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Abstract We consider the response of fluid-filled tubes to internal shock waves
and explosions. The emphasis is on the fluid-solid coupling aspects. The coupling
of axial wave propagation in the fluid to flexural waves in the tube may be char-
acterized by a single parameter that depends only on the tubeand fluid material
properties and dimensions. Using this parameter as a figure of merit, we discuss the
limiting cases of weak and strong coupling between the fluid wave motion and tube
structural motion. Examples discussed include detonationand shock waves in gas
and liquid-filled tubes of metal, polymers, and composites.The results of experi-
ments on elastic and plastic deformation are presented as well as selected results on
fracture and rupture. Detonation in gas-filled tubes usually falls in the weak cou-
pling regime except for very thin tubes or cases of deformation that lead to tube
rupture. Impact generated axial waves in liquid-filled tubes can range from weak-
to-strong coupling cases depending on the tube wall thickness and material. These
cases include the well-known phenomenon of water hammer andwe describe the
relationship of impact studies to previous work on wave-propagation in water-filled
pipes.

1 Introduction

Dynamic loading of fluid-filled tubes is a situation that is encountered in industrial
hazard analysis and studied in the laboratory as a model fluid-solid coupling prob-
lem. Propagating explosions or shock waves can occur insidepiping systems con-
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taining explosive gases and laboratory combustion facilities (Shepherd, 2009). A
common situation is piping filled with water or steam and dynamic loading created
by valve actuation - this is the known as “water hammer”, a well-known problem
in power and process plants (Wylie and Streeter, 1993, Watters, 1984). Gas-filled
and liquid-filled pipes represent extreme situations from the viewpoint of fluid-solid
coupling. Gas-filled pipes represent the case of weak or one-way coupling with gas
motion forcing the structural response of the pipe but relatively little or no gas mo-
tion is caused by the piping structural deformation. There is an extensive discussion
of this case in Shepherd (2009) and a few representative cases are presented in this
review to illustrate the features of the weak coupling case.Liquid-filled thin-wall
tubes represent the case of strong or two-way coupling in which the fluid motion
and structural response of the pipe must be treated simultaneously. We focus almost
exclusively on the strong coupling case in the present review.

One motivation for experiments on fluid-filled tubes is the study of fluid-structure
interaction in a regime that is relevant to underwater explosions. In our laboratory,
we have being doing this through variations on the experiment shown in Fig. 1. A
metal projectile impacts on the surface of water filling a thin-wall tube. The pro-
jectile impact creates a coupled stress wave propagating inthe tube and water, as
well as a reflected stress wave in the impactor. Subsequent reverberations of the
stress wave in the impactor and expansions transmitted intothe water results in a
sharp stress wave front followed by a rapid (exponential) decay of pressure behind
the front (Skews et al., 2004, Deshpande et al., 2006, Espinosa et al., 2006). Ex-
periments using piston impact on a water-filled tube have been used extensively in
studying the tensile strength of water (Trevena, 1987), metal forming of solids (Kos-
ing and Skews, 1998, Skews et al., 2004), and as an underwatershock simulator (see
the extensive review in Chap. 2 of Kedrinsky, 2005), most recently by Deshpande
et al. (2006), Espinosa et al. (2006). However, in our studies we have focused on
the dynamics of the tube deformation itself as a method of exploring fluid-structure
interactions.
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Fig. 1 Stress wave generation by piston impact on fluid inside a tube.

In this review, we report on the results of dynamics experiments of the type shown
in Fig. 1 with different tubing materials, thicknesses, andvarious loading ampli-
tudes. We begin by presenting the simplest theory of waves influid-filled tubes and
use this to identify a fluid-solid coupling parameter. Following this, we describe
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more sophisticated models and the regimes corresponding tothe various values of
the coupling parameter. Experimental results are presented for a number of different
cases in each of the regimes.

2 Korteweg Model of Wave Propagation

Classical water hammer theory (Skalak, 1956, Tijsseling, 1996, Wiggert and Tijs-
seling, 2001) considers the coupling of the motion of an elastic pipe or tube with
acoustic waves propagating in the water within the pipe. Various levels of theoretical
treatment are possible (see Junger and Feit, 1986, Howe, 1998, for the foundations
of fluid-structure interaction) but the key physical effects can be predicted by the
very simple model proposed by Korteweg (1878) and confirmed experimentally by
Joukowsky (1900) (see the historical review in Tijsseling,1996) in which the pres-
sures generated by the acoustic waves in the water are balanced by static stress in
the surrounding pipe, considering purely elastic radial deflection uncoupled from
the longitudinal motion.

The Korteweg model reproduces the essential features of classical water hammer
experiments with minimal assumptions. The fluid in the tube is compressible with a
densityρ f and sound speedaf , and the motions in the fluid are treated as quasi-one
dimensional. The equations of motion of the fluid (Lighthill, 1978) are continuity
(mass conservation)

∂
∂ t

(ρA)+
∂
∂x

(ρuA) = 0 , (1)

ρ
∂u
∂ t

+ρu
∂u
∂x

=−
∂P
∂x

, (2)

whereρ is the fluid density, u is the fluid velocity,A is the cross-sectional area of the
tube, andP is the pressure. For small amplitude motions, we can consider pressure
and density to be only slightly different from the at-rest values,

P′ = P−Po ≪ Po , (3)

ρ ′ = ρ −ρo ≪ ρo . (4)

The tube area changes are relatively small,

A′ = A−Ao ≪ Ao , (5)

and the velocity u is of the same order as these perturbations. Assuming isentropic
motion, the pressure and density perturbations are relatedby

P′ = a2
f ρ

′ , (6)
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where the sound speed for the fluid is

a2
f =

(
∂P
∂ρ

)

s
. (7)

Expanding the equations of motion (1 and 2), we obtain the pair of linear equations,

∂
∂ t

(ρA)+ρoAo
∂u
∂x

= 0 , (8)

ρo
∂u
∂ t

=−
∂P′

∂x
. (9)

Cross-differentiating w.r.t. time and distance, and eliminating velocity, we can write
this as

∂ 2P′

∂x2 =
1
Ao

∂ 2

∂ t2 (ρA) . (10)

In order to complete the model, the tube area must be determined as function
of space and timeA(x, t). In general, this requires considering the dynamics of the
motion of the tube (Skalak, 1956). The Korteweg approximation is to neglect the
inertia and bending stiffness of the tube wall and only consider a force balance in
the hoop (θ ) direction

σθ =
R
h

P′ , (11)

whereσθ is the hoop stress,h is the wall thickness, andR is the mean tube radius. In
general, the hoop stress will be a function of all componentsof the strain in the tube
wall and depend on the radial location. However, if we use thesimple membrane
model of hoop stress for a cylinder and neglect longitudinalcontributions, the hoop
strain and stress will be related by

εθ =
σθ
E

, (12)

whereE is the Young’s modulus of the tube wall material and the hoop strain can
be computed from the change in mean radius as

εθ =
R′

Ro
, (13)

=
1
2

A′

Ao
. (14)

The pressure and area changes are then uniquely related
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A′ = Ao
2R
h

P′

E
. (15)

A generalization of this idea is to take the area of the tube asa function of pressure
perturbation only, then

A= A(P′) , (16)

and we can write the perturbation equation (10) as a linear wave equation with a
wave speed that depends both on the fluid compressibility andtube extensibility.

