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Shock Loading and Failure of Fluid-Filled
Tubular Structures

Joseph E. Shepherd and Kazuaki Inaba

Abstract We consider the response of fluid-filled tubes to internakckhoaves
and explosions. The emphasis is on the fluid-solid couplspgets. The coupling
of axial wave propagation in the fluid to flexural waves in thbe may be char-
acterized by a single parameter that depends only on theantédluid material
properties and dimensions. Using this parameter as a figumeidt, we discuss the
limiting cases of weak and strong coupling between the fliadenmotion and tube
structural motion. Examples discussed include detonai@hshock waves in gas
and liquid-filled tubes of metal, polymers, and composifé®e results of experi-
ments on elastic and plastic deformation are presented lhaseelected results on
fracture and rupture. Detonation in gas-filled tubes ugualls in the weak cou-
pling regime except for very thin tubes or cases of deforomathat lead to tube
rupture. Impact generated axial waves in liquid-filled tsilban range from weak-
to-strong coupling cases depending on the tube wall thiekaed material. These
cases include the well-known phenomenon of water hammemnandescribe the
relationship of impact studies to previous work on wavepaigation in water-filled

pipes.

1 Introduction

Dynamic loading of fluid-filled tubes is a situation that izenntered in industrial
hazard analysis and studied in the laboratory as a modeishlid coupling prob-
lem. Propagating explosions or shock waves can occur imsjeg systems con-
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2 Joseph E. Shepherd and Kazuaki Inaba

taining explosive gases and laboratory combustion fasli(Shepherd, 2009). A
common situation is piping filled with water or steam and dyi@oading created
by valve actuation - this is the known as “water hammer”, a-kebwn problem
in power and process plants (Wylie and Streeter, 1993, V8att®84). Gas-filled
and liquid-filled pipes represent extreme situations froentiewpoint of fluid-solid
coupling. Gas-filled pipes represent the case of weak omaneeoupling with gas
motion forcing the structural response of the pipe but redét little or no gas mo-
tion is caused by the piping structural deformation. Thei@ni extensive discussion
of this case in Shepherd (2009) and a few representative easg@resented in this
review to illustrate the features of the weak coupling casguid-filled thin-wall
tubes represent the case of strong or two-way coupling irchvtiie fluid motion
and structural response of the pipe must be treated sinaaltesty. We focus almost
exclusively on the strong coupling case in the presentwevie

One motivation for experiments on fluid-filled tubes is thedstof fluid-structure
interaction in a regime that is relevant to underwater esiplas. In our laboratory,
we have being doing this through variations on the experirseown in Fig. 1. A
metal projectile impacts on the surface of water filling anthiall tube. The pro-
jectile impact creates a coupled stress wave propagatitfteitube and water, as
well as a reflected stress wave in the impactor. Subsequestberations of the
stress wave in the impactor and expansions transmittedhetevater results in a
sharp stress wave front followed by a rapid (exponentiatpgieof pressure behind
the front (Skews et al., 2004, Deshpande et al., 2006, Espirbal., 2006). Ex-
periments using piston impact on a water-filled tube have lbsed extensively in
studying the tensile strength of water (Trevena, 1987)ahiietming of solids (Kos-
ing and Skews, 1998, Skews et al., 2004), and as an undeshaiek simulator (see
the extensive review in Chap. 2 of Kedrinsky, 2005), mosendly by Deshpande
et al. (2006), Espinosa et al. (2006). However, in our stugie have focused on
the dynamics of the tube deformation itself as a method ofioeixy fluid-structure
interactions.

steel projectile cavitation  specimentube pressure gage

7 ﬁ> water

—>
A stress
plastic buffer waves strain gage

Fig. 1 Stress wave generation by piston impact on fluid inside a tube

In this review, we report on the results of dynamics expenitsef the type shown
in Fig. 1 with different tubing materials, thicknesses, aadious loading ampli-
tudes. We begin by presenting the simplest theory of wavésihfilled tubes and
use this to identify a fluid-solid coupling parameter. Fafiog this, we describe
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more sophisticated models and the regimes correspondithg tearious values of
the coupling parameter. Experimental results are predéote@ number of different
cases in each of the regimes.

2 Korteweg Model of Wave Propagation

Classical water hammer theory (Skalak, 1956, Tijsseli®§6]1 Wiggert and Tijs-
seling, 2001) considers the coupling of the motion of antiela@pe or tube with
acoustic waves propagating in the water within the pipeioverlevels of theoretical
treatment are possible (see Junger and Feit, 1986, How8, fitdghe foundations
of fluid-structure interaction) but the key physical efiecan be predicted by the
very simple model proposed by Korteweg (1878) and confirnxpeementally by
Joukowsky (1900) (see the historical review in Tijsselibg96) in which the pres-
sures generated by the acoustic waves in the water are bdlaycstatic stress in
the surrounding pipe, considering purely elastic radidleddon uncoupled from
the longitudinal motion.

The Korteweg model reproduces the essential featuressdickd water hammer
experiments with minimal assumptions. The fluid in the tubedmpressible with a
densityps and sound speedit, and the motions in the fluid are treated as quasi-one
dimensional. The equations of motion of the fluid (LighthilB78) are continuity
(mass conservation)

7] 0
2 (PR)+ 5 (puA) =0, (1)
du Jdu JP
PE+PU&——5a (2

wherep is the fluid density, u is the fluid velocityis the cross-sectional area of the
tube, andP is the pressure. For small amplitude motions, we can conpi@ssure
and density to be only slightly different from the at-resiues,

F)/:F)—F)o<<|':)07 (3)
pP'=p—pPo<po. (4)

The tube area changes are relatively small,
A=A-A< Ao, ®)

and the velocity u is of the same order as these perturbati@ssiming isentropic
motion, the pressure and density perturbations are reltgted

P =afp’, (6)
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where the sound speed for the fluid is

0
().

Expanding the equations of motion (1 and 2), we obtain thegidinear equations,

7] du
2 (oA + poo Ty =0, ®)
odu 0P
pOE = T ox 9

Cross-differentiating w.r.t. time and distance, and atiating velocity, we can write
this as

9?P 1 97
— = ——(pA). 10

In order to complete the model, the tube area must be detedas function
of space and timé(x,t). In general, this requires considering the dynamics of the
motion of the tube (Skalak, 1956). The Korteweg approxiorais to neglect the
inertia and bending stiffness of the tube wall and only cd@sia force balance in
the hoop @) direction

R /

Op = HP , (112)

whereagy is the hoop stres$,is the wall thickness, anldis the mean tube radius. In
general, the hoop stress will be a function of all componeftise strain in the tube
wall and depend on the radial location. However, if we usesihgle membrane
model of hoop stress for a cylinder and neglect longitudioalributions, the hoop
strain and stress will be related by

g0 =2, (12)

whereE is the Young’s modulus of the tube wall material and the hdogirs can
be computed from the change in mean radius as

R
&g = R’ (13)
1A

The pressure and area changes are then uniquely related
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2RP

A generalization of this idea is to take the area of the tube fasiction of pressure
perturbation only, then

A=AP), (16)

and we can write the perturbation equation (10) as a lineaeweguation with a
wave speed that depends both on the fluid compressibilityuraextensibility.

