with initial positions greater than 1 m from the

thrust surface, indicating that they are equilibrium (Refer to Appendix A for ad-

ditional plots of Damkohler numbers for all cases analyzed). For the initial particle

positions less than 1 m from the thrust surface (Fig. 6.18(a)), there is a single progress
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Figure 6.17: Damkohler numbers for each reaction progress variable in ethylene-
oxygen and ethylene-air mixtures through the Taylor wave. The initial pressure is
20 kPa. The x-axis is time normalized by the total time each particle takes to travel
through the Taylor wave.

variable that is not in equilibrium. Having a single progress variable not in equilib-

rium does not imply that the state variables will approximate the frozen isentrope

(Fig. 6.14), but rather that a critical number of non-equilibrated progress variables

must exist for this to occur. At the lower pressure of 20 kPa, it is only for particles
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Figure 6.18: Damkohler numbers for each reaction progress variable in ethylene-
oxygen and ethylene-air mixtures through the Taylor wave. The initial pressure is
100 kPa. The x-axis is time normalized by the total time each particle takes to travel
through the Taylor wave.

initially at X = 0.05 m (Fig. 6.17(a)), does a departure from equilibrium appear

(Fig. 6.14). Thus, based on the chemical reaction mechanism used, slight deviations

from equilibrium can exist and the state can still be effectively modeled assuming

equilibrium since only a small fraction of the Damkohler numbers are greater than
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one.

The same trends are observed for the ethylene-air mixtures, but now the number

of nonequilibrated reaction progress variables are greater than in the oxygen cases.

At an initial pressure of 100 kPa and an initial particle position of X = 0.05 m

(Fig. 6.18(b)), at least ten of the reaction progress variables have not equilibrated.

This trend is more prominent when P1 = 20 kPa such that now, over half of the

Damkohler numbers are greater than one (Fig. 6.17(b)). This reinforces the visual

observation that the particle behavior more closely approximates the frozen isentrope

in Fig. 6.16(b).

The reaction progress variable with the smallest eigenvalue has the largest tchem

which we define as t∗chem and it is of interest to determine the species that influence the

long equilibration time. These are determined from the eigenvectors of the Jacobian.

The eigenvectors themselves do not vary significantly for different initial pressures and

the same mixture, only the corresponding eigenvalues change. As a result, Table 6.4

lists the magnitude of t∗chem averaged over the six particles analyzed at each pressure

and mixture. Variations in t∗chem less than 1% were observed over the range of initial

positions. Alternatively, the values of tflow do not vary with pressure, but depend on

the initial particle position (Table 6.5).

Oxidizer P1 [kPa] t∗chem (ms)
O2 20 22.1
O2 60 2.8
O2 100 1.1
Air 20 5491.3
Air 60 2262.9
Air 100 1522.0

Table 6.4: Tabulated t∗chem for ethylene-oxygen and ethylene-air mixtures. Values are
averaged over the six initial positions at each initial pressure.

The species combinations corresponding to the values of t∗chem in the ethylene-

oxygen mixtures is

0.17 H2 + 0.36 H + 0.38 O + 0.15 O2 + 0.24 OH + 0.45 CO � 0.46 H2O + 0.45 CO2

and in the ethylene-air mixtures is
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X (m) O2: tflow (ms) Air: tflow (ms)
5 0.1 0.1

2.5 0.3 0.3
1 0.5 0.6

0.5 1.0 1.3
0.25 2.6 3.2
0.05 5.1 6.4

Table 6.5: Tabulated tflow for ethylene-oxygen and ethylene-air mixtures, different
particles averaged over the initial pressures analyzed.

0.08 H2 + 0.02 H + 0.37 CO + 0.74 NO � 0.37 N2+ 0.15 O2 + 0.09 H2O+ 0.37 CO2 .

These relationships are comprised of several common dissociation/recombination re-

actions for H2-O2 and CO-CO2. For example, the mole fractions of carbon in the

reaction suggests the equilibrium relation CO � CO2 + O. The H2O molecules may

be in equilibrium based on either H2O � OH + H or H2O � H2 + 1/2 O2. The

remaining OH, H2, and O2 molecules are likely in equilibrium as specified by 2 OH

� H2 + O2, H2 � 2H, and O2 � 2O. In the case of the ethylene-air mixtures, these

same equilibrium reactions for the C, H2O, and OH species exist, in addition to equi-

librium relations for the nitrogen species. The Zeldovich mechanism for NO is the

most likely and consists of three relations: O + N2 → NO + N, N + O2 → NO + O,

N + OH → NO + H. This NO mechanism is known to be slow compared to the other

equilibrium relations and it is the cause for the largest values of t∗chem in Table 6.4.

