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Abstract

An investigation of detonation diffraction through an abrupt area change has been car-

ried out via two-dimensional, parallel simulations. The existence of critical conditions

for successful diffraction is closely related to the occurrence of localized re-initiation

mechanisms, and is relevant to propulsion and safety concepts concerning detonation

transmission. Our analysis is specialized to a reactive mixture with perfect gas equa-

tion of state and a single-step reaction in the Arrhenius form. The concept of shock

decoupling from the reaction zone is the simplest idea used to explain the behavior of

a diffracting detonation front. Lagrangian particles are injected into the flow in order

to identify the dominant terms in the equation that describes the temperature rate of

change of a fluid element, expressed in a shock-based reference system. Conveniently

simplified, this equation provides an insight into the competition between the energy

release rate and the expansion rate behind the diffracting front. We also examine

the mechanism of spontaneous generation of transverse waves along the front. This

mechanism is related to the sensitivity of the reaction rate to temperature, and it is

investigated in the form of a parametric study for the activation energy. We study

in detail three highly resolved cases of detonation diffraction that illustrate different

types of behavior, super-, sub-, and near-critical diffraction. We review the applica-

bility of existing shock dynamics models to the corner-turning problem. Numerical

results from the parametric study are compared with predictions from these theories

in the attempt to find a formula for shock decay in a quenching detonation. This es-

timate is then used in the simplified temperature rate of change equation to provide a

relation between critical channel width and activation energy. We conclude this study

by examining the spontaneous formation of transverse waves along the wavefront of
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a successfully transmitted detonation. The problem is simplified to a planar CJ det-

onation moving in a channel over a small obstacle to investigate how acoustic waves

propagate within the reaction zone. Depending on the reaction kinetics, we show that

such waves may be amplified due to feedback between the chemical reaction and fluid

motion. The amplification can lead to shock steepening and formation of transverse

detonation waves.
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Chapter 1

Introduction

1.1 Detonation wave structure

Detonations are supersonic combustion waves with a strong leading shock front. The

shock wave ignites the reactive material and the exothermic stage of the reactions

creates volume expansion that pushes the shock into fresh reactants.

Experiments in reactive mixtures reveal that detonation fronts tend to develop

complicated three-dimensional time-dependent structures with interior transverse shock

waves (see, for instance, Fickett and Davis 1979). A self-sustaining cellular structure,

driven by chemical reactions, is often observed. The cell boundaries are unsteady,

decaying transverse waves which propagate at approximately acoustic velocity. They

are periodically restored by collision with waves moving in the opposite direction. The

variations of pressure and velocity in this structure are sufficient to incise diamond-

shaped patterns on sooted plates, see Fig. 1.1 from Kaneshige (1999).

To study this intricate flow field, the simplest, physically relevant mathematical

model is provided by the reactive Euler equations of gasdynamics, expressing con-

servation of mass, momentum and energy for an inviscid flow. An additional set of

equations describes the rate of change of the chemical species as observed by material

particles in the flow. Transport effects and dissipative processes are neglected in this

model.

To gain insight into the reaction zone structure, a detonation can be further

idealized as a one-dimensional wave where a shock discontinuity, with no chemical
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Figure 1.1: Sooted aluminum sheet. From Kaneshige (1999).

processes, is followed by a region with a finite rate of reaction. Under these conditions,

the reactive Euler equations admit a steady solution in the coordinate system attached

to the shock. This solution (the Zel’dovich-von Neumann-Doering, or ZND, wave)

propagates at speed D which is a function of the boundary conditions at the end of

the reaction zone.

Figure 1.2 shows a representative pressure and temperature profile for a ZND

wave computed by Schultz (2000) with a program developed by Shepherd (1986).

The program uses the Chemkin II chemical kinetics package and integrates the equa-

tions of mass, momentum, energy and species conservation through the reaction zone.

(Kee et al. 1989). The species production rates of a stoichiometric C3H8–O2 mix-

ture at standard conditions are calculated with the Konnov (1998) detailed reaction

mechanism.

In the diagram, pressure and temperature first rise discontinuously to the post-

shock (von Neumann) state, and then encounter a region where the thermodynamic

state is almost constant. In this induction zone, free radicals (such as OH) are formed

with zero or negative energy release until conditions for the exothermic recombinations

are reached. The induction length ∆ depends on the post-shock conditions and the

details of the chemical kinetics. The recombinations that follow are characterized



3

distance (cm)

P
re

ss
ur

e
(a

tm
)

T
em

pe
ra

tu
re

(K
)

0 0.005 0.01 0.015
0

10

20

30

40

50

60

70

0

500

1000

1500

2000

2500

3000

3500

4000

Reaction Mechanism: Konnov (1998)

C3H8 + 5O2 DCJ=2361m/s

P1=1atm, T1=295K

∆ = 0.03mm
T1

P1

PvN

TvN

TCJ

PCJ

∆

shock

induction
length

Figure 1.2: Temperature and pressure profile for a ZND wave as a function of the
distance behind the shock.

by a rapid rise in temperature, a decrease in pressure, and the formation of the

major products of reaction (see Figs 1.2 and 1.3). In this example profile, the sonic

parameter c2 − (D − u)2 reaches a peak value at a distance ∆ from the shock and

then decreases (Fig. 1.4).

In a Chapman-Jouguet (CJ) wave, the recombination region ultimately passes

through a sonic point where the local sound speed equals the particle speed in the ref-

erence frame of the shock. The corresponding speed of propagation, DCJ , is the min-

imum speed allowed based on thermodynamic arguments (Fickett and Davis 1979).

Overdriven detonations (D > DCJ) are also possible when the particle speed u > uCJ

at the end of the reaction zone.

In the next section, we examine how rarefaction waves can interact with the

detonation structure and affect the coupling of the leading shock with the reaction

zone.
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1.2 Detonation diffraction

Detonations diffracting from a planar to a cylindrical (or spherical) geometry through

an abrupt area change experience expansion waves that propagate into the partially

burnt reactants behind the wavefront.

One of the key features of the diffraction process is the propagation of the sig-

nal generated by the expansion waves emanating at the corner. The head of the

disturbance intersects the undisturbed detonation, and the propagation speed v of

this point can be evaluated with the help of a suitable extension of Skews’ geomet-

ric construction for non-reacting diffracting shocks (Skews 1967). In Fig. 1.5, we see

that the disturbance is propagating at the local sound speed c while being convected

downstream at a speed u. The angle α between the disturbance trajectory and the

normal of the undiffracted shock, at speed D, can be found with the formula

tan α =
v

D
=

√
c2 − (D − u)2

D
.

In the non-reactive cases, the values u and c are determined from the undisturbed

post-shock state. In the reactive case, the fact that a finite transverse signal speed

is observed in corner-turning experiments with CJ detonations (for instance, Schultz

2000) indicates that these acoustic disturbances must propagate in the reaction zone,

between the sonic plane (where DCJ = uCJ +cCJ by definition) and the leading shock.

The sensitivity of chemical reactions to post-shock conditions is the second key

feature in detonation diffraction. Typical reaction rates are of the Arrhenius form.

For a single-step reaction model of order nr, this is

Ω = k ρnr−1 (1 − Z) e−Ta/ T ,

where Z monitors the reaction progress (from 0 to 1), nr is the reaction order, Ω is

the reaction rate, T and ρ are the temperature and density of the flow field, and k is
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Figure 1.5: Schematic of a diffracting shock (Skews’ construction).

a proportionality parameter setting the length scale of energy release. The sensitivity

of the chemical kinetics is expressed in the nonlinear term by the parameter Ta, the

activation temperature of the reaction.

At the shock, Z = 0 and T and ρ depend only on the undisturbed flow ahead, at

state 0, and on the shock strength, M = D/c0. For instance, in the limit of M2 À 1,

a shock in a perfect gas with specific heat ratio γ generates a jump in temperature

and density
Ts

T0

=
2γ (γ − 1)

(γ + 1)2 M2 ρs

ρ0

=
γ + 1

γ − 1
.

Since the shock is weakened by the interaction with expansion waves from the corner,

Ts can be significantly smaller along the diffracting front than in a ZND profile, and

the reaction process can be quenched or substantially delayed. If the reaction does

not take place, or else happens far behind the shock front, then the reduced amount

of energy released into the flow results in a further decay of the detonation speed.

As the shock strength diminishes, incoming reactants are less compressed, and this

in turn increases the ignition delay. Depending on the sensitivity of the reactions to

temperature and density changes and the strength of the rarefaction, the detonation

will eventually either be re-established, or cease to propagate.
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shock coupled to

reaction zone

Figure 1.6: Laser shadowgraph of super-critical diffraction of 100 kPa C2H2 +1/2 O2.
From Schultz (2000).

1.2.1 Experimental observations

Whether a diffracting detonation will propagate successfully (super-critical diffrac-

tion, Fig. 1.6) or not (sub-critical diffraction, Fig. 1.7), is the result of several factors,

namely, the composition of the reactive mixture, the thermodynamic state of the

undisturbed reactants, the degree of detonation overdrive, and the geometric setting

of the experiment. Of particular interest is finding the critical conditions that control

the transition from super-critical to sub-critical, conditions identifying a near-critical

state (Fig. 1.8). With all other conditions held constant, the tube diameter deter-

mines whether the diffraction is sub-critical or super-critical. The detonation fails

for a tube diameter smaller than a critical value (Zel’dovich et al. 1956). There is

an empirical correlation between critical diameter and detonation cell width, λ, with

a proportionality factor varying between 10 and 30. This is discussed in Mitrofanov

and Soloukhin 1965; Knystautas et al. 1982; Moen et al. 1982; Shepherd et al. 1986;

Desbordes 1988. The survey by Guirao et al. (1987) for hydrogen-air mixtures in-

dicates that detonation is re-established if the tube diameter is greater than 13λ.

For rectangular orifices with large aspect ratio, the detonation is re-established if
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decoupled shock

reaction

  front

Figure 1.7: Laser shadowgraph of sub-critical diffraction of 70 kPa H2 +1/2 O2. From
Schultz (2000).

the smallest side of the orifice is larger than 3λ. A recent review of the available

detonation diffraction literature can be found in Schultz (2000).

Despite the large amount of experimental data, a quantitative theory to predict

the critical tube diameter is still lacking. Edwards et al. (1979) identify the capability

to form new transverse wave collisions as the distinguishing feature of a successful

diffraction. They suggest that a minimum number of transverse waves across the

channel are needed to ensure that enough collisions will take place at the centerline,

so that a central hot region survives to re-initiate the detonation. Two distinct

modes of re-initiation are identified by Murray and Lee (1983): “spontaneous” in

the bulk of the reactive mixture; and “by reflection,” at the confining walls. The

spontaneous formation of transverse waves is still not completely explained. Lee

(1996) suggests that localized explosion centers, or “detonation bubbles,” exist for

highly temperature-sensitive mixtures, whereas the abrupt generation of transverse

reaction fronts is the preferred re-ignition mechanism in less sensitive mixtures.
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Figure 1.8: Laser shadowgraph of near-critical diffraction 100 kPa H2 +1/2 O2. From
Schultz (2000).

1.2.2 Direct numerical simulations

Jones et al. (1990, 1991, 1995) and Oran et al. (1992, 1993) performed an extensive se-

ries of numerical simulations to reproduce, in two dimensions, the diffracting patterns

in detonation transmission experiments by Liu et al. (1987, 1988). In these experi-

ments, diffraction takes place at the interface between an upper and lower reactive

layer. Simulations were based on solutions of time-dependent Euler equations via an

explicit nonlinear finite difference technique (Flux-Corrected Transport, or FCT) ap-

plied on a uniform grid. The reactive mixture H2–O2–Ar (ratio 1:2:7, at atmospheric

pressure) was implemented as a two-step mechanism, with a thermally neutral induc-

tion period followed by exothermic recombination. Jones et al. (1996, 2000) focused

on the role played by detonation cellular structure in spontaneous re-ignition mecha-

nisms. Reproducing spontaneous re-ignition via direct numerical simulations requires

sufficient grid resolution to faithfully represent the dynamics of transverse waves. See

Sharpe (2001) for a description of the effects of low grid refinement on detonation

cellular structure simulations. Jones et al. perturbed an initially planar detonation

to form detonation cells (approximately 70 grid points wide) in the upper explosive
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layer. These cells weakened as soon as they expanded into the lower layer, while

new transverse waves formed spontaneously along the shock front, moved toward the

rarefaction zone, and ignited unburnt shocked reactants. If an insufficient number of

detonation cells (3 or less) was initially contained in the upper layer, the detonation

did not propagate into the lower layer. Li and Kailasanath (2000) observed a suc-

cessful detonation transmission from a smaller to a larger channel in a stoichiometric

ethylene-oxygen mixture when 8 detonation cells were present in the smaller channel.

The transmission was unsuccessful in a stoichiometric ethylene-air mixture with only

4 cells.

Pantow et al. (1996) used a two-step MacCormack scheme with FCT to study

detonation diffraction of H2–O2 mixtures diluted by different amounts of argon or

nitrogen. The chemical kinetics were implemented as a two-step parameter model

and computations were performed on a time-dependent adaptive grid (no data on grid

resolution are reported, but we estimate that at least 45 grid points per detonation

cell width were used). As well as illustrating re-ignition after Mach reflection at

the confining walls, these simulations show newly formed transverse waves in regions

where the detonation front begins to fail.

Simulations with single-step Arrhenius kinetics by Williams et al. (1996) indicate

that the generation and interaction of transverse waves are even more intricate in

three dimensions. While the grid resolution is quite coarse (only 8 grid points in the

reference half-reaction length), Williams’ results show the existence of perpendicular

modes which generate vorticity fields more complex than in two dimensions. Vorticity

seems to provide a strong coupling mechanism between the perpendicular modes, and

is possibly a trigger mechanism for the production of new transverse waves.

1.3 Thesis outline

In the problem we investigate, detonation diffraction takes place around a sharp

corner, interior angle of 90◦. An instance of this situation is encountered when a

detonation tube or channel opens into a larger volume. The problem has a plane of



11

H

π/2

Figure 1.9: Detonation diffraction around a corner. – · – · denotes the plane of sym-
metry of the channel, H the channel half-width.

symmetry, and in Fig. 1.9 we show only the lower half-space of the domain. We will

refer to the intersection of the plane of symmetry with the x-y plane as the axis of

symmetry of the channel. If we assume an unbounded volume, then the only geometric

parameter of the problem is the exit diameter of the tube. In two dimensions, the

reference length is the channel half-width, H. Dimensional analysis for the single-

step reaction model in the Arrhenius form leads to the following dependence for the

critical channel half-width,

Hc

∆1/2

= g

(
Q

RgT0

, γp, γr, f,
Ta

T0

, n

)
, (1.1)

where Q is the heat of reaction, γr and γp are the reactant and product specific heat

ratios, and f = D/DCJ is the overdrive of the detonation in the channel. The reaction

characteristic length ∆1/2 is defined as the distance, in the reference CJ wave, between

the shock (Z = 0) and the point where Z = 1/2. Our study is further specialized by

setting f = 1, γp = γr, and nr = 2.

The concept of shock decoupling from the reaction zone is the simplest idea used

to explain the behavior of a diffracting detonation front. Chapter 2 is devoted to

the extension to an arbitrary wavefront of the equation framework used in the study

of direct initiation of spherically symmetric detonations (Eckett et al. 2000). The

numerical implementation of the equations of fluid motion, and the algorithms used

for flow diagnostics, are described in Chapter 3.

In Chapter 4, we examine three cases of detonation diffraction that illustrate differ-

ent types of behavior, super-, sub-, and near-critical diffraction. Lagrangian particles

are injected into the flow in order to identify the dominant terms in the equation that
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describes the temperature rate of change of a fluid element. Conveniently simplified,

this equation provides the starting point for a critical diffraction model. We examine

the mechanism of spontaneous generation of transverse waves due to reflection of the

unsteady rarefaction front. This mechanism is related to the sensitivity of the reac-

tion rate to temperature, and it is investigated in the form of a parametric study for

the activation energy.

In Chapter 5, we review the applicability of existing shock dynamics models to the

corner-turning problem. Numerical results from the parametric study are compared

with predictions from these theories. The objective is to find a formula for shock decay

at the centerline when the detonation front is close to local failure. This formula is

then used in the simplified temperature rate of change equation to give a relation

between critical diameter and activation energy.

Chapter 6 is devoted to the study of a result that emerged from the computation of

fully coupled diffracting detonations: the spontaneous formation of transverse waves

along the wavefront. We consider planar CJ detonations, with nr = 1 and nr = 2,

moving in a channel over a small obstacle, to study how acoustic waves propagate

within the reaction zone. Depending on the reaction kinetics, we show that such waves

may be amplified due to feedback between the chemical reaction and fluid motion

(Strehlow and Fernandes 1965). The amplification can lead to shock steepening and

formation of transverse detonation waves.

The last chapter contains an overview of our conclusions.
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Chapter 2

Governing equations

2.1 Reactive Euler equations

Ignoring viscosity, heat transfer, diffusion, radiation and body forces, the governing

equations for a compressible reacting flow are the reactive Euler equations (see, for

instance, Fickett and Davis 1979). In a fixed Cartesian reference frame, the two-

dimensional, reactive Euler equations are given by

Dρ

Dt
+ ρ

∂ux

∂x
+ ρ

∂uy

∂y
= 0, (2.1a)

Dux

Dt
+

1

ρ

∂P

∂x
= 0, (2.1b)

Duy

Dt
+

1

ρ

∂P

∂y
= 0, (2.1c)

De

Dt
− P

ρ2

Dρ

Dt
= 0, (2.1d)

DyK

Dt
= ΩK , (2.1e)

where ux, uy, ρ, P and e are the velocity in the x and y coordinate directions, density,

pressure, and specific internal energy. The variable t is the time, yK is the mass

fraction of species K, and ΩK is the production rate of species K (given by a kinetic

rate law). The index K varies between 1 and N , the total number of species. The

operator D/ Dt denotes the time derivative along a particle path, i.e., the Lagrangian
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derivative of a variable
D

Dt
=

∂

∂t
+ ux

∂

∂x
+ uy

∂

∂y
. (2.2)

If we take the e to be a function of P , ρ, and the mass fraction array y = {yK , K =

1, . . . , N}, then

De

Dt
=

∂e

∂P

∣∣∣∣
ρ, y

DP

Dt
+

∂e

∂v

∣∣∣∣
P, y

Dv

Dt
+

∑
K

∂e

∂yK

∣∣∣∣
P, ρ, yJ 6=K

DyK

Dt
. (2.3)

From this expression and Equation (2.1d), we obtain the adiabatic change equation,

DP

Dt
= c2 Dρ

Dt
+ ρc2

∑
K

σKΩK . (2.4)

In Equation (2.4), c is the constant composition, or frozen, sound speed,

c2 =

P +
∂e

∂v

∣∣∣∣
P, y

ρ2
∂e

∂P

∣∣∣∣
ρ, y

, (2.5)

and σK is the thermicity coefficient of species K,

σK =
1

ρc2

∂P

∂yK

∣∣∣∣
e, ρ, yJ 6=K

= − 1

ρc2

∂e

∂yK

∣∣∣∣
P, ρ, yJ 6=K

∂e

∂P

∣∣∣∣
ρ, y

. (2.6)

In this work, we will find it useful to replace the energy equation (2.1d) with the adi-

abatic change equation. The sum of the thermicity coefficients σK in Equation (2.4)

expresses the total pressure change due to chemical reaction at constant volume. This

last term is called the thermicity product σ̇,

σ̇ =
∑
K

σKΩK . (2.7)
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Figure 2.1: Intrinsic coordinates ξ and η for an arbitrary front, (a), and specialized
to a cylindrical front, (b).

2.2 Reactive Euler equations in intrinsic coordinates

The analysis of the reactive Euler equations can be carried out by using intrinsic,

shock-based coordinates as independent variables. While more cumbersome than

the Cartesian description of the previous section, this approach allows for a direct

comparison with the system of equations that can be derived for cylindrical symmetry.

In this way, the effect of shock front curvature can be more easily examined. As we

will show, the formulation in intrinsic coordinates simplifies noticeably along an axis

of symmetry of the flow. In this case, only one additional term, due to the transverse

flow divergence behind the leading shock, is formed in comparison to the cylindrical

case (Eckett et al. 2000).