Korteweg equation:

0P 19%P
Fra (7
Wave speed:
10
-2_ - v
_dp , p OA
~op AP (19)

The first term in (19) represents the response of the fluid ésqure changes
and can be interpreted in terms of the fluid sound speed (7}fendecond term
represents the response of the tube to pressure changeg.thisisimple model of
a static hoop stress balance (15), we obtain the classicalfa for wave speed in
elastic pipes,

_ _ 2R
c 2:af2+P0§7 (20)

which was first derived by Korteweg in 1878. The coupling esw the tube and
fluid can be more clearly seen by writing the wave speed as

HEEE] e

where the bar sound speed (Kolsky, 1963) for the tube méteria

C=aj

as - E 5 (22)

Ps
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andps is the density of the solid making up the tube. The speed aofdauthe fluid
as is often expressed in terms of the fluid bulk modufys

_ (% _ &
Kf = U(au)s, as = ) . (23)

The wave equation (17) is an approximation to the governingons for the mo-
tion of a fluid-filled, thin-wall tube. More general considéons (Skalak, 1956,
Fuller and Fahy, 1982, Pinnington, 1997) with fewer apprations result in a
coupled system of fourth-order equations for radial andjitbrdinal motion of the
tube considered as a shell and acoustic oscillations indfes fliscussed in the next
section. There are four types of axisymmetric modes: a tadgial motion in the
shell, a coupled radial-acoustic motion (Korteweg wavhaj} torrespond to (17),
and two shell bending modes. The individual modes of shelllation and acoustic
motion in the fluid are transformed in a set of coupled modesd (®osso, 1971,
Sinhaetal., 1992, Lafleur and Shields, 1995), the precisgaaf these depends on
the extent of fluid-solid coupling as discussed below. Omlg of these modes, the
Korteweg waves, is described by the present model (17).6®tiep relevant to the
evaluation of the fluid-solid coupling are given in Table hefhree terms identified

Table 1 Properties relevant to fluid-structure interaction for saepresentative materials.

Solids
material E Ps as
(GPa)  (kgm™3) (m/s)
steel 200 7.810° 5000
aluminum 69 2.%103 5100
PMMA 3.3 1.2x10° *
Polycarbonate 2.6 1.25810° *
glass 96 2.610° 6080
GFRP 5-80 1.4-2:210° *
CFRP 5-400 1.510° *
Fluids
material Ky o as
(GPa)  (kgm %) (m/s)
water 2.2 1.x10° 1482
mercury 28.2 13.4510° 1450
air 0.14 MPa 1.2 343

* Polymers are viscoelastic and composites are highly
anisotropic so that there is no single well-defined bar speed
these cases.
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in (21) are nondimensional ratios that form a single nonetfigional parametg®
that determines the extent of fluid-solid coupling in thi®getry. This parameter
has been termed the “fluid loading” by Pinnington (1997) dedvalue plays a cen-
tral role in the study of acoustic waves (Fuller and Fahy 21$8nha et al., 1992) in
fluid-filled tubes.

Korteweg wave speed:

as
V1B’

The contributions to the coupling parameter

B:@@@,

CcC=

are:
I : longitudinal sound speed ratio (24)

Il : density ratio (25)

I : geometric factor (26)

Note that unlike the classical problem, treated by Tayl®4@) and Kennard
(1944), of underwater shock waves reflecting from defornprages (the origi-
nal studies are given by the wartime reports in ONR 1950 aeddascribed by
Cole 1965, see also the discussions in Xue and Hutchins@4, Zajendran and
Narasimhan, 2006), this parameter does not include theacteaistic unloading
time of the load, i.e., decay time of the blast wave. Althotlyghparametef does
indeed play the key role in determining the primary wave dpee know from pre-
vious work (Beltman et al., 1999, Beltman and Shepherd, 20020 and Shepherd,
2005b,a) on shock and detonation waves that other factergkvant to determin-
ing the peak tube deformation. For example, nondimensipasmeters that we
will need to consider include:

1. ratio of unloading time to the hoop period of the tube rbokaillations;

2. ratio of the shock or detonation front speed to the groupcity of flexural
waves;

3. ratio of peak induced stress to the yield stress in thé;soli

For now, we will set consideration of these factors asidejastdexamine the role
of B in fluid-structure interaction. The size of the ratios makip 3 can be readily
computed using the properties of some representative taberials and fluids given
in Table 1. The results are given in Table 2 for two cases: ibjwhall tubes typical
of most of our laboratory experiments so far; 2) thick-wali¢s that have been used
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in a few of our tests. We have considered three fluids and faterals although it
is not necessary to compute all combinations to apprediateange of fluid-solid
coupling that will exist. The theory is valid only in the litrthat the tube can be
treated as a shell so that the values computed for the thimk€ase are not expected
to be accurate and are only given to indicate the range of-8aiid coupling that
we could anticipate in these cases. As expected, we obsetiuid-solid coupling
is maximized for the thin tubes with stiff fluids and minimizfor thick-tubes with
highly compressible fluids. The case of air within any of thieds is representative
of the case of internal shock or detonation loading (Shapt#809) and is clearly
weakly coupled so that the Korteweg waves travel at the gascsspeed for small
amplitude waves. For large amplitudes, the Korteweg wawe®lt with the shock
or detonation velocity as discussed in Shepherd (2009).

Table 2 Fluid-solid coupling parameters and Korteweg wave speedejoresentative thick and
thin wall cases.

Combination B Wave speed
(m/s)

Thin tube, h =0.89nm, D = 38.5mm

water-steel 0.48 1220
water-glass 0.99 1050
water-aluminum 1.4 961
water-PMMA 29. 271
mercury-steel 6.1 544
mercury-aluminum 17 335
mercury-PMMA 370 75
air-steel 3.610°% 343

Thick tube, h = 25mm, D = 100 mm

water-steel 0.044 1450
water-glass 0.092 1418
water-aluminum 0.13 1396
water-PMMA 2.7 774
mercury-steel 0.56 1159
mercury-aluminum 1.6 893
mercury-PMMA 34 244

air-steel 2.&%106 343
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3 Limiting Cases of FSI

There are some obvious limiting cases that lead to simpiifica when there are
extreme values of the coupling paramgterhich can be rewritten as

_pra 2R Ki 2R

P=o@ " E

3.1 Thick, stiff tube <« 1

If the tube wall is sufficiently thick and/or stiff,
2 2
psash>> 2Rpraf ,

then motion of the tube wall does not influence the wave prafiag speed which
is just the value of the sound spesdin the fluid for weak waves or the wave front
(shock or detonation) speed U for large amplitude waves.

Wave speed for8 < 1:
Weak waves,

Shock or detonation waves,

In this regime, the motion of the fluid can be computed as thahg tube is rigid
and the motion of the tube estimated by applying the computessures within the
fluid as boundary conditions to the solid. This is the siabf a shock wave in air
or gaseous detonation inside a metal tube, see the disnassiBeltman and Shep-
herd (2002), Beltman et al. (1999). As long as the tube tléskrio diameter ratio
exceeds 107, i.e., wall thickness is at least 1% of the diameter, therptrameter
B < 1072 This is satisfied for all commercial pipe and tubing compuselt is
possible to consider the tube to be rigid for the purposeswiauting the shock or
detonation wave motion allowing very simplified (one-dirsemal) models of the
pressure waves in the gas to be employed (Beltman and Shk@0€2, Beltman
et al., 1999). In these cases, the deformations of the tubesrally confined to
the elastic regime and the failure mode is due to cracksatinty at flaws in the
tube wall, see Chao and Shepherd (2005a, 2004). It is alsibp@$o obtain plas-
tic deformation for extremely thin-walled, low-strengtibes and high detonation
pressures (Shepherd, 2009). Fluid-structure couplingddei significant for these
cases and this is a subject of active investigation in owrkatiory.
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If we approximate the structural dynamics of the tube asresheéll (Tang, 1965),
the motion of the shell is forced by the difference in pressiP(x,t) between
the interior and exterior of the tube but otherwise the fluid aolid motions are
uncoupled (see the discussion in Beltman and Shepherd).2002

Shell modet
% =p ‘;—fﬁ, %—szphﬁ%',
‘;%—N—gewpzph%’. (27)
For elastic motions, the stress resultaxts Ngg, Mxx andQy are defined as:
N = 7 {%w‘%’] Mo %‘;—f ,
Nog = 15—22 [v‘;—)‘:ﬂ—;,] . Q= Keh[w+ ‘;—‘;"] . (29

whereu is the axial displacemeniy is the radial displacemeri is the mean
shell radiush is the shell thicknesd, refers to timep is the density of the
shell materialy is Poisson’s ratiok is Young'’s modulusAP is the difference
between the internal and external pressyrés the rotation and is the shear
correction factor. This particular model was used by Ta®$8) and includes
terms that model the effects of shear deformation and ratestia. Many

other versions of shell models are available and with varagproximations,
have been applied to fluid-structure interaction.