The Damkohler numbers are plotted in Fig. 6.19 for the values of t∗chem at the end

of the Taylor wave as a function of initial particle position. As noted before, the

particles initially located closer to the thrust surface experience the greatest rate of

pressure decrease and many chemical reactions have not equilibrated at this point.

The percentage of the total progress variables not in equilibrium by the end of the

Taylor wave is plotted in Fig. 6.20. This percentage increases as the initial mixture

pressure decreases. In a 1-m tube, 20% of the progress variables have not reached

equilibrium in the detonation products of a low-pressure ethylene-air mixture, whereas

only 4% have not equilibrated in the products of a low-pressure ethylene-oxygen

mixture.



185

Initial particle position (m)

D
am

ko
hl

er
N

um
be

r

0 1 2 3 4 510-1

100

101

102

103

104

105

20 kPa

60 kPa

100 kPa

20 kPa

60 kPa

C2H4-AIR

100 kPa

C2H4-O2

Equilibrium chemistry

Frozen chemistry

Data at t / tTW = 1
(End of Taylor Wave)

Figure 6.19: Damkohler numbers at the end of the Taylor wave for the values of t∗chem

as a function of the initial particle position.

6.7 Conclusions

An analysis of expanding detonation products through the Taylor wave in a tube

that is closed at one end and open at the other has been presented. Ethylene-oxygen

and ethylene-air mixtures at three initial pressures were considered and a total of

six particles with different initial positions along the tube were tracked to determine

the time rate of change in their state parameters. Using an eigenvalue analysis of

the species equation, the chemical timescales and associated progress variables were

computed.

The fuel-oxygen detonation products are hotter than the fuel-air products and so

it is generally appropriate to assume equilibrium composition. However, significant

differences between the values of γ in these hotter mixtures exist due to the much

higher degree of dissociation. While the values of γ are similar for the fuel-air mix-

tures, these detonation products are not as close to equilibrium because their colder
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Figure 6.20: The percentage of independent reaction progress variables in non-
equilibrium by the end of the Taylor wave in ethylene-oxygen and ethylene-air mix-
tures with initial pressures of 0.2 bar and 1 bar as a function of the initial particle
position.

temperatures.

In fact, substantial non-equilibrium exists in fuel-air mixtures, especially for par-

ticles located near the thrust surface. The percentage of the total progress variables

that have not equilibrated by the end of the Taylor wave increases as the initial mix-

ture pressure decreases. In a 1-m tube, 20% of the progress variables have not reached

equilibrium in the detonation products of a low-pressure ethylene-air mixture, whereas

only 4% have not equilibrated in the products of a low-pressure ethylene-oxygen mix-

ture. This means that ethylene-oxygen mixtures can be accurately modeled using

the equilibrium flow assumption, but that significant departures from equilibrium are

present for low-pressure ethylene-air mixtures, especially in short (< 1 m) detonation

tubes. However, only modest variations in the effective polytropic exponent occur due

to non-equilibrium in the ethylene-air mixtures. Additional departures from equilib-

rium are expected if further flow expansion is obtained through a nozzle at the tube
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exit.
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Chapter 7

Conclusions

This work is an experimental and analytical study of impulse generation by detonation

tubes. It was motivated by the lack of experimental data and scientific understanding

on what operating parameters affect impulse. The main topics that are addressed

include quantification of the impulse obtained from partially filled tubes operating

in atmospheric conditions, fully filled tubes operating in sub-atmospheric conditions,

and tubes with exit nozzles.

