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Summary 

Experiments with rapid decompression of superheated liquids and droplets exploding near 
the superheat limit reveal the existence of steady evaporation waves. An idealized model for 
steady evaporation waves has been analyzed. A evaporation wave is treated as a jump or 
discontinuity between metastable liquid and an equilibrium vapor or liquid- vapor mixture. 

Numerical solutions of the jump conditions have been obtained using Starling's equation 
of state to represent the thermodynamics of equilibrium and metastable states of hydrocarbon 
fluids. For simple fluids ( small specific heat) , only solutions with two-phase downstream states 
exist. Single-phase downstream states (complete evaporation waves) are predicted for complex 
fluids with a specific heat comparable to or greater than octane, given a sufficiently superheated 
initial state. Possible wave velocities range between zero and a maximum value determined by 
a Chapman-Jouguet condition. 

This wave model is combined with a simple similarity description of liquid and vapor motion 
to predict the rates of steady spherical bubble growth in superheated liquids. The Chapman­
Jouguet hypothesis is used to fix the evaporation rate and the results are compared with ob­
servations in bubble column experiments. 

Introduction 

Metastable liquids can spontaneously and rapidly change phase under adiabatic condi­
tions. Metastable liquid states (shown in Fig. 1) can be experimentally reached from 
equilibrium states through processes of adiabatic depressurization and/or isobaric heat­
ing. The region of metastable liquid states is bounded by the equilibrium or saturation 
boundary on one side and the superheat limit on the other. The superheat limit is the 
temperature at which phase change is initiated by homogeneous nucleation; this tem­
perature lies close to but below the absolute limit of thermodynamic stability, ( op/ 8v )T 
= 0, known as the spinodal. 

Superheated liquids and associated rapid phase changes appear in a variety of phys­
ical phenomena. A simple laboratory experiment is to heat a small droplet of fluid by 
immersing it in a column of denser fluid which is heated at the top and cooled at the 
bottom, a "bubble column" . When the droplet temperature approaches the superheat 
limit, the droplet rapidly vaporizes (in less than 100 µs for a 1 mm diameter hydrocar­
bon droplet) with an audible pop. Detailed investigations (Shepherd and Sturtevant 
[1], Frost and Sturtevant [2)), have shown that under certain conditions (low ambient 
pressure, large superheat) the vaporization has an explosive character. In explosive 
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boiling, t.he liquid is converted to a liquid-vapor mixture by a traveling wave which 
sweeps through the liquid at a velocity of 5-15 m/s. While this wave moves with a con­
stant mean velocity, the surface is rough and unsteady, indicating violent instability 
and fragmentation processes occurring at the interface between liquid and liquid-vapor 
mixture. 
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Figure 1. Pressure-volume diagram of a fluid showing the region of liquid 
metastable states bounded by the saturation line a- and the spinodal 
(op/ov)T = 0. 

Evaporation waves are also observed in other laboratory experiments such as rapid 
depressurization of liquid-filled containers. Experiments, reviewed by Hill and Sturte­
vant [3] in this symposium, reveal that following the expansion wave created by depres­
surization, a much slower (0.5-25 m/s) evaporation wave follows. The wavefront moves 
at a constant mean velocity, but is highly disturbed and produces fine liquid fragments 
in the downstream flow. 

The examples quoted above involve very low-speed waves but higher velocity evap­
oration waves may also exist. Molten metal-water interactions, often known as steam 
explosions, can result in quite violent interactions involving transient evaporation waves 
with velocities of up to 500 m/s. While the evidence for such high-speed waves is lim­
ited, numerous industrial accidents and large-scale experiments (see the references in 
Frost et al. [4] of this symposium) have demonstrated the destructive nature of these 
events. 

These experimental observations of high and low speed waves have naturally led 
to the suggestion that evaporation waves are analogous to combustion waves and both 
subsonic ( deflagration) and supersonic ( detonation) waves may exist in superheated 
liquids. Indeed, as we discuss below, this analogy is exact in that two such solution 
branches do exist for steady waves in superheated liquids. This analogy has further 
suggested the special role of solutions with sonic (relative to the wave) flow downstream; 
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these are the Chapman-Jouguet (CJ) solutions of combustion. Frost [5) has estimated 
sound speeds in the liquid-vapor mixtures downstream of the evaporation wave observed 
in bubble growth and finds that the CJ condition appears to be satisfied. Chaves [6] 
investigated the same hypothesis for evaporation waves created in depressurization 
experiments and also obtained good agreement with the CJ hypothesis. It is not 
possible to obtain a CJ solution for a high-speed wave in a pure liquid (see the discussion 
in Fowles [7], this symposium) but wave speeds between 300 and 500 m/s have been 
predicted for supersonic waves which satisfy the CJ condition in liquid metal/liquid 
water /vapor water mixtures (Board and Hall [8]). Note that the water downstream of 
the wave in these "thermal detonations" is in a single fluid, supercritical state. 

