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Abstract

The internal shock loading of cylindrical shells can be
represented as a step load advancing at constant speed.
Several analytical models are available to calculate the
structural response of shells to this type of loading. These
models show that the speed of the shock wave is an
important parameter. In fact, for a linear model of a shell
of infinite length, the amplitude of the radial deflection
becomes unbounded when the speed of the shock wave is
equal to a critical velocity. It is evident that simple (static)
design formulas are no longer accurate in this case. The
present paper deals with a numerical and experimental
study on the structural response of a thin aluminum
cylindrical shell to shock loading. Transient finite element
calculations were carried out for a range of shock speeds.
The results were compared to experimental results obtained
with the GALCIT 6-inch shock tube facility. Both the
experimental and the numerical results show an increase in
amplitude near the critical velocity, as predicted by simple
steady state models for shells of infinite length. However,
the finite length of the shell results in some transient
phenomena. These phenomena are related to the reflection
of structural waves and the development of the deflection
profile when the shock wave enters the shell.

Nomenclature

E Young’s modulus N/m2

G shear modulus N/m2

Nxx axial stress resultant N/m
Nθθ circumferential stress resultant N/m
Mxx moment resultant N
Qx shear stress resultant N/m
R shell mean radius m
f frequency Hz
h shell thickness m
i imaginary unit
k wave number 1/m
l shell length m
m, m1, m2 characteristic roots
n characteristic root
p1 pre-shock pressure Pa
p2 post-shock pressure Pa
patm atmospheric pressure Pa
t time s
u axial deflection m
u dimensionless axial deflection
v shock speed m/s
vd dilatational wave speed m/s
vs shear wave speed m/s
w radial deflection m
w dimensionless radial deflection
wb dimensionless radial deflection, bending
wI

b dimensionless radial deflection region I
wII

b dimensionless radial deflection region II
x axial coordinate m
α characteristic root
β shell thickness parameter
η dimensionless (moving) axial coordinate
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∆p pressure difference across shell Pa
κ shear correction factor
ν Poisson’s ratio
ρ density kg/m3

ψ rotation

ψ rotation
Λj excitation parameter (j=1,2)
Λs

j excitation parameter (j=1,2)

1 Introduction

This study is concerned with measuring and predicting the
deformations of cylindrical shells due to internal shock load-
ing. The load is characterized by a step in pressure or shock
wave, pre- and post-shock pressures p1 and p2, propagating
axially with speed v in the gas within the shell. The moving
load excites flexural waves in the shell and produces a net
radial deformation due to the difference in pressure across
the shock wave. A schematic of the configuration is shown in
Fig. 1; the deformations of the tube have been exaggerated
to emphasize the type of shell motion we are considering.
The most interesting aspect of this problem is that the cir-
cumferential strain can greatly exceed (up to 3 to 4 times
higher) the equivalent static strain if the shock and flexu-
ral motions are in resonance. The present study addresses
the linear-elastic regime so that although we consider large
strains, they are not so high that plastic deformation or dis-
turbance to the gas flow results. The resonance of the shock
in the gas with the flexural waves in the shell are a dynamic
effect, which we have studied with transient analyses and
experiments.

P
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v

Figure 1: Schematic of configuration for excitation of shell
flexural waves by shock loading.

The simplest dynamic model describes the radial (breath-
ing) motion of the shell cross section. For uniform sudden
loading, this results in a maximum strain that is twice the
equivalent static loading. In order to accurately predict
the response to a traveling load, one has to model the dy-

namic flexural behavior of the shell. Several models have
been developed to describe this phenomenon. These mod-
els primarily differ in the manner of treating rotary iner-
tia and transverse shear deformation. These models pre-
dict the existance of a so-called critical velocity. When the
shock wave travels at the critical velocity, the resonant con-
dition, the solution for the radial motion of the shell be-
comes unbounded. Evidently, damping, nonlinearities, and
plastic deformation will be controlling parameters in this
case. With the exception of the singular behavior at the
resonant condition, the dynamic flexural model predictions
are in reasonable agreement with the measured strains.