A new understanding of the mechanisms that contribute to the increase in specific

impulse when the tube is partially filled have been presented through new analysis of

the detonation tube in terms of the masses and with the development of a ”bubble”

model that is valid in the limit of a nearly empty tube. Together these models can

be used to correlate the available experimental and numerical data of impulse for a

wide range of combustible mixtures and inert gases. In the case of partially filled

detonation tubes exhausting into 1 atm environments, previous research determined

that the specific impulse increases if only a fraction of the tube contains the explosive

mixture. Through analysis of all the available published data it was determined that

a correlation based solely on the volumetric fill fraction (Zhdan et al., 1994, Li and

Kailasanath, 2003) does not correctly predict the specific impulse when the densities of

the explosive and inert gases are significantly different, such as in the case of hydrogen-

oxygen mixtures exhausting into air at standard conditions. Consideration of the

principles of energy conservation indicate that the specific impulse depends primarily

on the chemical energy of the explosive and the relative mass ratios. As a result,
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correlating the specific impulse with the explosive mass fraction and by compiling all

the available experimental and numerical data from partially filled detonation tubes

showed that the data can be predicted by a single unifying relationship.

This mass-based relationship clearly fails in the limit when the explosive mass

fraction goes to zero because the impulse is dominated by unsteady gas dynamics.

An analytical model of an expanding “bubble” of hot, constant-volume combustion

products in an infinitely long tube was developed to successfully predict the theo-

retical maximum specific impulse from an arbitrary explosive-inert gas combination.

The maximum specific impulse was found to depend on the sound speed ratio be-

tween the hot expanding products and the inert gas, the ratio of specific heats of

the expanding hot products, and the pressure decay at the thrust surface. With

one-dimensional gas dynamics, the contact surface trajectory was predicted as the

hot products expanded which determined the pressure decay at the thrust surface. A

plot of the non-dimensional pressure decay integral was determined for a variety of

initial pressure ratios and values for the specific heat ratio in the products. These pre-

dictions, along with the new model, are new contributions to the PDE community for

which no other models of this kind exist. The predictions are in good agreement with

the available numerical data that exists for ethylene-oxygen and hydrogen-oxygen

mixtures.

Detonation tubes exhausting into sub-atmospheric pressures were studied through

the first experimental study directly measuring impulse with the ballistic pendulum

as the environment pressure varied. Previously, only a few numerical studies have

predicted the impulse under these conditions. The detonation tube was installed

within the dump tank of Caltech’s T5 hypersonic wind tunnel facility. This enabled

tests to be carried out in environment pressures from 100 to 1.4 kPa and with initial

pressures between 100 to 30 kPa in the ethylene-oxygen mixtures. The results showed

that the impulse increases as the environment pressure deceases. For example, at an

initial mixture pressure of 80 kPa, decreasing the environment pressure from 100 to

1.4 kPa increases the impulse by 15%. The increase in impulse is attributed to an

increase in the pressure differential across the thrust surface and the blowdown time.
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With the database of new experimental results, the increase in blowdown time was

quantified and used to improve the original impulse model of Wintenberger et al.

(2003). This model is capable of accurate predictions of the impulse for a variety of

mixtures, initial pressures, equivalence ratios, and now for a variety of environment

pressures.

The first experiments determining the effect of nozzles on detonation tube impulse

were also carried out. As before, the impulse was measured as the environment

pressure varied generating the first set of experimental data proving that nozzles can

increase the impulse over the case of a plain tube at all sub-atmospheric environment

pressures. Previous studies have investigated nozzles, but these were carried out with

the tube exhausting into 100 kPa air and only a few nozzle designs were tested. A

total of twelve different nozzles including converging, diverging, converging-diverging,

and a straight extension were tested in this study.

The effect of incomplete product gas expansion is observed when all of the im-

pulse data are plotted in terms of the nozzle pressure ratio P3/P0 and compared to

the steady flow impulse predictions assuming isentropic expansion. The straight det-

onation tube with no exit nozzle generated the lowest values of impulse. Adding a

nozzle successfully increases the impulse over the baseline case, yet how the nozzle

affects the impulse depends on the pressure ratio. Figure 5.33 is the first demonstra-

tion that a nozzle on an unsteady device has two operating regimes. At large pressure

ratios, a quasi-steady flow regime is established and the nozzle divergence expands

the flow. Here the impulse values are ordered in terms of increasing nozzle exit area

ratio. At small pressure ratios, the unsteady gas dynamics previously investigated

in the partially filled detonation tubes are observed. Here the impulse values are

ordered in terms of their mass fractions and are even observed to produce impulse

values greater than the steady flow impulse predictions.