Obtaining the thick-wall limit with a liquid-filled tube redres a substantially
stiffer and thicker-walled confining tube than for gas-tiltelbes. For example, with
water inside a steel tube, the simple theory predicts treatahuired ratio of thick-
ness to diameter should be one, i.e., wall thickness equdhletaliameter, for the
paramete3 < 10 2. The approximations of a thin-wall tube is clearly no longer
valid for these values and more realistic elastic modelb@ftibe wall are required.
This limit is not reached for standard sizes of commercipépiand therefore the
tube-wall motion is significant in determining the wave pagption. This situation
is typical of water hammer problems and it is well known evemf the earliest
studies of Korteweg and Joukowsky that it is essential tughetube elasticity.

If we neglect the effects of axial stress, bending or rotagytia and assume that
the shell can be treated as a membrane, then the motion ity padéal motion if
the loading is axisymmetric. The equation of motion will be

phi +-25 _ AP(t). (29)
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For elastic motions, the stress resultant is

(30)

and the equation of motion is that of a forced simple harmoadillator, which is
referred to as a single-degree-of-freedom model in thestral response commu-
nity. The natural frequency of oscillation is given by thedamental mode of radial
or “hoop” motion.

Single degree of freedom model:

°w  ,  AP(t)

Natural frequency:

(32)

The single degree of freedom model is quite limited sincendgdect of bending
stresses effectively makes each shell element indeperdeliding bending while
still neglecting transverse shear and rotary inertia léattse following model equa-
tion (Bhuta, 1963, Simkins, 1995), which is equivalent tatthf an Euler-Bernoulli
beam on an elastic foundation with a traveling load, a mdut lhas been exten-
sively studied in many different contexts such as the logdieated by the motion
of trains or rocket sleds (Kenney, 1954).

Simplified flexural wave model:

ERP  d*'w 9w,  AP(xt)
To—v3) e a2 TW= —pn (33)
where the frequency, is
1 E

Steady traveling wave solutions on a long tube (Bhuta, 1868kins, 1995)
show a resonance when the traveling load moves at a criticglagation

speed
Eh
T\ RAT )
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This resonance has been observed in diverse traveling lastisns such as
gun tubes (Simkins et al., 1993), shock waves (Beltman £1889), and detona-
tion waves (Beltman and Shepherd, 2002). Although quitekiied, the essential
features of dispersive waves and a critical speed are @phyrthis model.

3.2 Coupled fluid motion and tube deformatiof, = O(1)

In the coupled situation, the fluid motion must be simultarsip considered with
the motion of the tube. The motions are coupled togethereabttundary between
the tube material (solid) and the fluid inside the tube. Faliséc fluids, this means
that the fluid sticks to the boundary, and as long as the tuimésist, does not pen-
etrate the boundarfyln addition, the tangential (shear) and normal stresseseat t
boundary must be continuous so that the traction forcesehdhndary of the solid
are equal to the surface forces obtained by evaluating tiedttess tensor at that
location. A common simplification is to treat the fluid as switl and allow slip
along the tube interior surface with vanishing shear stire$ise fluid. For simple
boundary shapes and small amplitude motion, the couplindpeamplemented an-
alytically by linearizing the location of the boundary. Fmmplex boundary shapes
and large amplitude motions, numerical methods (see tieaskgon in Arienti et al.,
2003) are needed to define the boundary location and coupfiittd and solid sim-
ulations.

A special case of coupled motion is small amplitude or adowsaves in the
fluid and elastic vibrations of the solid. This situation leen extensively con-
sidered in the context of underwater sound (Junger and E#86), aeroelasticity
and aerodynamically generated sound (Howe, 1998). Ini@séay, homogeneous,
ideal (inviscid) fluid, the flow can be derived from a velogigtential @ that sat-
isfies the wave equation. For axisymmetric situations, the f& two dimensional
(x,r) and there are only two velocity componefitsv).

Fluid acoustics:

1 A complication that is observed in the present tests is atiwit (Trevena, 1987), the generation
of cavities or bubbles when tension (negative pressura)reaiue to wave interactions in a liquid-
filled tube. This can result in the separation of tube intenall from the liquid as well as interior
cavities. Although of great importance in water hammer (@/ghd Streeter, 1993, Watters, 1984)
and underwater explosions (Kedrinsky, 2005), we have enhittiscussion of that aspect of FSI
from this review.
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0@

Pl:P_POZ_poﬁa (36)
p'=p-po=PF/a2, 37)
u=(uv), (38)
=DOp, (39)

2, 10
O agdtz_o' (40)

Consistent with the inviscid character of acoustic motiba fluid-solid coupling
is reduced to &kinematic conditiorthat enforces the continuity of normal velocity
at the fluid-solid boundary but allows the tangential veiesito differ orslip. The
coupling occurs at the inner wall of the tubes R(t), but this is usually linearized to
be the nominal fixed radial locatian= R, in acoustic analysis used in combination
with the shell treatment of the tube.

Fluid-Solid Coupling:

ow

ﬁ = V(er = R07t) ) (41)
_ 99
=3l (42)

For an inviscid fluid model, only the normal component of ttress is contin-
uous at the fluid-solid boundary so the normal stress in thé sobalanced
by the pressure in the fluid. For the shell model and the awosisiution for
fluid, this condition specifies the loading which is the duiyforce in the shell
radial motion equation.

AP =P (x,r =Ro,t), (43)
__,99
= _poﬁ . . (44)

Skalak (1956) first solved the complete axisymmetric modeshell vibrations
coupled to acoustics through these relationships. The sfalel he used was a
variation on (27) and the acoustic solution considered badfal and longitudinal
modes. The shell model was reduced to pair of partial difféatequations (fourth-
order in space, second order in time) for radial and axiglldieements. These two
equations are coupled through the Poisson effect so thlatxidl and hoop strains
are produced in an initial value problem that simulatesqutie impact or water
hammer. Skalak predicted that there are two principal setgaves that can be
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observed. A weak axial strain wave precursor moving at thiespaed runs ahead
of the main pressure and hoop strain disturbances, whiclmareéng at close to
the Korteweg speed. Skalak gives an approximate analylitiso to an initial-
value problem similar to projectile impact but the expressiare quite complex
and almost all subsequent research on water hammer hasitherdige simplified
version of his model (discussed subsequently) or numesicailations of the full
equations.