Korteweg equation:

∂ 2P′

∂x2 =
1
c2

∂ 2P′

∂ t2 . (17)

Wave speed:

c−2 =
1
Ao

∂
∂P′

(ρA) , (18)

=
∂ρ
∂P′

+
ρ
Ao

∂A
∂P′

. (19)

The first term in (19) represents the response of the fluid to pressure changes
and can be interpreted in terms of the fluid sound speed (7) andthe second term
represents the response of the tube to pressure changes. Using the simple model of
a static hoop stress balance (15), we obtain the classical formula for wave speed in
elastic pipes,

c−2 = a−2
f +ρo

2R
Eh

, (20)

which was first derived by Korteweg in 1878. The coupling between the tube and
fluid can be more clearly seen by writing the wave speed as

c= af

[

1+

(

a2
f

a2
s

)(
ρ f

ρs

)(
2R
h

)]−1/2

, (21)

where the bar sound speed (Kolsky, 1963) for the tube material is

as =

√

E
ρs

, (22)
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andρs is the density of the solid making up the tube. The speed of sound in the fluid
af is often expressed in terms of the fluid bulk modulusK f ,

K f =−υ
(

∂P
∂υ

)

s
, af =

√

K f

ρ f
. (23)

The wave equation (17) is an approximation to the governing equations for the mo-
tion of a fluid-filled, thin-wall tube. More general considerations (Skalak, 1956,
Fuller and Fahy, 1982, Pinnington, 1997) with fewer approximations result in a
coupled system of fourth-order equations for radial and longitudinal motion of the
tube considered as a shell and acoustic oscillations in the fluid, discussed in the next
section. There are four types of axisymmetric modes: a longitudinal motion in the
shell, a coupled radial-acoustic motion (Korteweg waves) that correspond to (17),
and two shell bending modes. The individual modes of shell oscillation and acoustic
motion in the fluid are transformed in a set of coupled modes (Del Grosso, 1971,
Sinha et al., 1992, Lafleur and Shields, 1995), the precise nature of these depends on
the extent of fluid-solid coupling as discussed below. Only one of these modes, the
Korteweg waves, is described by the present model (17). Properties relevant to the
evaluation of the fluid-solid coupling are given in Table 1. The three terms identified

Table 1 Properties relevant to fluid-structure interaction for some representative materials.

Solids

material E ρs as

(GPa) (kg⋅m−3) (m/s)

steel 200 7.8×103 5000
aluminum 69 2.7×103 5100
PMMA 3.3 1.2×103 *
Polycarbonate 2.6 1.25×103 *
glass 96 2.6×103 6080
GFRP 5–80 1.4-2.2×103 *
CFRP 5–400 1.5×103 *

Fluids

material K f ρ f af

(GPa) (kg⋅m−3) (m/s)

water 2.2 1.0×103 1482
mercury 28.2 13.45×103 1450
air 0.14 MPa 1.2 343
* Polymers are viscoelastic and composites are highly
anisotropic so that there is no single well-defined bar speedfor
these cases.
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in (21) are nondimensional ratios that form a single non-dimensional parameterβ
that determines the extent of fluid-solid coupling in this geometry. This parameter
has been termed the “fluid loading” by Pinnington (1997) and the value plays a cen-
tral role in the study of acoustic waves (Fuller and Fahy, 1982, Sinha et al., 1992) in
fluid-filled tubes.

Korteweg wave speed:

c=
af

√

1+β
.

The contributions to the coupling parameter

β =

(

a2
f

a2
s

)

︸ ︷︷ ︸

I

(
ρ f

ρs

)

︸ ︷︷ ︸

II

(
2R
h

)

︸ ︷︷ ︸

III

,

are:

I : longitudinal sound speed ratio, (24)

II : density ratio, (25)

III : geometric factor. (26)

Note that unlike the classical problem, treated by Taylor (1941) and Kennard
(1944), of underwater shock waves reflecting from deformingplates (the origi-
nal studies are given by the wartime reports in ONR 1950 and are described by
Cole 1965, see also the discussions in Xue and Hutchinson, 2004, Rajendran and
Narasimhan, 2006), this parameter does not include the characteristic unloading
time of the load, i.e., decay time of the blast wave. Althoughthe parameterβ does
indeed play the key role in determining the primary wave speed, we know from pre-
vious work (Beltman et al., 1999, Beltman and Shepherd, 2002, Chao and Shepherd,
2005b,a) on shock and detonation waves that other factors are relevant to determin-
ing the peak tube deformation. For example, nondimensionalparameters that we
will need to consider include:

1. ratio of unloading time to the hoop period of the tube radial oscillations;
2. ratio of the shock or detonation front speed to the group velocity of flexural

waves;
3. ratio of peak induced stress to the yield stress in the solid;

For now, we will set consideration of these factors aside andjust examine the role
of β in fluid-structure interaction. The size of the ratios making upβ can be readily
computed using the properties of some representative tube materials and fluids given
in Table 1. The results are given in Table 2 for two cases: 1) thin-wall tubes typical
of most of our laboratory experiments so far; 2) thick-wall tubes that have been used
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in a few of our tests. We have considered three fluids and four materials although it
is not necessary to compute all combinations to appreciate the range of fluid-solid
coupling that will exist. The theory is valid only in the limit that the tube can be
treated as a shell so that the values computed for the thick-tube case are not expected
to be accurate and are only given to indicate the range of fluid-solid coupling that
we could anticipate in these cases. As expected, we observe that fluid-solid coupling
is maximized for the thin tubes with stiff fluids and minimized for thick-tubes with
highly compressible fluids. The case of air within any of the tubes is representative
of the case of internal shock or detonation loading (Shepherd, 2009) and is clearly
weakly coupled so that the Korteweg waves travel at the gas sound speed for small
amplitude waves. For large amplitudes, the Korteweg waves travel with the shock
or detonation velocity as discussed in Shepherd (2009).

Table 2 Fluid-solid coupling parameters and Korteweg wave speed for representative thick and
thin wall cases.

Combination β Wave speed
(m/s)

Thin tube, h = 0.89mm, D = 38.5mm

water-steel 0.48 1220
water-glass 0.99 1050
water-aluminum 1.4 961
water-PMMA 29. 271

mercury-steel 6.1 544
mercury-aluminum 17 335
mercury-PMMA 370 75

air-steel 3.0×10−5 343

Thick tube, h = 25mm, D = 100 mm

water-steel 0.044 1450
water-glass 0.092 1418
water-aluminum 0.13 1396
water-PMMA 2.7 774

mercury-steel 0.56 1159
mercury-aluminum 1.6 893
mercury-PMMA 34 244

air-steel 2.8×10−6 343
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3 Limiting Cases of FSI

There are some obvious limiting cases that lead to simplifications when there are
extreme values of the coupling parameterβ which can be rewritten as

β =
ρ f a2

f

ρsa2
s
×

2R
h

=
K f

E
×

2R
h

.