In intrinsic coordinates (Fig. 2.1), the variable ξ measures the arc length of the

leading shock from a reference point (x0, y0). Along the shock, the second coordinate

η is constant and is equal to zero. Lines of constant η are the loci of points with

the same distance from the shock. The angle φ, formed by the normal to the front

with respect to a reference axis, is a dependent variable, φ (ξ, t). The two-dimensional

curvature of the front, κ, is by definition κ = (∂φ/∂ξ)η, t. Dn is the detonation velocity

normal to the front.

As an example of an intrinsic coordinate system, Fig. 2.1 (b) shows the particular

case of a cylindrical front with radius R (t). In this simple situation, the relation

between ξ and η and the cylindrical coordinates (r and φ) is given by ξ = φR and
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η = R − r, and we find the trivial result κ = 1/R.

Conservation of mass, momentum and total energy can be written in intrinsic

coordinates as (Bdzil and Aslam 2000),

L(ρ) + [(Dn − uη) ρ],η + ρ
uηκ + uξ,ξ

1 − η κ
= 0, (2.8a)

L(uη) + (Dn − uη) uη,η =
P,η

ρ
− uξ (Dn,ξ − uξκ)

1 − η κ
, (2.8b)

L(uξ) + (Dn − uη) uξ,η = −P,ξ + ρuη (uξκ − Dn,ξ)

ρ (1 − η κ)
, (2.8c)

L(e) + (Dn − uη) e,η =
P

ρ2
[L(ρ) + (Dn − uη) ρη], (2.8d)

where we use the notation , ξ and , η to indicate a partial derivative with respect to

ξ and η, in this order. The operator

L =
∂

∂t

∣∣∣∣
ξ, η

+

(
B +

uξ − ηDn,ξ

1 − η κ

)
∂

∂ξ

∣∣∣∣
t, η

, (2.9)

and uη, uξ are the particle velocity components in the shock normal and transverse

direction. Where intrinsic coordinates can be used, the set (2.8) is completely equiv-

alent to the set (2.1)(a) to (d). Note, however, that the partial time derivatives in

the Cartesian and intrinsic system differ,

∂

∂t

∣∣∣∣
ξ,η

6= ∂

∂t

∣∣∣∣
x,y

, (2.10)

since the intrinsic reference system is time varying.

In Equation (2.9), B is the wave velocity in the surface kinematics equation (Bdzil

and Stewart 1989)

φ,t + B φ,ξ = −Dn,ξ. (2.11)

B expresses the rate of change in arc length with respect to a fixed axis of reference

as measured by an observer that is always moving in the shock normal direction. It
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can be expressed as a function of curvature and normal shock velocity,

B =

∫ ξ

0

φ,ξ Dn dξ + B0 (t) . (2.12)

The term B0 (t) accounts for a finite angle between the shock normal and the axis

of reference. By inspection of the equations above, the Lagrangian derivative of a

variable is expressed as

D/Dt = L + (Dn − uη) ∂/∂η. (2.13)

2.3 The Lagrangian derivative of temperature

The simplest concept of detonation failure is a decoupling of the reaction zone from the

shock front, or equivalently, the failure of particles to rapidly undergo reaction after

they cross the shock. Since most of the reaction rate laws are strongly temperature

dependent, we now focus our attention to the Lagrangian derivative of temperature,

DT/Dt. To do so, we need to close the set of reactive Euler equations with a thermal

equation of state. For simplicity, we consider a mixture of perfect gases

P = ρRg T, (2.14)

where Rg is the mixture gas constant

Rg =
R
W

= R
∑ yK

WK

. (2.15)

R is the universal gas constant, W the mixture molar mass and WK is the molar

mass of species K. The frozen sound speed is

c =

(
γ P

ρ

)1/2

, (2.16)

where γ is the ratio of mixture specific heats.
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To analyze the relative importance of the wavefront local flow features, it is con-

venient to express DT/Dt in the intrinsic coordinate system described in the previous

section. By taking the Lagrangian derivative of Equation (2.14), and using the adi-

abatic change equation (2.4) together with the mass and momentum equations in

(2.8), we find the temperature reaction zone structure equation

(
1 − w2

η

c2

)
Cp

DT

Dt
= (2.17)

=
1

γ − 1

(
c2 − γ w2

η

)
σ̇ heat release

+ w2
η

κ (Dn − wη)

1 − η κ
curvature

+ wη (Dn − wη),t +
P,t

ρ
unsteadiness

+ w2
η

wξ,ξ

1 − η κ
divergence

−wη

w2
ξ κ

1 − η κ
centripetal

+
wξ

1 − η κ
(−wηwη,ξ +

P,ξ

ρ
) N1

+ B (wη (Dn − wη),ξ +
P,ξ

ρ
) N2

− ηDn,ξ

1 − η κ
(wη (Dn − wη),ξ +

P,ξ

ρ
) N3

+ wξ wη
2 Dn,ξ

1 − η κ
N4

with wη = Dn −uη and wξ = uξ. Cp is the mixture specific heat at constant pressure,

Cp = Rg γ/(γ−1). The left-hand side of Equation (2.17) has the dimension of energy

density per unit time. The right-hand side has terms depending from the thermicity

product, shock curvature, partial time derivatives of the flow, transverse divergence

wξ,ξ, and also a term that has the appearance of work associated with centripetal

motion. The remaining terms in (2.17) are more difficult to interpret, and are simply

labeled N1 to N4.

The terms containing a partial time derivative in the intrinsic reference frame

have been grouped together, and for the remainder of this work they will be referred
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to as “unsteady terms” or “unsteadiness” for the fluid particle. For a decelerating

wave such as in a detonation diffraction, the unsteady terms are negative. Thus, the

reaction may quench if the wave is decelerating too rapidly. When the wavefront is

convex-upstream, the curvature term is positive, and so it cannot possibly quench the

reaction without the additional presence of unsteadiness.

If the axis of reference is also an axis of symmetry for the flow field, several terms

disappear at ξ = 0. The transverse derivatives vanish, with the exception of wξ,ξ, and

we obtain

(
1 − w2

η

c2

)
Cp

DT

Dt
=

1

γ − 1

(
c2 − γ w2

η

)
σ̇ heat release (2.18)

+ w2
η

κs (Ds − wη)

1 − η κs

curvature

+ wη (Ds − wη),t +
P,t

ρ
unsteadiness

+ w2
η

wξ,ξ

1 − η κs

divergence

In Equation (2.18), κs (t) and Ds (t) are the front curvature and shock speed evaluated

on the axis of symmetry. The result is the same found for a cylindrically symmetric

flow with the addition of a transverse divergence term. This term is always positive

since wξ is antisymmetric and no mass flux is allowed at the axis of symmetry.

The relative size and behavior of the terms in the temperature reaction zone

structure equation will be examined numerically by following the path of massless

particles injected into the flow. We will refer to these particles as Lagrangian. While

this procedure can be applied to a general flow, the analysis can be restricted to

regions where the shock is normal and the flow is parallel to the reference axis, so

that Equation (2.18) can be used. Such regions are the channel axis of symmetry and

the corner wall, i.e., the two boundary regions of a diffracting wavefront. The goal

is to identify the dominant balance in a Lagrangian particle close to ignition failure

and to find any simplifying assumption regarding the behavior of terms in (2.18).

We close this section by noting that an alternative formulation of the unsteadiness

is obtained by rearranging momentum and mass conservation equations to give, under
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conditions of symmetry,

wη (Ds − wη),t +
P,t

ρ
=

1

ρ

(
DP

Dt
− w2 Dρ

Dt

)
+ w2

η

κs (Ds − wη)

1 − η κs

+ w2
η

wξ,ξ

1 − η κs

. (2.19)

This formula is useful in the numerical evaluation of the unsteady terms of Equation (2.18),

since it provides an alternative to computing directly the partial time derivative.

2.4 Quasi-steady, quasi-one-dimensional reaction zone

The reaction zone structure equations (2.8) can be simplified to a set of ordinary dif-

ferential equations under the assumption that (1) the reference reaction zone length,

∆, is small with respect to the radius of curvature,

κ∆ ¿ 1; (2.20)

and, (2) the characteristic timescale for the change in the shock speed is much longer

than the passage time of fluid elements through the reaction zone

τ = ∆/wη ¿ Dn/ (dDn/dt) . (2.21)

The resulting equations are the conservation laws of quasi-one-dimensional reactive

gas-dynamics with area change, and they admit steady-state solutions in the reference

frame of the leading shock (Fickett and Davis 1979). These solutions are of particular

interest in the study of the divergent reactive flow that is connected with a detonation

diffracting through an abrupt area change.

When the area change is identically zero, and therefore the leading shock is planar,

the quasi-steady reaction zone equations describe the standard ZND model. When

the curvature is small, the transverse component of velocity, wξ, is zero to the leading

order in curvature (Yao and Stewart 1996). By ignoring the derivative in ξ and the

product η κ, the system in (2.8) takes a much simpler form as (Bdzil and Stewart
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1989)

d

dη
(ρwη) = −ρ κ (Dn − wη) (2.22a)

ρwη
dwη

dη
+

dP

dη
= 0 (2.22b)

d

dη

(
e +

P

ρ
+

w2
η

2

)
= 0. (2.22c)

The species rate of change is

wη
dyK

dη
= ΩK (K = 1, . . . , N) . (2.23)

The relation between the area change and curvature is (Klein et al. 1995)

1

A

dA

dη
= κ

(
Dn

wη

− 1

)
. (2.24)

The three equations in (2.22) can be expressed in a more convenient form by using

the adiabatic change equation (2.4), to obtain

dP

dη
= −ρwη

σ̇ − (Dn − wη) κ

1 − M2
s

(2.25a)

dρ

dη
= − ρ

wη

σ̇ − (Dn − wη) κM2
s

1 − M2
s

(2.25b)

dwη

dη
=

σ̇ − (Dn − wη) κ

1 − M2
s

, (2.25c)

where Ms is the local flow Mach number, Ms = wη/c, with respect to the shock front.

As in the temperature equation (2.17), the parameter 1 − M2
s can be made to

appear as a multiplying factor on the left-hand side of Equations 2.25, indicating a

potential singularity. In fact, since in the propagating detonation the flow is subsonic

immediately after the shock, the sonic parameter can pass through zero inside the

reaction zone. Inspection of the structure equations indicates that the only way in

which this can occur in a non-singular solution is for the numerator σ̇ − (Dn − wη) κ
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Figure 2.2: Example of Dn (κ) relation for single-step reaction mechanism, Ta = 4.15
times the post-shock temperature. The curvature is normalized by the reference half-
reaction length.

to vanish as 1 − M2
s at a finite distance from the shock.

In the typical case of an overall exothermic reaction, the thermicity product σ̇ is

positive, and the existence of a sonic point indicates that the curvature must also be

positive. Thus, a diverging flow tends to decelerate the initially subsonic flow behind

the shock, while exothermic reactions tend to accelerate it. As a result, solutions to

Equations (2.25) are non-singular only for certain values Dn and κ.

The case of a steady, slightly curved detonation can be treated as a generalized

eigenvalue problem where only a particular value of shock curvature κ corresponds to

a non-singular solution for a given normal shock velocity Dn. The relation between

Dn and κ can be found by solving a two-point boundary problem with a regularity

condition at the sonic point (Klein et al. 1995). For each pair Dn and κ, this method

requires numerical integration of Equations (2.25), with the starting point provided by

the post-shock (or von Neumann) state. Equivalently, the problem can be solved by

a shooting method, where numerical integration starts from a generalized Chapman-
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Jouguet (CJ) point and proceeds to the von Neumann point (Yao and Stewart 1995).

The resulting Dn (κ) relation typically exhibits a maximum value of curvature, κM ,

separating an upper and lower branch of a backwards C-curve, see Fig. 2.2. Stewart

and Yao (1998) show that, very close to the ambient sound speed, another portion

of the Dn (κ) curve can be found, corresponding to a forward C shape, so that the

overall diagram has the form of a Z-curve.

It should be noted that, even when κ = 0, computations with realistic reaction

mechanisms provide an eigenvalue solution Dn (0) that is different from the usual

Chapman-Jouguet velocity, DCJ . This latter value, derived from jump conditions,

is in fact slightly lower than Dn (0), and equal to it only when all the reactions are

exothermic and irreversible (Klein et al. 1995). Particularly, if the thermicity is

slightly negative at the end of the reaction zone, then a sonic point occurs where

σ̇ = 0 before the reaction is completed.

For small but finite curvature, the thermicity is almost zero immediately behind

the shock. Since the flow there is nearly isentropic, the velocity initially decreases in

the diverging stream tube, while pressure, temperature and density increase. Further

downstream, as the chemical energy is released into the flow, velocity, temperature

and Mach number increase, while pressure decreases. The sonic point is reached at

a finite distance from the shock, where the thermicity is still positive. Downstream

of the sonic point, the solution can be either supersonic or subsonic, and the flow is

similar to an expanding or, respectively, compressing isentropic flow in a diverging

nozzle. As the wavefront becomes more curved, the location of the sonic point moves

upstream, toward the shock. If a maximum curvature exists, then the reaction zone

becomes completely subsonic for κ ≥ κM . The initial subsonic portion of the flow

field depends only on the post-shock state and remains qualitatively similar to the

solution obtained when κ < κM .
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2.5 The reaction mechanism

Before ending this chapter, we need to specialize the reaction model to the form that

will be used in this work. The reaction model is a one-step irreversible reaction,

A → B, where the upstream fluid is undiluted species A. The reactant and product

are taken to be perfect gases (constant specific heat) and to have the same specific

heat ratio γ. Thus, the specific internal energies of species A and B are

eA = CvT, eB = CvT − Q,

where Q is the heat of reaction and Cv is the gas specific heat at constant volume.

The progress variable Z is defined as the mass fraction of product B, Z = yB = 1−yA

and the thermicity is

σ̇ = (γ − 1)
Q

c2

DZ

Dt
. (2.26)

The rate of reaction is expressed in Arrhenius form as

DZ

Dt
= k ρ (1 − Z) e−Ea/Rg T , (2.27)

where the reaction order is nr = 2 and Ea is the activation energy, Ea = Ta Rg. The

proportionality factor, k, defines the spatial scale of the reaction zone.
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Chapter 3

Numerical implementation

In this chapter, we discuss how the reactive Euler equations are discretized and solved

on a parallel computer. We also show how we extract and post-process information

from the numerical simulation to obtain shock and particle histories. The chapter is

closed by the description of the initial and boundary conditions of the problem.

3.1 Variable normalization

Variables are non-dimensionalized by taking the uniform conditions upstream of the

shock (with subscript 0) as a reference. For convenience, in this chapter dimensional

variables are capped by a tilde. We have

ũref ≡ (R̃gT̃ 0)
1/2, u ≡ ũ

ũref

, ρ ≡ ρ̃

ρ̃0

, P ≡ P̃

P̃ 0

, (3.1)

T ≡ T̃

T̃ 0

, e ≡ ẽ

R̃gT̃ 0

, Ea ≡ Ẽa

R̃gT̃ 0

.

Length is normalized so that ∆1/2 = 1. The time to travel the distance ∆1/2 at the

reference particle velocity uref is also scaled to unity,

x ≡ x̃

∆̃1/2

, y ≡ ỹ

∆̃1/2

, t̃ref ≡ ∆̃1/2

ũref

, t ≡ t̃

t̃ref
, k ≡ k̃ t̃ref . (3.2)
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The non-dimensional equations of state become

P = ρ T, (3.3a)

e =
1

γ − 1
T − Z Q, (3.3b)

where Q ≡ Q̃/R̃g T̃ 0.

3.2 Numerical integration

The reactive Euler equations for a two-dimensional fixed reference frame and in non-

dimensional conservative form, are

∂W

∂t
+

∂F x

∂x
+

∂F y

∂y
= S, (3.4a)

where

W =




ρ

ρux

ρuy

Et

ρZ




, F x =




ρux

ρu2
x + P

ρuxuy

(Et + P )ux

ρuxZ




, F y =




ρuy

ρuxuy

ρu2
y + P

(Et + P )uy

ρuyZ




, (3.4b)

and

S =
(
0 0 0 0 kρ(1 − Z)e−Ea/T

)T
. (3.4c)

W is the conservative solution vector, F x and F y are the convective fluxes in the

Cartesian directions, S is the reaction source term, and Et = ρ(e+u2
x/2+u2

y/2) is the

total energy per unit volume. Numerical integration of Equation (3.4) is performed

using operator splitting,

W n+1 = LS LFGW n, (3.5)
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where the superscript indicates the number of timesteps. In one dimension, the

convective operator, LFG, can be expressed for a uniform grid in a cell-based, finite-

difference form, as

W n+1
i = W n

i − ∆t

∆x

(
F n

i+1/2 − F n
i−1/2

)
, (3.6)

where ∆t is the timestep and ∆x is the cell size. The subscript indicates the spatial

cell number. F n
i+1/2 is the numerical flux at the interface between cells i and i + 1,

computed in the form of a conservative upwinding flux by using Roe’s approximate

solution of the Riemann problem (Roe 1986). Glaister’s (1988) implementation for

a general equation of state is adopted, with an extension for multi-species gases

in chemical non-equilibrium. Second-order spatial accuracy is obtained via min–

mod flux limiting, and the scheme is made entropy-satisfying with Harten’s (1983)

entropy fix. A detailed description of this implementation is found in Eckett (2001),

together with verification results for one-dimensional detonation simulations with

detailed chemistry mechanisms. The scheme is extended to more than one dimension

via standard dimension-by-dimension integration. It is marched forward in time with

the forward Euler integration scheme, which is first-order accurate.

The reaction source operator LS involves the integration of the equation,

dW

dt
= S, (3.7)

which reduces to
dZ

dt
= k ρ (1 − Z)e−Ea/T , (3.8)

with ρ, u and e constant. If the temperature were constant for this step, Equation (3.8)

could be integrated exactly. Instead, integration is performed by a nominally second-

order time-accurate predictor–corrector scheme. Equation (3.8) is first integrated for

a half-timestep, with the temperature held constant. This gives an estimate for the

average mass fraction in the timestep, Zn+1/2. The temperature T n+1/2 is then com-

puted from the caloric equation of state (3.3b), noting that e is fixed for this step.
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Finally, (3.8) is integrated for the whole timestep, using the average temperature

T n+1/2.

3.2.1 Parallel implementation

The flow solver described in the previous section is used to march the solution in time

over a rectangular Cartesian grid. Boundary conditions are implemented at the sides

of the patch by priming a bordering layer of guard cells with the appropriate values.

The width of a layer of guard cells depends only on the flow solver stencil; it is 2 for

the solver described above. As long as the grid sides are updated at each timestep,

the integration of a patch can proceed independently from the neighboring patches.

Following this idea, a speed-up of the program execution time is obtained by par-

titioning the computational domain into smaller rectangular grids, and by assigning

different groups of partitions (sub-domains) to different CPUs of a multi-processor

computer. Partial superposition of grids is provided by the guard cells, so that each

guard cell must lie on a computational cell of a neighboring patch, or border the outer

boundary of the domain.

The Grid Hierarchy Adaptive Computational Engine library, GrACE, operates on

these partitions by providing programming abstractions via a set of high-level parallel

subroutines (Parashar et al. 1997; Parashar and Browne 2000). These functions hide

the inner workings of the concurrent implementation to the rest of the application.

The level of granularity of the parallel computation corresponds to the size of the grid

partitions, and the basic parallel communication consists in populating the guard cells

of a sub-domain by copying the values of the corresponding computational cells from

a neighboring sub-domain.

The operations allowed by GrACE include creation and partitioning of the grid,

generation and dynamic storage of grid data, and communication among grid par-

titions. Processors exchange information via the Message Passing Interface (MPI)

protocol (refer, for instance, to Snir et al. 1996). In our calculations, patches are

computed at the beginning of the simulation as a uniform partition of the computa-
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tional domain, and then distributed over the available processors.