It is clear that the “critical velocity” concept should be
of concern for the design of structures that are subjected to
moving loads. The concept not only applies to shells with
internal shock loading, but also to the structural response
of gun tubes, the interaction between railroad track and soil
for a moving load, and the response of structures to detona-
tion loading. The structural response of shells to shock or
detonation loading was studied by Tang (1965), Reismann
(1965), de Malherbe et al. (1966) and Simkins (1987). Re-
lated research for other types of structures and loadings
can be found in Felszeghy (1996a), Felszeghy (1996b), Pan
et al. (1994), Dieterman and Metrikine (1997), and Dieter-
man and Metrikine (1996). An overview of numerical meth-
ods in the prediction of the structural response to blast and
shock loading was recently presented by Mackerle (1996).

2 Analytical models

The analytical model used in this section was presented
by Tang (1965). His formulation was rewritten to enable
an easy comparison with the model presented by Simkins
(1987).

2.1 Basic equations

The basic equations for this model are

∂Nxx

∂x
= ρh

∂2u

∂t2
;

∂Mxx

∂x
− Qx = ρh3 ∂2ψ

∂t2

∂Qx

∂x
− Nθθ

R
+ ∆p = ρh

∂2w

∂t2
. (1)

The stress resultants Nxx, Nθθ and Mxx are

Nxx =
Eh

1 − ν2

[
∂u

∂x
+ ν

w

R

]
; Mxx =

Eh3

12 (1 − ν2)
∂ψ

∂x

Nθθ =
Eh

1 − ν2

[
ν

∂u

∂x
+

w

R

]
; Qx = κGh

[
ψ +

∂w

∂x

]
, (2)

where κ is the shear correction factor and ψ is the rota-
tion. The value of the shear correction factor is determined

2



from the condition that waves with very small wave numbers
propagate at the speed of Rayleigh waves. Rotary inertia
and transverse shear deformation are included in the equa-
tions. Axial prestress is neglected. For a discussion on axial
prestress the reader is referred to Reismann (1965).

We introduce the following dimensionless quantitities to
facilitate discussion of these equations

u =
u

h
; w =

w

h
; ψx =

1√
12

ψx ; η =
√

12
h

[x − vt] . (3)

The following parameters are used in the analysis:

Λj =
(pj − patm) R2

Eh2
: excitation parameters (j = 1, 2)

vd =

√
E

ρ (1 − ν2)
: dilatational wave velocity

vs =

√
κG

ρ
: shear wave velocity

β =
h√
12R

: shell thickness parameter...

(4)
The first relation in Eq. 1 is used to eliminate the axial
displacement u. The radial displacement w is now split up
into two parts:

w = wb + ws ; ψx = −∂wb

∂η
. (5)

Inserting these expressions into Eqs. 1 and 2, and integrat-
ing with respect to η gives

ws = −
(

vd

vs

)2
[
1 −

(
v

vd

)2
]

∂2wb

∂η2 . (6)

The final result for this model is the following differential
equation:

A4
∂4wb

∂η4 + A2
∂2wb

∂η2 + A0wb = F (η) (7)

where

A4 =

[(
v

vd

)2

− 1

][(
v

vs

)2

− 1

]

A2 =
(

v

vd

)2
[
1 + β2

(
vd

vs

)2
]
− β2

(
1 − ν2

) (
vd

vs

)2

A0 = β2 +
β2ν2[(
v

vd

)2

− 1

] (8)

F (η) = β2
(
1 − ν2

) {Λ1 + (Λ2 − Λ1) [1 − H (η)]} .

For vs → ∞ and
(

v
vd

)
¿ 1, the model reduces to that

described by Simkins (1987). In the Simkins model, the
effects of transverse shear and rotary inertia are neglected.

2.2 Dispersion equation

The solution of Eq. 7 is composed of a homogeneous and
inhomogeneous part. By assuming an exponential depen-
dence, w ∼ exp(αη), for the homogeneous part, the follow-
ing dispersion equation is obtained:

A4 α4 + A2 α2 + A0 = 0 (9)

where α is related to the wave number k through

k =
√

12α

ih
. (10)

The characteristic roots can be determined for each value of
v by simply using the quadratic formula. Based on the val-
ues of the speed v, five different cases can be distinguished.
In the present investigation, only the first two cases are rele-
vant. In the first case, 0 < v < vc0, the values of α are com-
plex: α = ±n ± im. In the second case, vc0 < v < vc1, the
values of α are purely imaginary: α = ±im1 and α = ±im2.
The speed vc0 is the first critical velocity. The values of each
critical velocity can be calculated from the vanishing of the
discriminant

A2
2 − 4A0A4 = 0. (11)

For the Tang model, there are four critical velocities. The
other critical velocities are vc1: the shear wave speed vs,
vc2: the dilatational wave speed in a bar vd

√
1 − ν2, and

vc3: the dilatational wave speed vd. For a more detailed
discussion on these five cases, the reader is referred to Tang
(1965).