3.1 Thick, stiff tubeβ ≪ 1

If the tube wall is sufficiently thick and/or stiff,

ρsa
2
sh≫ 2Rρ f a

2
f ,

then motion of the tube wall does not influence the wave propagation speed which
is just the value of the sound speedaf in the fluid for weak waves or the wave front
(shock or detonation) speed U for large amplitude waves.

Wave speed forβ ≪ 1:
Weak waves,

c≈ af .

Shock or detonation waves,
c= U .

In this regime, the motion of the fluid can be computed as though the tube is rigid
and the motion of the tube estimated by applying the computedpressures within the
fluid as boundary conditions to the solid. This is the situation of a shock wave in air
or gaseous detonation inside a metal tube, see the discussions in Beltman and Shep-
herd (2002), Beltman et al. (1999). As long as the tube thickness to diameter ratio
exceeds 10−2, i.e., wall thickness is at least 1% of the diameter, then theparameter
β ≤ 10−2. This is satisfied for all commercial pipe and tubing components. It is
possible to consider the tube to be rigid for the purposes of computing the shock or
detonation wave motion allowing very simplified (one-dimensional) models of the
pressure waves in the gas to be employed (Beltman and Shepherd, 2002, Beltman
et al., 1999). In these cases, the deformations of the tube are usually confined to
the elastic regime and the failure mode is due to cracks initiating at flaws in the
tube wall, see Chao and Shepherd (2005a, 2004). It is also possible to obtain plas-
tic deformation for extremely thin-walled, low-strength tubes and high detonation
pressures (Shepherd, 2009). Fluid-structure coupling could be significant for these
cases and this is a subject of active investigation in our laboratory.
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If we approximate the structural dynamics of the tube as a thin shell (Tang, 1965),
the motion of the shell is forced by the difference in pressure ∆P(x, t) between
the interior and exterior of the tube but otherwise the fluid and solid motions are
uncoupled (see the discussion in Beltman and Shepherd, 2002).

Shell model:

∂Nxx

∂x
= ρh

∂ 2u
∂ t2 ,

∂Mxx

∂x
−Qx = ρh3 ∂ 2ψ

∂ t2 ,

∂Qx

∂x
−

Nθθ
R

+∆P= ρh
∂ 2w
∂ t2 . (27)

For elastic motions, the stress resultantsNxx, Nθθ , Mxx andQx are defined as:

Nxx =
Eh

1−ν2

[
∂u
∂x

+ν
w
R

]

, Mxx =
Eh3

12(1−ν2)

∂ψ
∂x

,

Nθθ =
Eh

1−ν2

[

ν
∂u
∂x

+
w
R
,

]

, Qx = κGh

[

ψ +
∂w
∂x

]

, (28)

whereu is the axial displacement,w is the radial displacement,R is the mean
shell radius,h is the shell thickness,t refers to time,ρ is the density of the
shell material,ν is Poisson’s ratio,E is Young’s modulus,∆P is the difference
between the internal and external pressure,ψ is the rotation andκ is the shear
correction factor. This particular model was used by Tang (1965) and includes
terms that model the effects of shear deformation and rotaryinertia. Many
other versions of shell models are available and with various approximations,
have been applied to fluid-structure interaction.

Obtaining the thick-wall limit with a liquid-filled tube requires a substantially
stiffer and thicker-walled confining tube than for gas-filled tubes. For example, with
water inside a steel tube, the simple theory predicts that the required ratio of thick-
ness to diameter should be one, i.e., wall thickness equal tothe diameter, for the
parameterβ ≤ 10−2. The approximations of a thin-wall tube is clearly no longer
valid for these values and more realistic elastic models of the tube wall are required.
This limit is not reached for standard sizes of commercial pipes and therefore the
tube-wall motion is significant in determining the wave propagation. This situation
is typical of water hammer problems and it is well known even from the earliest
studies of Korteweg and Joukowsky that it is essential to include tube elasticity.

If we neglect the effects of axial stress, bending or rotary inertia and assume that
the shell can be treated as a membrane, then the motion is purely radial motion if
the loading is axisymmetric. The equation of motion will be

ρh
∂ 2w
∂ t2 +

Nθθ
R

= ∆P(t) . (29)
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For elastic motions, the stress resultant is

Nθθ =
Eh

1−ν2

w
R
, (30)

and the equation of motion is that of a forced simple harmonicoscillator, which is
referred to as a single-degree-of-freedom model in the structural response commu-
nity. The natural frequency of oscillation is given by the fundamental mode of radial
or “hoop” motion.

Single degree of freedom model:

∂ 2w
∂ t2 +ω2

hw=
∆P(t)

ρh
. (31)

Natural frequency:

ωh =
1
R

√

E
ρ(1−ν2)

, fh =
ωh

2π
. (32)

The single degree of freedom model is quite limited since theneglect of bending
stresses effectively makes each shell element independent. Including bending while
still neglecting transverse shear and rotary inertia leadsto the following model equa-
tion (Bhuta, 1963, Simkins, 1995), which is equivalent to that of an Euler-Bernoulli
beam on an elastic foundation with a traveling load, a model that has been exten-
sively studied in many different contexts such as the loading created by the motion
of trains or rocket sleds (Kenney, 1954).

Simplified flexural wave model:

Eh2

12ρ(1−ν2)

∂ 4w
∂x4 +

∂ 2w
∂ t2 +ω2

ow=
∆P(x, t)

ρh
, (33)

where the frequencyωo is

ωo =
1
R

√

E
ρ
. (34)

Steady traveling wave solutions on a long tube (Bhuta, 1963,Simkins, 1995)
show a resonance when the traveling load moves at a critical propagation
speed

Vc =

√

Eh

ρR
√

3(1−ν2)
. (35)
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This resonance has been observed in diverse traveling load situations such as
gun tubes (Simkins et al., 1993), shock waves (Beltman et al., 1999), and detona-
tion waves (Beltman and Shepherd, 2002). Although quite simplified, the essential
features of dispersive waves and a critical speed are captured by this model.

3.2 Coupled fluid motion and tube deformation,β = O(1)

In the coupled situation, the fluid motion must be simultaneously considered with
the motion of the tube. The motions are coupled together at the boundary between
the tube material (solid) and the fluid inside the tube. For realistic fluids, this means
that the fluid sticks to the boundary, and as long as the tube isintact, does not pen-
etrate the boundary.1 In addition, the tangential (shear) and normal stresses at the
boundary must be continuous so that the traction forces on the boundary of the solid
are equal to the surface forces obtained by evaluating the fluid stress tensor at that
location. A common simplification is to treat the fluid as inviscid and allow slip
along the tube interior surface with vanishing shear stressin the fluid. For simple
boundary shapes and small amplitude motion, the coupling can be implemented an-
alytically by linearizing the location of the boundary. Forcomplex boundary shapes
and large amplitude motions, numerical methods (see the discussion in Arienti et al.,
2003) are needed to define the boundary location and couple the fluid and solid sim-
ulations.