Analysis of Planar Steady Waves 

The experimental and theoretical evidence reviewed above indicates that there are at 
least two classes of evaporation waves. In a variety of situations, these waves appear to 
be steady in an average, macroscopic sense, although violently unstable at a microscopic 
level. This suggests that a steady wave analysis, identical to that used for waves 
in inviscid reacting flow, can be used to explore the admissible solutions for steady 
evaporation waves in superheated liquids. 

Consider a control volume surrounding a portion of a steady evaporation wave 
(Fig. 2); superheated liquid (labeled state 1) flows in from the left, vapor or liquid­
vapor mixture (labeled state 2) flows out to the right. We suppose that the control 
volume can be chosen so that even if the wave is curved, it can locally be considered 
planar and any possible flow divergence will be neglected. In this frame of reference, 
the wave is at rest and the fluid moves into the wave with velocity w1 , density pi, 

pressure p1 , enthalpy h1 and entropy s1 and leaves with corresponding quantities at 
state 2. We assume that there is no storage within the control volume, the flow is 
effectively inviscid, and the control volume has been chosen so that energy transport 
by heat conduction is negligible. 

(Liquid) (Vapor-Liquid or Vapor) 

Evaporation 
Wave 

Figure 2. Control volume surrounding an steady evaporation wave. Upstream 
states (1) are, superheated liquid; downstream states (2) can be either 
equilibrium liquid-vapor mixtures, pure liquid, or pure vapor. ~ 
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Under the restrictions outlined above, upstream (1) and downstream (2) states are 
related by the jump conditions across an interface: 

P1W1 = P2W2 (1) 

Pi+ P1Wi P2 + P2W~ (2) 
w2 w2 

h1 + ......!. h2 + -1. (3) 
2 2 
S2 > S1 (4) 

which are identical to the conditions used to describe inviscid gasdynamic discontinu­
ities. These relations are supplemented by the equations of state p(p, T), h(p, T); we 
have used Starling's equations for hydrocarbons and Kennan and Keyes equations for 
water. Equations and parameter v.alues were taken from Reynolds [9] compilation. So­
lutions for downstream states are obtained as a function of a single parameter such as 
wave speed or downstream pressure once the upstream state is specified. A variety of 
upstream states have been explored, these states are usually metastable liquid near the 
superheat limit. For a specified initial temperature and pressure, the initial enthalpy, 
density, and entropy are computed by extrapolating the equations into the metastable 
region. Inspection of property values estimated in this fashion show that reasonable 
results, i.e., smooth extrapolation of equilibrium properties, no singularities near the 
spinodal, are obtained. 

The downstream fluid is considered to be an equilibrium state, which could be 
either liquid, a liquid-vapor mixture, or pure vapor depending on the solution branch 
and fluid type. For single-phase downstream states, the jump equations (1-3) must be 
solved numerically by an iterative procedure. This is most conveniently performed by 
combining equations 1-3 to obtain the Rankine-Hugoniot equation, 

(5) 

which yields the locus of possible downstream states as a pressure-volume (p2 , v2 ) curve 
known as the Hugoniot or shock adiabat. The adiabat can be obtained by direct 
computation without iteration when the downstream state is a mixture state, since the 
final pressure and temperature must lie on saturation curve a. A complete adiabat 
curve for water with an initial state on the spinodal at p0 = 2.89 MPa, T0 = 600 K is 
shown in Fig. 3. 

The adiabat shown in Fig. 3 has a strong resemblance to the adiabats predicted 
for chemical explosives [10]. The similarities include the displacement of the locus of 
downstream states from the upstream state; the division of the adiabat in two branches; 
and the existence of a Chapman-Jouguet point on the lower solution branch. These 
features are generic to adiabats of systems making a transition from a metastable to 
an equilibrium state and involving a release of energy, either chemical or thermal. An 
important distinction is the existance of phase boundaries in the superheated liquid 
case, these can result in slope discontinuities or kinks in the adiabat. Such features 
can give rise to wave instabilities or shock splitting [11] when constructing simple wave 
solutions to initial value problems. 
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Figure 3. Complete adiabat solution for water with a superheated liquid initial 
state starting on the spinodal at p0 = 2.89 MPa, T0 = 600 K. The 
dashed branch marked nonphysical represents solutions to the adiabat 
which have imaginary steady wave velocities. The dot-dashed line 
from the initial state up to the saturation curve is the isentrope in 
the metastable liquid. 
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The lower (p2 ::; p1) branch represents subsonic waves, for a given wave velocity 
0 :S w1 ::; Wmax there are usually two solutions for the downstream state. Using 
combustion terminology, this is known as the deflagration branch of the adiabat. There 
is only one solution at the Cbapman-Jouguet point, where the wave has the maximum 
velocity and the downstream flow is sonic relative to the wave. In the case shown in Fig. 
3, the CJ deflagration speed is 9.8 m/s. For solutions above the CJ point downstream 
flow is subsonic; below the CJ point, supersonic. The deflagration branch terminates 
at a point where the entropy inequality, Eqn. 4, is violated. This occurs when the 
downstream pressure becomes sufficiently small. 