3.2.1 Simplified FSI models

In his 1956 paper, Skalak introduced a simpler model thatigemealistic than the
Korteweg model but less complex than the full coupled 2-Olstmustic model.
This “four-equation” model has been successfully appligg¢eling, 1996, 2003,
2007) to a number of water hammer problems, demonstratasprable agreement
with measured pressures and strains. The model is a sfi@ightd extension of the
Korteweg model to include axial wave propagation and Poissupling between
radial and axial deformation. The fluid modeling assumgiare identical to the
Korteweg model, neglecting bending stresses, shear gffecary and radial inertia.
The fluid equations are identical to (8) and (9) and the a@oagiproximation is
used to relate pressure and density changes in the fluid r€éaehange is computed
in terms of the change in tube radius, which is equivalertéacbupling relationship
(41),

1dA 29w

Ad Rot’
The governing equation set reduces to two equations fondaéftuid motion, one
wave equation for axial tube motion and the static forcermaddor the radial motion
of the tube. The variables are only a function of axial diseanand timet for the
simplified model, and the equations are hyperbolic, engldoiutions by standard
wave propagation techniques such as the method of chasdice(Wiggert et al.,
1987, Li et al., 2003) or Godunov (Gale and Tiselj, 2008) rodth

(45)

The “Four-Equation” Model :
1 0P du 20w

a_%ﬁeroa_erpoﬁﬁ:O’ (46)
du oP'

poE =" ax’ (47)
ONyy d%u

e Phﬁ ; (48)

Ry (49)

R
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Skalak explored the consequences of this model and showaedhth equation
set admits steady traveling waves with two eigen-spegdmd ¢, that coincide
with the principal speeds of the full model. The higher speets approximately
the speed of axial waves in the tube wglE /ps(1 — v?) and the lower speeci is
approximately the Korteweg wave speed given by (21). Intaaidithe amplitude
of the deformations and fluid velocities (relative to thedlpressure) are the same
in the reduced and full models. In particular, the peak pressand fluid velocity in
a steadily traveling wave of speedre related by

P =pcl (50)

which is an extension of usual acoustic relation for fluds pasu'.

One key difference is that the full model is dispersive aratghwvave fronts will
spread out with time (Tijsseling et al., 2008) whereas inrgguced model, the
fronts remain sharp. The main physical effect responsiimedispersion is radial
inertia with bending stiffness playing a secondary role.

3.3 Thin, flexible tubeB > 1

If the tube wall is sufficiently flexible then the compresktpiof the fluid is negli-
gible compared to the effective compressibility due to tkiersion of the tube. In
this limit, the propagation speed is determined solely leyittertia of the fluid and
the elastic properties of the tube,

[Ag OP'
c~ Eﬁ’ (51)

which can be simplified using the relationship (15)
CR[—==. (52)

In the field of arterial wave mechanics (Parker, 2009), ietahip (52) is gener-
ally known as the Moen-Korteweg equation. For thin tubeis, gspeed is quite a bit
lower than the bar speed (22) or thin-tube axial wave speeg si

~a [P
C~ ay R’ (53)

This is the limit often considered in connection with flow ilodd vessels and peri-
staltic pumping in the intestinal tract (Grotberg and Jan2804). This propagation
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of extension waves in the arteries is responsible for thenpimenon of “pulse”
that is used to sense the frequency of the heart beat. Theupeegulse generated
by the pumping of blood into the aorta from the heart creatpsopagating wave
that moves with a speed on the order of 3-6 m/s near the hearfuather away,
as the arteries become smaller, the speed increases up3te . In the case of
the venous system, the effect of external pressure can ¢etite tphenomenon of
“collapse” which will restrict the flow of blood. The collapof a flexible, fluid-
filled tube is a type of buckling instability and leads to atijgnon-circular tube
cross-section and a nonlinear relationship between pressul area.

Beam (1968) carried out a novel analysis of the incomprés8ibd limit using a
Lagrangian formulation of the dynamics and consideringdaamplitude deforma-
tion of the tube wall. Treating the motion as fully nonlinddeam was able to deter-
mine conditions under which compression waves would stegp&rm shock-like
disturbances in the pressure pulses within the arteriefoitdaulated the hypothesis
that these shock waves were the origin of the high-frequiocgtkoff sounds that
are the basis of indirect blood pressure measurement (spitygnometer) using a
pressurized cuff and a stethoscope.

4 Experimental Results

Impulsively excited wave propagation in fluid-filled tubesstbeen studied for shock
and detonation waves inside metal tubes filled with gas cemv@hese studies have
examined both the elastic and plastic deformation in thegulVe have selected
several examples to illustrate the cases of sifiatt 1, moderatg3 ~ 1, and large
B > 1, fluid-solid coupling. .

4.1 Small coupling

This is the case of a detonation or shock wave in a gas withimantall metal tube.
The value off is small (less than 1) and there is minimal fluid-solid coupling
in the sense discussed above. An ideal detonation wave gatgsawith a constant
speed, the Chapman-Jouguet (CJ) velocity and there is d papssure increase
across the wave followed by a decay to a constant value. Axl gifeck wave load-
ing would be in the form of a constant velocity wave followsddconstant pressure.
The pressure behind the wave front is imposed in an axigiyrsetric fashion on
the tube wall and excites oscillatory deflections in the tuladl. Due to the lack
of coupling between fluid and solid motion, there is esséntie influence of the
tube motion on detonation wave speed or flow behind the détmda herefore, the
effect of an internal shock or detonation wave on the tube [movide a traveling
or moving load applied at the interior tube surface in thealhdoutward direction.
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The problem of a traveling internal load on a tube has beemektely examined
(see Beltman et al., 1999, Beltman and Shepherd, 2002) ghd simplest formu-
lation is equivalent to a traveling load imposed on a beanpsupd by an elastic
foundation. Considering the tube as a thin-shell, theréaneaxisymmetric modes
of tube motion (Tang, 1965) that are generated in this caserder of increasing
wave speed, these are the flexural waves, shear waves, bes,vean longitudinal
waves. The flexural wave exhibits the largest amplitudelod tuoop strain and is the
most significant of all of these modes. Flexural waves, litteeostructural modes,
do not have a well-defined wave speed but are dispersive anthdin wave front
moves at a phase velocity that is equal to the speed of thénlpéehnt (shock or
detonation wave speed). For weak shock waves, this is thesticepeed in the gas
so that the flexural wave corresponds tofhe> O limit of the Korteweg wave mode
of acoustic disturbances. For strong shock waves or detorsathe wave speed in
gas may significantly exceed the gas acoustic speed and &lyisxaite very strong
deflections in the tube for certain speed ranges. In paatictilere is a pronounced
resonance (Beltman et al., 1999, Beltman and Shepherd, 20@® and Shepherd,
2005b) when the phase speed is equal to the group velocityaagel amplitude
hoop strain oscillations can be observed in this situation.

For a given pressure behind the gas wave, the maximum hoaip &ra func-
tion of the wave speed relative to the critical speed or gralpcity of the flexural
waves. Chao and Shepherd (2005b) examined the possibfiliiditional resonance
at the modified shear wave speed in the shell but did not obsEry amplifica-
tions of hoop strains in this speed range in agreement wiéhTdng model and
finite element simulations. Amplification of the shear stsds predicted (Chao and
Shepherd, 2005b) but the effect is modest in comparisonthvitiilexural wave res-
onance. Additional resonances at even higher speeds, iartige between the bulk
sound speed and dilatation speed, are observed in finiteeatemamerical simula-
tions by Lewis and Nechitailo (2007). It will be difficult tocperimentally observe
these effects in gases with metal tubes but it may be possilgkastic tubes with
the additional complication of viscoelastic behavior.