3.3 Shock and flow gradient tracking

Detonation speed and front curvature are reconstructed in a post-processing step from

shock-tracking data collected during the simulation. Shock tracking is performed at

each timestep after integrating the flow field. The tracking algorithm consists of a

sequence of sweeps of the current solution in the x and y coordinate directions. For

each sweep, we search the position of the first peak of density that emerges from the

undisturbed flow. As the detonation front diffracts from a channel at the top left

corner, the search is performed by scanning each computational patch from right to

left and from bottom to top.

The shock location is taken as the position of the flex point in the numerical

representation of the shock. The flex is defined as the midpoint between the peak

value of density (the local von Neumann point) and the undisturbed value. Its position

is estimated as a linear interpolation between the two grid points that bracket this

value.

In the post-processing step, quantities such as the normal detonation velocity, Dn,

and the local curvature, κ, are evaluated through finite-difference approximations for

spatial and temporal derivatives of the shock position time history. When high-order

derivatives are involved, this procedure requires particular care in controlling the error

associated with the estimated shock position. Errors in the shock position are due to

the use of linear interpolation in the shock profile and to high-frequency oscillations of

the von Neumann state that occur when the wavefront crosses the interface between

computational cells. A naive implementation of a finite-difference scheme could even

diverge under grid refinement. This subject is treated in more detail in Appendix A.

Another problem in the treatment of shock position data points is the appearance

of high-frequency oscillations in the finite-difference time derivative. The amplitude

of these oscillations tends to grow as the shock position is sampled more frequently

during the simulation. This artifact can be eliminated almost completely by numerical
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convolution, i.e., by combining a kernel list with successive sublists of a list of data.

The convolution of a kernel Kr with a list {us} has the general form

∑
r

Kr us−r. (3.9)

For the results presented in this work, the kernel

Kr =
1√
2 π

exp
(−r2/σ2

Kr

)
r = −nKr . . . nKr (3.10)

is used, with σKr = 10 and nKr = 20. The result of the convolution operation has

to be scaled by a factor
∑

r Kr and padded with nKr zeros at the beginning and at

the end of the list. We used the implementation of numerical convolution available

in the commercial program “Mathematica” (version 4.0.2.0).

A similar technique is used to track the propagation of disturbances along the

undisturbed front. The algorithm starts by locating the peak density along the axis

of symmetry of the channel. Once this position is identified, the first grid point on

the left (in the reaction zone) is taken as the starting point for a downward search of

the computational grid. At each grid point of the scanning sequence, the y gradient

of density is evaluated by a standard centered-difference formula and compared with

a threshold value. As long as the detonation is planar, the transverse gradient value

stays within numerical truncation error. The threshold values must be several orders

of magnitude larger than the numerical truncation error, and yet small enough to

identify slight fluctuations in the flow. With this setting, the downward scanning is

arrested at the first grid point whose transverse gradient is larger than the threshold

value. The position of this point is then recorded as the current position of the head

disturbance immediately behind the shock, and saved in a data file.
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3.4 Lagrangian particles

Lagrangian derivatives are evaluated by following the motion of fluid elements and

recording the flow variables as a function of time. This is equivalent to injecting

massless particles into the flow at specific locations. Since such particles would pre-

cisely follow the fluid motion, we refer to these as “Lagrangian particles.” Flow field

variables and the gradients of pressure and particle velocities in Cartesian directions

are evaluated at each timestep in the numerical simulation at the four grid points

surrounding a particle. They are then interpolated in space to the particle location

by standard bilinear interpolation. The results are stored in a separate file for each

particle and post-processed at the end of the simulation.

The Lagrangian derivatives in Equation (2.17) or Equation (2.19) are directly

computed by finite-difference operations on the particle data stream. However, par-

tial time derivatives (in the intrinsic reference frame) have to be estimated indirectly

from the relation

∂/∂t|ξ, η = D/Dt − wη ∂/∂η − wξ ∂/∂ξ, (3.11)

with the spatial gradients in η and ξ obtained by coordinate transformation from

the stored gradients in x and y. When applied to situations where the partial time

derivative is small compared to D/Dt (a limit case is a ZND detonation where ∂/∂t|ξ, η

is identically zero), the formula above is prone to cancellation errors. Since the partial

time derivatives are combined in Equation (2.17) as

wη (Dn − wη),t +
P,t

ρ
,

an alternative solution is to evaluate this entire term directly from Equation (2.19).

Figure 3.1 indicates that the two results can differ quite substantially.

Each term of the temperature equation (2.17) or (2.18) is estimated independently,

so that an immediate check on the consistency of our particle data analysis is obtained

by evaluating the difference between the left- and the right-hand sides of the equation

as a function of time. We found that the use of Equation (3.11) tends to lead to a
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Figure 3.1: Comparison of unsteady term evaluations. Solid line: Equation (2.19).
Dashed line: Equation (3.11).
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larger residual than Equation (2.19). A typical result is plotted in Fig. 3.2, where

the peak error mirrors the underestimate of the peak value of the unsteady group in

Fig. 3.1. Figure 3.2 also shows that in both cases a large spike is found on the left

of the plot at a point corresponding to the passage of the leading shock. The spike

indicates that the spreading of the numerical shock over a few grid cells can strongly

affect the evaluation of a Lagrangian derivative. Indeed, we found that our analysis

cannot be consistently performed “inside the shock,” and it has to be started after

reading the first peak value in a particle’s pressure data.

3.4.1 Lagrangian particles integration

The particles are assigned a position at an initial time and then convected by the flow

field. Integration of the particle trajectory is performed with a Predictor-Corrector

method in the form of an Adams-Bashforth predictor (P) followed by an Adams-

Moulton corrector (C). Only one PC iteration is performed. The overall scheme is of

the PECE type, where step E indicates the update of the derivative part from the

last computed value (in Numerical Recipes 1992, pp. 747–751). Step P is computed

before advancing the Euler equations by a timestep, and step C is computed after.

In a parallel calculation, particles need to be tracked as they are transported from

one processor sub-domain to the next. To this end, a master-slave strategy is im-

plemented (see, for instance, Wilkinson and Allen 1999). Only processor zero (the

master) has the updated information concerning all particle positions. This informa-

tion is sent to all the other processors (slaves) at the beginning of an integration step

and collected by the master at the end of the integration. Each processor (including

the master) integrates a particle for a timestep if and only if that particle currently

belongs to the processor’s sub-domain. After integration, the processor accesses the

output file of that particle and dumps the new position, together with the interpolated

flow field variables and gradients.
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Figure 3.3: Boundary conditions.

3.5 Computational setup

3.5.1 Boundary conditions

In the numerical simulations, the corner is located at the bottom left of a rectangular

Cartesian computational domain (Fig. 3.3). The flow is symmetric with respect to

the top boundary, so reflective boundary conditions are used there. The flow at the

inlet, initially at CJ conditions, becomes subsonic when the rarefaction signal from

the corner moves upstream. For ease of implementation, a zero gradient condition

is implemented there. To preserve for a sufficiently long time the corner expansion

from perturbations coming from the left boundary, the inlet channel is 0.9 H long.

The implementation of the right and bottom boundaries is not relevant, since the

simulation is terminated before the detonation front exits the domain.

To remove the singularity introduced in a Euler (inviscid) flow around a sharp

vertex, the boundary is approximated by polygonal segments as a rounded corner,

with radius of curvature rc. The effect of a finite value rc on the detonation velocity

at the wall is examined in Appendix B at decreasing radii of curvature. It is found

that when rc is of order one or smaller, the finite curvature affects the flow field only

to a distance of a few multiples of rc from the corner.

Since a few computational cells are cut by the rounded corner, a special treatment

is needed in order to use the simple patch integrator described in Section 3.2. The

corner boundary is implemented by using the ghost-fluid coupling scheme described

in Arienti et al. (2002). This technique, designed to handle fluid-solid interactions, is

specialized here to model an arbitrary rigid boundary embedded in a Cartesian grid.
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A requirement of the ghost-fluid algorithm is the construction of a level set func-

tion ϕ providing every grid point with the signed distance from the embedded bound-

ary. Since in this application the boundary is rigid, the level set is computed only

once at the beginning of the simulation. The zero value of the distance function rep-

resents the embedded boundary. Negative values conventionally correspond to the

fluid region, where the flow field is computed. In the positive level set field, a tiny

strip of cells (called ghost cells) is used to compute numerical fluxes in cells close to

the boundary.

As with the guard cells described in the previous section, the ghost cells need

to be updated before every convective step. They border an arbitrarily irregular

embedded boundary, and are populated by extrapolation from the neighboring fluid

cells. The prescription for updating the ghost cells is that the embedded boundary is

an impermeable wall. An additional condition for an Euler flow is that the boundary

is an inviscid wall, i.e., the flow slips along the wall. One way to approximate these

two prescriptions is to advect density, internal energy, and the Cartesian components

of velocity following the gradient of the level set, from the fluid to the ghost region,

Iτ + n · ∇ I = 0, (3.12)

where I is the advected scalar, n = ∇ϕ/ |∇ϕ|, and τ is a pseudo-variable of integra-

tion. The boundary condition in Equation (3.12) is provided by the scalar values in

the fluid cells that are closest to the boundary. After the advection step, the state of

a ghost cell (G) is formulated in terms of the advected quantities (E),




ρG

VG

eG


 =




ρE

(−VE · n) n + (VE · t) t

eE


 . (3.13)

This implementation of a reflective boundary is accurate to first order in the grid

resolution (Arienti et al. 2002). When the boundary is moving, an additional term,

the local normal velocity vector of the wall, needs to be taken into account.
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In the simulations that are presented in Chapter 4, the corner boundary is de-

scribed by a sequence of 2048 points. Of these points, 128 are used to approximate

the arc of circle of radius rc = 1. The distance function is computed at each grid

point by searching for the shortest distance in the list of segments that compose the

boundary. The sign of the distance function is found by ray-intersection, a popular

approach for determining whether a point lies inside or outside of a surface (a pro-

cess known as point-classification, Hoffmann 1989). When implemented in this way,

the construction of the level set is cumbersome, since one needs to examine all the

grid points and all the boundary points. This is tolerable in applications with rigid

boundaries and no regridding, where the level set is computed only once.

3.5.2 Initial conditions

The initial solution is a planar ZND wave (see Section 2.4), traveling from left to

right in the inlet channel bounded by the corner upper wall, the axis of symmetry,

and the left boundary of the computational domain. The ZND profile is computed

by numerical quadrature of the set of equations (2.25) in the case of a single-step

reaction model. It is found more convenient to integrate the reaction zone structure

equations in the progress variable Z, through the differential relation

dZ

dη
=

Ω

wη

, (3.14)

where the chemical rate Ω is specified by the right-hand side of Equation (3.8).

The value of specific heat estimated from the experiments with acetylene described

by Edwards et al. (1979) is γ = 1.22. The reference state ahead of the shock is given

by P̃ 0 = 23, 998 Pa and T̃ 0 = 298 K. With these data, the program STANJAN

(Reynolds 1986) finds a Chapman-Jouguet detonation speed D̃CJ = 2346.1 m/s,

corresponding to the Mach number 7.422, and gas constant R̃g = 274.4 J/Kg/K.

Once DCJ is known, the heat release Q is computed as the solution of

DCJ /
√

γ =
√H + 1 +

√
H (3.15)
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Figure 3.4: Pressure, density, temperature, progress variable and particle velocity as
a function of the distance from the shock η in a ZND profile computed for a single-
step reaction model with zero activation energy. The particle velocity is divided
by the Chapman-Jouguet detonation speed DCJ , whereas all the other variables are
normalized by the corresponding post-shock (von Neumann) values.
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Figure 3.5: ZND pressure profiles versus distance from the shock. The curves are
computed from the values of θCJ and k listed in Table 3.1. The line passing through
the square symbols corresponds to zero activation energy.
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θCJ : 0. 1. 2. 2.5 3. 3.5 3.75 4.15

k : 0.2013 0.3931 0.7757 1.077 1.551 2.204 2.632 3.509

Table 3.1: Non-dimensionalized activation energy and proportionality factor.

in the unknown H
H =

(γ − 1) (γ + 1) Q

2γ
, (3.16)

see Thompson (1988). With the normalized speed DCJ = 8.204, we find Q = 65.81.

Numerical integration of the quasi-steady, one-dimensional Euler equations is per-

formed by an adaptive solver using a non-stiff Adams and a stiff Gear Method, as

implemented in “Mathematica” (version 4.0.2.0). A computed ZND profile with a

moderately high activation energy Ea is displayed in Fig. 3.4.

In the next chapter, we present the results of a parametric study where the geom-

etry of the channel (namely the half-width H of the inlet channel) is kept fixed while

varying the activation energy, scaled by the CJ post-shock temperature, TvN ,

θCJ =
Ea

TvN

.

Changing θCJ modifies the rate of energy release in the ZND profile and the sensitivity

of the reaction rate to variations in the thermodynamic state. To consistently compare

different profiles computed for different values of θCJ , the proportionality parameter

k in the reaction rate formula (3.8) must also be changed. In Table 3.1, we list θCJ

and the respective values of k that provide a constant value ∆1/2 = 1. Figure 3.5

displays the corresponding ZND profiles of pressure. These profiles cross each other

a first time at η = 1 and a second time at the sonic locus. For a depletion law of

order one, Equation (3.8), this point is at an infinite distance from the shock and it

is not visible in Fig. 3.5. Once the ZND solution is computed, it is interpolated on

the inlet channel to generate a right-facing planar wave, whose normal is parallel to

the x axis. No initial perturbations are introduced, so that the wave remains planar

until it reaches the corner, where it starts to diffract.
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Chapter 4

Activation energy studies

Activation energy Ea is the key parameter determining the dynamics of any com-

bustion system described by a one-step Arrhenius rate model. Large values of the

activation energy result in a chemical reaction rate that is very sensitive to changes

in the thermodynamic state. Small values of activation energy result in a chemical

reaction rate that is almost independent from changes in the thermodynamic state.

As a consequence, the diffraction behavior of detonations modeled with an Arrhenius

rate law can vary widely depending on the magnitude of the activation energy. In the

present study, a range of values has been examined in order to map out the possible

types of diffraction behavior that can occur with a fixed ratio of reaction zone length

to channel height.

Two types of studies were carried out. First, a set of coarse-resolution simulations

were performed for 8 values of reduced activation energy

θCJ =
Ea

Ts

(4.1)

between 0 and 4.15. Second, a set of high-resolution simulations were carried out for

three selected cases with reduced activation energies of 1, 3.5, and 4.15. All of these

simulations were performed with an initially planar ZND wave traveling at the CJ

speed before diffracting around the corner. Normal mode stability analysis (Lee and

Stewart 1990) indicates that the neutral stability curve for one-dimensional CJ deto-

nations asymptotes to a constant value θCJ
∼= 4.74 for sufficiently large Mach numbers
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yw
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Figure 4.1: Distance from the corner, measured along the channel axis of symmetry,
xa, and along the corner wall, yw.

(MCJ > 6). Our simulations lie entirely within the range of one-dimensional hydro-

dynamic stability, allowing the study of purely gasdynamic quenching mechanisms in

detonation diffraction.

Computations were carried out over a sufficiently long time to determine the

ultimate fate of the detonation wave. The half-width H of the channel in these

simulations was fixed at 36.67 reaction half-lengths. The kinetic constant k was

selected as a function of θCJ to maintain ∆1/2 constant, see Table 3.1.

The results of this study are conveniently summarized by plotting the history of

the detonation velocity on the axis of symmetry, Da, and at the wall, Dw, as shown

in Fig. 4.1. The coarse-resolution studies were carried out with 16 grid points per

half-reaction zone length, N1/2 = 16. This resolution level was convenient since it

enabled a complete simulation (on a 4824 by 3752 grid) to be performed in less than

36 wall-clock hours on 48 processors (Pentium III, 1 GHz with 1 GB of RAM) of

the ASAP Linux cluster in the Center for Advanced Computing Research (CACR)

at Caltech.

4.1 Coarse-resolution studies

The history of axial and wall velocities is presented in Figs 4.2 and 4.3 as a function of

position xa or yw as shown in Fig. 4.1. The shock speed on the axis remains constant

until the first expansion wave reaches the axis at about 90 half-reaction lengths from
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Figure 4.2: Detonation velocity at the axis, Da, as a function of the distance measured
from the vertex, xa. The labels are values of the non-dimensional activation energy
θCJ , varying from 0 to 4.15.

the corner vertex location. The expansion initially causes the shock speed to decay in

all cases, but the long-time behavior is different depending on the values of reduced

activation energy. The shock speed at the wall drops instantly since the flow around

the corner immediately affects the shock front. The very low pressures in the region

of the corner cause the shock to initially propagate at much lower velocities along

the wall than along the axis. Overall, in this initial phase of corner diffraction, the

behavior of diffracting detonations is very similar to that observed with non-reacting

shock waves.

For longer times, two extreme types of behavior can be noted for low activation

energy and high activation energy. These behaviors resemble the super-critical (low

activation energy) and sub-critical (high activation energy) diffraction cases observed

in experimental studies of diffraction from tubes. In addition, the cases of interme-

diate activation energy appear to be similar to the critical case of diffraction from

tubes. However, it is important to keep in mind two key differences between exper-
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Figure 4.3: Detonation velocity at the corner wall, Dw, as a function of the distance
from the vertex, yw. The labels are values of the normalized activation energy θCJ ,
varying from 0 to 4.15.

iments and the present simulations. First, the effective activation energy is between

4 and 7 for most fuel-oxidizer combinations (Schultz 2000). Second, there are always

transverse waves present on the detonation prior to reaching the corner. So the corre-

spondence between experiment and present simulations is necessarily inexact. More

realistic computations are needed in future studies to examine the influence of these

two factors.

4.1.1 Low activation energy

For 0 ≤ θCJ ≤ 1, the reaction rate is essentially independent from the thermodynamic

state, so that the reaction zone length is unaffected by the shock velocity. Since the

reaction rate is nearly constant, the detonation will always accelerate after diffraction,

reaching the CJ velocity far from the corner. This is similar to the case of super-

critical diffraction that is observed in diffraction experiments (discussed in Chapter

1) where the tube is larger than the critical size needed for successful detonation
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transmission.

Upon examination of Figs 4.2 and 4.3, a simple picture of the low activation energy

case emerges. The detonation velocity initially decreases due to the expansion waves

created by the flow around the corner, yet, after the initial decay, the wave accelerates

and eventually approaches the CJ velocity at a large distance from the corner. The

velocity on the axis of symmetry drops slowly to about 88% of the CJ velocity and

then begins to recover after propagating to 200 half-reaction lengths along the axis

(Fig. 4.2). The velocity on the wall drops immediately to 40% of the CJ value and

recovers to about 80% of CJ by the time the shock has propagated 200 half-reaction

lengths along the wall (Fig. 4.3). The magnitude of the drop in the shock velocity and

the rate of acceleration are associated with the competition between the gasdynamic

expansion created by corner flow and the energy release immediately behind the

shock. For this situation, the rate of change of the shock velocity can be shown to be

directly related to the magnitude of the velocity gradient behind the shock through

the shock-change equation (Fickett and Davis 1979, p. 101).

4.1.2 High activation energy

For 3.75 ≤ θCJ ≤ 4.15, the reaction rate is strongly dependent on the thermody-

namic state so that the reaction zone length increases rapidly when the shock speed

decreases. This causes the reaction zone to decouple from the shock wave, and the

reaction rate to essentially drop to zero, after a short distance from the corner vertex.

The detonation fails completely and the resulting flow is essentially a non-reactive

shock wave. This is similar to the case of sub-critical diffraction that is observed in

diffraction experiments (discussed in Chapter 1) where the tube is smaller than the

critical size needed for successful detonation transmission.

Examining Figs 4.2 and 4.3, we find that there is also a simple pattern of behavior

for this case. The wave velocity on both the axis and the wall decrease continuously

and reach very low values, less than 50% of the CJ value at 200-250 half-reaction

lengths from the corner vertex. The dynamics of the wave propagation are essentially
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of the channel. The labels are values of the normalized activation energy θCJ , varying
from 0 to 4.15.

those of a non-reactive shock and the approximate method of Whitham (1974) can

be used to find the evolution of the front.