A special case of coupled motion is small amplitude or acoustic waves in the
fluid and elastic vibrations of the solid. This situation hasbeen extensively con-
sidered in the context of underwater sound (Junger and Feit,1986), aeroelasticity
and aerodynamically generated sound (Howe, 1998). In a stationary, homogeneous,
ideal (inviscid) fluid, the flow can be derived from a velocitypotentialφ that sat-
isfies the wave equation. For axisymmetric situations, the flow is two dimensional
(x, r) and there are only two velocity components(u,v).

Fluid acoustics:

1 A complication that is observed in the present tests is cavitation (Trevena, 1987), the generation
of cavities or bubbles when tension (negative pressure) occurs due to wave interactions in a liquid-
filled tube. This can result in the separation of tube interior wall from the liquid as well as interior
cavities. Although of great importance in water hammer (Wylie and Streeter, 1993, Watters, 1984)
and underwater explosions (Kedrinsky, 2005), we have omitted discussion of that aspect of FSI
from this review.
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P′ = P−Po =−ρo
∂φ
∂ t

, (36)

ρ ′ = ρ −ρo = P′/a2
o , (37)

u = (u,v) , (38)

= ∇φ , (39)

∇2φ −
1
a2

o

∂ 2φ
∂ t2 = 0 . (40)

Consistent with the inviscid character of acoustic motion,the fluid-solid coupling
is reduced to akinematic conditionthat enforces the continuity of normal velocity
at the fluid-solid boundary but allows the tangential velocities to differ orslip. The
coupling occurs at the inner wall of the tube,r = R(t), but this is usually linearized to
be the nominal fixed radial locationr = Ro in acoustic analysis used in combination
with the shell treatment of the tube.

Fluid-Solid Coupling:

∂w
∂ t

= v(x, r = Ro, t) , (41)

=
∂φ
∂ r

∣
∣
∣
∣
r=Ro

. (42)

For an inviscid fluid model, only the normal component of the stress is contin-
uous at the fluid-solid boundary so the normal stress in the solid is balanced
by the pressure in the fluid. For the shell model and the acoustic solution for
fluid, this condition specifies the loading which is the driving force in the shell
radial motion equation.

∆P= P′(x, r = Ro, t) , (43)

= −ρo
∂φ
∂ t

∣
∣
∣
∣
r=Ro

. (44)

Skalak (1956) first solved the complete axisymmetric model for shell vibrations
coupled to acoustics through these relationships. The shell model he used was a
variation on (27) and the acoustic solution considered bothradial and longitudinal
modes. The shell model was reduced to pair of partial differential equations (fourth-
order in space, second order in time) for radial and axial displacements. These two
equations are coupled through the Poisson effect so that both axial and hoop strains
are produced in an initial value problem that simulates projectile impact or water
hammer. Skalak predicted that there are two principal sets of waves that can be
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observed. A weak axial strain wave precursor moving at the bar speed runs ahead
of the main pressure and hoop strain disturbances, which aremoving at close to
the Korteweg speed. Skalak gives an approximate analytic solution to an initial-
value problem similar to projectile impact but the expressions are quite complex
and almost all subsequent research on water hammer has used either the simplified
version of his model (discussed subsequently) or numericalsimulations of the full
equations.

3.2.1 Simplified FSI models

In his 1956 paper, Skalak introduced a simpler model that is more realistic than the
Korteweg model but less complex than the full coupled 2-D shell-acoustic model.
This “four-equation” model has been successfully applied (Tijsseling, 1996, 2003,
2007) to a number of water hammer problems, demonstrating reasonable agreement
with measured pressures and strains. The model is a straightforward extension of the
Korteweg model to include axial wave propagation and Poisson coupling between
radial and axial deformation. The fluid modeling assumptions are identical to the
Korteweg model, neglecting bending stresses, shear effects, rotary and radial inertia.
The fluid equations are identical to (8) and (9) and the acoustic approximation is
used to relate pressure and density changes in the fluid. The area change is computed
in terms of the change in tube radius, which is equivalent to the coupling relationship
(41),

1
A

dA
dt

=
2
R

∂w
∂ t

. (45)

The governing equation set reduces to two equations for the axial fluid motion, one
wave equation for axial tube motion and the static force balance for the radial motion
of the tube. The variables are only a function of axial distancex and timet for the
simplified model, and the equations are hyperbolic, enabling solutions by standard
wave propagation techniques such as the method of characteristics (Wiggert et al.,
1987, Li et al., 2003) or Godunov (Gale and Tiselj, 2008) methods.

The “Four-Equation” Model :

1

a2
f

∂P′

∂ t
+ρo

∂u
∂x

+ρo
2
R

∂w
∂ t

= 0 , (46)

ρo
∂u
∂ t

=−
∂P′

∂x
, (47)

∂Nxx

∂x
= ρh

∂ 2u
∂ t2 , (48)

Nθθ
R

= P′ . (49)
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Skalak explored the consequences of this model and showed that the equation
set admits steady traveling waves with two eigen-speedsc1 and c2 that coincide
with the principal speeds of the full model. The higher speedc2 is approximately
the speed of axial waves in the tube wall

√

E/ρs(1−ν2) and the lower speedc1 is
approximately the Korteweg wave speed given by (21). In addition, the amplitude
of the deformations and fluid velocities (relative to the fluid pressure) are the same
in the reduced and full models. In particular, the peak pressure and fluid velocity in
a steadily traveling wave of speedc are related by

P′ = ρcu′ , (50)

which is an extension of usual acoustic relation for fluidsP′ = ρaf u′.
One key difference is that the full model is dispersive and sharp wave fronts will

spread out with time (Tijsseling et al., 2008) whereas in thereduced model, the
fronts remain sharp. The main physical effect responsible for dispersion is radial
inertia with bending stiffness playing a secondary role.