4.2 Elastic motions

Fig. 2a shows gaseous detonation pressure histories nedaguintervals of 127
mm along the axis of a steel tube 1.25 m long and 127 mm ins@®etier with

a 12.7 mm thick wall, (see Liang et al., 2006a, for detailg).Zb shows the hoop
strain histories at the corresponding axial locations. gamnmg the two plots, we
can see that the main flexural wave front moves at the speée ofetonation front,
about 2090 m/s. A small amplitude precursor can be obsenasihg ahead of the
main wave front, the leading edge of the precursor traveddatit 5000 m/s, close
to the bar wave speed in the tube. The hoop strain oscilktiane a frequency of
fn = 17.5 kHz, which corresponds to the hoop or breathing moslecésted with a

purely radial motion. The amplitude modulation of the hogpiltations is mainly
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to the superposition of oscillations created by the incidietonation and reflected
shock wave with additional disturbances created by the eeelsh pressure gage
ports. The tube is stiff and the peak pressures are relatiwetlest so that the peak
strains are less than 23train € < .00025) and all motion is purely in the elastic
regime. A more ideal response can be obtained by carryintgstg with a section
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Fig. 2 Elastic structural response of a steel tube to a gaseousali&to. a) pressure histories. b)
strain histories (bonded strain gages) (Liang et al., 2D06a

of tube with a uniform cross-section and carefully-cor@@lboundary conditions
(Shepherd et al., 2008, Liang et al., 2006b). Nearly sirdadascillations in radial
deflection with constant amplitude can be observed in Fig.h& specimen tube
is 6061T6 aluminum, the same type used as in previous studidsr diameter is
41.28 mm (1.625 in). The thickness of the tube is nominaB@tnm (0.035 in) but
actual dimensions vary by +/- 10% due to the manufacturiogrigjue. The tube
was held by collets spaced 420 mm apart and the measuriniploeeas halfway

between the collets.

4.3 Plastic motions

If the tube wall is sufficiently thin and the shock or detooatpressure sufficiently
high, plastic deformation of the tube will occur (Smith, 98990). When this
happens, the radial deflection of the tube is dominated byesting permanent
deformation and the oscillations that are so prominentérefastic case are negligi-
ble compared to the plastic deformation. Fig. 4 shows a skbop strain histories
measurements for the same internal dimensions as showiopse%.24 m long tube
and 127 mm inner diameter, but with a wall thickness of 1.5 rmhe detonation
wave occurred in a stoichiometric methane-oxygen mixtusnanitial pressure of
0.35 MPa (Pintgen and Shepherd, 2006).

Because of these differences, the peak strains in this casgmost 100 times
larger than in the elastic case shown previously. The sgealmild carbon steel
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Fig. 3 Elastic structural response of a thin-wall aluminum tube gaseous detonation as mea-
sured by a optical displacement interferometer (Shepheat], 2008).

(C1010) which exhibits significant work hardening and straite effects that must
be considered in order to predict the extent of the defownaltery rapid changes
in deformation are created by both the incident detonatioiraflected shock wave.
The reflected shock decays rapidly as it moves away from flexting end so that
two distinct waves are particularly visible for the gage .43Im. The rate of change
of the tube radius is limited primarily by inertia and on tlivaé scale shown, the
rise time is relatively short so that the waves appear nearbystep change (“plastic
shock wave”). If there is sufficient deformation to reach thesile limit, rupture
and fragmentation can occur. Rupture due to gaseous detortan occur under
extreme loading conditions that are created by transitiomfdeflagrations (flames)
to the detonation mode of combustion (Shepherd, 2009). &laed process of
crack propagation from pre-existing flaws has been stuagieddtonation loading
in a series of experiments by Chao (2004).

4.4 High Explosives

There has also been a substantial amount of research, fompéxaby Duffey and
Mitchell (1973), Benham and Duffey (1974), Hodge (1956){fBy (1971), Duf-
fey and Krieg (1969), Fanous and Greiman (1988) and othézd @i the review
by Florek and Benaroya (2005), on the plastic response efkttdohigh explosives.
This is of great practical interest for confining explosi¢Redriguez and Duffey,
2004, Duffey et al., 2002) for purposes of testing or tramspg explosive materi-
als. However, these situations typically involve concatetl energy releases and do
not result in propagating deformation waves. A single buhgie tube is typically
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Fig. 4 Plastic structural response (hoop strain) of a thin-wakktube to a gaseous detonation as
measured by bonded strain gages. The short data lines afttbilk of the figure indicate the final
residual plastic deformation (Pintgen and Shepherd, 2006)

created by the explosion unless the energy release is suffic fracture the tube.
For high explosives in air-filled tubes, it is possible todict the final deforma-
tion using approximate equations of motion when strain aate strain hardening
effects are taken into account. Similar experiments in ifited tubes (Sandusky
et al., 1999, Chambers et al., 2001) have been carried oubtade data on wall
motion and internal pressure that can be used to validat@aiions of underwater
explosions (Wardlaw and Luton, 2000). Plastic deformatias large as 20% were
recorded in the middle portion of a 100 mm diameter alumintypg 5086) tube
with a 5.35 mm wall thickness.

5 Moderate coupling

Experiments have been carried out at CIT (Inaba and ShepP@d8a,b) to create
impact-generated stress waves in a water-filled tube ubmganfiguration shown
in Fig. 1. A 700 g steel projectile was accelerated by congm@sir through a 1.5
m long barrel and impacted a polycarbonate buffer at the tapeotube. The pro-
jectile velocity and impact dynamics were recorded withhkipeed photography.
The buffer accelerates impulsively as soon as it is impaoyetthe steel projectile,
decelerates to a stop in about 1 ms and reverses directienbdffer is sealed to
the tube with two o-rings to prevent the water from squirtimgpugh the small gap
between the buffer and tube.

A sharp pressure pulse (Fig. 5) is created by the initial ilsgpdue to the impact
of the projectile followed by an approximately exponerdiatay in time of pressure
due to the expansion waves generated as the projectile dlows. An elementary
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theory of the pressure pulse generation mechanism is givémei Appendix. The
incident pressure wave propagates down the tube with theeeg wave speed,
reflects from the bottom closure of the tube with an increasamplitude, then
propagates back up to the buffer. When the compression vefleets from the free
surface of the buffer, a tension wave is generated that gaipa into the water
resulting in cavitation.
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Fig. 5 Pressure waves generated by projectile impact on a wdtsi-fiteel tube with a 12.5 mm
thick wall (Inaba and Shepherd, 2008a).