2.3 Case 1: 0 < v < vc0

Case 1 is referred to as the subcritical case. The axial do-
main is split up into two regions. Region I is after the
shock, η < 0, and region II is before the shock, η ≤ 0. In
the subcritical case there are four complex roots. Continuity
conditions have to be satisfied at η = 0 for displacement, ro-
tation, moment, and shear. The solution also must remain
bounded for η → ±∞. The final solution is

wI
b = Λs

1 − (Λs
2 − Λs

1) · (12){
1 +

1
8
enη

[
−4 cos (mη) + 2

n2 − m2

nm
sin (mη)

]}

wII
b = Λs

1 + (Λs
2 − Λs

1) · (13){
1
8
e−nη

[
4 cos (mη) + 2

n2 − m2

nm
sin (mη)

]}
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where

Λs
i =

β2
(
1 − ν2

)
A0

Λi. (14)

The solution is oscillatory with an exponential decay as dis-
tance increases from the shock wave. Note that there are
waves (precursors) ahead of the pressure front. The fre-
quency of these precursor waves is equal to the frequency
of the main signal, which exists after the shock has passed.
When the velocity approaches vc0, the value of n goes to
zero and the solution becomes unbounded.

2.4 Case 2: vc0 < v < vc1

Case 2 is referred to as the supercritical case. In the su-
percritical case there are only purely imaginary roots. The
axial domain is also split up into two regions for this case.
Continuity conditions must also be satisfied at η = 0. How-
ever, the solution always remains bounded for η → ±∞, so
other conditions have to be used to solve the problem. The
extra restrictions for this case are a radiation condition; en-
ergy has to flow away from the pressure step. By using the
group velocity concept, one finally has

wI
b = Λs

1 + (Λs
2 − Λs

1)
{

1 +
[

m2
2

m2
1 − m2

2

]
cos (m1η)

}
(15)

wII
b = Λs

1 + (Λs
2 − Λs

1)
[

m2
1

m2
1 − m2

2

]
cos (m2η) . (16)

The supercritical solution is purely oscillatory. Both before
and after the shock the amplitude of the signals is constant,
but the frequencies are different. The precursor wave con-
tains a higher frequency signal than the main wave. As the
velocity approaches vc0, m1 approaches m2 and the solution
becomes unbounded.

3 Finite element model

The finite element calculations were carried out with the
commercial package, IDEAS. In order to calculate the
structural response, the problem was split up into two
parts: a static calculation and a dynamic calculation. The
static deformation corresponding to the pressure difference
(p1−patm) was calculated with a linear-elastic static model.
The dynamical response to a pressure step with amplitude
(p2 − p1) travelling at speed v was calculated with a tran-
sient, linear-elastic, finite-element model. Both results were
combined to obtain the final solution.

3.1 Static calculation

The static deformation due to a pressure difference (p1 −
patm) was calculated. Rotary-symmetric, Mindlin-type,

two-noded shell elements were used. The tube of interest
was divided into 1500 elements (see section 3.2). Both ends
of the tube were assumed to be fully clamped. The material
and geometrical data are given in section 4.4.

3.2 Dynamic calculation

A transient, linear-elastic calculation was carried out to de-
termine the structural response to a moving pressure step
with amplitude (p2−p1). For the tube of interest, 1500 ele-
ments were used in the axial direction. This number was de-
termined by accuracy and calculation time considerations.
A single case was computed at a number of different resolu-
tions using from 500 to 1500 elements. The maximum strain
at several locations was plotted vs. the number of elements,
and it was apparent that little gain in accuracy would result
from using more than 1500 elements. For the strain signals
of interest, with a speed of approximately 1000 m/s and a
frequency of 35 kHz, this means a resolution of about 50
elements per wavelength. The loading of the shell is highly
transient. In each node, a force was prescribed as a function
of time.