4.1.3 Intermediate activation energy

For 2.5 ≤ θCJ ≤ 3.5, the reaction rate is moderately dependent on the thermodynamic

state. The reaction zone length increases as the shock decays, but the accelerating

effects of energy release are sufficient to cause the reaction zone length to ultimately

decrease in an abrupt fashion. This gives the appearance of a re-ignition event near

the wall (Fig. 4.3) that propagates back to the axis. This is similar to the case of

critical diffraction that is observed in diffraction experiments (discussed in Chapter

1) where the tube is comparable to the critical size needed for successful detonation

transmission.

The axial and wall velocities show an initial decay to a velocity higher than that

observed in the high activation energy cases, followed by an acceleration back to
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velocities similar to the low activation energy cases. The acceleration is abrupt at the

wall, but more gradual on the axis. This is related to the mechanism of transition,

discussed in more detail below.

Another way to analyze the flow near the axis is to plot wave speed vs. curvature

(Fig. 4.4). As discussed in Section 2.4, a unique Dn(κ) relationship should result if the

flow is quasi-steady in nature. Although the curves of Fig. 4.4 appear similar to the

plot in Fig. 2.2, their numerical values can be very different than in the corresponding

Dn(κ) curves. These differences are examined in Section 5.2.

4.2 High-resolution studies

Following the results of the coarse-resolution studies, more detailed simulations were

performed for selected cases at high resolution. The need for highly resolved com-

putations is crucial in the study of detonation diffraction. When the reaction zone

is underresolved, direct numerical simulations tend to overestimate the wave-front

curvature (Menikoff et al. 1996), and poor predictions of detonation wave structure

can be expected (Sharpe 2001). Results from a convergence study with varying N1/2

are presented in Appendix C. The following three simulations were computed with

N1/2 = 22.5 on a 6570 x 5858 grid for θCJ = 1 and 3.5, and on a 6750 x 5100 grid

for the sub-critical case. In all the examples, the length of the computational domain

is 300 ∆1/2. A non-dimensionalized time-step of 1.144 · 10−3, corresponding to an

average CFL number of 0.5 or smaller, is used in all calculations. Given a final time

between 40 and 60 for the detonation front to reach the bottom of the computational

domain, a typical simulation needs at least 40, 000 iterations to reach completion.

This requirement translates into an execution time of at least 6 days on 48 processors

(42 for the sub-critical case).

4.2.1 Case θCJ = 1

A sequence of numerical schlieren images is displayed in Fig. 4.5. Schlieren visual-

ization amounts to displaying the magnitude of the density gradient as a gray-scale.
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Figure 4.5: Numerical schlieren images for the case θCJ = 1. (a) t = 13.83; (b)
t = 21.15; (c) t = 28.47; (d) t = 35.79.
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Figure 4.6: Pressure profile (a) and sonic parameter (b) for 5 data sets extracted at
t = 35.79. Slice 1 and 5 are extracted along the axis of symmetry and the corner
wall, respectively. The remaining data are taken in the shock normal direction and
are evenly spaced along the detonation front.

A nonlinear mapping, or gray-scale shading function, is used so that density gradi-

ents varying through several orders of magnitude are still visible. In this work, the

gray-scale shading function is

ν = 0.8 exp

(
−µ

|∇ρ |
|∇ρ |max

)
(4.2)

with µ a strictly positive amplification parameter. The gray-scale ranges from black

for ν = 0 to white for ν = 1. Larger values of µ give darker images and accentuate

weak features of the flow. To provide a consistent gray-scale reference, frames in a

sequence of schlieren images, such as the one in Fig. 4.5, have the same amplification

and normalization factors.

In addition to the density gradient, Fig. 4.5 also displays the locus of points where

the products mass fraction is equal to 0.95. This contour is displayed as a red line.

The corner, on the left-hand side of each plot, is shown as a rectangular shape with

a small (not visible to the eye) rounded vertex of radius rc = 1. In each frame, only

the last portion of the inlet channel (one fifth of the total length 0.9 H) is shown.

As mentioned in the previous section, a value θCJ = 1 corresponds to a reaction
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rate model that is insensitive to shock velocity changes. Figure 4.6 (a) is a plot of

pressure for 5 “slices” of the computational domain at time t = 35.79. Slice 1 and

5 are extracted along the axis of symmetry and the corner wall, respectively. The

remaining data are taken in the shock normal direction and are evenly spaced along

the detonation front. In all the slices, the post-shock pressure is almost exactly 75%

of the von Neumann value, corresponding to a detonation velocity 0.86DCJ = 7.010.

This estimate is consistent with the diagram in Fig. 4.2. The profiles of the sonic

parameter c2 − w2 in frame (b) are computed by assuming the shock is normal.

Then w = 7.010 − u is the relative velocity, with u = (u2
x + u2

y)
1/2. A sonic point

is observed for all profiles at a distance varying between 14 and 21 ∆1/2 from the

shock. No decoupling of the shock from the reaction zone occurs, since the 50%

reaction completion is reached at a distance of about 1.5 ∆1/2. Overall, the profiles

in the two frames show the same behavior as a function of the coordinate η, with

the exceptions of slice 3 (dashed line) and slice 4 (dotted line) both passing through

a system of transverse shocks. Transverse shocks, visible in Fig. 4.5 (d), will be

discussed in the second half of this section. Similar profiles are also observed for the

other flow variables, not displayed here, indicating that there are no residual effects of

the transverse gradient due to the corner rarefaction. By the shock-change equation

(Fickett and Davis 1979, p. 101), we conclude that the front is propagating as an

almost cylindrical detonation.

In the remaining part of this section, we examine the most relevant features of

this super-critical diffraction in detail. Figure 4.7 is a close up of the frame at time

t = 28.47, showing the vortex structure near the corner. To clarify the picture, we

display a plot of contours of u2/c2 − 1, where u is the magnitude of the local flow

field velocity in the laboratory frame and c the local sound speed. The contours have

values ranging from −1 to 8, with spacing equal to 0.25. Dashed lines correspond to

u ≤ c and solid lines to u > c, so that every dashed contour that is adjacent to a

solid contour represents a sonic line in the laboratory frame.

At the center of the vortex V, we recognize a portion of partially reacted material

surrounded by the 0.95 reaction locus. Once formed at the corner, this partially burnt
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Figure 4.7: Numerical schlieren image, (a), and contours of u2/c2 − 1, (b). The red
line is the 0.95 reaction locus. In (b), the contours have values ranging from −1 to
8, with spacing equal to 0.25. Dashed lines correspond to u ≤ c and solid lines to
u > c. Every dashed contour that is adjacent to a solid contour represents a sonic
line in the laboratory frame. The plots are a close up of the frame at t = 28.47 in
Fig. 4.5, computed for θCJ = 1.
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core is slowly convected downstream by the flow field. As the vortex rotates clockwise,

it wraps around it a contact discontinuity (CD1) produced by the acceleration of the

flow at the corner. The discontinuity separates flow at low speed, creeping along the

vertical wall, from flow at higher speed coming from the channel inlet. A second

contact surface (CD2) surrounds the vortex and reaches the axis of symmetry. CD2

separates the fluid that has been processed by the undisturbed shock from the fluid

that has been set into motion by the diffracted shock.

Examining the channel inlet shows that, at time t = 28.47, the head of the corner

expansion has already moved upstream inside the channel, and that the incoming flow

is subsonic. This flow expands at the corner, passes through a sonic line (Fig. 4.7

(b)) and becomes supersonic. It is then slowed down by a system of shock waves

converging to a triple point, T. In Fig. 4.7 (a), we recognize a weak incident shock

(IS), from the corner to the triple point; a stronger reflected shock (RS), reaching

the slip discontinuity CD1; and a transmitted shock (TS), terminated by a system

of compression waves that extend to the axis of symmetry. At a later time these

compression waves have coalesced into a well-defined shock, perpendicular to the

axis. The contact discontinuity, separating the fluid processed by RS and TS, is so

weak that it is visible only as a kink in the contour lines on the right of RS in frame

(b). In frame (a) we distinguish more clearly a kink (K), at a short distance from

T, due to a small compression wave that is formed in the early phases of the corner

turning process. This wave becomes progressively weaker at later times.

At the termination of the reflected shock, close to CD1, a complex system of shocks

and contacts can be discerned. The shock (S1) originates from this area and almost

reaches the vortex center. A second shock (S2) extends from the core to the corner

wall. Both shocks reduce the flow velocity, which passes from supersonic to subsonic,

see frame (b). In the recirculation region between S2 and the contact discontinuity, a

small counter-vortex (C) can be identified. The flow processed by RS and TS becomes

subsonic at a certain distance from the shock, and this region of locally subsonic flow

extends past the 0.95 reaction locus in frame (a) to the main reaction zone. We see

that the flow once again becomes supersonic in the laboratory frame near the leading
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Figure 4.8: Contours of pressure (left), and numerical schlieren images of density
(right) at time t = 8.5 (a), and t = 13.83 (b), computed for θCJ = 1. The pressure
increment of the contours is 0.8334 up to a cutoff value of 50 times the ambient
pressure. The reference segment (bottom right corner of the contour plots) measures
∆1/2.

front, in the bottom right corner of frame (b).

Most of the features we have described can also be observed in experiments of

shock diffraction in non-reactive mixtures (see Shardin’s shadowgraphs at M0 = 2.4

in An Album of Fluid Motion plate 243, assembled by Milton van Dyke, Parabolic

Press, 1982). This complex system, once formed, grows in a self-similar fashion until

instabilities eventually grow along the contact discontinuity (after time t = 35.79 in

Fig. 4.5).

We now examine the detonation front, where Fig. 4.5 reveals the formation of

a train of shock waves, extending through the reaction zone and transverse to the

main front. Figure 4.8 is composed of schlieren images and contour plots of pressure.

The pressure increment of the contours is 0.8334 up to a cutoff value of 50 times the

ambient pressure. The reference segment (bottom right corner of the contour plots)
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measures ∆1/2. The dashed line in the schlieren images is the locus of 50% reaction

completion. This line provides an indication of the actual half-reaction length of the

wavefront compared with the reference CJ length. The plot scale is the same in both

frames.

In the initial phase of corner turning, the foot of the shock lags behind the undis-

turbed front so that the front near the wall is distinctly curved and not normal to the

wall. This overexpansion has been observed in detonation front diffracting around a

corner with interior angle 75◦ or smaller in H2–O2 or C2H2–O2 mixtures diluted with

Argon (Akbar 1997). The reflection of the shock foot gives rise to a Mach stem and

a reflected shock, frame (a). The curved detonation front, created by the interaction

with the corner expansion, corresponds to the incident shock, labeled IS in frame (b).

Pressure reaches maximum value just behind the triple point (T). This area is marked

by the high density of contour lines, which surround a small region above the pressure

cutoff value. The reflected shock (RS) is reactive, as indicated by the steep decrease

in density behind it in the schlieren image. To the left of RS, the transmitted shock

(TS) is curved due to the expansion out of the channel. The contact discontinuity

(CD1) between the two waves separates mixtures at different stages of reaction (a

larger fraction of products at lower density is found behind the transmitted wave

than the incident wave). Two more compression fronts (CW1 and CW2) appear in

frame (b), at some distance from the reflected shock and almost parallel to it. These

waves, more visible as they cross the contact discontinuity, propagate all the way to

the leading shock. There, the rate reaction increase due to the compression is suffi-

cient to generate a small discontinuity in density. This weak contact, labeled CD2, is

parallel to the main contact discontinuity.

The wave structure described here is consistent with a mechanism of propagation

and amplification of small acoustic disturbances in the reaction zone, followed by

shock steepening. For sources emitting at high frequency, compared with the dynam-

ics of the detonation front, Strehlow and Fernandes (1965) showed that any point

source located in a planar ZND-CJ reaction zone will propagate a wave containing

ray elements that asymptotically lie in a plane parallel to the leading shock, while
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(a) (b)

Figure 4.9: Sequence of transverse waves along the detonation front at time t = 35.79
for θCJ = 1. Frame (a): schlieren image. The solid line is the locus of 95% reaction
completion. The reference segment (bottom right corner) measures 10 ∆1/2. Frame

(b): contours of c2 − (7.010 − ux)
2 − (7.010 − uy)

2 from -20 to 15 with spacing equal
to 1.

rays that deviate from the plane rapidly wash out of the detonation or reflect from

the shock. This plane is located where the sonic parameter, c2 − w2, reaches a local

maximum, and acts as a channel, embedded in the reaction zone, for acoustic distur-

bances. The energy release, due to chemical reaction, can amplify these disturbances.

As the acoustic waves increase in amplitude, shock steepening takes place and the

wave spacing increases.

In frame Fig. 4.5 (d), we observe five transverse shocks followed by a train of

smaller compression waves. A close up of that same image, Fig. 4.9 (a), shows that

the wave spacing is regularly decreasing from the first shock. This spacing can be

compared with the reference length 10 ∆1/2, in the bottom corner of the plot. Once

formed, each shock generates a new contact discontinuity starting from the detonation

front. In turn, the discontinuity provides a local maximum of the sonic parameter,

which is shown in frame (b) for the estimated detonation velocity Dn = 7.010. As

in the planar ZND detonation, this “crest” of the sonic parameter is an acoustic

channel for the disturbances, which are amplified and become transverse shocks at

the detonation front. A more detailed discussion of this cyclic process of propagation

and amplification is postponed to Chapter 6.
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Figure 4.10: Location of injected particles.

4.2.1.1 Particle analysis

We now discuss the results obtained by monitoring the data collected by a selection

of particles that were injected along the vertical corner wall, Fig. 4.10. The choice of

the initial particle position is motivated by the fact that the most severe reduction

of rate reaction is found along that axis, as indicated by the receding 0.95 reaction

locus in the first frame of Fig. 4.5.

Particle trajectories are displayed in the space-time diagram of Fig. 4.11. From

the temperature profiles, Fig. 4.12, all particles ignite, even when they are very close

to the corner. Note that the first particles are accelerated down by the shock and

then pulled up into the colder fluid created by the corner vortex. The corresponding

temperature decrease takes place when the particles have already ignited and does

not significantly affect the heat release process.

Since the shock is normal to the wall, the simplified equation (2.18) for particle

analysis can be used. The decomposition of DT/Dt, according to this formula, is

performed for particles 1 and 7 and displayed in Fig. 4.13. For each particle, data

analysis starts immediately after the passage of the leading shock. The difference

between the left-hand side and the right-hand side in (2.18) is due to errors in the

evaluation of the terms of the equation. This quantity, which can be larger near the

passage of the shock, is plotted as a solid line. For particles 1 and 7, transverse diver-

gence and curvature effects are negligible. In frame (a), the partial time derivatives

of pressure and particle velocity are positive, i.e., the unsteady term due to shock

acceleration contributes to the increase in the rate of change in particle temperature.

In frame (b), the peak in thermicity occurs very quickly after the shock; the effect of

unsteadiness is negligible.
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Figure 4.11: Particle paths for 10 sample particles injected along the vertical corner
wall for θCJ = 1. Labels 1 and 7 indicate the particles that are analyzed in terms of
numerical dominant balance.
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Figure 4.12: Temperature profiles along the particle paths in Fig. 4.11.
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Figure 4.13: Terms in the reaction zone temperature Equation (2.18) along the same
particle paths as in Fig. 4.11 for the case θCJ = 1. The particles are injected along
the vertical wall of the corner. · · · · · · Lagrangian temperature; – · – · heat release;
– – – curvature; — — transverse divergence; – ·· – ·· unsteadiness. The solid line is the
difference between the left-hand side and the right-hand side in Equation (2.18), as
computed from the above terms. (a) Particle 1; (b) Particle 7.

4.2.2 Case θCJ = 4.15

A sequence of snapshots of the simulation, computed for θCJ = 4.15, is displayed in

Fig. 4.14. The decoupling occurs just behind the head of the corner signal that sweeps

across the wave from the corner to the channel axis. The detonation completely fails

and there is no local re-ignition, so that the main flow features appear to evolve in

time very similar to a non-reacting shock.

Moving along the wavefront from the channel axis, we see that the wave curvature

increases up to the point where the no-flow boundary condition, generated by the wall,

generates a straight shock perpendicular to it. The transition from curved to straight

front is smooth, since the shock is immediately followed by an unsteady expansion

wave. This structure is qualitatively predicted by Whitham’s geometrical shock dy-

namics applied to a non-reacting shock diffracting at a sharp corner (Whitham 1974,

p. 297). It is also observed by Xu et al. (1997) in a direct numerical simulation com-

puted with θCJ = 3.15. At the junction of the curved front and the stem adjacent to

the wall, the schlieren images in Fig. 4.14 indicate a discontinuous change of density
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(c) (d)

(e) (f)

Figure 4.14: Numerical schlieren images for the case θCJ = 4.15. (a) t = 22.24; (b)
t = 28.43; (c) t = 34.63; (d) t = 40.83. (e) t = 47.02; (f) t = 53.22.
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Figure 4.15: Density (a), temperature (b), pressure (c) and progress variable (d)
profiles for 5 different data set extracted at t = 53.22.

gradient.

The 0.95 reaction locus in Fig. 4.14 marks the separation between the burnt gases,

produced before reaction quenching, and the shock-compressed (but unburnt) reac-

tants. This is shown in Fig. 4.15, where density, temperature, pressure and progress

variable profiles of 5 slices of the computational domain (at time t = 53.22) are plot-

ted. Slices 1 and 5 are extracted along the axis of symmetry and the corner wall,

respectively. The remaining data are taken in the shock normal direction and are

evenly spaced along the detonation front. Behind the leading shock, temperature

and progress variable do not vary substantially from their post-shock values, whereas

density and pressure decrease similarly to what would be expected in a blast decay.
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Density drops abruptly at a distance of 20 to 30 ∆1/2 from the shock. At the same

location, temperature and progress variable rise very rapidly to the corresponding

values of the burnt products, while pressure registers only a change of slope. At the

wall, this contact discontinuity is located at 60 ∆1/2 behind the Mach stem (Slice 5).

A second discontinuity is observed in Fig. 4.15 at a much larger distance from the

leading shock. This discontinuity is due to a triple shock system similar to the one

described in the super-critical case. This structure is shown in Figure 4.16, where

the flow field behind the contact discontinuity CD2 is very similar to the flow shown

in Fig. 4.7 for the super-critical case. Here, a third shock (S3) appears between the

vortex and the wall; the re-circulation area (C) below CD1 traps a portion of partially

reacted gases.

The position of the leading shock, the Z = 0.05 and Z = 0.95 reaction loci,

and the sonic line at the channel axis are plotted in Fig. 4.17. The sonic lines are

defined as the loci of points where the flow is sonic in the reference frame traveling at

speed Da. Sonic conditions are reached infinitely far from the shock in the ZND-CJ

profile, since the exponent in the depletion law is one. When the head of the corner

expansion wave reaches the axis, a sonic point suddenly appears at a finite distance

behind the shock. Figure 4.17 shows that this point occurs when the leading shock

is still unaffected by the expansion, and that a supersonic region is embedded in the

flow for a short time. The fastest trace almost reaches the Z = 0.05 line. However,

as the axial detonation speed begins decreasing, the flow behind the shock becomes

subsonic again in the reference of the shock, and the two sonic lines terminate.

4.2.2.1 Particle analysis

We now discuss the results obtained for a selection of particles injected along the

channel axis (Fig. 4.18). This is the most convenient location to probe the flow field,

since there the corner expansion is initially the weakest. Particles trajectories, labeled

from 1 to 10, are displayed in Fig. 4.19. Comparison with Fig. 4.17 reveals that, at

later times, these trajectories are almost parallel to the partial reaction lines. At this

point the reaction is quenched, and previously burnt products are separated from
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Figure 4.16: Numerical schlieren image, (a), and contours of u2/c2 − 1, (b). The red
line is the 0.95 reaction locus. In (b), the contours have values ranging from −1 to
8, with spacing equal to 0.25. Dashed lines correspond to u ≤ c and solid lines to
u > c. Every dashed contour that is adjacent to a solid contour is a sonic line in the
laboratory frame. The plots are a close up of the frame at t = 28.43 in Fig. 4.14,
computed for θCJ = 4.15.
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Figure 4.17: Space-time diagram for failing detonation (θCJ = 4.15). Shock (solid
line); sonic loci (dotted line); 0.05 and 0.95 reaction loci (broken line).

fresh mixture by the contact discontinuity observed in Fig. 4.14. The temperature

history along these paths is plotted in Fig. 4.20. The increase in reaction zone length

with decreasing shock strength is consistent with the reaction rate dependence on

temperature.