5.1 Elastic Waves

For sufficiently low projectile velocities and/or sufficinthick tubes, the structural
deflections are elastic. Operating in this regime and usimgneercial metal tubes,
we can test the conventional models based on water-hame@nythirhe pressure
waves in the fluid are accompanied by longitudinal (axiat) Anop strain waves
in the tube wall. To observe these waves, Inaba and Shephe@®4) used thin-
wall mild steel tubes (1020 type, 0.91 m long, 40 mm in diameéie7 mm wall
thickness) instrumented with bonded strain gages at 10 ¢envads (Fig. 6). In
agreement with the theory of Skalak (1956), the bulk of stprimary wave) is in
the hoop direction and traveling at the Korteweg speed irs@lwéth the pressure
pulse. A small-amplitude longitudinal tension wave (pmsoun wave) propagates at
the thin-plate velocity

E

PYT (4

Cp:
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ahead of the main disturbance. A much larger amplitude tadgial compression
wave propagates in phase with the main hoop signal due todlssdh effect. In
agreement with the linear theory, shown in Fig. 7, the prsmuwave speeds are
independent of the impact velocity and peak strain ampdisustale linearly with
impact speed. The effect of tube wall thickness on primaryenspeed is in agree-
ment with either the thin- or thick-wall models but in orderaccurately predict
hoop strain on the outside of the tube, the radial distrdwudif stress has to be taken
into account (Watters, 1984, Tijsseling, 2007).
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Fig. 6 Elastic deformation waves generated by projectile impacthon-wall water-filled steel
tube (Inaba and Shepherd, 2008a); a) hoop strain, b) latigélstrain.
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Fig. 7 Elastic wave properties for projectile impact on thin-wadlter-filled steel tubes (Inaba and
Shepherd, 2008a). a) Wave speeds and b) primary hoop anituldingl strain peak amplitudes
compared with Skalak (1956) model.
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Fig. 8 Elastic wave properties for projectile impact on wateefilsteel tubes (Inaba and Shepherd,
2008a). Effect of wall thickness on a) primary wave speed @ngeak hoop strain. Comparison
with Skalak (1956) and Tijsseling (2007) models.

5.2 Plastic deformation

By using higher impact velocities, plastic deformation lné tube and in extreme
cases, rupture, can be observed. For example, (Inaba amth&ie 2008b) have
observed, Fig. 9, plastic deformations with peak hooprstrap to 0.4% in a thin-
wall aluminum (AL6061-T6) tube with a projectile velocity ©6 m/s. The tube was
seamless, had a nominal wall thickness of 0.86 mm, innereti@anof 39 mm, and
was~0.9 m long. The incident wave front speed derived from Figa)dg 946 m/s
which is close to the value of 960 m/s predicted by the clas¥{orteweg theory
(Table 2).

In the test shown in Fig. 9, the tube ruptured just above theuck at the bottom
of the tube. This is not surprising since the highest pressand strains occur at this
location due to the interaction of the incident and reflegtades. The onset of tube
rupture is indicated by a sudden pressure decrease at 0.5inls propagates up
the tube as a pressure expansion wave and associated grails sFig. 9a. Under
the conditions of the testing for this specimen, rupturergitioccur until after the
9th test and sufficient damage has accumulated to createwgthwall crack. The
crack only propagated a limited distance (50 mm), Fig. 9fgreearresting due to
the loss of driving force associated with the flow of fluid ofittee crack and rapid
depressurization of the tube.

The rupture behavior is very similar to what was previouslgerved (Chao and
Shepherd, 2004) in the rupture under static loading withréwylit fluid of an iden-
tical tube specimen with a deliberate flaw used to initiagetiure. As discussed
by Chao and Shepherd (2004), the limited extent of the reptader hydraulic as
compared to pneumatic (pressurized gas) loading is a careseq of two factors.
First, for a given pressure, a much smaller amount of eneegypit volume can
be stored in a compressed liquid than a gas. Second, witld [gyessurization the
crack driving force decreases below the critical level regflito create new fracture
surfaces much more rapidly than for gaseous pressurization
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Fig. 9 Deformation in plastic regime and rupture generated byegtdge impact on a water-filled
aluminum tube (Inaba and Shepherd, 2008b). a) hoop strairpeessure histories and b) tube
rupture at the tube bottom. Impact speed 15.8 m/s, 50 mmneufgngth.

Strains can be observed that are greatly in excess of thenabelastic propor-
tional limit (¢ = .002) in tests with more ductile tubes and higher projeatéloc-
ities. Using a new vertical gas gun facility we constructe@ur laboratory at the
California Institute of Technology, we have carried outesiments with projectile
speeds up to 100 m/s. Hoop strain and pressure historiehianesn Fig. 10 for
a 65 m/s impact on a water-filled 1.59 mm thickness, 40.0 mraridiameter, 0.9
m long mild steel tube. The precursor and primary wave vé&xare 5219 and
1346 m/s, respectively. Despite the very large (up to 16%npeent deformations
that occur in this test, the observed wave speeds are innmablgoagreement with
the Skalak (1956) model predictions of 5226 m/s and 1337 Ts good agree-
ment is apparently a consequence of the limited deformétiaintakes place in the
precursor and primary waves, making the elastic assumpfitre Skalak model a
reasonable approximation.

A relatively long time is required to reach the ultimate fiasleformation as
compared to the initial elastic deformation waves. Theasitun appears to be very
similar to that of uniaxial stress waves in shock compres&ee Ch. 3 of Meyers,
1994): An elastic precursor wave with an amplitude givenHgygroportional limit
travels at the elastic longitudinal wave speed in front awadr speed plastic wave
with a continuous increase in strain (stress) up to the fenadllof permanent defor-
mation. In the case of the water-filled tube, Fig. 10b, sigaiit attenuation of the
plastic wave is observed with increasing distance fromriygict point. This occurs
in uniaxial shock compression testing due the attenuati@nfollowing expansion
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wave. In the present case, we speculate that there are hadi#gtors including not
only the expansion wave but also the radial motion of the tuékkand the energy
absorption due to plastic work. Although the Korteweg tlyecan be naively ex-
tended to plastic deformation, the dispersive nature opthstic deformation waves
suggests that radial motion, fluid and tube inertia effecy also be significant in
the plastic case and the simplifying assumptions of thed<eey theory may not be
valid in the case of large plastic deformation.
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Fig. 10 Large plastic deformation generated by projectile impacaavater-filled steel tube. a)
hoop strain and pressure histories and b) bulge (16% maxisttain) near the location of the
bottom of the buffer. The initial buffer speed following i was 62.7 m/s.

5.3 Composite and Polymer tubes

The strain waves observed in metal tubes are relativeligstifarward to interpret,
with distinct incident and reflected waves. The waves in cositp and polymer
tubes are more complex. This is due to the anisotropic nafihe the roll-wrapped
and filament wound composite tubes that we have used in aisrassvell as the
viscoelastic nature of the polymer tubes and matrix mdgeridthough many fea-
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tures in the strain waves are different, the results frommmsite and polymer tubes
do share a common feature with the metals of a distinct strairt that propagates
with a speed much lower than either fluid or structural waveesis. If we define
an effective modulus (Hull and Clyne, 1996, Spencer and,H9I78) for the hoop
response, the general ideas of the Korteweg theory stikapio be relevant and
useful for interpreting the results of experiments. As aanegle, consider the test
on a roll-wrapped carbon-fiber composite (CFC) tube showkrign 11. This tube
consisted of a longitudinal fiber core with a woven cloth eweap and vinylester
resin and has a 1.45 mm thickness wall, 38.2 mm inner diapzetdiis 0.9 m long.
The speed of the strain wave front in Fig. 11a is 864 m/s, snltisily lower than
observed in metals and consistent with the lower hoop ss#rfor tubes with this
construction method.

For metal tubes, the longitudinal and hoop strains are glyarorrelated and pos-
itive strains in the hoop direction result in negative ldadinal strain. The sign and
the magnitude (longitudinal strain is about -1/3 of the hetrpin) is the expected
result based on the Poisson effect for an isotropic matdfil the roll-wrapped
CFC tube, the longitudinal strain shown in Fig. 11b is a mudlalter fraction of
the hoop strain+0.1) than for the aluminum tubes. This is due to the decogplin
of the longitudinal and hoop stress carrying ability sirtoe majority of the carbon
fibers and load carrying capability are in the longitudiriaédtion for this tubée
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Fig. 11 Strain waves generated by projectile impact on a watedfitt@dl-wrapped CFC tube.
a) hoop strain and pressure histories and b) hoop and |afgiiuhistories located at the same
distance from the tube top. The impact speed was 7.7 m/s.