3.3 Thin, flexible tubeβ ≫ 1

If the tube wall is sufficiently flexible then the compressibility of the fluid is negli-
gible compared to the effective compressibility due to the extension of the tube. In
this limit, the propagation speed is determined solely by the inertia of the fluid and
the elastic properties of the tube,

c≈

√

Ao

ρ f

∂P′

∂A
, (51)

which can be simplified using the relationship (15)

c≈

√

E
ρ f

h
2R

. (52)

In the field of arterial wave mechanics (Parker, 2009), relationship (52) is gener-
ally known as the Moen-Korteweg equation. For thin tubes, this speed is quite a bit
lower than the bar speed (22) or thin-tube axial wave speed since

c≈ ab

√

ρs

ρ f

h
2R

. (53)

This is the limit often considered in connection with flow in blood vessels and peri-
staltic pumping in the intestinal tract (Grotberg and Jensen, 2004). This propagation
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of extension waves in the arteries is responsible for the phenomenon of “pulse”
that is used to sense the frequency of the heart beat. The pressure pulse generated
by the pumping of blood into the aorta from the heart creates apropagating wave
that moves with a speed on the order of 3-6 m/s near the heart and further away,
as the arteries become smaller, the speed increases up to 15-35 m/s. In the case of
the venous system, the effect of external pressure can lead to the phenomenon of
“collapse” which will restrict the flow of blood. The collapse of a flexible, fluid-
filled tube is a type of buckling instability and leads to a highly non-circular tube
cross-section and a nonlinear relationship between pressure and area.

Beam (1968) carried out a novel analysis of the incompressible fluid limit using a
Lagrangian formulation of the dynamics and considering large amplitude deforma-
tion of the tube wall. Treating the motion as fully nonlinear, Beam was able to deter-
mine conditions under which compression waves would steepen to form shock-like
disturbances in the pressure pulses within the arteries. Heformulated the hypothesis
that these shock waves were the origin of the high-frequencyKorotkoff sounds that
are the basis of indirect blood pressure measurement (sphygmomanometer) using a
pressurized cuff and a stethoscope.

4 Experimental Results

Impulsively excited wave propagation in fluid-filled tubes has been studied for shock
and detonation waves inside metal tubes filled with gas or water. These studies have
examined both the elastic and plastic deformation in the tubes. We have selected
several examples to illustrate the cases of smallβ ≪ 1, moderateβ ∼ 1, and large
β ≫ 1, fluid-solid coupling. .

4.1 Small coupling

This is the case of a detonation or shock wave in a gas within a thin-wall metal tube.
The value ofβ is small (less than 10−3) and there is minimal fluid-solid coupling
in the sense discussed above. An ideal detonation wave propagates with a constant
speed, the Chapman-Jouguet (CJ) velocity and there is a rapid pressure increase
across the wave followed by a decay to a constant value. An ideal shock wave load-
ing would be in the form of a constant velocity wave followed by a constant pressure.
The pressure behind the wave front is imposed in an axially-symmetric fashion on
the tube wall and excites oscillatory deflections in the tubewall. Due to the lack
of coupling between fluid and solid motion, there is essentially no influence of the
tube motion on detonation wave speed or flow behind the detonation. Therefore, the
effect of an internal shock or detonation wave on the tube is to provide a traveling
or moving load applied at the interior tube surface in the radially outward direction.
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The problem of a traveling internal load on a tube has been extensively examined
(see Beltman et al., 1999, Beltman and Shepherd, 2002) and inthe simplest formu-
lation is equivalent to a traveling load imposed on a beam supported by an elastic
foundation. Considering the tube as a thin-shell, there arefour axisymmetric modes
of tube motion (Tang, 1965) that are generated in this case. In order of increasing
wave speed, these are the flexural waves, shear waves, bar waves, and longitudinal
waves. The flexural wave exhibits the largest amplitude of tube hoop strain and is the
most significant of all of these modes. Flexural waves, like other structural modes,
do not have a well-defined wave speed but are dispersive and the main wave front
moves at a phase velocity that is equal to the speed of the loading front (shock or
detonation wave speed). For weak shock waves, this is the acoustic speed in the gas
so that the flexural wave corresponds to theβ → 0 limit of the Korteweg wave mode
of acoustic disturbances. For strong shock waves or detonations, the wave speed in
gas may significantly exceed the gas acoustic speed and this may excite very strong
deflections in the tube for certain speed ranges. In particular, there is a pronounced
resonance (Beltman et al., 1999, Beltman and Shepherd, 2002, Chao and Shepherd,
2005b) when the phase speed is equal to the group velocity andlarge amplitude
hoop strain oscillations can be observed in this situation.

For a given pressure behind the gas wave, the maximum hoop strain is a func-
tion of the wave speed relative to the critical speed or groupvelocity of the flexural
waves. Chao and Shepherd (2005b) examined the possibility of additional resonance
at the modified shear wave speed in the shell but did not observe any amplifica-
tions of hoop strains in this speed range in agreement with the Tang model and
finite element simulations. Amplification of the shear strains is predicted (Chao and
Shepherd, 2005b) but the effect is modest in comparison withthe flexural wave res-
onance. Additional resonances at even higher speeds, in therange between the bulk
sound speed and dilatation speed, are observed in finite element numerical simula-
tions by Lewis and Nechitailo (2007). It will be difficult to experimentally observe
these effects in gases with metal tubes but it may be possiblein plastic tubes with
the additional complication of viscoelastic behavior.

4.2 Elastic motions

Fig. 2a shows gaseous detonation pressure histories measured at intervals of 127
mm along the axis of a steel tube 1.25 m long and 127 mm inside diameter with
a 12.7 mm thick wall, (see Liang et al., 2006a, for details). Fig.2b shows the hoop
strain histories at the corresponding axial locations. Comparing the two plots, we
can see that the main flexural wave front moves at the speed of the detonation front,
about 2090 m/s. A small amplitude precursor can be observed moving ahead of the
main wave front, the leading edge of the precursor travels atabout 5000 m/s, close
to the bar wave speed in the tube. The hoop strain oscillations have a frequency of
fh = 17.5 kHz, which corresponds to the hoop or breathing mode associated with a
purely radial motion. The amplitude modulation of the hoop oscillations is mainly
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to the superposition of oscillations created by the incident detonation and reflected
shock wave with additional disturbances created by the welded-on pressure gage
ports. The tube is stiff and the peak pressures are relatively modest so that the peak
strains are less than 250µstrain (ε ≤ .00025) and all motion is purely in the elastic
regime. A more ideal response can be obtained by carrying outtests with a section
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Fig. 2 Elastic structural response of a steel tube to a gaseous detonation. a) pressure histories. b)
strain histories (bonded strain gages) (Liang et al., 2006a).

of tube with a uniform cross-section and carefully-controlled boundary conditions
(Shepherd et al., 2008, Liang et al., 2006b). Nearly sinusoidal oscillations in radial
deflection with constant amplitude can be observed in Fig. 3.The specimen tube
is 6061T6 aluminum, the same type used as in previous studies. Outer diameter is
41.28 mm (1.625 in). The thickness of the tube is nominally 0.89 mm (0.035 in) but
actual dimensions vary by +/- 10% due to the manufacturing technique. The tube
was held by collets spaced 420 mm apart and the measuring location was halfway
between the collets.