The force history for each point depends on its axial lo-
cation, the speed of the shock wave and the amplitude of
the pressure step. The response was calculated up to the
time of reflection of the shock wave at the end of the tube.
For the time integration, 1000 intervals were used. For the
problem of interest this means approximately 30 steps per
cycle. The response was calculated with a normal mode su-
perposition technique. The modes of vibration of the shell
were calculated first. These eigenmodes were then used as a
basis to calculate the transient shell response. In the calcu-
lations, 230 modes were used. The eigenfrequencies of these
modes range from 3 kHz to 150 kHz.

4 Experimental setup

4.1 GALCIT 6-inch shock tube facility

The experiments were carried out with the GALCIT 6-inch
shock tube. The gas in the driver and the driven sec-
tions were separated by a 0.010 inch-thick aluminum sheet.
Both the driver and the driven sections of the shock tube
were evacuated before each run. The driven section was
then slowly filled with air until the desired pressure p1 was
reached. Next, helium was slowly released into the driver
section until the diaphragm could not withstand the pres-
sure and ruptured. The aluminum diaphragm ruptured at
a pressure difference of approximately 275 kPa. Symmetric
rupture of the diaphragm was ensured by the use of sharp
blades placed inside the shock tube. A shock wave was then
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created in the vicinity of the diaphragm and propagated to-
ward the test section.

4.2 Tube assembly

The test section consisted of a test tube, a transition tube,
and a shield tube ( see Fig. 2). One end of the test tube was
inserted into a hole in a flange at the end of the transition
tube. The other end was connected to a 1.27 cm thick end
plate. O-rings were used at both ends to make gas-tight
seal connections.

The transition tube was 0.260 m long and made of
6.35 mm thick steel with an inner diameter of 50.8 mm.
The transition tube had two flanges at both ends. One end
of the tube was connected to the driven section of the 6-inch
shock tube. The purpose of this tube was to prevent the
expansion wave, generated at the area change, from enter-
ing the test tube during the duration of the test. The shield
tube was made of 6.35 mm thick steel with an inner diam-
eter of 88.9 mm. One end of the shield tube was bolted to
the end plate and the other end to one of the flanges of the
transition tube. The shield tube was designed to contain
fragments in case of a failure of the test tube.

Figure 2: Tube assembly.

4.3 Instrumentation

PCB piezo-electric pressure transducers were used to de-
termine the velocity and position of the shock wave. Two
pressure transducers, 0.500 m apart, were installed near the
end of the driven section of the shock tube. These trans-
ducers were used to measure the velocity in the shock tube.
In addition, the output from the first transducer was used

to trigger the data-acquisition system. Because the diame-
ter of the test tube differs from the diameter of the shock
tube, the shock wave travels at a different velocity inside the
test tube. In order to determine the velocity of the shock
wave inside the test tube, two additional pressure transduc-
ers were used. The third pressure transducer was installed
near the end of the transition tube. The fourth pressure
transducer was installed at the endplate, which was located
0.983 m from the third pressure transducer.

Three Micro Measurements strain gages were used to
record the transient response of the test tube. The strain
gages were installed 0.179 m apart, with the first strain gage
located 0.382 m from the beginning of the test tube. The
strain gages were mounted to measure the circumferential
strain. The output from the strain gages was directed to
unbalanced Wheatstone bridge circuits and amplified. The
amplifiers were set at a gain of 100 and a bandwith of 100
kHz. In this way the jump in strain relative to the initial
compressive strain was measured. The initial compressive
strain was caused by the evacuation of the tube to the
subatmospheric pressure p1. Since the width of the strain
gages is small compared to the structural wave length,
the high frequency strain signals can be measured with
sufficient accuracy.

4.4 Properties of the setup

The computed results are sensitive to variations in the input
data. Therefore the material and geometrical properties of
the tube were determined accurately. The inner diameter
of the tube was measured at 8 points. The average inner
diameter was 50.57 mm. The variation in inner diameter
was smaller than 0.25 mm. The outer diameter of the test
tube was measured at 12 equally spaced points. The aver-
age outer diameter was 53.77 mm, with a variation smaller
than 0.25 mm. The total length of the tube was 0.933 m
with a total mass of 0.679 kg. The effective length of the
tube between the clamps is 0.889 m. The geometrical and
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material data that were used in the calculations are sum-
marized in table 1.