The decomposition of DT/Dt is performed for particles 1, 3, 5 and 10 and dis-

played in Fig. 4.21. The plots show that the (positive) transverse divergence term

is always small. This justifies treating the flow near the axis as a blast wave with

cylindrical symmetry. The curvature term makes a negligible contribution to DT/Dt

for particles prior to or at failure. For particles far from failure (particle 1, Fig. 4.21

xa
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Figure 4.18: Location of injected particles.
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Figure 4.19: Particle paths for ten sample particles. Shock (thick solid line); particle
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Figure 4.20: Temperature profiles along the particles paths displayed in Fig. 4.19.
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(a)), unsteadiness mainly balances curvature and transverse divergence, and the tem-

perature variation is produced by heat release alone. For particles whose rise in

temperature is well separated from the initial shock (particles 3 and 5, Fig. 4.21 (b)

and (c)), unsteadiness is a negative forcing that reduces DT/Dt below the value due to

heat release. For particle 5, unsteadiness is initially larger than heat release, and the

particle temperature decreases below the post-shock value before increasing again. By

particle path 10 (Fig. 4.21 (d)), the temperature steadily decreases and unsteadiness

dominates over heat release. At this point, the reaction is quenched.
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Figure 4.21: Terms in the reaction zone temperature Equation (2.18) along the same
particle paths as in Fig. 4.19 for θCJ = 4.15. The particles are injected on the channel
axis of symmetry. · · · · · · Lagrangian temperature; – · – · heat release; – – – curvature;
— — transverse divergence; – ·· – ·· unsteadiness. The solid line is the difference be-
tween the left-hand side and the right-hand side in Equation (2.18), as computed
from the above terms. (a) Particle 1; (b) Particle 3; (c) Particle 5; (d) Particle 10.
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4.2.3 Case θCJ = 3.5

This example shows the most interesting behavior of all the cases examined in this

study. The detonation begins to fail at the wall, but, at some point, a re-ignition event

occurs. Numerical schlieren images (Figs 4.22 and 4.23) for the case θCJ = 3.5 indicate

how complex are the dynamics of the diffraction process. As shown by Figs 4.2 and

4.3, the front evolves differently along the axis of symmetry and the wall. At the

channel axis, the shock appears to never completely decouple from the reaction zone.

The detonation speed exhibits a plateau at a speed of about 0.6 DCJ , but then climbs

toward the CJ value. Conversely, the shock at the corner wall immediately detaches

from the reaction zone and maintains a speed of about 0.4 DCJ until the arrival of

a transverse wave. At this point, re-ignition takes place through the spontaneous

creation of a transverse wave.

In the following, we closely examine the mechanism of formation of the first trans-

verse wave, shown in the frames of Fig. 4.22. Figure 4.24 is a sequence of pressure

contours and numerical schlieren images at the axis of symmetry for a small region

of flow behind the main shock. In addition to the expansion fronts, the numer-

ical schlieren images (right) show two additional features. The first is an almost

vertical “blip” in density (BL) that can be explained as a residual of a transverse

disturbance triggered by the passage of the leading shock by the corner. The second

originates at the end of the main reaction zone and lies near the 0.95 reaction locus.

It can be interpreted as a slope discontinuity in density (SD) between partially burnt

and completely burnt products. These two features are too weak to register in the

corresponding contours of pressure and are not considered relevant for the overall

dynamics.

The rarefaction originating at the corner (IR) reflects at the axis of symmetry, and

a new, semi-circular rarefaction front (RR) can be seen in Fig. 4.24 (a), still outside

the main reaction zone. In that same frame, the head of the expansion has crossed

the 0.95 reaction locus, but it has not reached the shock front at the axis, which is

therefore still straight. By time t = 11.08, the reflected expansion has reached the
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Figure 4.22: Numerical schlieren images for the case θCJ = 3.5. (a) t = 10.17; (b)
t = 13.83; (c) t = 17.49; (d) t = 21.15. (e) t = 22.98; (f) t = 24.81; (g) t = 26.64; (h)
t = 28.47.
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(o) (p)

Figure 4.23: Numerical schlieren images for the case θCJ = 3.5. (i) t = 32.13; (l)
t = 35.79; (m) t = 39.45; (n) t = 43.11. (o) t = 44.94; (p) t = 46.77.
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Figure 4.24: Pressure contours (left) and numerical schlieren images (right) for the
case θCJ = 3.5 at times t = 9.255 (a); 11.08 (b); 12.91 (c); 15.66 (d); 17.49 (e). Each
plot measures 86.7 half-reaction lengths in width.
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main reaction zone and sweeps downwards along the detonation front. This further

reduces the strength of the leading shock and results in a flattening of the front near

the axis. The 0.95 locus appears to get closer to the shock, since fresh, partially

reacted gas is now moving along the axis of symmetry more slowly than previously

processed fluid. In this situation, an observer, moving from the axis of symmetry to

the corner wall along the wavefront, would find the maximum value of pressure at the

leading shock immediately ahead of the reflected expansion front. This can be seen in

the pressure plots of Fig. 4.24, where the highest density of iso-lines is located near the

intersection of the reflected rarefaction with the shock. As the observer moves beyond

that peak toward the corner wall, the pressure decreases again, this time because of

the effect of the first corner expansion. Correspondingly, the contours of pressure

become more sparse behind the shock. Before reaching the wall, the reaction zone

gives way to a non-reactive shock followed by a contact discontinuity that separates

unreacted but compressed gas from convected products, a situation already found in

the previous sub-critical case. The partially coupled detonation front is the basis for

the subsequent flow evolution that results in re-ignition of the detonation.

By time t = 17.49, the reflected expansion appears to have lost most of its strength

(Fig. 4.24 (e)), and, near the wavefront pressure peak, the end reaction zone begins

to approach the shock and cause it to accelerate. At time t = 21.15 (Fig. 4.22),

the wavefront has acquired a very peculiar shape. It is almost flat at the axis of

symmetry, has a relatively large curvature in the center, and is completely decoupled

at the wall. A fold or kink in the shock front can be observed at time t = 26.64. By

the next frame, a transverse shock wave has formed from this fold and is propagating

toward the corner wall. The frames of Fig. 4.23 display this further evolution, up to

the reflection of the transverse wave at the corner wall.

The detailed structure of the transverse wave is of interest. Similar waves have

been observed in the formation of cellular structures in recent simulations (see Sharpe

2001; Inaba and Matsuo 2001). The second triple point (T2) in Fig. 4.25, in addition

to the triple point on the leading front (T1), identifies this configuration as a trans-

verse wave of strong type (Fickett and Davis 1979). This configuration is typically
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Figure 4.25: Structure of transverse wave, contours of pressure, (a), and numerical
schlieren images of density, (b). The solid line in (b) is the 0.95 reaction locus. In (a),
contour lines are spaced by the non-dimensional value 2.083. A cutoff value of 250
is used (the local maximum value is 445), to mark the pressure peak position behind
the kink. The segment at the bottom left indicates the length of ∆1/2 in the plot
scale. The two images are a close up of a frame at t = 30.30 computed for θCJ = 3.5.

associated with fully developed detonation cells and moderate to large heat release.

It is interesting to contrast the formation of this structure in a near-critical diffraction

with the appearance of a train of transverse waves of the weak type in a fully coupled

detonation (Fig. 4.9).

In the wave system shown in Fig. 4.25 (b), the incident shock (IS) is essentially

non-reactive, while the curved Mach stem (MS) has a much higher reaction rate. This

can be seen by considering the distance of the 95% reaction locus from the shock front.

A contact discontinuity (CD2) separates the partially reacted gas, processed by IS,

from the completely burnt products. The transverse wave (TS) extends between the

two triple points, T1 and T2, as a straight shock, and from T2 to the 95% reaction

locus as a curved, strongly reactive wave. It propagates into the partially reacted

region behind the incident shock and quickly brings the reaction to completion. The

maximum value of reactivity is found immediately behind the short stem connecting

point P with T2. In frame (a), this small area is above the cutoff value of the

pressure contours, and it is surrounded by the highest density of contour lines. The

contact discontinuity CD1 separates the gas that has passed through MS from the

gas processed by the transverse shock. A relatively minor feature, a kink (K) in the
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Figure 4.26: Numerical schlieren images for the case θCJ = 3.5. Each frame is a
close up of the computational domain, near the leading shock, at the channel axis
of symmetry. The sequence goes from time t = 39.45 to t = 69.65 by increments of
2.745. Each plot measures 153.3 half-reaction zone reference lengths in height.
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Mach stem, is also visible. The discontinuity associated with the kink terminates near

point P. Grid resolution studies by Sharpe (2001) indicate that this feature rapidly

disappears in underresolved simulations, so its presence in the result we are showing

here suggests that the level of resolution could be adequate (see also the convergence

study performed on this wave structure in Appendix C).

Returning to Fig. 4.23, a second shock folding can be seen to take place after

time t = 35.79 near the channel axis. Since this evolution occurs near the end of

the original computational domain, it was found convenient to stop the simulation

and translate the flow solution to the left before restarting the computation. In this

way, the inlet channel (most of it not shown in the previous images) moves out from

the computational domain, leaving (on the right) a newly available strip of domain

slightly less than 1500 cells wide. This operation has the purpose of “freeing” a

few processors, at the expense of the correct inlet boundary conditions on the left-

hand side of the domain. The “new” region is then populated with values of the

undisturbed flow ahead of the detonation, and the computation is restarted from this

point. Until the waves from the rear of the domain reach the front, the computation

of the region near the wavefront will be unaffected. With some caution, this operation

can be repeated a few times to study the wave evolution near the axis of symmetry.

The application of this technique allows us to follow the wavefront evolution for a

longer time, and we show these results in a sequence of schlieren images in Fig. 4.26.

These 12 snapshots are a close up of the solution near the leading shock at the axis

of symmetry. Each image measures 153.3 half-reaction zone lengths in height.

Examining Fig. 4.26, we see that, as before, the acceleration of a portion of the

front generates a shock fold and eventually a shock-shock interaction (frame (a) to

(c)), followed by an increased rate of reaction, and an almost cylindrical explosion

(frame (d) to (e)) at the end of the main reaction zone. By frame (f), this secondary

front has reached the axis of symmetry, where it starts to reflect. At frame (i), only

a small section of the original wavefront, in the upper part of our field of view, has

not been covered by an overlapping system of transverse waves. The closeness of the

0.95 reaction locus to the leading shock, and its irregular shape, indicate that this
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corrugated wavefront has an enhanced net reaction rate over the originally smooth

front. The remaining frames of Fig. 4.26 show the reflection of the newly formed

waves at the axis of symmetry. Interestingly, the lower portion of frame (n) suggests

a certain regularity in the spacing of the transverse waves, reminiscent of propagating

detonations with cellular instability.

We conclude this section by observing that for slightly larger activation energies

(θCJ = 3.75 and θCJ = 4), the mechanism described above also produces a first

transverse wave analogous to the one in Fig. 4.25. This wave is slower and weaker

than the one we show here, but still completely formed. However, no acceleration

of the front at the axis of symmetry can be observed in Fig. 4.2. In these cases we

observe a monotone decay of Da, and there are no features like those seen in Fig. 4.26.

We conclude that acceleration of the shock close to the channel axis is the distinctive

feature that sets apart a failing, near-critical detonation diffraction (for θCJ = 3.75),

from a successful one (for θCJ = 3.5).

4.2.3.1 Particle analysis

From the previous description, two radically different behaviors can be identified in

the two regions near the channel axis and the corner wall. At the wall, the decoupling

of the shock from the reaction zone persists until an external cause, the reflection of

a strong transverse shock, is able to re-ignite the mixture. At the channel axis, a

complex wave-front dynamic results in shock folding, and eventually produces an

explosion, followed by a system of transverse waves. In both cases, there is symmetry

with respect to channel axis, and the simplified Equation (2.18) for the Lagrangian

temperature derivative can be used.

We first contrast the space-time diagram for the leading shock and the 0.05 and

0.95 reaction loci along the two directions. Along the axis of symmetry (Fig. 4.27),

at the arrival of the expansion, the shock speed decreases, and a small delay forms

between the shock and the 0.05 locus. Accordingly, the thickness of the reaction

zone increases, and the distance between the two reaction loci grows almost linearly

in time. After xa = 200 the shock accelerates, the ignition delay disappears and
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Figure 4.27: Space-time diagram for the leading shock and the 0.05 and 0.95 reaction
loci along the axis of symmetry. Solid line leading shock; – – – progress variable 0.05;
· · · · · · progress variable 0.95.

the reaction length starts decreasing, all indications that the detonation has locally

overcome the effects of the corner expansion.

Along the corner wall (Fig. 4.28), the picture is quite different. The 0.95 reaction

locus is almost stationary until t = 10, indicating that a portion of the flow does

not completely react due to the large drop in pressure and density. Figure 4.22

shows a portion of partially unburnt material being shed from the corner and then

advected downward. Likewise, the 0.05 reaction locus translates at the post-shock

particle velocity. The growing gap between partially reacted material and the leading

shock indicates a complete local quenching of the reaction. By t = 43, a transverse

wave reflects from the wall, and the temperature of the unburnt gas increases due to

the strength of the reflected shock. The pockets of unreacted material are rapidly

consumed, as demonstrated by the disappearance of the initial 0.05 reaction locus at

t = 44 and by the formation of two 0.95 loci at yw = 90. The leading shock rapidly

accelerates and it is now strongly coupled to a newly formed reaction zone.
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Figure 4.28: Space-time diagram for the leading shock and the 0.05 and 0.95 re-
action loci along the wall. Solid line leading shock; – – – progress variable 0.05;
· · · · · · progress variable 0.95.

Lagrangian trajectories are displayed in Fig. 4.29 and Fig. 4.30 for particles that

are located on the axis of symmetry and on the wall. The temperature readings along

these paths are displayed in Fig. 4.31 and Fig. 4.32, respectively. Labels indicate

particles that will be further analyzed in this section.

In particles moving along the channel axis (Fig. 4.31), the post-shock temperature

decreases, reaches a minimum, and then increases again. Likewise, the time delay

between the shock passage and the peak temperature for particle 10 is larger by

about an order of magnitude than the corresponding time for particle 1, indicating

a growth in ignition time. From particle 10 to 21 the ignition time decreases again.

This variation is consistent with the change of slope exhibited by the leading shock

in the x − t diagram of Fig. 4.27. These results indicate that the detonation slows

down, but does not fail. Interestingly, the post-shock slopes of the temperature never

become negative for any of the trajectories shown in Fig. 4.31.

In particles moving along the corner wall (Fig. 4.32), no ignition occurs until
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Figure 4.29: Particle paths for 21 sample particles injected along the channel axis
(Fig. 4.18) for θCJ = 3.5. The labels 1, 10, 16, 21 indicate particles that are analyzed
in terms of numerical dominant balance.

t = 43, the time of arrival of the transverse wave. The post-shock temperature

steadily decays from particle 1 to particle 7, has a slight increment from particle 7 to

12, and then decreases again. Overall, the flow in this time interval can be treated as

non-reacting until the arrival of the transverse wave.

We now examine the terms in the reaction zone temperature Equation (2.18) along

the same paths as in Fig. 4.29 (axis of symmetry) for particles 1, 10, 16, 21. The

plots in Fig. 4.21 (a) and Fig. 4.33 (a), for particles initially located just downstream

of the head disturbance arrival point, are virtually identical. This is expected, since

the activation energies in these two cases differ by a relatively small amount and the

perturbation due to the corner is the same. However, the behavior of the particles that

follow is radically different. Whereas particles 10 and 16 have much longer ignition

times, of the order of 5–10, particles located further downstream display again an

ignition time of the order of unity. This reinforces that in the case θCJ = 3.5 the

detonation recouples at the axis, contrary to the case θ = 4.15.

If we now examine one by one the terms appearing on the right-hand side of
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Figure 4.30: Particle paths for 20 sample particles injected along the vertical corner
wall (Fig. 4.10) for θCJ = 3.5. The labels 1 and 10 indicate the particles that are
analyzed in terms of numerical dominant balance.
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Figure 4.31: Temperature profiles along the particle paths displayed in Fig. 4.29.
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Figure 4.32: Temperature profiles along particles paths displayed in Fig. 4.30.

Equation (2.18), we notice that the unsteady term appears almost everywhere in the

form of a negative forcing, as for the case θCJ = 4.15. There is only one exception

in Fig. 4.33 (c), where unsteadiness provides a small increment to the peak value of

DT/Dt. Overall, curvature and divergence effects play a relatively unimportant role

in determining the Lagrangian derivative of temperature. Exception to this are the

paths 10 and 16 (Fig. 4.33 (b) and (c)), where a strong peak in the curvature term

can be observed at time t ∼= 40. At this point however, the flow has already reacted,

and DT/Dt is almost zero.

To conclude, we analyze two representative Lagrangian paths along the corner

wall. Figure 4.34 (a) is very similar to Fig. 4.21 (d), with the evolution of temperature

dictated by the unsteady term. Figure 4.34 (b) captures the small change in DT/Dt

that is registered by particles 1 to 10 in Fig. 4.32. Variations in temperature are three

orders of magnitude smaller than the ones observed by the particles moving along the

axis of symmetry, and data analysis is affected by a large amount of noise. Even in

this case however, the change in DT/Dt corresponds to a variation in the unsteady

term, while transverse divergence, curvature and heat release remain almost constant.
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Figure 4.33: Terms in the reaction zone temperature Equation (2.18) along the same
particle paths as in Fig. 4.29 for the case θCJ = 3.5. The particles are injected along
the axis of symmetry. · · · · · · Lagrangian temperature; – · – · heat release; – – – curva-
ture; — — transverse divergence; – ·· – ·· unsteadiness. The solid line is the difference
between the left-hand side and the right-hand side in Equation (2.18), as computed
from the above terms. (a) Particle 1; (b) Particle 10.; (c) Particle 16; (d) Particle 21.
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Figure 4.34: Terms in the reaction zone temperature Equation (2.18) along the same
particle paths as in Fig. 4.30 for the case θCJ = 3.5. The particles are injected along
the vertical wall of the corner. · · · · · · Lagrangian temperature; – · – · heat release;
– – – curvature; — — transverse divergence; – ·· – ·· unsteadiness. The solid line is the
difference between the left-hand side and the right-hand side in Equation (2.18), as
computed from the above terms. (a) Particle 1; (b) Particle 10.

A second variation in DT/Dt is linked to the arrival of the transverse wave at t ∼= 43.

Further analysis after t = 44 is not possible due to the strong upward moving shock

wave described earlier.

4.3 Conclusions: a failure model for diffraction

In the previous sections, the terms in the reaction zone structure equation were inves-

tigated along particle paths for sub-, near-, and super-critical cases. The study was

focused on particle trajectories running along the two edges of the detonation front,

the axis of symmetry of the channel, and the lower wall of the corner. These two

directions are representative of two extremely different dynamics of the wavefront, as

exemplified by the case θCJ = 3.5. Moreover, in these two special cases, the flow field

exhibits symmetry (about the channel axis and the corner wall), which noticeably

simplifies the reaction zone structure equation.

In the cases presented here, we found that the contributions of the curvature
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and transverse divergence terms to the Lagrangian derivative of temperature are

negligible. This result is consistent with the findings of Eckett et al. (2000) for the

case of direct initiation of cylindrical and spherical detonations, where the unsteady

processes appear to be dominant. The reaction zone structure equation can therefore

be reduced to

(
1 − M2

)
Cp

DT

Dt
=

(
1 − γ M2

)
Qk ρ (1 − Z) exp

(−Ea

T

)
(4.3)

+ wη (Da − wη),t +
P,t

ρ
.

In the next chapter, we will show that the Dn − κ diagrams extracted from our

numerical simulations show a large initial deviation with respect to the diagrams for

slightly-curved, quasi-steady diverging detonation.

A second observation is that the common feature in the temperature history of

particles that fail to ignite is a negative value of DT/Dt following the leading shock.