4.3 Plastic motions

If the tube wall is sufficiently thin and the shock or detonation pressure sufficiently
high, plastic deformation of the tube will occur (Smith, 1986, 1990). When this
happens, the radial deflection of the tube is dominated by theresulting permanent
deformation and the oscillations that are so prominent in the elastic case are negligi-
ble compared to the plastic deformation. Fig. 4 shows a set ofhoop strain histories
measurements for the same internal dimensions as shown previous, 1.24 m long tube
and 127 mm inner diameter, but with a wall thickness of 1.5 mm.The detonation
wave occurred in a stoichiometric methane-oxygen mixture at an initial pressure of
0.35 MPa (Pintgen and Shepherd, 2006).

Because of these differences, the peak strains in this case are almost 100 times
larger than in the elastic case shown previously. The steel is a mild carbon steel
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Fig. 3 Elastic structural response of a thin-wall aluminum tube toa gaseous detonation as mea-
sured by a optical displacement interferometer (Shepherd et al., 2008).

(C1010) which exhibits significant work hardening and strain rate effects that must
be considered in order to predict the extent of the deformation. Very rapid changes
in deformation are created by both the incident detonation and reflected shock wave.
The reflected shock decays rapidly as it moves away from the reflecting end so that
two distinct waves are particularly visible for the gage at 1.13 m. The rate of change
of the tube radius is limited primarily by inertia and on the time scale shown, the
rise time is relatively short so that the waves appear nearlyas a step change (“plastic
shock wave”). If there is sufficient deformation to reach thetensile limit, rupture
and fragmentation can occur. Rupture due to gaseous detonation can occur under
extreme loading conditions that are created by transition from deflagrations (flames)
to the detonation mode of combustion (Shepherd, 2009). The related process of
crack propagation from pre-existing flaws has been studied for detonation loading
in a series of experiments by Chao (2004).

4.4 High Explosives

There has also been a substantial amount of research, for example, by Duffey and
Mitchell (1973), Benham and Duffey (1974), Hodge (1956), Duffey (1971), Duf-
fey and Krieg (1969), Fanous and Greiman (1988) and others cited in the review
by Florek and Benaroya (2005), on the plastic response of tubes to high explosives.
This is of great practical interest for confining explosions(Rodriguez and Duffey,
2004, Duffey et al., 2002) for purposes of testing or transporting explosive materi-
als. However, these situations typically involve concentrated energy releases and do
not result in propagating deformation waves. A single bulgein the tube is typically
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measured by bonded strain gages. The short data lines at the left side of the figure indicate the final
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created by the explosion unless the energy release is sufficient to fracture the tube.
For high explosives in air-filled tubes, it is possible to predict the final deforma-
tion using approximate equations of motion when strain rateand strain hardening
effects are taken into account. Similar experiments in water-filled tubes (Sandusky
et al., 1999, Chambers et al., 2001) have been carried out to provide data on wall
motion and internal pressure that can be used to validate simulations of underwater
explosions (Wardlaw and Luton, 2000). Plastic deformations as large as 20% were
recorded in the middle portion of a 100 mm diameter aluminum (type 5086) tube
with a 5.35 mm wall thickness.

5 Moderate coupling

Experiments have been carried out at CIT (Inaba and Shepherd, 2008a,b) to create
impact-generated stress waves in a water-filled tube using the configuration shown
in Fig. 1. A 700 g steel projectile was accelerated by compressed air through a 1.5
m long barrel and impacted a polycarbonate buffer at the top of the tube. The pro-
jectile velocity and impact dynamics were recorded with high-speed photography.
The buffer accelerates impulsively as soon as it is impactedby the steel projectile,
decelerates to a stop in about 1 ms and reverses direction. The buffer is sealed to
the tube with two o-rings to prevent the water from squirtingthrough the small gap
between the buffer and tube.

A sharp pressure pulse (Fig. 5) is created by the initial impulse due to the impact
of the projectile followed by an approximately exponentialdecay in time of pressure
due to the expansion waves generated as the projectile slowsdown. An elementary
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theory of the pressure pulse generation mechanism is given in the Appendix. The
incident pressure wave propagates down the tube with the Korteweg wave speed,
reflects from the bottom closure of the tube with an increase in amplitude, then
propagates back up to the buffer. When the compression wave reflects from the free
surface of the buffer, a tension wave is generated that propagates into the water
resulting in cavitation.
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Fig. 5 Pressure waves generated by projectile impact on a water-filled steel tube with a 12.5 mm
thick wall (Inaba and Shepherd, 2008a).

5.1 Elastic Waves

For sufficiently low projectile velocities and/or sufficiently thick tubes, the structural
deflections are elastic. Operating in this regime and using commercial metal tubes,
we can test the conventional models based on water-hammer theory. The pressure
waves in the fluid are accompanied by longitudinal (axial) and hoop strain waves
in the tube wall. To observe these waves, Inaba and Shepherd (2008a) used thin-
wall mild steel tubes (1020 type, 0.91 m long, 40 mm in diameter, 0.77 mm wall
thickness) instrumented with bonded strain gages at 10 cm intervals (Fig. 6). In
agreement with the theory of Skalak (1956), the bulk of strain (primary wave) is in
the hoop direction and traveling at the Korteweg speed in phase with the pressure
pulse. A small-amplitude longitudinal tension wave (precursor wave) propagates at
the thin-plate velocity

cp =

√

E
ρs(1−ν2)

, (54)
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ahead of the main disturbance. A much larger amplitude longitudinal compression
wave propagates in phase with the main hoop signal due to the Poisson effect. In
agreement with the linear theory, shown in Fig. 7, the precursor wave speeds are
independent of the impact velocity and peak strain amplitudes scale linearly with
impact speed. The effect of tube wall thickness on primary wave speed is in agree-
ment with either the thin- or thick-wall models but in order to accurately predict
hoop strain on the outside of the tube, the radial distribution of stress has to be taken
into account (Watters, 1984, Tijsseling, 2007).
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Fig. 6 Elastic deformation waves generated by projectile impact on thin-wall water-filled steel
tube (Inaba and Shepherd, 2008a); a) hoop strain, b) longitudinal strain.
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5.2 Plastic deformation

By using higher impact velocities, plastic deformation of the tube and in extreme
cases, rupture, can be observed. For example, (Inaba and Shepherd, 2008b) have
observed, Fig. 9, plastic deformations with peak hoop strains up to 0.4% in a thin-
wall aluminum (AL6061-T6) tube with a projectile velocity of 16 m/s. The tube was
seamless, had a nominal wall thickness of 0.86 mm, inner diameter of 39 mm, and
was∼0.9 m long. The incident wave front speed derived from Fig. 9 (a) is 946 m/s
which is close to the value of 960 m/s predicted by the classical Korteweg theory
(Table 2).

In the test shown in Fig. 9, the tube ruptured just above the closure at the bottom
of the tube. This is not surprising since the highest pressures and strains occur at this
location due to the interaction of the incident and reflectedwaves. The onset of tube
rupture is indicated by a sudden pressure decrease at 0.5 ms which propagates up
the tube as a pressure expansion wave and associated strain signals, Fig. 9a. Under
the conditions of the testing for this specimen, rupture didnot occur until after the
9th test and sufficient damage has accumulated to create a through wall crack. The
crack only propagated a limited distance (50 mm), Fig. 9b, before arresting due to
the loss of driving force associated with the flow of fluid out of the crack and rapid
depressurization of the tube.