R: 26.09 mm ρ: 2773 kg/m3

h: 1.601 mm ν: 0.33
l: 889.0 mm E: 72 · 109 N/m2

Table 1: Geometrical and material properties

The critical velocity, calculated from the Tang model, is
963 m/s. Neglecting rotary inertia and transverse shear,
the Simkins model, gives a critical velocity of 987 m/s.

4.5 Pressure traces

The initial pressure was varied between 6.8 kPa and 18.5
kPa in order to obtain different speed shock waves. This
variation in pressure was accounted for in the data reduction
by scaling the measured deformations with the equivalent
static value based on the pressure jump across the shock. In
Fig. 3 the pressure signal of the third transducer is plotted
for a shock speed of 999.2 m/s.
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Figure 3: Pressure transducer 3 signal for v = 999.2 m/s.

Figure 3 shows that the pressure history is not a clearly
defined step. After the shock has passed, the pressure grad-
ually drops. Therefore it is difficult to clearly identify the
post shock pressure p2. The two PCB transducers in the
driven section of the shock tube also show a slight decrease
in pressure following the shock arrival. Due to the difficulty
in defining the post-shock pressure, the shock wave arrival
times were used to compute shock speed and then we back-
calculated the pressure p2 from the pressure p1, the speed
of the shock wave v, and the shock jump conditions.

5 Results and discussion

5.1 Strain vs. time

In Fig. 4, the jump in circumferential strain vs. time is plot-
ted for a subcritical shock speed of 967.8 m/s. In Fig. 5 the
strain is plotted for a supercritical shock speed of 999.2 m/s.
In both cases the strain significantly exceeds the equivalent
static strains. There are some clear differences between the
subcritical and the supercritical strain traces. For the sub-
critical case, the strain signal is oscillatory with an expo-
nential decay, as predicted by the analytical models and the
finite element model. The period of oscillation in the pre-
cursor wave and the bulk signal is approximately the same.

In the supercritical case, the frequency in the precursor
wave is higher than the frequency of the bulk signal, as
predicted by the theory. However, the analytical model
predicts a constant amplitude in the precursor wave, which
is clearly not the case in the experimental results. This
is caused by transient effects due to the finite length of
the tube. Initially the whole tube is at rest. Therefore it
takes time for the deflection profile to develop. The fastest
waves in the shell are the dilatational waves that travel at
about 5000 m/s. Before these waves arrive, the shell is at
rest. The finite element model is able to account for these
transient effects. The shape of the envelope of the precursor
wave is also an indication whether the speed of the shock
wave is subcritical or supercritical.

Another transient effect is related to the reflection of
structural waves at the end of the shell. Due to the reflec-
tions at the end, there will be an interference with forward
travelling waves, which can lead to high strains especially
near the critical velocity, when the precursor wave is rela-
tively strong.

5.2 Dispersion curve

The experimental and finite element data are used to re-
construct the dispersion curve for this setup. First, the
lowest critical velocity is computed from the implicit solu-
tion of Eq. 11 by numerical iteration for the Tang model.
The Simkins model is a special case for which an analytic
solution can be found

vc0 =

√
Eh

ρR

[
1

3(1 − ν2)

]1/4

. (17)

The dispersion curve is computed from Eq. 9 and the fre-
quency is defined by Eq. 10, where the wavenumber is given
by k = 2πf/v and f is the frequency.
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Figure 4: Strain vs. time for v = 967.8 m/s. Left column: measurements. Right column: finite element results.
Top: strain gage 1. Middle: strain gage 2. Bottom: strain gage 3.
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Figure 5: Strain vs. time for v = 999.2 m/s. Left column: measurements. Right column: finite element results.
Top: strain gage 1. Middle: strain gage 2. Bottom: strain gage 3.
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Figure 6: Amplification factor vs. velocity. Top: strain gage 1. Middle: strain gage 2. Bottom: strain gage 3.
Left column: reference based on shock jump conditions. Right column: reference based on measured pressures.
Solid line: Tang model. Dashed line: FEM. ◦, 2, 3: Experiments.