As expected for this method of construction, the roll-wreghpubes are relatively
weak in the hoop direction and failed under modest impacaiorgés, see Fig. 12.
Rupture occurred near the tube bottom and creates a distitease wave in the

2 Recent testing with filament-wound CFC tubes show that thueation of strain between hoop
and longitudinal directions is a systematic function of tieding angle as expected from the
theory of Puck (see Greenwood, 1977) and quite different ih#he roll-wrapped case.
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strain histories (Fig. 12). The rupture event is much moagdtic than in aluminum
since the failure in CFC is by a high-speed brittle fractather than the quickly-
arresting ductile rupture that is observed in the aluminuines. Rupture of the CFC
tube occurred on the first high impact speed test while théldyof the aluminum
tube delayed rupture until the damage had accumulated frammder of successive
impacts.

The roll-wrapped CFC tube rupture was in the form of a longight crack par-
allel to the tube axis and serendipitously intersected dngitudinal strain gages
so that the strain signals can be used to deduce the appaaehttip speed to be
about 2000 m/s, These are much higher than typical crackpgpds of 200-300
m/s observed (Chao and Shepherd, 2004, 2005a) in detorthfi@n fracture of
aluminum. However, this value is actually quite a bit lowart crack tip velocities
of up to 7000 m/s that were observed by Coker and Rosakis j200fhpact experi-
ments on mode | and Il cracks in unidirectional graphitexgmmmposite plates. As
discussed in Chao and Shepherd (2004), the cracks in ififeprassurized tubes
initiate in Mode | since the major principal stress is in tteof direction, perpen-
dicular to the initial crack tip motion. However, in thin dile tubes, the plastic
deformation of the material adjacent to the crack quickBufes in a transition to
mixed mode fracture (Chao and Shepherd, 2005a).
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Fig. 12 Hoop strain and pressure histories generated by projectpact on a water-filled roll-
wrapped CFC tube. This tube failed by fracture near the bojtst after reflection of the pressure
wave.
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The roll-wrapped CFC tubes always burst near the bottom dianyhin the tests
with higher driver pressures while a filament-wound glassforced plastic (GRP)
tube survived intact under these same conditions. The GB® lias a 1.60 mm
thickness, 38.8 mm inner diameter, 0.9 m long with a windingle of 40 degrees.
The hoop strain histories shown in Fig. 13 for the GRP tubessamilar to those
of the CFC tubes. Longitudinal strain histories shown in Eigp for the GRP tube
are correlated to hoop strains similar to those in the Al $ylie contrast to the
CFC tubes. The primary wave velocity measured for the hoginstvave front is
904 m/s, similar to the speeds in the roll-wrapped CFC tubdsg. 13b, peak hoop
strains greater than 0.7% were observed but residual steairthe reflecting bound-
ary is still negligible after the experiment. The primaryfieal wave velocities are
949 m/s, slightly faster than those in Fig. 13a.
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Fig. 13 Hoop and pressure histories generated by projectile ingraatwater-filled GRP tube. a)
impact speed 6.8 m/s and b) impact speed 18.8 m/s.

The polycarbonate tube (PC) is more flexible and exhibitsens@nificant fluid-
solid coupling than either metal or composite tubes. The W& twve tested is a
transparent tube with a 6.4 mm thick-wall and a 38 mm innemetzr. Limited
results are available since the primary purpose of thetewese to visualize cavi-
tation. The primary wave propagates at 552 m/s, Fig. 14, rslasker than waves
in metal or composite tubes. The bar sound speed of the PGg@iséimated to be
1386 m/s using a density of 1250 kgfrand Young’s modulus 2.4 GPa. The cou-
pling paramete3 deduced from the Kortweg model and observed primary wave
speed is 6.3, which implies an effective Young’s modulus.d4f@Pa, in agreement
with the material properties despite the known viscoatasiture of wave propaga-
tion in PC.

3 Recent testing with filament-wound CFC tubes show that reptan occur either at the bottom
of the tube or at sufficiently high velocities, just below théfer. As expected, the filament-wound
tubes are much stronger under hoop loading than the rofpwee construction and the failure
mode is quite different.
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Fig. 14 Hoop and pressure histories generated by projectile im({pa¢tm/s) on a water-filled PC
tube.

Measured primary stress wave velocities for four mateaa¢éssummarized in
Fig. 15. There is no clear correlation of wave speed with ichpalocity and given
the modest wave amplitudes, we expect to be in the lineamnegiith constant wave
speeds. There are no published theoretical treatmentefmrgl composite mate-
rials although (Pinnington, 1997) treats the related pois of a wire reinforced
hose. Based on the experimentally measured wave front seddut 900 m/s for
elastic flexural waves in CFC and GRP tubes, the effectivplaugy parameter can
be computed using the simple Korteweg model to be about h811&/5, respec-
tively. The tensile modulus of the carbon epoxy compositeGis typically 140
GPa along the fiber direction while effective modulus detifrem the present tests
is 33 GPa. This is consistent with a relatively low Young'sdutus in the hoop di-
rection of the roll-wrapped CFC material which is to be expdsince the majority
of the carbon fibers are aligned in the longitudinal direttidccording to (Watters,
1984), the elastic modulus for common GRP pipe is 27.6 GPasaddse to the
effective Young’s modulus derived from the present testh whe GRP tube (32
GPa).

6 Summary

Stress wave propagation in water-filled tubes provides mdveork for studying
different aspects of fluid-solid coupling than the standawdmal shock impact on
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Fig. 15 Primary stress wave front speed as function of projectieedp Al and mild steel (MS)
wave velocities are compared with the Korteweg theory.

underwater structures. There is already a substantial anaflanalysis available
for the elastic motions that can be borrowed from the enging@roblem of water
hammer. The key result of both analysis and experimentsaisldnge amplitude
coupled solid stress waves and fluid pressure waves can iecekta relatively
simple configuration. The solid motion is in the form of trbwg waves that move
axially along the tube when the excitation is projectile anpon the water surface at
one end of the tube. The primary flexural waves propagate rslogler than either
the sound speed in water (1500 m/s) or tube bar speeds (AlBI)MS 5200 m/s,
CFC 9500 m/s, GRP 5300 m/s). This is due to the flexural motictube being
strongly coupled to compression wave in water. In the cdrieslastic motion, this
coupling is controlled by a single parameter that is a fuorctif the tube stiffness,
fluid compressibility, and densities of the fluid and tubeenats.

For tubes constructed of isotropic elastic materials, ies@re available to pre-
dict the observed wave speeds and amplitudes. Using thdesitngersion of the
theory, due to Korteweg, the predicted primary wave speszi830 m/s for Al and
1200 m/s for mild steel, which are in good with our experina¢ngésults. More so-
phisticated models predict the presence of an axial strawvewprecursor, which
we have also observed. Similar primary waves are also obdervtubes con-
structed from composite materials and the wave speeds asestent with estimated
stiffness although there is limited theory for the compmstses. Plastic deforma-
tion and rupture have been observed in tests with modestgiilej velocities €
100 m/s), indicating the suitability of this configuraticar £xamining the ultimate
strength and failure characteristics with this configamratf fluid-solid coupling.
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Appendix

The modeling of impact-generated pressure pulses and grexamate equation of
state used for water is described.