The rupture behavior is very similar to what was previously observed (Chao and
Shepherd, 2004) in the rupture under static loading with hydraulic fluid of an iden-
tical tube specimen with a deliberate flaw used to initiate fracture. As discussed
by Chao and Shepherd (2004), the limited extent of the rupture under hydraulic as
compared to pneumatic (pressurized gas) loading is a consequence of two factors.
First, for a given pressure, a much smaller amount of energy per unit volume can
be stored in a compressed liquid than a gas. Second, with liquid pressurization the
crack driving force decreases below the critical level required to create new fracture
surfaces much more rapidly than for gaseous pressurization.
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Fig. 9 Deformation in plastic regime and rupture generated by projectile impact on a water-filled
aluminum tube (Inaba and Shepherd, 2008b). a) hoop strain and pressure histories and b) tube
rupture at the tube bottom. Impact speed 15.8 m/s, 50 mm rupture length.

Strains can be observed that are greatly in excess of the nominal elastic propor-
tional limit (ε = .002) in tests with more ductile tubes and higher projectile veloc-
ities. Using a new vertical gas gun facility we constructed in our laboratory at the
California Institute of Technology, we have carried out experiments with projectile
speeds up to 100 m/s. Hoop strain and pressure histories are shown in Fig. 10 for
a 65 m/s impact on a water-filled 1.59 mm thickness, 40.0 mm inner diameter, 0.9
m long mild steel tube. The precursor and primary wave velocities are 5219 and
1346 m/s, respectively. Despite the very large (up to 16%) permanent deformations
that occur in this test, the observed wave speeds are in reasonable agreement with
the Skalak (1956) model predictions of 5226 m/s and 1337 m/s.This good agree-
ment is apparently a consequence of the limited deformationthat takes place in the
precursor and primary waves, making the elastic assumptionof the Skalak model a
reasonable approximation.

A relatively long time is required to reach the ultimate plastic deformation as
compared to the initial elastic deformation waves. The situation appears to be very
similar to that of uniaxial stress waves in shock compression (see Ch. 3 of Meyers,
1994): An elastic precursor wave with an amplitude given by the proportional limit
travels at the elastic longitudinal wave speed in front of a lower speed plastic wave
with a continuous increase in strain (stress) up to the final level of permanent defor-
mation. In the case of the water-filled tube, Fig. 10b, significant attenuation of the
plastic wave is observed with increasing distance from the impact point. This occurs
in uniaxial shock compression testing due the attenuation of a following expansion
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wave. In the present case, we speculate that there are multiple factors including not
only the expansion wave but also the radial motion of the tubewall and the energy
absorption due to plastic work. Although the Korteweg theory can be naively ex-
tended to plastic deformation, the dispersive nature of theplastic deformation waves
suggests that radial motion, fluid and tube inertia effects may also be significant in
the plastic case and the simplifying assumptions of the Korteweg theory may not be
valid in the case of large plastic deformation.
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Fig. 10 Large plastic deformation generated by projectile impact on a water-filled steel tube. a)
hoop strain and pressure histories and b) bulge (16% maximumstrain) near the location of the
bottom of the buffer. The initial buffer speed following impact was 62.7 m/s.

5.3 Composite and Polymer tubes

The strain waves observed in metal tubes are relatively straightforward to interpret,
with distinct incident and reflected waves. The waves in composite and polymer
tubes are more complex. This is due to the anisotropic natureof the the roll-wrapped
and filament wound composite tubes that we have used in our tests as well as the
viscoelastic nature of the polymer tubes and matrix materials. Although many fea-
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tures in the strain waves are different, the results from composite and polymer tubes
do share a common feature with the metals of a distinct strainfront that propagates
with a speed much lower than either fluid or structural wave speeds. If we define
an effective modulus (Hull and Clyne, 1996, Spencer and Hull, 1978) for the hoop
response, the general ideas of the Korteweg theory still appear to be relevant and
useful for interpreting the results of experiments. As an example, consider the test
on a roll-wrapped carbon-fiber composite (CFC) tube shown inFig. 11. This tube
consisted of a longitudinal fiber core with a woven cloth over-wrap and vinylester
resin and has a 1.45 mm thickness wall, 38.2 mm inner diameter, and is 0.9 m long.
The speed of the strain wave front in Fig. 11a is 864 m/s, substantially lower than
observed in metals and consistent with the lower hoop stiffness for tubes with this
construction method.

For metal tubes, the longitudinal and hoop strains are strongly correlated and pos-
itive strains in the hoop direction result in negative longitudinal strain. The sign and
the magnitude (longitudinal strain is about -1/3 of the hoopstrain) is the expected
result based on the Poisson effect for an isotropic material. For the roll-wrapped
CFC tube, the longitudinal strain shown in Fig. 11b is a much smaller fraction of
the hoop strain (∼0.1) than for the aluminum tubes. This is due to the decoupling
of the longitudinal and hoop stress carrying ability since the majority of the carbon
fibers and load carrying capability are in the longitudinal direction for this tube.2
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Fig. 11 Strain waves generated by projectile impact on a water-filled roll-wrapped CFC tube.
a) hoop strain and pressure histories and b) hoop and longitudinal histories located at the same
distance from the tube top. The impact speed was 7.7 m/s.

As expected for this method of construction, the roll-wrapped tubes are relatively
weak in the hoop direction and failed under modest impact velocities, see Fig. 12.
Rupture occurred near the tube bottom and creates a distinctrelease wave in the

2 Recent testing with filament-wound CFC tubes show that the allocation of strain between hoop
and longitudinal directions is a systematic function of thewinding angle as expected from the
theory of Puck (see Greenwood, 1977) and quite different than in the roll-wrapped case.
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strain histories (Fig. 12). The rupture event is much more dramatic than in aluminum
since the failure in CFC is by a high-speed brittle fracture rather than the quickly-
arresting ductile rupture that is observed in the aluminum tubes. Rupture of the CFC
tube occurred on the first high impact speed test while the ductility of the aluminum
tube delayed rupture until the damage had accumulated from anumber of successive
impacts.

The roll-wrapped CFC tube rupture was in the form of a long, straight crack par-
allel to the tube axis and serendipitously intersected the longitudinal strain gages
so that the strain signals can be used to deduce the apparent crack tip speed to be
about 2000 m/s, These are much higher than typical crack tip speeds of 200-300
m/s observed (Chao and Shepherd, 2004, 2005a) in detonation-driven fracture of
aluminum. However, this value is actually quite a bit lower than crack tip velocities
of up to 7000 m/s that were observed by Coker and Rosakis (2001) in impact experi-
ments on mode I and II cracks in unidirectional graphite-epoxy composite plates. As
discussed in Chao and Shepherd (2004), the cracks in internally-pressurized tubes
initiate in Mode I since the major principal stress is in the hoop direction, perpen-
dicular to the initial crack tip motion. However, in thin ductile tubes, the plastic
deformation of the material adjacent to the crack quickly results in a transition to
mixed mode fracture (Chao and Shepherd, 2005a).
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Fig. 12 Hoop strain and pressure histories generated by projectileimpact on a water-filled roll-
wrapped CFC tube. This tube failed by fracture near the bottom just after reflection of the pressure
wave.