9



The analytical expressions, given in Sections 2.3 and 2.4,
for the strain history are used to curve fit the experimental
data. The value(s) of the parameter m (subcritical case) or
m1 and m2 (supercritical case) result from a nonlinear least-
squares fitting procedure that minimized the deviations be-
tween model and experimental data over a portion of the
strain history. These numbers represent the (dimensionless)
frequency of oscillation. The values of these parameters are
determined for each strain gage before and after the shock.
For subcritical velocities, the curve fit is not very accurate.
Due to the sharp exponential decay, the signal-to-noise ra-
tio is poor and explains the large spread in results for these
velocities. However, for velocities near the critical velocity
or supercritical velocities, the frequency can be determined
with a reasonable degree of accuracy.
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Figure 7: Dispersion curve.

The shock velocity is plotted vs. the frequency of os-
cillation in Fig. 7. The figure shows a clear branching of
the dispersion curve as predicted by the analytical models.
For supercritical velocities, the precursor wave contains the
higher frequency signal (right branch), and the main wave
contains the lower frequency signal (left branch). The dis-
persion curve offers an alternative way to extract the critical
velocity from the experimental data. The branching in the
experimental data occurs between 960 m/s and 970 m/s and
is close to the values predicted by the analytical models. In
general, the agreement between theory and experiment is
reasonable.

5.3 Amplification Factor

The dynamic amplification factor is defined as the ratio be-
tween the maximum jump in strain from the initial state

to the final state in the dynamical case and the static case.
This dimensionless quantity indicates the degree of dynamic
deformation; this is not affected by the initial prestress. The
amplification factor is a function of shock speed v. For the
analytical models presented in Section 2, the dynamic am-
plification factor becomes unbounded when the velocity of
the shock wave is equal to the critical velocity.

The experimental and finite element results are now used
to construct an amplification curve. When comparing these
results to the results from the analytical models, one must
be aware that certain transient phenomena are not included
in the analytical models. Reflections will affect the strain
history near the critical velocity, especially for the third
strain gage. In the analytical models there is always a
clear maximum. However, the experimental strain traces
are more complicated due to the interference of the incident
and reflected waves (see Fig. 4 and Fig. 5). It is therefore
difficult to assign a peak value that is a consequence only of
forward traveling waves, as in the analytical models. In the
present investigation, the maximum jump in strain up to
the time of reflection of the shock wave is used to calculate
the amplification factor. This means that in some cases this
value will include some contributions from reflected waves.

The calculated and measured amplification curves for the
three strain gages are plotted in Fig. 6. In order to calculate
the amplification factor, the maximum excursion in strain
is divided by the static strain corresponding to the pressure
difference (p2 − p1). The left column of Fig. 6 is based
on static strained computed from the initial pressure p1,
the shock speed v, and the shock jump conditions. The
right column of Fig. 6 is based on the measured pressures.
As shown, there are no visible differences between the two
approaches.

The amplification curves clearly illustrate the importance
of the critical velocity concept. For subcritical cases, the
amplification factor is close to one, as expected for a uni-
form static load. For supercritical cases, the amplication
factor is close to two, as expected for a suddenly-applied
uniform load. The data show a maximum deflection near
the critical velocity, however the measured maximum am-
plification factors are substantially lower than the values
predicted by the finite element model. This discrepancy
can partly be attributed to the fact that no damping was
included in the calculations. The finite element model also
predicts an increase of maximum amplification factor with
distance (see Fig. 6). In the experimental results, the am-
plification factors for the first strain gage are lower than the
following two gages, consistent with this prediction.
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Summary

Calculations and experiments were carried out to study the
structural response of a shell to internal shock loading. In
the experiments, strains exceeding the static strain by a
factor of up to 3.5 were obtained. The large strains can be
explained with the critical velocity concept.

The general agreement between calculations and experi-
ments is reasonable. The dispersion curve agrees well with
the analytical predictions. The analytical models and the
finite element model are able to predict the general shape of
the amplification curves. However, near the critical velocity
the predicted strains are too high.

Typical transient effects were observed in the experi-
ments. These effects are related to the development of the
deformation profile and the reflection of structural waves.
These transient effects were taken into account in the finite
element model.

This study provides a characterization only of the linear-
elastic aspect of this problem. Plastic deformation and pro-
cesses leading to material failure will be examined in future
studies.
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