A final numerical study was carried out to investigate the effect of chemical non-

equilibrium on expanding flows of detonation products by solving the species evo-

lution based on detailed chemical kinetics and a prescribed pressure-time history

approximated by the similarity solution for the Taylor wave following a detonation
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propagating from the closed end of a tube. An eigenvalue analysis of the Jacobian

matrix J = ∂Ωi/∂Yk determined the characteristic time required for the associated

progress variables to relax to equilibrium after a disturbance. Comparison of these

chemical timescales to the flow timescale (based on the rate of pressure decrease)

tested the assumption of chemical equilibrium. Substantial non-equilibrium exists in

fuel-air mixtures, especially for particles located near the closed end of the tube. The

percentage of the total progress variables that have not equilibrated by the end of

the Taylor wave increases as the initial mixture pressure decreases. In a 1 m tube,

20% of the progress variables have not reached equilibrium in the detonation prod-

ucts of a low-pressure ethylene-air mixture, whereas only 4% have not equilibrated in

the products of a low-pressure ethylene-oxygen mixture. This means that ethylene-

oxygen mixtures can be accurately modeled using the equilibrium flow assumption,

but that significant departures from equilibrium are present for low-pressure ethylene-

air mixtures, especially in short (< 1 m) detonation tubes.

7.1 Future work

When the detonation wave enters the divergent nozzle section, a decaying shock wave

is established. The role of this decaying shock wave under different environment

pressures and nozzle divergence angles would be of interest to investigate experimen-

tally in a two-dimensional facility capable of taking high speed movies of the shock

trajectory and possible boundary layer separation along the nozzle walls. At very

large pressure ratios, such as those in hypersonic wind tunnel facilities, the presence

of a secondary shock is well known. It would be of interest to investigate the role

of this secondary shock in relation to the unsteady exhaust flow from a detonation

tube. We would expect these shock structures to be qualitatively different between

the previously observed nozzle operating regimes.

The extent of the Taylor wave behind the detonation wave may also have an effect

on the nozzle flow and subsequent impulse. All of these tests were carried out in a

tube 1 m in length. From predictions of the internal flow field following a detonation
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propagating in a tube closed at one end, a detonation wave that has propagated a

long distance has a long expansion region and comparatively low rate of pressure

decrease behind it as compared to a detonation wave that has only propagated a

very short distance from the closed tube end. A study investigating the effect of

nozzle performance as a function of tube length and environment pressure would be

of interest.
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Figure A.1: Damkohler numbers for particles with varying initial position. Initial
mixture is C2H4-O2 at 100 kPa. x-axis is time normalized by the total time each
particle takes to travel through the TW.
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Figure A.2: Damkohler numbers for particles with varying initial position. Initial
mixture is C2H4-O2 at 20 kPa. x-axis is time normalized by the total time each
particle takes to travel through the TW.
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Figure A.3: Damkohler numbers for particles with varying initial position. Initial
mixture is C2H4-AIR at 100 kPa. x-axis is time normalized by the total time each
particle takes to travel through the TW.
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Figure A.4: Damkohler numbers for particles with varying initial position. Initial
mixture is C2H4-AIR at 20 kPa. x-axis is time normalized by the total time each
particle takes to travel through the TW.



209

Appendix B

List of experiments
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Shot P1 P0 IV ISP DDT Diap. Exit
No. (kPa) (kPa) (kg m2/s) (s) (µs) Condition
2 60 100 1115 151 – 1 –
3 60 100 1115 151 773 1 –
4 60 100 1115 151 817 1 –
5 40 100 671 137 1148 1 –
6 20 100 – – None 1 –
7 30 100 443 120 1532 1 –
8 80 100 1549 158 758 1 –
9 100 100 2078 169 520 1 –
10 30 100 443 120 1647 1 –
11 100 100 2078 169 552 1 –
12 80 100 1584 161 704 1 –
28 100 54.1 2216 180 510 1 –
29 80 54.1 1710 174 725 1 –
30 60 54.1 1218 165 805 1 –
31 40 54.1 750 153 1195 1 –
32 30 54.1 523 142 1626 1 –
33 100 16.5 2251 183 546 1 –
34 80 15.5 1790 182 742 1 –
35 100 54.1 2228 181 541 1 –
37 100 16.5 2245 183 669 1 –
38 60 16.5 1286 175 781 1 –
40 40 16.5 853 174 1137 1 –
41 30 16.5 637 173 1887 1 –
42 60 16.5 1321 179 811 1 –
43 60 16.5 1275 173 810 1 –
44 80 16.5 1767 180 710 1 –
45 40 16.5 853 174 1203 1 –
46 30 16.5 637 173 1491 1 –
49 40 54.1 750 153 1156 1 –
53 41 16.5 830 165 – 1 –
54 100 16.5 2239 182 – 1 –
55 30 16.5 648 176 1824 1 –
56 60 5.2 1355 184 779 1 –
57 40 5.2 910 185 1187 1 –
60 60 16.5 1355 184 802 2 –
61 60 16.5 1349 183 814 2 –
62 100 16.5 2280 186 538 2 –