Pressure Pulse from Projectile Impact

In order to properly determine the pressure pulse in the fluithe most general
situation, FSI must be properly included which requiresusianeously solving for
motion in the confining tube and the fluid. However, in the aafse stiff tube, —
0, we can neglect the FSI and just consider the one-dimeaisi@ave mechanics in
the fluid and projectilé. This means we can make use of ideas from the classical
treatments of shock wave generation and decay in solidsi-eetes (1960) and
Meyers (1994). The situation we consider is shown in Fig.ld&ur experiments,
a buffer is placed between the projectile and the fluid. Thigebyprojectile and
buffer-fluid interfaces will create additional waves thadymeed to be accounted
for in order to make realistic predictions of the resultimggsure profile in the fluid.
However, the general features of the pressure pulse carpbbecgted by analyzing
the simple situation of Fig. 16.

projectil; confining tube ?

Up

-

shock waves

Fig. 16 Generation of initial waves in projectile and fluid by impact

4 Using the pressure-velocity relationship of (50) the asialpf the present section can readily be
extended to include FSI.
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The initial impact creates a shock wave with an amplitudemieined by the
impact velocity and the acoustic impedangesof the projectile and fluid. The
pressure-velocity matching method (Meyers, 1994) can leel tis construct the
solution by assuming simple waves in both fluid,

AP = (pa)tAu, (55)

and projectile,

AP = —(pa)pAu. (56)

For the case of a steel projectile impacting water, the tesue shown in Fig. 17.
The pressure amplitud&P of the initial wave in the water is proportional to the
velocity of the projectile before impact,

_ (pa)p(pa)w
P= loayp+ (pa)w P 7

As shown, the impedance of steel is much higher than that tédrwehich leads to
the approximation,

AP =~ (pa)wVp . (58)

The projectile begins slowing down immediately after impareating expansion

0.025
0.020 f s

0.015 /
steel impactor

0.010 F water ,
7/

pressure (GPa)
N\

L 7/
0.005 Y

/
0.000 e ]

0.000 0.005 0.010 0.015 0.020
particle velocity (km/s)

Fig. 17 Pressure-velocity diagram for computing peak pressurdalaesteel projectile impacting
on water. The case of a 15 m/s projectile is shown.

waves that follow the initial compression wave in the watdére water is treated as
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t A piston

s“‘o(*

Fig. 18 Wave system created by reverberation following impact efgiojectile on the fluid sur-
face.

compressible using the Tait equation of state describdtkistibsequent section,
P=P(p,s). (59)

For small projectile velocities relative to the sound spieeitie projectile, there are
many reverberations of the waves within the projectilemyithe characteristic time
of slowing. This means that the projectile can be approxégateated as a rigid
body and treated with the methods of Newtonian mechanicss. iflba has been
used by a number of researchers to develop simple analybeshpande et al.,
2006, Espinosa et al., 2006) and numerical solutions (Slatves., 2004) for the
wave generation process. The equation of motion of the glitges

dav
Mpwp = —Ay(P—Py), (60)
whereP is the pressure on the water face of the projectile Bne the ambient
pressure on the free (rear) surface of the projectile. Fakvghock waves, we can
treat the motion in the water as approximately isentropithabthe method of char-
acteristics can be used to compute the relationship betseerd speed, and fluid

velocity u, at the water face of the piston. For the Tait equation, this is

n—-1
8-~ ——Up=a, (61)

wheren is an empirical constant with a value of 7 for water. At theefad the
piston, the fluid velocity is the same as the piston veloaityttsat changes in the
piston velocity are related to changes in the sound speed by
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dVp =dup, (62)
=2 _dap. (63)

For weak shock waves, the motion is isentropic and the clsing®und speed can
be uniquely related to changes in pressure through theiequatstate,

day = (ﬁ>sdP. (64)

This results in a simple ordinary differential equation the pressure difference
AP, = Py — Py at the water face of the piston,

dAP,  n—1/dP\ A
— P <0a> P AP, . (65)

a2 <Mp

The solution to this is
APy(t) = APy (0) exp(—t /1), (66)
where the time constant is

T (67)

The initial velocity V,(0) and pressurdP,(0) are determined by the initial impact
analysis of (58). If we neglect the dependence of the cheriatit speeds on am-
plitude, the temporal variation of pressure on the face efgiston will also be the
temporal variation behind the wave. In experiments, thesures behind the leading
front will show a series of steps due to the discrete waveactens at the interfaces
between buffer, water, and projectile.

An example of the comparison of this model with the measuresiqure is shown
in Fig. 19. The peak pressure of 27.4 MPa was computed us8)a(tl the projec-
tile initial speed of 18.5 m/s. A time constant o= 0.41 ms was computed using
(67) and the projectile length of 75 mm. The model does reataykwell aside
from the obvious differences in the first 20& due to wave motion in the buffer
and projectile.

Tait Equation of State

The Tait equation of state is a simple analytic model thasiful for modeling a
compressible liquid like water under modest compressiopeEmental observa-
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Fig. 19 Comparison of measured and model pressure for water in anii2.Bhick steel tube and
an 0.67 kg steel impactor with an initial speed of 18.5 m/s.

tions suggest that the isentropic compressibility can tsereed by the following
empirical formula,

1/0v 1
() e ©9

wheren andB are empirical constant® = 2.995x 10° Pa andn = 7 for water.
From the definition of sound speed,

oP
a? = —u? (—) , (69)
ov )

we have that
a>=nu(P+B). (70)
This leads to the following differential equation for press

dP du
PrE- MU (71)

which can be integrated to yield

P:B[(ﬂ)n—l} : (72)
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or as a function of sound speed

—e|(82) "] )

The reference density [ = 953.26 kg/m and the resulting reference sound speed
isa; = 1483 m/s. Using the expression for pressure, we can retigtsound speed
as

“1) "~ (74)

a? =nBu; (—
v

In the derivation of the piston motion, we need the derivat¥ the pressure with
respect to the sound speed,

oP 2n P+B
(%>S_n—1 a (75)

Evaluating this at the nominal initial conditions, we obt#ie value

(E> =4.714x 10°Pa-s-m 1. (76)
da/g

A short table of compressed water states estimated by thed@ation are given
in Table 3 for the parameteps = 953.263B = 2.995x 10°, n=7.

Table 3 Compressed liquid water states estimated by the Tait exjuati

a P p/pm U Us
(m/s) (bar) (m/s) (m/s)

1483.3 1 1.0001 0.10 1483.20
1503 95 1.0045 6.67 1496.33
1528 216 1.0100 15.00 1513.00
1553 340 1.0155 23.34 1529.67
1578 467 1.0209 31.68 1546.34
1603 596 1.0263 40.02 1563.01
1628 728 1.0316 48.36 1579.68
1653 863 1.0368 56.72 1596.36
1678 1001 1.0420 65.07 1613.04
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Shock Hugoniot for Water

Shock wave researchers conventionally representtgoniotor locus of shock
states using relationships between the fluid velocjtyand the shock velocity &
(Marsh, 1980). A typical empirical relationship used toretate data is Y= a, +
S up. For water, fitting the Nagayama et al. (2002) data gives #rarpeters oé, =
1450 ands = 1.99. Using the shock jump conditions in the form:

P-—P
Us: U]_ Ul——U 5 (77)
Up=+/(P=P1)(v1-V). (78)

For the Tait equation of state over the range of interest enpitesent studyR <

1 GPa), the Wup relationship is highly linear and the fitting coefficiente ap =
1484 m/s ang = 1.974. This is consistent with the evaluation of Nagayatrel.e
(2002) who also show that the irreversible temperatureisisa the order of 1TC
at 1 GPa so that the Hugoniot can be reasonably approximgtdtbhisentrope as
we have done using the Tait equation.
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