In Fig. 4.31, the Lagrangian derivative of temperature is very close to zero for a few

particles, but not negative. The detonation front locally recouples, and at a later time,

the acceleration of the front near the axis triggers the formation of a large reactive

transverse wave. When the activation energy is larger, and the detonation fails, we

find particles in Fig. 4.20 where DT/dt < 0 . These facts suggest that a vanishing

Lagrangian derivative of temperature at post-shock conditions is the criterion for the

local decoupling of the shock front from the reaction zone,

DT/Dt|s = 0. (4.4)

This hypothesis was already advanced by Schultz (2000) in his experimental study of

detonation diffraction. From (4.3), we obtain

Qk ρs exp

(−Ea

Ts

)
= − 1

(1 − γ M2
s )

[
wη (Dn − wη),t +

P,t

ρ

]
s

. (4.5)

The right-hand side of Equation (4.5) can be evaluated by using shock-jump condi-
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tions, and it is ultimately a function of γ and the shock deceleration Ḋn. It should

be noted that Equation (4.5) is strictly linked to the assumption of a single-step re-

action mechanism, and that the attainment of the branching temperature has been

suggested instead as the criterion for failure in two-step models where a thermally

neutral induction zone is followed by an exothermic main reaction layer.

A final observation is that the search for a global criterion for detonation diffrac-

tion can be restricted to a test for failure at the channel axis. From the examples

above, we can argue that if the particle ignition delay is not too large along the

channel axis (i.e., DT/Dt is positive), the detonation eventually recouples, trigger-

ing a re-ignition mechanism through formation of a transverse shock. By evaluating

Equation (4.5) at the axis of symmetry, the problem is reduced to finding an estimate

of the shock decay at the channel axis. The shock decay is linked to the geometric

scale of the problem, and therefore we expect Ḋa ∼ D2
CJ/H. The next chapter is

devoted to modeling this term.
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Chapter 5

Wave front models

Shock-tracking and flow-field diagnostics from direct numerical simulations provide

information on local shock curvature, detonation velocity, shock acceleration and flow

gradients.

In this chapter, we compare some of these results with predictions derived from

models of reactive and non-reactive flows. In Section 5.1, we use Skews’ construction

for a diffracting non-reactive shock, and compare his computation of the disturbance

angle with the value estimated from the present simulations. In Section 5.2, we plot

Da and Dw against the corresponding values of curvature, and compare these curves

with the Dn (κ) plots from quasi-steady, quasi-one-dimensional theory of detonations

(Section 2.4). One outstanding issue from the previous chapter is the estimate of

detonation decay along the channel axis. Particle data analysis indicate that this

quantity has to be used to model the unsteady terms of Equation (4.5) near critical

conditions. In Section 5.3, we examine the applicability of a blast decay model, while

in Section 5.4 we apply Whitham’s theory of Geometrical Shock Dynamics in the

limit of strong shocks.

5.1 Skews’ construction for diffracting detonations

One of the key features of the diffraction process is the propagation of the signal

generated by the expansion waves emanating from the corner. There is a distinct

point where the head of the disturbance intersects the undisturbed detonation. The
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Figure 5.1: Schematic of a diffracting shock (Skews’ construction).

propagation speed of this point, v, can be evaluated with the help of a suitable

extension of Skews’ geometric construction (Skews 1967) for non-reacting diffracting

shocks, shown Fig. 5.1. The disturbance is propagating at the local acoustic speed c

while being convected downstream at a speed u. The undisturbed front moves at a

constant speed D. The corresponding angle between the disturbance trajectory and

the normal of the undiffracted shock, α, can be found by carrying out a Huygen’s

construction for the wavefront of a sound wave. As discussed in Skews, the wavefront

is a circle, of radius c ∆ t, whose origin is at point O translated downstream from the

corner a distance u ∆ t. From the geometric construction we have

tan α =
v

D
=

√
c2 − (D − u)2

D
. (5.1)

In the non-reactive case, the values u and c are evaluated from the post-shock state

behind the undisturbed shock. In the reactive case, we need to examine the depen-

dence of the sonic parameter c2 − w2 from the progress variable Z, Fig. 5.2 (a). The

correspondig variation of α is shown in Fig. 5.2 (b).

Recall that w is the flow velocity in the reference of the undisturbed shock, w =

DCJ − u . In a CJ detonation, c = w at the end of the reaction, Z = 1. Since

in corner-turning experiments with CJ detonations α is finite (for instance, Schultz

2000), the disturbance must propagate inside the reaction zone, between Z = 1 and
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Figure 5.2: Sound speed, relative particle velocity, square root of the sonic parameter,
frame (a), and disturbance angle plotted vs. the progress variable Z, frame (b).

the leading shock.

To see what ZND state we need to consider, α is measured from our numerical

simulations. The technique we use is described in Section 3.3. The trace of the

disturbance behind the shock can be very closely approximated by a straight line in

the x-y plane, at an angle αm = 22.7◦. This value is close to the maximum deflection

angle, 22.6◦, displayed in Fig. 5.2. Disturbance angles have been measured by Schultz

(2000) from a sequence of schlieren images in sub-critical detonation diffraction of

hydrocarbon mixtures and hydrogen mixtures. The typical resolution obtained from

these measurements was approximately ±3◦. These results were compared with values

of α computed from the corresponding ZND profiles. Also in this case, the disturbance

propagation angles corresponding to the maximum disturbance velocity were found

to be in good agreement with the experimental measurements.

5.2 Detonation asymptotics

In studying the problem of detonation diffraction, an important question is: When can

the evolution of the leading wavefront be approximated by a steady-state, quasi-one-

dimensional wave? This model was discussed in Section 2.4, where it was shown that
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Figure 5.3: Dn–κ diagram for θCJ = 1. —— evaluated along the channel axis of
symmetry and the corner wall from numerical simulation; – – – computed for quasi-
steady, quasi-one-dimensional reaction zone.

the wavefront curvature κ is a function of the propagation velocity Dn. The Dn (κ)

relation is uniquely a function of the chemical reaction rate model. For sufficient state-

sensitivity of the chemical kinetics, the Dn (κ) curve exhibits at least two branches of

solutions, with a backward C-shaped curve and a turning point, as shown in Fig. 5.4

(dashed curve).

The quasi-steady model is based on the assumption of a dominant balance between

the contributions of curvature and energy release. The unsteady terms are assumed

to be small compared to the quasi-steady terms, restricting the application to slightly

unsteady flow. This model has been used by He and Clavin (1994) to study the

conditions for initiation of curved detonation fronts. According to this theory, a

successful detonation initiation requires the formation of a sonic point in the rear of

the reaction zone, so that the energy release area is effectively insulated by incoming

rarefactions. If the radius of curvature and speed of the detonation front decrease

below the value at the turning point, a steady-state solution cannot exist, and the
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Figure 5.4: Dn–κ diagram along the channel axis of symmetry for θCJ = 3.5.
—— evaluated along the channel axis of symmetry from numerical simulation;
– – – computed for quasi-steady, quasi-one-dimensional reaction zone.

detonation will always be weakened by the rarefaction waves behind the front.

The quasi-steady model is the basis of Detonation Shock Dynamics, developed by

Stewart and Bdzil (1988). The theory of DSD defines the motion of the detonation

shock in terms of curvature-dependent speed propagation. The Dn–κ relation can be

extended to a Ḋn–Dn–κ model as well as a D̈n–Ḋn–Dn–κ–κ̇ (Yao and Stewart 1996).

The DSD method, as applied for instance to the corner-turning problem, does not

solve the reactive Euler equations, but rather the intrinsic partial differential equation

associated with the front dynamics of a particular reactive system. Comparisons with

direct numerical simulations for condensed-phase explosives (whose reaction rate does

not depend strongly on the thermodynamic state) show that the shock motion is

reproduced by DSD with high precision (Aslam and Stewart 1999; Bdzil and Aslam

2000).

In Figs. 5.3 to 5.5, steady-state, quasi-one-dimensional solutions are compared

with the Dn–κ curve resulting from direct numerical simulation. The three cases ex-
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—— evaluated along the channel axis of symmetry from numerical simulation;
– – – computed for quasi-steady, quasi-one-dimensional reaction zone.

amined are the super-critical, sub-critical and near-critical examples of the previous

chapter. Detonation speed and curvature are computed in a post-processing phase

by a finite-difference technique, as described in Section 3.3. The steady-state curve

is computed numerically as the solution of a two-point boundary problem with a reg-

ularity condition at the generalized CJ point. This technique is described in Section

2.4.

Super-critical case. In the super-critical case (θCJ = 1), the two detonation fronts,

along the axis of symmetry and the corner wall, evolve differently (Fig. 5.3). Near

the corner, the front curvature is initially very high and Dw is about one-half of the

CJ detonation speed. On the axis of symmetry, Da never decreases below 0.85DCJ ,

whereas κa builds up to a value of about 2/H, and then rapidly decreases. Eventually,

at a distance of about 6H from the corner, both curves converge on the quasi-steady

solution.
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Near-critical case. The wavefront is transient for a much longer time in the near-

critical case (θCJ = 3.5) than in the super-critical case. In fact, Fig. 5.4 shows that

the portion of the detonation front along the axis of symmetry has not achieved a

steady-state solution. Figure 4.26 provides an indication of the irregular evolution of

the wavefront in the last part of the simulation. Curvature values can be displayed

in the Dn–κ plot only up to the time corresponding to frame (i), when κa is negative.

After this point, the Dn–κ diagram becomes erratic: the axial curvature is positive

and very large in frame (l) and (m), and is close to zero again in frame (n). Due to

the overlapping system of transverse waves, at the end of the simulation the main

reaction zone along the axis of symmetry is not reducible to a quasi-one-dimensional,

quasi-steady solution. At this point, the wavefront is at a distance of about 14H

from the corner.

Sub-critical case. In the sub-critical case (θCJ = 4.15), the wavefront evolution is

smoother, as expected from a situation where the chemical reaction is undergoing

quenching without any restoring mechanism. Interestingly, at a distance of about

6 H, the computed Dn–κ curve approaches the lower end of the quasi-steady curve

displayed in Fig. 5.5. While it is clear that at this point the detonation has failed, the

computational domain is not large enough to show whether the computed Dn–κ curve

would find a second turning point and move on the so-called extinction branch (not

shown in figure) investigated by Stewart and Yao (1998). The progressive decoupling

of the shock from the reaction zone makes this problem closer to a blast decay than

to a detonation. We examine this hypothesis in Section 5.3.

We conclude this section by pointing out that when the wavefront is sufficiently

smooth for the evaluation of κ, the Dn–κ relation eventually converges to the diagram

for quasi-steady, quasi-one-dimensional detonation propagation. However, this con-

vergence occurs at the end of a long transient, at a distance approximately 6H from

the corner. We also note that in the θCJ = 3.5 case, where the detonation is transmit-

ted successfully, the front curvature is several times larger during this transient than
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at the turning point in the corresponding quasi-steady Dn(κ) diagram. These results

confirm the conclusions of Section 4.3, that in near-critical conditions the dominant

balance is between chemical energy release and unsteadiness. Finally, we note that

the maximum curvature criterion proposed by He and Clavin for detonation initia-

tion cannot be extended to detonation diffraction to find critical conditions when the

reaction rate is strongly dependent on the thermodynamic state.

5.3 Reduction to blast equation

Another issue is the estimate of the peak value of detonation decay along the channel

axis. This is an important ingredient in the approximate model of detonation failure

developed by Schultz (2000). In Fig. 5.6, the normalized time derivative of the axial

speed, Ḋa, is plotted as a function of the distance from the corner, xa. In the interval

shown here, the behavior of Ḋa is remarkably similar for all cases, and the minimum

value scales almost linearly with θCJ . As expected, when the expansion signal arrives

at the axis of symmetry, a more sensitive reaction mechanism (larger θCJ) results

in a more rapid decoupling of the shock from the reaction zone and therefore in a

larger shock decay rate. This decoupling is not immediate, a distance of 4 to 6 half-

reaction zones is necessary to reach the peak value of deceleration. Simulations in a

non-reacting gas indicate that at least part of this delay is due to the finite thickness

associated with the numerical representation of the shock. The similar evolution of

acceleration in Fig. 5.6 only occurs at early times, while the subsequent evolution

is different. The near-critical and super-critical diffraction cases present positive

accelerations that accompany the re-ignition mechanisms, whereas in the sub-critical

case Da decreases monotonically.

The three curves in Fig. 5.6 are compared with the estimate from a blast model,

discussed in this section, and with the result from Whitham’s theory, presented in

the next section.

Very little experimental data are available from the literature; Edwards et al.

(1979) report the variation of frontal velocity from a CJ value of 2400 m/s in det-
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Figure 5.6: Shock deceleration as a function of the distance from the corner vertex,
parametrized by θCJ .

onation diffraction of oxyacetylene from a rectangular tube. Velocities are obtained

from streak photographs at near-critical and sub-critical conditions as a function of

distance. An approximate estimate of the peak value Ḋa, normalized by D2
CJ/H, can

be extracted from these diagrams by measuring the slope of the two curves. The two

values we found, −0.213 (near-critical) and −0.246 (sub-critical), are useful in the

sense that they are of the same order of magnitude of the results from the numerical

simulations.

In this section, we treat the flow near the channel axis as a cylindrical blast (Ko-

robeinikov 1991), of radius r. This approach was followed by Eckett et al. (2000) in

the study on critical energy of initiation, and extended by Schultz (2000) to detona-

tion diffraction. From the blast similarity relation, we have

dr

dt
= δ

r

t
, (5.2)

where r is the shock radius. By integrating Equation (5.2) (in two dimensions, δ =
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1/2) we obtain

r = rb

√
t

tb
. (5.3)

We take rb to be the shock distance from the (virtual) blast singularity when the

expansion signal arrives at the axis of symmetry. The transition from planar wave to

cylindrical blast of radius rb is assumed to be instantaneous. Then

tb =
rb

2 DCJ

. (5.4)

Since here κ = 1/r by definition, Equation (5.3) allows us to derive a linear relation

between detonation speed and front curvature

Da = DCJ
κ

κb

, (5.5)

where κb = 1/rb. Comparison of this result with a typical Dn–κ curve of a sub-critical

diffraction, Fig. 5.5, indicates that the blast model can be applied only qualitatively;

No portion of the curve from the simulation can be approximated by a straight line

passing by the origin. Differentiating Da with respect to time gives

Ḋa = −1

2

Da

t
. (5.6)

The estimated maximum deceleration at rb is therefore

Ḋb = −D2
CJ κb. (5.7)

Up this point, the parameter κb is unknown. If we estimate the initial blast radius to

be the x distance from the corner vertex to the point of arrival of the corner signal,

then

rb =
1

κb

=
H

tan α
. (5.8)

From Equation (5.7),

Ḋb = −D 2
CJ

H
tan α. (5.9)
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For α = 22.6◦ (from Skews’ construction) we find

κb H = − H

D 2
CJ

Ḋb = 0.416. (5.10)

With a reasonable estimate of the initial blast radius, the cylindrical blast model

provides the correct magnitude of the initial shock decay rate (Fig. 5.6). However,

the derivation above ignores the reactivity of the flow, so that it is independent from

the reaction mechanism. In addition, the value of κ is roughly one order of magni-

tude smaller than the maximum value obtained from numerical simulations. Shock

curvature is difficult both to compute consistently (see Appendix A) and to model,

since a small differential velocity of the wavefront can result in a large curvature. The

curvature peak value in Figs. 5.3 to 5.5 is reached in a transient situation where there

is a strong gradient of shock deceleration. This gradient is absent in the cylindrically

symmetric blast wave. Thus, the usefulness of the blast decay model is limited to con-

firming the scaling of the shock deceleration with D2
CJ/H and to provide a reference

for an average value of the shock decay rate.

5.4 Whitham shock dynamics

In this section, we compare Whitham’s solution for a plane shock diffraction at a

sharp corner (Whitham 1974) with our results on detonation diffraction. To simplify

the analysis, we will use the limit of strong shocks. As in the previous section, we

expect the results to be applicable to a case where the reaction is quenching, i.e., the

diffraction is sub-critical.

In examining the results of the theory, it should be kept in mind that, while a

curved, non-steady shock involves two-dimensional waves propagating in the region

behind it (see, for instance, Fig. 5.1), Whitham’s approximation describes the propa-

gation of these waves only where they intersect the shock. Based on linear geometrical

optics, the theory uses the concept of orthogonal trajectories of the successive posi-

tion of a shock, or “rays.” The dependence between the local shock Mach number M
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and the ray-tube area (or a function proportional to it, A) is expressed by the area

function,
A

A0

=
f (M)

f (M0)
. (5.11)

In Cartesian coordinates, the governing equation of Geometrical Shock Dynamics can

be written in terms of M and the ray angle θ behind the shock with respect to the x

axis, as

∂

∂x

(
sin θ

M

)
− ∂

∂y

(
cos θ

M

)
= 0 (5.12a)

∂

∂x

(
cos θ

M

)
+

∂

∂y

(
sin θ

M

)
= 0. (5.12b)

In characteristic form,

θ ± ω (M) = constant on C± :
dy

dx
= tan (θ ± m), (5.13)

where

ω (M) =

∫ M

1

dM

AC
, (5.14)

tan m =
AC

M
, (5.15)

and

C (M) =

√
−M

AA′ . (5.16)

The propagation of waves along the diffracting shock becomes analogous to the

propagation of rarefaction waves in one-dimensional, unsteady compressible gas dy-

namics, with the displacement of the wall corresponding to the piston withdrawal.

The solution consists of a simple region, a “fan” centered at the corner vertex, up to

the point where C+ characteristics reflect at the channel axis (Fig. 5.7).

In the strong shock limit, the area function simplifies to

A

A0

=

(
M

M0

)−n

, (5.17)
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with n a constant depending only on the gas ratio of specific heat,

n = 1 +
2

γ
+

√
2 γ

γ − 1
. (5.18)

Equation (5.13) becomes

θ ± log (M) = constant on C± :
dy

dx
= tan (θ ± m), (5.19)

where m is the slope of the first characteristic C+
0 , m = arctan (1/

√
n). For γ = 1.22,

n = 5.956 and m = 22.28◦, which is remarkably close to the measured value 22.7◦ of

Section 5.1.

The Mach number at the wall, Mw, can also be derived directly by taking a

C− characteristic crossing the fan and originating from the uniform region, where

M = M0 and θ = 0,

Mw = M0 exp

(
θw√
n

)
. (5.20)

Here θw = −π/2 and therefore Mw = 0.5253M0. This result does not compare too

well with Fig. 4.3, where sub-critical detonations exhibit a wall shock speed of about

40% of the initial CJ value. However, Whitham’s theory predicts that Mw is constant,

and indeed we see that in failing detonations Dw is approximately constant until the

arrival of the reflected expansion wave from the channel axis. Also, Fig. 5.7 shows

that the front has zero curvature between the wall and the C+ characteristics at the

angle m − π/2. There is a qualitative resemblance of this result with the schlieren

images in Fig. 4.14.

The equation of the shock before reflection for −π/2 ≤ θ ≤ 0 is

x

M0 a0 t
=

(
n + 1

n

)1/2

eθ/
√

n cos (m + θ) (5.21a)

y

M0 a0 t
=

(
n + 1

n

)1/2

eθ/
√

n sin (m + θ). (5.21b)
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To find the curvature before reflection at the axis, we apply the formula

κ =
x′ y′′ − y′ x′′

(x′ 2 + y′ 2)3/2
(5.22)

where ′ and ′′ denote first and second derivative with respect to θ. The result is

κ =
1

M0 a0 t

n

n + 1
e−θ/

√
n, (5.23)

that is, the radius of the curved shock increases linearly with time along C+ char-

acteristics. The curvature jumps discontinuously to zero along the two limiting C+

characteristics, at angles m and m − π/2.