Table B.1: Shot list for experiments with low environment pressure. Initial mixture
is CH4-3O2. Diaphragm thicknesses are specified as “1” for 25 µm, “2” for 51 µm,
and “3” for 105 µm thicknesses.
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Shot P1 P0 IV ISP DDT Diap. Exit
No. (kPa) (kPa) (kg m2/s) (s) (µs) Condition
63 80 16.5 1813 185 753 2 –
65 54.5 5.2 1275 191 806 2 –
66 80 16.5 1813 185 723 2 –
68 80 54.1 1716 175 712 2 –
69 80 1.4 1957 199 743 3 –
70 60 16.5 1378 187 797 3 –
71 60 5.2 1429 194 797 3 –
72 90 0.53 2158 195 655 3 –
74 80 5.2 1917 195 718 3 –
75 80 16.5 1859 189 739 3 –
76 80 16.5 1859 189 733 3 –
77 100 16.5 2332 190 682 3 –
78 60 16.5 1366 185 816 3 –
79 80 5.2 1917 195 751 3 –
80 80 100 1704 173 752 3 –
81 80 100 1584 161 744 2 –
82 80 54.1 1773 180 726 3 –
83 100 5.2 2407 196 666 3 –
84 80 1.4 1991 203 712 3 –
85 60 1.4 1446 196 787 3 –
86 80 1.4 1956 199 731 3 –
87 70 1.4 1710 199 722 3 –
88 85 1.4 2124 203 726 3 –
89 60 100 1189 161 804 3 –
90 60 100 1104 150 798 2 –
91 60 54.1 1286 175 801 3 –
92 60 1.4 1423 193 829 3 –
93 100 100 2060 168 680 2 –
94 100 100 2130 173 – 3 –
95 100 54.1 2280 186 685 3 –
96 60 5.2 1406 191 737 3 –
97 100 54.1 2181 178 553 2 –
98 100 100 2112 172 536 3 –
99 60 54.1 1229 167 788 2 –
100 80 100 1869 190 729 3 8◦–0.3m
101 77.8 100 1733 181 719 2 8◦–0.3m
102 80 100 1767 180 753 2 8◦–0.3m

Table B.2: Shot list for experiments with low environment pressure. Initial mixture
is CH4-3O2. Diaphragm thicknesses are specified as “1” for 25 µm, “2” for 51 µm,
and “3” for 105 µm thicknesses.
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Shot P1 P0 IV ISP DDT Diap. Exit
No. (kPa) (kPa) (kg m2/s) (s) (µs) Condition
103 80 54.1 1910 194 724 2 8◦–0.3m
104 80 54.1 1978 201 742 3 8◦–0.3m
105 80 16.5 2210 225 733 2 8◦–0.3m
106 80 16.5 2244 228 735 3 8◦–0.3m
107 80 1.4 2552 260 749 3 8◦–0.3m
108 80 54.1 1964 200 736 3 8◦–0.3m
109 80 5.2 2408 245 707 3 8◦–0.3m
110 80 5.2 2387 243 751 3 8◦–0.3m
111 80 100 1741 177 751 3 Noz-0.75
112 80 54.1 1813 185 689 3 Noz-0.75
113 80 16.5 1931 197 748 3 Noz-0.75
114 80 5.2 1951 199 730 3 Noz-0.75
115 80 1.4 1984 202 714 3 Noz-0.75
116 80 16.5 1925 196 698 3 Noz-0.75
117 80 100 1674 170 746 3 Noz-0.50
118 80 54.1 1767 180 732 3 Noz-0.50
119 80 16.5 1853 189 729 3 Noz-0.50
120 80 5.2 1933 197 734 3 Noz-0.50
121 80 1.4 1993 203 703 3 Noz-0.50
122 80 100 2148 219 736 3 12◦–0.3m
123 80 54.1 2148 219 724 3 12◦–0.3m
124 80 16.5 2392 244 747 3 12◦–0.3m
125 80 5.2 2501 255 735 3 12◦–0.3m
126 80 1.4 2691 274 711 3 12◦–0.3m
128 80 5.2 2548 259 733 3 12◦–0.3m
129 80 100 2148 219 690 3 12◦–0.3m
130 80 54.1 2162 220 717 3 12◦–0.3m
131 80 100 1804 184 730 3 12◦–0.3m-CD-0.54
132 80 54.1 1929 196 737 3 12◦–0.3m-CD-0.54
133 80 16.5 2185 222 693 3 12◦–0.3m-CD-0.54
134 80 5.2 2470 251 550 3 12◦–0.3m-CD-0.54
135 80 1.4 2666 271 680 3 12◦–0.3m-CD-0.54
136 80 100 1540 157 725 3 12◦–0.3m-CD-0.36
137 80 54.1 1702 173 735 3 12◦–0.3m-CD-0.36
138 80 16.5 2054 209 732 3 12◦–0.3m-CD-0.36
139 80 5.2 2357 240 741 3 12◦–0.3m-CD-0.36
140 80 1.4 2626 267 700 3 12◦–0.3m-CD-0.36