The upper (p2 ?: p1) branch represents supersonic waves. As shown in Fig. 3, a 
kink occurs in the adiabat where it crosses the phase boundary, this results in two 
solutions for the downstream state for given wave velocity oo ?: w1 ?: Wmin· Using 
combustion terminology, this is known as the detonation branch of the adiabat. The 
solution passing through the kink has the minimum wave velocity (520 m/s) hut unlike 
chemical explosives, this is not a CJ solution since the downstream flow is not sonic. 
States on the small portion of the adiabat accessible within the saturation region have 
supersonic downstream flow as discussed by Fowles [7]. No CJ point exists further up 
the adiabat from the kink since these states are simply a continuation of the shock 
adiabat in the metastable liquid. 
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Complete Evaporation Waves 

For the example of superheated water, the subsonic branch of the adiabat terminates 
inside the mixture region so only liquid-vapor mixture downstream states are possible. 
Is it possible to obtain downstream states which are pure vapor, i.e., a complete evap­
oration wave? The possibility of such waves is suggested by the existence of the inverse 
process, the complete liquefaction shock [12]; that is, shocks from a pure vapor to a 
pure liquid state. This process can only occur in a fluid of high molar specific heat, a 
retrograde fluid in which the saturation boundary on the vapor side has positive slope 
in T-s coordinates. 

This is also true for the complete evaporation wave. A simple criterion for the molar 
specific heat needed for complete evaporation can be obtained by considering the limit 
of Eqns. 1-3 as w1 approaches zero. If complete evaporation occurs for this case, then 
the entire subsonic portion of the adiabat will correspond tq complete evaporation. 
This will be the case if the Jakob number is greater than unity: 

(6) 

Using the simple rules of thumb for the superheat limit T1 ~ 0.9Tc, the normal 
boiling point Ta ~ 0.6Tc, and the latent heat b.h Ju ~ lORT,this implies that Cp(T") / R 
> 33 for complete evaporation of a liquid at the superheat limit and one atmosphere 
initial pressure. The simplest molecule that meets this criterion is octane, C8 H18 . 
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Figure 4. Portion of subsonic adiabats for n-octane with upstream states on se­
lected spinodal points and subsonic downstream states. Initial states 
are labeled by the reduced temperature T, = T /Tc. Downstream 
states are mixtures for initial points of T, = 0.95 and 0.93; the adi­
abat crosses the saturation curve for T, = 0.917; the adiabat lies 
completely in the vapor region for T, = 0.9108. 
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Numerical solution of the jump conditions for octane [13] verifies this simple es­
timate. The subsonic-subsonic portion of the adiabats are sho"'.n in Fig. 4 for four 
upstream states on the spinodal. As the upstream pressure is decreased, the adia­
bat moves toward and across the saturation boundary. At an initial pressure of one 
atmosphere (T = 0.91 Tc), the subsonic adiabat lies completely in the vapor state. 
Computations [13] with lower hydrocarbons in the alkane series, butane and pentane, 
show only mixture downstream states. 

Bubble Growth Model 

Subsonic evaporation waves can be combined with a simple similarity solution to the 
radial continuity and momentum equations to obtain [13] an idealized model for rapid 
bubble growth in superheated liquids. This model is based on the experimental observa­
tions [1,2,5] that the bubble radial velocity and evaporative mass flux ~re approximately 
constant for the explosive boiling mode ~f evaporation near the superheat limit. 
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Figure 5. Schematic of the postulated similarity flowfield for the steady growth 
of a liquid-vapor mixture bubble within a superheated liquid. Radial 
variation of pressure is shown for a bubble radial velocity of 147.1 m/s 
in water superheated to the spinodal point of 600 K and 2.89 MPa. 
The bubble velocity corresponds to an evaporation wave velocity of 
72.85 m/s, slightly above the CJ velocity of 67. 7 m/s but below the 
maximum velocity of 78.5 m/s. 