As the first characteristic C+
0 intersects the channel axis at the critical time tc =

H
√

n/M0 a0, the curvature computed from Equation (5.23) is

κa, 0 =

√
n

n + 1

1

H
. (5.24)

When the other C+ characteristics from the fan reflect at the channel axis, a non-

simple region is formed which is difficult to compute. The first reflected characteristic,

C−
0 , separating the two regions, propagates a second discontinuity in curvature, see

below. C−
0 can be found by a procedure analogous to the one used in unsteady

one-dimensional compressible flow. The slope is

dy

dx
= tan (θ − m), (5.25)

and for any point (x, y) on C−
0 we can find a C+ characteristic belonging to the simple

region such that
y

x
= tan (θ + m). (5.26)

The system (5.25) and (5.26) can be reduced to an ordinary differential equation in

y(θ) to be solved with the condition y(0) = H. Integration can be performed from 0

to m− π/2, where the slope of C−
0 becomes infinite. To compute the integral, we use

the auxiliary variable z = y(x)/x and then combine the two equations above in the
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Figure 5.7: Detonation diffraction around a corner. – · – · denotes the axis of sym-
metry of the channel

form
tan2 m − 1 − 2 z tan m

2 tan m (1 + z2)
dz =

dx

x
. (5.27)

The result,

yC−
0

= H
tan (θ + m)

tan m

√
1 + tan2 m

1 + tan2(m + θ)
exp

(
tan2 m − 1

2 tan m
θ

)
(5.28)

can be used to evaluate acceleration and curvature at axis at the instant following tc

as θ → 0. The acceleration is found by using the conservation of the quantity

θ +
√

n log
M (θ)

M0

=
√

n log
Ma

M0

(5.29)

along a C+ characteristic. In Equation (5.29), Ma is the Mach number at the axis in

the non-simple region. If M (θ) is evaluated in the fan, then

Ma = M0 exp

(
2θ√
n

)
(5.30)

at the position given by the positive characteristic whose slope in the fan is m+θ. We

still need to find this position in relation to the value of θ along a C+ characteristic

in the fan. Since the angle in Q is equal to m plus corrections of order θ, OQ̂P =
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m + O(θ), the distance PQ is approximately

PQ ∼= H

sin2 m
δθ = H (n + 1) δθ (5.31)

for an infinitesimal increment δθ (see Fig. 5.7). The deceleration of the axial shock,

after the reflection of the first characteristic, is found in the limit of δθ → 0 by

comparing the decrement in velocity from M0 to Ma with the time to travel the

distance PQ,

Ḋd = D2
CJ lim

δθ→0

Ma/M0 − 1

PQ
= − 1

n + 1

2√
n

D2
CJ

H
. (5.32)

We assume that this quantity, Ḋd, is the maximum value of shock decay along the

channel axis.

The axial curvature immediately after reflection of C+
0 is found by realizing that

a discontinuity in κ can only be located along C−
0 and that at any point (xC−

0
, yC−

0
)

the shock normal orientation is exactly θ. Since the front is continuously expanding,

we expect this curvature to take the maximum value at P ,

κd = lim
θ→0

− sin θ

H − yC−
0

=
2
√

n

n + 1

1

H
. (5.33)

Since κd is exactly twice the curvature at the axis at the instant preceding the

reflection of the first characteristic, we see that indeed a second discontinuity in

curvature propagates along C−
0 . As a consistency check, we take the derivative of

Equation (5.17) along a ray-tube (say, parallel to the x axis),

1

A

dA

dx
+

n

M

dM

dx
= 0, (5.34)

and substitute κa A = dA/dx, and Da dMa/dx = Ṁa. We find

κa D2
a +

1

n
Ḋa = 0, (5.35)
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so that, immediately past the reflection of C+
0 ,

κd

Ḋd

= − 1

n

1

D2
CJ

. (5.36)

This result can be obtained directly from Equations (5.32) and (5.33).

Equation (5.33) is used in Appendix A to provide a reference for a convergence

study of curvature in the non-reactive case. When applied to the reactive cases

examined in the previous chapter,

Ḋd
H

D2
CJ

= −0.1178 and κd H = 0.7017. (5.37)

It is evident that κd and Ḋd underpredict the peak curvature and the maximum shock

decay. Extensions of Whitham’s theory to include detonations have been recently

attempted by Li and Ben-Dor (1998) in the case of highly overdriven detonations,

and by Bartlmä (1990) for converging and diverging channels. The latter study is

the one of interest for the corner-turning problem, since a detonation propagating

at a speed below the CJ point, as in an expanding channel, can no longer exist in

steady form. Once the functional dependence (5.11) that is relevant to detonation

propagation is found, then Equation (5.12), whose derivation is purely geometric, can

be used to compute the diffracting flow. However, in that respect, Bartlmä seems

to be concerned only with the increase in induction length caused by a detonation

expanding in cylindrical (or spherical) geometry, and no feedback from the reaction

zone to the shock is considered. A dependence from chemical kinetics cannot appear

in this approach. The problem of finding a closed-form expression to approximate a

weakly coupled detonation front in an area-shock relation is still without solution.

5.5 Closure of the failure model

To conclude this chapter, we consider again the criterion of diffraction failure that was

introduced in Section 4.3. For simplicity, we take the limit of strong shocks (M2 À 1)
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to compute the post-shock state,

Ps =
2

γ + 1
D2

n ρs =
γ + 1

γ − 1
ws =

γ − 1

γ + 1
Dn M2

s =
γ − 1

2γ
. (5.38)

In this limit, the ratio of post-shock temperature Ts to CJ post-shock temperature

TvN is
Ts

TvN

=
D 2

n

D 2
CJ

. (5.39)

By substituting the expressions above, and recalling the definition of θCJ , the critical

condition for diffraction failure, Equation (4.5), becomes

Qk exp

(
−D 2

CJ

D 2
a

θCJ

)
= − 12

3 − γ

(γ − 1)2

(γ + 1)3 Da Ḋa. (5.40)

This expression stresses more clearly the balance between the energy release rate,

proportional to Qk, and a term similar to kinetic energy decay, Da Ḋa. Since Q ∼
D 2

CJ , Equation (5.40) is also a comparison of the chemical timescale of the order of

1/k, with the gasdynamic timescale of the order Da/Ḋa.

From our data particle analysis (Chapter 4), we see that, as the signal expansion

arrives at the axis, DT/Dt does not drop immediately to zero (see Fig. 4.20). The two

terms in Equation (5.40) may be comparable only at a critical distance downstream,

when the corner expansion has somewhat reduced the reaction rate, since any de-

crease of Da below the CJ value is amplified by the exponential term. Since Da/DCJ

approximately varies between 1 and 0.5 (Fig. 4.2), we take the critical point to be

such that Da = 0.75 DCJ . We state that if Equation (5.40) is verified downstream of

this point, the shock-reaction decoupling will continue until reaction quenching.

To obtain a relation for θCJ and H, we still need to model the shock deceleration.

By referring to Fig. 5.6, we see that an average value of Ḋa is provided (very crudely)

by the blast decay model, Equation (5.9). Equation 5.40 is then reduced to

H k

DCJ

Q

D 2
CJ

= exp (1.78 θCJ)
9 tan α

3 − γ

(γ − 1)2

(γ + 1)3 , (5.41)
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where α is the maximum disturbance angle computed from Skews’ construction. By

substituting the values of α, Q, k, H, DCJ , and γ, we find the critical normalized

activation energy θCJc = 4.0, above which re-ignition does not occur. This value is in

good agreement with our results shown in Fig. 4.2. At θCJ = 3.75, a large transverse

wave is still observed in our simulation, but it proves insufficient for re-initiation. At

θCJ = 4.0 (not displayed in Fig. 4.2), no transverse waves are formed. In both cases,

the axial shock decay is monotonic.
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Chapter 6

Transverse wave formation

In this chapter, we study the mechanism of formation of transverse waves as they

appear in our simulation of super-critical detonation diffraction, see Fig. 4.9. Such

waves are completely absent in sub-critical diffractions, where chemical reaction is

quenched, and are difficult to recognize in near-critical diffractions because of the

complexity of the re-ignition structure, see Fig. 4.26.

The trigger for the formation of these waves is shock reflection in the early phases

of detonation corner turning, as explained in Section 4.2.1: the foot of the shock lags

behind the undisturbed detonation front and reflects from the wall at an angle. To

reproduce this situation in a simpler setting, we study a planar CJ detonation moving

in a channel over a small “bump,” see Fig. 6.1 The obstacle generates a first shock

that propagates upward along the main detonation front, followed by an expansion

wave when the front moves beyond the obstacle tip. A second shock forms when the

front passes the obstacle. In the following, we examine the possibility that acoustic

disturbances can form in the wake of this second shock, and later amplify to become

transverse detonations. In Section 6.3, an amplification mechanism is discussed based

ε

Figure 6.1: Detonation running over an obstacle.
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on acoustic waves propagation in the reaction zone of a ZND detonation. The concept

of acoustic channel for disturbances that are traveling in the transverse direction

of the main shock is also introduced. A comparison with numerical simulations is

performed in Section 6.4. We find that waves are amplified in the reaction zone

depending on the reaction order and activation energy, and that amplification takes

place preferably along contact discontinuities where the sonic parameter reaches a

local maximum. These results are consistent with the acoustic theory. In Section 6.5,

the amplitude of a transverse wave is tracked in time, and its exponential growth is

related to the amplification coefficient found in Section 6.3.

6.1 Computational setting

The planar detonation wave is primed by interpolating onto the grid a pre-computed

steady ZND profile, see Section 3.5.2. As in the rest of this work, the wave parameters

are set so that the reference half-reaction length ∆1/2 is the same in all cases.

The obstacle is initially located ahead of the leading shock, at the position xb.

The “bump” is described by

y =
ε

2

(
1 + cos 2π

x − xb

ε

)
|x − xb| <

ε

2
. (6.1)

with the total height ε equal to a fraction of the half-reaction length, ε = 0.2. Imple-

mentation of this boundary is based on the ghost fluid technique, Section 3.5. The

computational grid measures 100 x 50 in ∆1/2 units, with N1/2 = 45.

6.2 Non-reactive reference case

We first consider a non-reactive case. Figure 6.2 is a schlieren image showing the

main features of this problem; the leading shock (S); the obstacle (O); two weak

reflected shocks (SW1 and SW2); the corresponding contact discontinuities (CD1

and CD2). The rarefaction is between SW1 and SW2. A close up of this picture,
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Figure 6.2: Non-reactive shock over an obstacle.

showing wave interactions at the leading front, is displayed in Fig. 6.3 (a). This

image measures 35 ε (or 7 ∆1/2) in width. Close to the leading front, the second

transverse shock SW2 becomes a weak compression wave followed by several wavelets.

Since schlieren imaging amplifies every wrinkle in a numerical simulation, we take 4

horizontal slices of the computational domain at the locations indicated in frame (a)

and show quantitative profiles in frame (b). The slices are numbered from 1 (top)

to 4 (bottom) in the pressure plot of Fig. 6.3 (b). In the scale of the plot, pressure

oscillations are very small and their wavelength is approximately ε, the only length

scale in this non-reactive problem.

We want to find if an exothermic reaction can amplify these small-wavelength

disturbances. The results obtained by Strehlow and Fernandes (1965) and Barthel

and Strehlow (1966) for infinitesimal, high-frequency, transverse disturbances in a

planar ZND detonation are presented in the next section.

6.3 Linear acoustic theory

In acoustic theory, the wavefront moves along rays with speed c with respect to the

surrounding medium. For a ZND detonation, we specialize the ray-tracing equations
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Figure 6.3: Detail of shock interaction for the non-reactive case. (a) schlieren image;
(b) pressure diagrams The four horizontal lines (numbered 1, top, to 4, bottom) in
(a) mark where data have been extracted to draw the pressure plots.

(Pierce 1981) as

dη

dt
= l c + w (6.2a)

dξ

dt
= m c (6.2b)

and
1

l

(
dl

dt
+

∂c

∂η
+ l

∂w

∂η

)
=

1

m

dm

dt
. (6.3)

The flow velocity w is evaluated in the reference frame moving with the shock. The

coefficient l and m = (1 − l2)1/2 are the direction cosines with respect to the axis η,

in the direction of detonation propagation, and ξ, in the transverse direction. If

d

dZ

(
c2 − w2

)
= 0 (6.4)

for a value of the progress variable Z‖, then any point source inside the reaction zone

propagates a wave containing a ray element that asymptotically remains parallel to
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the leading shock in the plane Z‖. The corresponding direction cosine (Fig. 6.4) is

constant

l‖ = − 1√
2 + γ

, (6.5)

and Z‖ is only a function of γ and the detonation Mach number

Z‖ = 1 −
[

1 + γ M2

2 (M2 − 1)

]2

. (6.6)

Since Z‖ is found by solving Equation (6.4), the result above does not depend on the

specific energy release function DZ/Dt, and it is also valid when the detonation is

overdriven.

Acoustic rays that deviate from the plane Z‖ rapidly wash out of the detonation

or intersect the shock front, where they are reflected. Shock polar analysis for an

infinitesimal compression wave shows that for most orientations the wave will reflect

at the shock as another compression wave, but always with decreased amplitude

(Barthel and Strehlow 1966). Wave amplification is therefore provided only by the

energy release due to chemical reaction. Since the point
(
l‖, Z‖

)
is a saddle point

in the l–Z phase plane, rays that pass close to it remain in its neighborhood for a

relatively long time and are subject to a net amplification. The plane Z‖ then acts

as an acoustic channel for high-frequency (with respect to the detonation timescale)

acoustic disturbances. This result is consistent with the condition on the existence of

a maximum in the c2 − w2 profile for instability of planar detonations to transverse

disturbances (Erpenbeck 1966).

w

c

cos  l
−1

η

(c −w  )2 2 1/2

Figure 6.4: Geometry of the wavefront.
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The kinetic model for a reaction of order nr is

DZ

Dt
= k (1 − Z) ρnr−1e−Ea/T . (6.7)

By assuming that the gradients in the ZND profile are small with respect to the

gradients of the disturbance, we write the equations for quasi-one-dimensional flow in

the c‖ direction, at the angle cos−1 l‖ with respect to the η coordinate (Fig. 6.4). This

direction of propagation is labeled ν. Thus, we replace a high-frequency ray bundle,

traveling in the transverse direction with velocity (c2
‖ − w2

‖)
1/2, by a high-frequency

ray bundle traveling in the ν direction with velocity c‖ and wavefront normal to the

ν axis. By linearizing the reactive Euler equations at the constant state ( )‖, the

problem is reduced to the one-dimensional wave equation in an expanding stream

tube with energy addition due to chemical reaction,

∂2s

∂t2
− c2

‖
∂2s

∂ν2 − K
∂s

∂t
= 0, (6.8)

where s = ∆ P/P‖ = γ∆ ρ/ρ‖ and

K =
γ − 1

c2
‖

Q
DZ‖
Dt

[
ζ (γ − 1) + n − (2 + γ)1/2

]
. (6.9)

ζ = Ea/T‖ is the reduced activation energy at Z‖. Equation (6.8) admits a solution

in the form s = exp (Ω t + 2νπ/Λ). For a high-frequency wave, such that

K

2
< 2π

c‖
Λ

, (6.10)

the amplitude of s varies as exp (Kt/2).

The last term in the square brackets of Equation (6.9) represents the negative

contribution due to wave spreading, i.e., the separation of acoustic rays that are

infinitesimally close to the ray
(
l‖, Z‖

)
. The neutral curve for amplification is obtained

for K = 0,

ζT =
1

γ − 1

(√
2 + γ − n

)
. (6.11)
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Figure 6.5: Threshold value of normalized activation energy for amplification plotted
as a function of the heat capacity ratio γ and the order of reaction nr. Amplification
occurs above the labeled curves.

The threshold ζT is plotted in Fig. 6.11 as a function of γ for nr = 1 and nr = 2.

From the diagram, we see that an order nr = 1 reaction model corresponds to a

wave damping mechanism when Ea is sufficiently small. Conversely, an order nr = 2

reaction model leads to instability for any value of γ, as long as the activation energy

is positive.

6.4 Comparison of different reaction models

We compare four simulations computed with different reaction rate models. These

cases are labeled from A to D and are listed in Table 6.1, where we use the relation

between θCJ and ζT ,

ζT = θCJ
TvN

T‖
. (6.12)

The remaining input data are the same used in Chapter 4. From these values,

cos−1 l‖ = 56◦ and Z‖ = 0.60. Of the four cases, amplification is predicted when

the reaction order model is two (case B and D).

Figure 6.6 shows snapshots of the four simulations, in the same order as in Ta-

ble 6.1. The effect of the small obstacle is evident in the computations with high-
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(a) (b) (c) (d)

Figure 6.6: Schlieren images for cases A, B, C, D.

sensitivity reaction models, figures 6.6 (c) and (d). The obstacle-induced expansion

produces a strongly curved detonation, and several shocks can be observed along the

reflected wave. This configuration is quite different from a planar ZND solution, and

we expect the amplification mechanism described in Section 6.3 to be of limited use

for quantitative predictions.

The modifications induced in the flow by the obstacle are much smaller in the

zero-activation energy computations, figures 6.6 (a) and (b). There, the detonation

configuration is almost planar, with two weak reflected shocks. The only readily

apparent difference between the two computations is that a third contact discontinuity

appears only in the second-order reaction simulation. This difference is studied in

more detail in the close ups of Fig. 6.7. As in Fig. 6.3, the horizontal lines indicate

case order θCJ k ζT Amplification

A 1 0.0 0.3078 0. No
B 2 0.0 0.2013 0. Yes
C 1 6.0 24.44 3.051 No
D 2 6.0 13.64 3.051 Yes

Table 6.1: Reaction order and normalized activation energy.
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Figure 6.7: Computational cases A and B, detail of the solution (schlieren image),
left, and pressure diagram, right. The four horizontal lines (numbered 1, top, to
4, bottom) mark where data have been extracted to draw the pressure plots. The
dashed line on the left is the locus of 50% reaction completion locus. Frames (a) and
(b); order 1 reaction. Frames (c) and (d); order 2 reaction.
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where the pressure field has been sampled. The schlieren images are on the same scale

and measure 7 ∆1/2 in width. The dashed lines, corresponding to the 50% reaction

completion locus, provide a visual indication of the actual extent of the reaction zone

in the schlieren images.

Two distinct waves, S1 and W, are observed in case B, at an interval of about one

half-reaction length between each other, whereas in case A there is only one wave.

The shock S1 appears in slice 2 of both frames and is part of the triple shock structure

at the front. The pressure decrease behind it in frames (b) and (d) corresponds to

an expansion due to energy release associated with the chemical reaction. The shock

W is the most relevant to our discussion since it appears only in case B. At the

detonation wavefront, the effect of W is to generate a second transverse wave (S2),

with a corresponding contact discontinuity (C3). We believe that this situation is

analogous to the one seen in super-critical diffraction simulations, see Fig. 4.8. At

later times, S2 steepens to form a shock and new disturbances are amplified behind

it. The growth of S2 is studied in Section 6.5. The value of this comparison between

cases A and B is to show that the amplification predicted by the theory and shown

in the diagram in Fig. 6.5 is actually verified in our numerical simulations.

In the second group of simulations, Fig. 6.8, the detonation configuration is more

complex. The number and strength of the transverse shocks is roughly the same for

cases C and D, and the only qualitative difference between the two computations is

the appearance of an isolated kink (k) at the Mach stem in frame (a). Note that, for

the order-one reaction and γ = 1.22, the neutral limit is ζT = 3.583, and therefore

case C, slightly below the neutral curve, should not show wave amplification according

to the model for a planar ZND wave in Section 6.3.

In Fig. 6.9 we plot the contours of the sonic parameter ω,

ω ∼= c2 − (DCJ − ux)
2 , (6.13)

for the cases A, B, and C. The scales of the corresponding frames (a) to (c) are

the same as in figures 6.7 and 6.8. DCJ − ux approximates the flow velocity in the
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Figure 6.8: Computational cases C and D, detail of the solution (schlieren image),
left, and pressure diagram, right. The four horizontal lines (numbered 1, top, to
4, bottom) mark where data have been extracted to draw the pressure plots. The
dashed line on the left is the locus of 50% reaction completion locus. Frames (a) and
(b); order 1 reaction. Frames (c) and (d); order 2 reaction.
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Figure 6.9: Frames (a) to (c): contours of ω, Equation (6.13), for cases A, B, C. The
contours start at the value -20 and are spaced by 0.50. The plot scale is the same
used for the schlieren images in Fig. 6.7 and Fig. 6.8. Frames (d) to (f): plot of s for
cases A, B, C along slices taken at the locations shown in the upper diagrams.
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shock reference frame. For case A (frames (a) and (d)), the velocity components

do not change much across the contact discontinuity. However, the flow processed

by the shock R has a slightly less degree of reaction than the flow processed by T.