Table B.3: Shot list for experiments with low environment pressure. Initial mixture
is CH4-3O2. Diaphragm thicknesses are specified as “1” for 25 µm, “2” for 51 µm,
and “3” for 105 µm thicknesses.
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Shot P1 P0 IV ISP DDT Diap. Exit
No. (kPa) (kPa) (kg m2/s) (s) (µs) Condition
141 80 100 1974 201 761 3 12◦–0.3m-CD-0.75
142 80 54.1 2029 207 743 3 12◦–0.3m-CD-0.75
143 80 5.2 2478 252 735 3 12◦–0.3m-CD-0.75
144 80 16.5 2291 233 722 3 12◦–0.3m-CD-0.75
145 80 1.4 2693 274 722 3 12◦–0.3m-CD-0.75
147 80 100 2969 302 715 3 12◦–0.6m
148 80 54.1 2831 288 717 3 12◦–0.6m
149 80 16.5 2651 270 705 3 12◦–0.6m
150 80 5.2 2635 268 688 3 12◦–0.6m
151 80 100 2863 291 722 3 12◦–0.6m
152 80 54.1 2806 286 726 3 12◦–0.6m
153 80 1.4 2831 288 733 3 12◦–0.6m
154 80 5.2 2684 273 712 3 12◦–0.6m
155 80 100 2929 298 687 3 12◦–0.6m
156 80 100 2742 279 754 3 12◦–0.6m-CD-0.75
157 80 54.1 2575 262 746 3 12◦–0.6m-CD-0.75
158 80 5.2 2617 266 743 3 12◦–0.6m-CD-0.75
159 80 16.5 2542 259 715 3 12◦–0.6m-CD-0.75
160 80 1.4 2767 282 719 3 12◦–0.6m-CD-0.75
161 80 100 2412 246 693 3 12◦–0.6m-CD-0.54
162 80 16.5 2394 244 717 3 12◦–0.6m-CD-0.54
163 80 54.1 2314 236 619 3 12◦–0.6m-CD-0.54
164 80 5.2 2537 258 755 3 12◦–0.6m-CD-0.54
165 80 1.4 2698 275 719 3 12◦–0.6m-CD-0.54
166 80 54.1 2270 231 730 3 12◦–0.6m-CD-0.54
167 80 100 1895 193 745 3 12◦–0.6m-CD-0.36
168 80 54.1 1922 196 612 3 12◦–0.6m-CD-0.36
169 80 16.5 2138 218 735 3 12◦–0.6m-CD-0.36
170 80 5.2 2319 236 730 3 12◦–0.6m-CD-0.36
171 80 1.4 2599 265 732 3 12◦–0.6m-CD-0.36
172 80 100 2139 218 730 3 0◦–0.6m
173 80 54.1 2063 210 695 3 0◦–0.6m
174 80 16.5 2052 209 730 3 0◦–0.6m
175 80 5.2 2085 212 709 3 0◦–0.6m
176 80 1.4 2226 227 732 3 0◦–0.6m

Table B.4: Shot list for experiments with low environment pressure. Initial mixture
is CH4-3O2. Diaphragm thicknesses are specified as “1” for 25 µm, “2” for 51 µm,
and “3” for 105 µm thicknesses.
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Appendix C

Experimental pressure traces
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