In our idealized model, shown in Fig. 5, a single spherical bubble of radius R(t) = 
Rt grows in a superheated liquid of infinite extent. A steadily-moving evaporation wave 
separates the liquid from a stagnant liquid-vapor mixture within the bubble. As shown 
in Fig. 5, the pressure within the bubble is much higher than the ambient pressure at 
large distances from the bubble but lower than liquid pressure just outside the bubble 
due to the pressure decrease across the evaporation wave. The pressure drops off rapidly 
with increasing radial distance from the bubble due to the divergence of the streamlines, 
i.e., the l/r2 dependence of the fluid velocity. At a distance r / R = c/ R ~ 10, where c is 
the metastable liquid sound speed, the pressure wave terminates in a weak shock front, 
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beyond which the liquid is undisturbed. This shock can be located and its' strength 
determined by the nonlinearization technique of Whitham. [14]. 

The entire flow field outside the bubble has been constructed as a similarity solution, 
in which the similarity parameter is r /t. Our solution is a simple extension of Taylor's 
original similarity solution [15] for the flow outside of a sphere ( or nonevaporating 
bubble) expanding at a constant radial velocity. Taylor showed that for small radial 
Mach numbers, the acoustic approximation to the full Euler equations yielded a good 
approximation to the exact solution obtained by numerical methods. In the present 
study, an alternative approximation of an almost incompressible liquid (used in most 
bubble growth analyses) has been used. We have compared our approximate solutions 
(in the limit of vanishing evaporation mass flux) with Taylor's exact results and find 
good agreement for low (less than 0.2) interface Mach numbers. 

Using the incompressible flow approximation for the radial motion outside the bub­
ble, the velocity u can be derived from a potential function <p. 

u = Vip; (7) 

where the relative velocity U in the liquid just outside the bubble can be computed 
from the Gallilean transformation to the evaporation wave coordinates 

(8) 

in terms of the evaporation wave normal velocity W1 . Integration of the inviscid mo­
mentum equation yields: 

(9) 

assuming isentropic flow in the liquid. 
These additional equations plus the jump conditions, Eqns. 1-4, are solved numeri­

cally for a given equation of state model and specified conditions for the liquid far from 
the bubble. A one-parameter family of solutions is obtained for a range of radial veloc­
ities, 0 ~ R ~ Rmax• The maximum velocity is limited by the entropy inequality, Eqn. 
4. Solutions for the liquid at the bubble surface and the liquid-vapor mixture within 
the bubble are shown in Fig. 6 for the particular case of water at the spinodal, T = 600 
K. Inertia of the liquid surrounding the bubble results in the pressure at the bubble 
surface increasing with increasing bubble velocity. As shown, the pressure increases 
almost (see inset) to the saturation pressure at the maximum velocity point B. For this 
example, the maximum bubble radial velocity is 150 m/s. For a special upstream state 
just below state B in Fig. 6, the downstream state for the bubble solution is the CJ 
point on the corresponding adiabat. 

In order to compare the model predictions with experiment, a choice of bubble 
growth velocity must be made. As mentioned earlier, experimental evidence suggests 
that nature selects the velocity which yields the CJ state. No rigorous theoretical justi­
fication of this choice is available and it must be considered a plausible but speculative 
hypothesis at this time. 

Experiments with butane droplets [l] yielded estimates of 7 m/s for the equivalent 
evaporation wave velocity and an estimated density of 200 kg/m3 for the density of 
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the liquid-vapor mixture inside the bubble. Computations [13] using the measured 
superheat limit as the ambient condition, yields a CJ evaporation wave velocity of 19 
m/s and a bubble density of 140 kg/m3. The corresponding bubble radial velocity 
is predicted to be 56 m/s, much higher than the measured radial velocity of about 15 
m/s. However, in the experiments only a fraction of the bubble surface was evaporating 
and it makes more sense to compare equivalent evaporation wave velocities rather than 
bubble radial velocities. 
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Figure 6. Solution of bubble growth model for water superheated to 600 K at 
2.89 MPa (on spinodal). Curve AB is the locus of liquid states just 
upstream of the bubble (evaporation wave). Curve A'B' is the locus 
of states for the liquid-vapor mixture within the bubble. CJ indicates 
the Chapman-Jouguet point. The inset shows the distinction between 
the maximum velocity point B and the saturation curve o-. 

This comparison, while not definitive, is certainly encouraging and suggests further 
exploration of the CJ hypothesis for bubble growth is worthwhile. Our hypothesis 
is an alternative to the ad hoc assumption of Nguyen et al. [16], who postulate a 
relationship between interfacial liquid velocity and the degree of superheat. Their 
assumption results in the prediction of downstream states and wave velocities that are 
significantly different from the present analysis. Application of the present model to 
other types of evaporation waves, such as the Hill and Sturtevant experiment [3], is in 
progress. 
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