This corresponds to a larger density and, since the pressure is the same on both

sides of the contact discontinuity, to a smaller sound speed c. This results in a local

maximum of ω occurring at the contact discontinuity. The discontinuity is smoothed

by the solver, and Equation (6.4) still holds, at least in an approximate sense, but for

Z 6= Z‖. In case B, comparison of Fig. 6.7 (c) and Fig. 6.9 (b) shows that the contacts

C2 and C3 correspond to acoustic channels for the propagation of disturbances. A

similar result is found for case C. The connection with the super-critical diffraction

in Fig. 4.9 is therefore the following. Once the first reflected shock is formed, the

corresponding contact discontinuity separates flows with a slight difference in the

degree of reaction. This difference is sufficient to generate a local peak in the sonic

parameter, which acts as a channel for disturbances traveling transversely to the

main front. For an order nr = 2 reaction, even a small activation energy produces a

sufficient wave amplification to overcome wave spreading. Once the first compressive

wave has steepened to a shock and reached the main front, a new contact discontinuity

appears, which in turn acts as an acoustic channel. In Fig. 4.9, this cyclic process

has already taken place several times and we count five distinct transverse shocks.

6.5 Growth of transverse waves

We conclude this chapter by examining the growth of transverse waves at the leading

detonation front. These waves result from the amplification of small acoustic distur-

bances described in the previous section. One of such transverse waves is labeled S2

in Fig. 6.7 (c) for case B. To study its growth in time, we take a slice of the compu-

tational domain in the y direction at ten different times. Each slice is extracted at an

arbitrary fixed location (Z̄ = 0.28) close to the undisturbed shock. These slices are

arranged in a space-time diagram in Fig. 6.10. The plot shows the leading transverse

shock LS (not shown in Fig. 6.7 (c)), the rarefaction wave R, the transverse shock
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S1 and the compression wave S2. To show the growth of S2, only the last part of

each data set in frame (a) is plotted in Figure 6.10 (b). In this diagram, at y = 10

the wave has just formed in the wake of S1. By the last slice at y = 27, S2 has

grown by an order of magnitude and a new disturbance is forming in its wake. The

schlieren image in Fig. 6.7 (c) corresponds to this later time. Overall, the pressure

plot shows a more than linear increase in peak amplitude, PM , between each two

consecutive data sets. When plotted in a log-linear diagram, PM is found to grow

almost linearly in time with respect to an appropriate reference pressure. If the first

data point (corresponding to the formation of S2) is excluded, least-squares fitting of

PM to the exponential function gives

PM = 57.24 + 0.1826 e 0.47 t. (6.14)

This curve is plotted in Fig. 6.11 together with the data points.

Even if exponentially growing in Fig. 6.10 (b), the pressure increment ∆P due to

S2 is rather small compared to the ZND pressure at Z̄. Thus, we can still use the

results of acoustics for the amplification of a ray bundle under the assumption that

S2 is sufficiently small to be treated as an isentropic perturbation. In this problem

however, we need to consider a strip at Z 6= Z‖, and so we cannot properly evaluate

the wave spread in Equation (6.9). The inequality (6.10), evaluated for c(Z̄), is still

satisfied since Λ and c(Z̄) are of order unity. However, K(Z̄)/2 = 0.094, much smaller

than the exponential coefficient in Equation (6.14). A larger coefficient K̄/2 is found

by assuming that the wave does not spread at all,

K̄ = 2
γ − 1

c2
p

Q
DZ

Dt

∣∣∣∣
Z̄

[ζ (γ − 1) + n] . (6.15)

For nr = 2 and ζ = 0, we find K̄/2 = 0.92, indicating that a certain amount of wave

spreading should be taken into account.

This example shows that acoustic theory provides a qualitative account of the

amplification of high-frequency disturbances and their consequent growth to trans-
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verse shocks. Large-amplitude nonlinear effects soon dominate the further growth of

the wave, but the basic propagation mechanism along contact discontinuities can be

related to the sonic parameter ω. The determination of the final wave spacing in this

channel problem is beyond the scope of this study. The work by Majda (1987) starts

from the same concept of acoustic wave trapping, and develops a high-frequency non-

linear acoustic theory to predict the regular spacing of the Mach stems embedded in

the front of a detonation cellular structure.
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Chapter 7

Summary

In this work we have identified modes of detonation diffraction that depend on the

activation energy of a single-step, irreversible, Arrhenius reaction model. The initial

solution is a planar ZND detonation wave propagating in a channel with an abrupt

area increase. To examine the three different outcomes of detonation diffraction (sub-

critical, near-critical and super-critical diffraction), we carried out direct numerical

simulations with a fixed channel half-width H (normalized by the CJ half-reaction

zone length), while varying the activation energy in the Arrhenius reaction model.

The reactive Euler equations, formulated for a perfect gas mixture, were integrated by

operator splitting, using a Roe’s approximate Riemann solver for the convective flux

and a predictor–corrector scheme for the chemical source term. Computations were

executed in parallel on a uniform grid by a cluster of 48 processors. We performed a

set of coarse resolution simulations for 8 values of reduced activation energy, followed

by a set of high resolution simulations for three selected cases with reduced activation

energies of 1, 3.5, and 4.15.

We found three regimes of diffraction that resemble the cases observed in experi-

ments. With zero or small normalized activation energy (0 < θCJ ≤ 1), the reaction

rate is essentially independent from the thermodynamic state, so that the reaction

zone length is unaffected by the shock velocity. Since the reaction rate is nearly

constant, the shock front will always accelerate after diffraction. We find that the

transient wavefront dynamics, due to the propagation and reflection of unsteady rar-

efaction waves generated by the area change, dies out after a distance of about 6H
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from the corner, and that the detonation can be treated as quasi-steady, quasi-one-

dimensional after that point. This successful detonation transmission is similar to

the super-critical case that is observed in diffraction experiments (see Figures 1.6 and

4.5).

As the detonation front is diffracting, a train of weak transverse waves develops

near the corner and moves toward the axis of symmetry of the channel (Fig. 4.9).

The first wave is the reflected shock that forms at the corner as a result of the adjust-

ment to the wall boundary conditions. This shock is followed by a train of acoustic

disturbances that propagate in an acoustic channel embedded in the reaction zone.

Compression waves are amplified by the energy release due to the chemical reaction

and become transverse shocks at the detonation front. The newly formed contact

discontinuity provides in turn a channel for the propagation of more acoustic distur-

bances. In this process, transverse wave spacing increases by an order of magnitude

from the initial half-reaction length. This mechanism of transverse wave propagation

and amplification is studied in a simpler problem where a ZND-CJ planar detonation

moves in a channel over a small obstacle. Simulations of this problem show a qualita-

tive similarity with the results obtained for the diffracting detonation (Fig. 6.7). The

initial amplification of acoustic disturbances agrees favorably with the mechanism

proposed by Strehlow and Fernandes (1965) and Barthel and Strehlow (1966).

When the activation energy is larger, 3.75 ≥ θCJ , the reaction rate is strongly

dependent on the thermodynamic state so that the reaction zone length increases

rapidly when the shock speed decreases. This causes the reaction zone to decouple

from the shock wave, and the reaction rate to essentially drop to zero, after a short

distance from the corner vertex. The detonation fails completely and the resulting

flow is essentially a non-reactive shock wave (Fig. 4.14). This is similar to the case of

sub-critical diffraction that is observed in diffraction experiments where the tube is

smaller than the critical size needed for successful detonation transmission (Fig. 1.7).

The shock decay rate of this case is found to be only qualitatively similar to the decay

rate of a cylindrical blast.

For 2.5 ≤ θCJ ≤ 3.5, the reaction rate is moderately dependent on the thermody-
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namic state. The reaction zone length increases as the shock decays but the accelerat-

ing effects of energy release are sufficient to cause the reaction zone length to decrease

in an abrupt fashion. This ultimately causes the appearance of a re-initiation event

near the wall that propagates back to the axis (see Figures 4.22 and 4.23). This is sim-

ilar to the case of critical diffraction that is observed in diffraction experiments where

the tube is comparable to the critical size needed for successful detonation transmis-

sion (Fig. 1.8). Re-initiation occurs through the interplay of transverse rarefaction

waves with the accelerating detonation front near the channel axis. This results in

shock folding and in the formation of a transverse shock that is kinked at a second

triple point interior to the detonation (Fig. 4.25). Similar waves have been observed

in recent simulations of cellular structures in reactive mixtures (Sharpe 2001; Inaba

and Matsuo 2001). The kink is due to the high-pressure region that forms when the

transverse shock processes pockets of compressed and unburnt fuel behind the par-

tially decoupled detonation front. Multiple systems of transverse waves eventually

overlap, thus enhancing the reactivity behind the leading wavefront. Where the front

is completely recoupled, weak transverse waves appear with the spacing observed in

the super-critical diffraction case (Fig. 4.26).

We extended the technique used by Eckett et al. (2000) to record the time deriva-

tive of temperature along the path of particles that are close to ignition failure. This

approach consists in injecting massless particles as probes in the flow field. When

particles experience long ignition delays, the temperature decreases immediately after

the passage of the shock. The delayed ignition reduces the energy release behind the

shock, so the shock further decelerates. Thus, ignition failure and ultimately local

decoupling of the shock front from the reaction zone occur if the Lagrangian deriva-

tive of temperature DT/Dt vanishes at post-shock conditions. This hypothesis, first

advanced by Eckett et al. (2000), is applied at the axis of symmetry of the diffracting

detonation, where the re-initiation first starts in the near-critical case. This provides

a global criterion for detonation diffraction failure (Schultz 2000).

Further analysis of a fluid element history is performed by decomposing DT/Dt

in terms depending from local front curvature, transverse flow divergence, chemical
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energy release, and flow field partial time derivatives (in the shock based reference

system). This latter term is related to the flow field unsteadiness, as seen by a

particle element. It always appears as a negative forcing term for a decelerating flow.

This term becomes dominant for particles with long ignition delays, while curvature

and transverse divergence contributions are very small. The role of unsteadiness

is consistent with the observation of very long transients in near-critical and super-

critical diffractions. Thus, for particles that are close to ignition failure, the increase in

temperature due to energy release Q at a rate of order k is balanced by the decrease

due to flow unsteadiness behind the shock. With shock decay rate provided (very

crudely) by the blast decay model, this critical balance can be written as

H k

DCJ

Q

D 2
CJ

= exp (1.78 θCJ)
9 tan α

3 − γ

(γ − 1)2

(γ + 1)3 ,

where α is the disturbance angle of the head of the rarefaction. By substituting the

values of α, Q, k, H, DCJ , and specific heat ratio γ, we find the critical normalized

activation energy θCJc = 4.0, above which re-initiation does not occur. This value is

in good agreement with our parametric study. At θCJ = 3.75, a large transverse wave

is still observed in our simulation, but it proves insufficient for re-initiation. At θCJ =

4.0, no transverse waves are formed. In both cases, the axial shock decay is monotonic.

Clearly, this result addresses the purely gasdynamic quenching mechanisms, since our

simulations do not include a detonation cellular structure in the initial conditions.

Further work in this direction would be to simulate a cellular structure in the channel

to verify if our current results provide at least a lower bound for critical diffraction.

Our parametric study should also be completed by a comparison with simulations

implementing a detailed reaction mechanism, to see how the formation of strong

and weak transverse waves is affected. Finally, even if the present computations

involved week-long simulations and stretched to a limit the capability of analyzing

large volumes of data, future extensions of this work should also include the effects

of three-dimensionality in the re-initiation mechanism we presented.
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Appendix A

Convergent evaluation of curvature

The wavefront curvature is computed from a discrete set of shock positions obtained

at time t by the shock-tracking technique described in Section 3.3. If the shock is

described in a parametric form, x̄ (q), ȳ(q), then

κ =
x̄′ ȳ′′ − ȳ′ x̄′′

(x̄′ 2 + ȳ′ 2)3/2
, (A.1)

where ′ and ′′ denote first- and second-order derivatives with respect to the parameter

q. At the channel axis of symmetry, we take q = y so that

κa = −d2x̄

dy2 . (A.2)

Likewise, at the wall, q = x, and

κw =
d2ȳ

dx2 . (A.3)

When the expressions above are discretized, derivatives of order higher than one

may not converge under grid refinement, since the estimated shock position is affected

by error. As an example, we discretize the second-order derivative in Equation (A.2)

as a centered-difference scheme at the grid node j. For generality, let us skip h grid

points from j in both directions (Fig. A.1), then,

d2x̄

dy2 =
x̄j+h − 2x̄j + x̄j−h

h2∆y2
+ c h2∆y2. (A.4)
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Figure A.1: Point selection for computing a second-order derivative. Here h = 2.

In Equation (A.4), x̄j is the tracked shock position along a slice passing by grid

point yj; ∆y is the grid spacing between two consecutive points; and c h2∆y2 is

the truncation error. Note that, in this specific example, x̄j+h = x̄j−h because of

symmetry.

By varying h, we want to verify whether Equation (A.4) provides a convergent

result as the grid is refined. The case we consider is a corner-turning problem without

chemical reaction, at an initial Mach number M0 = 7 in a perfect gas at γ = 1.2. We

compute the curvature at the axis of symmetry of the problem. Whitham’s shock

dynamics provides a peak curvature value κa H = 0.6945 for the strong shock limit

case (dashed line in Fig. A.2). We start with a coarse mesh with 40 grid points in the

channel half-width and we solve the same problem over finer meshes, with a refinement

ratio R. We compute the curvature at the channel axis by using Equation (A.4). By

keeping h constant while R increases, κ is evaluated with points that are progressively

closer to the axis of symmetry. In Fig. A.2, we take h = 4 and mark the resulting

data points with the N symbol (fixed spacing). The sequence of values appears to

diverge for decreasing ∆y, whereas we expect a finite value of curvature at the axis.

The divergence is due to errors in the tracked shock position.

We now make h dependent on the grid refinement. One choice is to set h/R equal

to a constant, so that the curvature is evaluated with points at fixed distance from

yj as the grid is refined (this curve is marked by the ¨ symbol). A better approach

consists in modeling the error associated with x̄j. Aslam et al. (1998) assume that

the tracked shock position is affected by O(∆y) errors, so that Equation (A.4) takes

an additional term,

d2x̄

dy2
=

x̄j+h − 2x̄j + x̄j−h + c̄ ∆y

h2∆y2
+ c h2∆y2. (A.5)
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Figure A.2: Convergence study for the computed maximum value of curvature as a
function of grid refinement. ¥ grid-adaptive spacing; ¨ fixed point; N fixed spacing.

In general, the constant of proportionality c̄ is unknown, since it depends on the

details of the tracking algorithm and, possibly, on the flow solver. With this model,

we recover the result that a second-order centered finite difference scheme with fixed

h would diverge as ∆y goes to zero. To minimize the term

c̄/
(
h2∆y

)
+ c (h ∆y)2 (A.6)

in Equation (A.5), we differentiate it with respect to ∆y and find that h4∆y3 must

be a constant. Thus, for two grids with spacings ∆yl and ∆yl−1, the integer numbers

hl and hl−1 should scale as

hl

hl−1

= Int

(
∆yl−1

∆yl

)3/4

= Int
(
R3/4

)
, (A.7)

The Int ( ) operator indicates that the closest integer to the argument must be

taken. Thus, as the points in the stencil are getting closer when the mesh is refined,

an increasing number of points can be skipped to average the error associated with

shock tracking. This procedure assures a convergence, albeit less than linear (the term
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Figure A.3: Convergence study for the computed maximum value of curvature as a
function of grid resolution N1/2 (number of cells in reference half-reaction zone). ¥
grid-adaptive spacing; ¨ fixed point; N fixed spacing.

(A.6) vanishes as ∆y 0.5). Equation (A.7) can be generalized to a finite difference with

truncation error of order O (∆ym),

hl

hl−1

= Int
(
R− 1+m

2+m

)
. (A.8)

Points computed with grid-adaptive spacing are displayed in Fig. A.2 as square sym-

bols. The number above each symbol is the stencil spacing h from Equation (A.7).

The starting point on the coarsest grid has h = 4. This set of values approaches the

reference curvature very slowly, and the last data point overshoots it, indicating that

the sequence is far from converging. The fixed-point spacing reaches the reference

value more quickly, but after R = 8 the estimate of κ is worse. The same qualitative

result can be observed in Fig. A.3, where the computational setting corresponds to a

reactive case (case θCJ = 3.5), and no reference solution is available. Values h = 16

and h = 21 were used in analyzing the results from the low- and high-resolution

simulations in Chapters 4 and 5.
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Appendix B

Effect of corner radius of curvature

To avoid the singularity associated with the presence of a sharp turning corner, the

corner vertex is rounded with radius of curvature rc. In this section, we investigate

the effect of a finite rc on the wall detonation velocity, Dw. The result of this study

is displayed in Fig. B.1, with rc decreasing from the reference value 1 (radius of

curvature equal to ∆1/2) to 0.2. In the four cases, the same number of grid cells in

the reference half-reaction zone length was used (N1/2 = 64). As rc decreases, the

initial drop in Dw grows larger, but it is immediately followed by a larger partial

recovery near the corner. Overall, the detonation velocity assumes essentially the

same value for the tested range of radii at a distance 10 ∆1/2. As the simulation

advances beyond this point, no other significant differences can be observed in the

plot of Dw versus distance. The same result was found for other parameters of interest,

such as the maximum axial curvature, and in conclusion we can reasonably assume

that the effect of a small (order ∆1/2) rounded corner is important only in the vicinity

of the corner.

To investigate the behavior of Dw near the corner, we performed a set of simu-

lations where rc is kept constant and N1/2 is decreased from 64 to 16 (Fig. B.2). As

the grid resolution is decreased, oscillations in Dw are visible again, with an effect

that is similar to the decrease in rc in Fig. B.1. These results seem to indicate that

a relatively large grid refinement (N1/2 = 64) is required to resolve the transient of

detonation velocity in the vicinity of the corner when the curvature is of the order of

∆1/2. An even larger number of grid points is needed if rc is further reduced.
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Appendix C

Convergence study

We perform a convergence study on the structure of the triple point observed in the

case θCJ = 3.5 (Fig. 4.25). The plots on the left are contours of pressure, the plots on

the right are numerical schlieren images. Of the three results in Fig. C.1, the plots in

(a) correspond to the higher grid resolution that was used in the current work. The

number of cells in the reference half-reaction zone (the segment displayed on the left

bottom of the pressure plot) is 22.5. The contours in (b) and (c) are obtained from

simulations that are two and four times coarser (N1/2 = 11.5 and N1/2 = 5.6). A

simulation with N1/2 significantly greater than 22.5 has not been performed because

too expensive.

As the grid resolution decreases, some details of the 0.95 reaction locus are lost,

and we register lower peak values of pressure. In the schlieren image in (c), the

island of partially unreacted material has disappeared, and the region behind the

transmitted shock has a much simpler structure. Likewise, the small area that is

above the cutoff value in the pressure contour (behind the stem connecting the first

with the second triple point) is missing in (c). Also, since the time and the window of

observation are the same in all the plots, the propagation of the triple-point structure

appears to be slower on coarser grids than on finer grids.

One encouraging result is that only the coarsest resolution gives an answer that

is qualitatively very different from the most refined (and 64 times more expensive)

result. In case (b) we are even able to observe the contact discontinuity formed

on the leading front, a detail that is lost in (c). Also, the distance in the triple
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point positions between (a) and (b) is roughly half the distance between (b) and (c).

While larger computations, possibly using Adaptive Mesh Refinement techniques, are

required to draw any conclusion concerning the correct representation of this trans-

verse wave structure, the current results seem to indicate that only minor variations

in the transverse wave should be expected from simulations with resolution higher

than N1/2 = 22.5.
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(a)

(b)

(c)

Figure C.1: Iso-contours of pressure (left), and numerical schlieren images (right) for
three different grid resolutions. (a) N1/2 = 22.5; (b) N1/2 = 11.2; (c) N1/2 = 5.6.