28 Joseph E. Shepherd and Kazuaki Inaba

The roll-wrapped CFC tubes always burst near the bottom boundary3 in the tests
with higher driver pressures while a filament-wound glass-reinforced plastic (GRP)
tube survived intact under these same conditions. The GRP tube has a 1.60 mm
thickness, 38.8 mm inner diameter, 0.9 m long with a winding angle of 40 degrees.
The hoop strain histories shown in Fig. 13 for the GRP tubes are similar to those
of the CFC tubes. Longitudinal strain histories shown in Fig. 13b for the GRP tube
are correlated to hoop strains similar to those in the Al tubes, in contrast to the
CFC tubes. The primary wave velocity measured for the hoop strain wave front is
904 m/s, similar to the speeds in the roll-wrapped CFC tubes.In Fig. 13b, peak hoop
strains greater than 0.7% were observed but residual strainnear the reflecting bound-
ary is still negligible after the experiment. The primary flexural wave velocities are
949 m/s, slightly faster than those in Fig. 13a.
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Fig. 13 Hoop and pressure histories generated by projectile impacton a water-filled GRP tube. a)
impact speed 6.8 m/s and b) impact speed 18.8 m/s.

The polycarbonate tube (PC) is more flexible and exhibits more significant fluid-
solid coupling than either metal or composite tubes. The PC tube we tested is a
transparent tube with a 6.4 mm thick-wall and a 38 mm inner diameter. Limited
results are available since the primary purpose of these tests were to visualize cavi-
tation. The primary wave propagates at 552 m/s, Fig. 14, muchslower than waves
in metal or composite tubes. The bar sound speed of the PC tubeis estimated to be
1386 m/s using a density of 1250 kg/m3 and Young’s modulus 2.4 GPa. The cou-
pling parameterβ deduced from the Kortweg model and observed primary wave
speed is 6.3, which implies an effective Young’s modulus of 2.4 GPa, in agreement
with the material properties despite the known viscoelastic nature of wave propaga-
tion in PC.

3 Recent testing with filament-wound CFC tubes show that rupture can occur either at the bottom
of the tube or at sufficiently high velocities, just below thebuffer. As expected, the filament-wound
tubes are much stronger under hoop loading than the roll-wrapped construction and the failure
mode is quite different.
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Fig. 14 Hoop and pressure histories generated by projectile impact(6.4 m/s) on a water-filled PC
tube.

Measured primary stress wave velocities for four materialsare summarized in
Fig. 15. There is no clear correlation of wave speed with impact velocity and given
the modest wave amplitudes, we expect to be in the linear regime with constant wave
speeds. There are no published theoretical treatments for general composite mate-
rials although (Pinnington, 1997) treats the related problems of a wire reinforced
hose. Based on the experimentally measured wave front speedof about 900 m/s for
elastic flexural waves in CFC and GRP tubes, the effective coupling parameter can
be computed using the simple Korteweg model to be about 1.81 and 1.75, respec-
tively. The tensile modulus of the carbon epoxy composite (CFC) is typically 140
GPa along the fiber direction while effective modulus derived from the present tests
is 33 GPa. This is consistent with a relatively low Young’s modulus in the hoop di-
rection of the roll-wrapped CFC material which is to be expected since the majority
of the carbon fibers are aligned in the longitudinal direction. According to (Watters,
1984), the elastic modulus for common GRP pipe is 27.6 GPa andis close to the
effective Young’s modulus derived from the present tests with the GRP tube (32
GPa).

6 Summary

Stress wave propagation in water-filled tubes provides a framework for studying
different aspects of fluid-solid coupling than the standardnormal shock impact on
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Fig. 15 Primary stress wave front speed as function of projectile speed. Al and mild steel (MS)
wave velocities are compared with the Korteweg theory.

underwater structures. There is already a substantial amount of analysis available
for the elastic motions that can be borrowed from the engineering problem of water
hammer. The key result of both analysis and experiments is that large amplitude
coupled solid stress waves and fluid pressure waves can be excited in a relatively
simple configuration. The solid motion is in the form of traveling waves that move
axially along the tube when the excitation is projectile impact on the water surface at
one end of the tube. The primary flexural waves propagate muchslower than either
the sound speed in water (1500 m/s) or tube bar speeds (Al 5100m/s, MS 5200 m/s,
CFC 9500 m/s, GRP 5300 m/s). This is due to the flexural motion in tube being
strongly coupled to compression wave in water. In the context of elastic motion, this
coupling is controlled by a single parameter that is a function of the tube stiffness,
fluid compressibility, and densities of the fluid and tube materials.

For tubes constructed of isotropic elastic materials, theories are available to pre-
dict the observed wave speeds and amplitudes. Using the simplest version of the
theory, due to Korteweg, the predicted primary wave speeds are 950 m/s for Al and
1200 m/s for mild steel, which are in good with our experimental results. More so-
phisticated models predict the presence of an axial strain wave precursor, which
we have also observed. Similar primary waves are also observed in tubes con-
structed from composite materials and the wave speeds are consistent with estimated
stiffness although there is limited theory for the composite cases. Plastic deforma-
tion and rupture have been observed in tests with modest projectile velocities (<
100 m/s), indicating the suitability of this configuration for examining the ultimate
strength and failure characteristics with this configuration of fluid-solid coupling.
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Appendix

The modeling of impact-generated pressure pulses and the approximate equation of
state used for water is described.

Pressure Pulse from Projectile Impact

In order to properly determine the pressure pulse in the fluidin the most general
situation, FSI must be properly included which requires simultaneously solving for
motion in the confining tube and the fluid. However, in the caseof a stiff tube,β →

0, we can neglect the FSI and just consider the one-dimensional wave mechanics in
the fluid and projectile.4 This means we can make use of ideas from the classical
treatments of shock wave generation and decay in solids, seeFowles (1960) and
Meyers (1994). The situation we consider is shown in Fig. 18.In our experiments,
a buffer is placed between the projectile and the fluid. The buffer-projectile and
buffer-fluid interfaces will create additional waves that may need to be accounted
for in order to make realistic predictions of the resulting pressure profile in the fluid.
However, the general features of the pressure pulse can be appreciated by analyzing
the simple situation of Fig. 16.

projectile

water

confining tube

Up

shock waves

Fig. 16 Generation of initial waves in projectile and fluid by impact.

4 Using the pressure-velocity relationship of (50) the analysis of the present section can readily be
extended to include FSI.
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The initial impact creates a shock wave with an amplitude determined by the
impact velocity and the acoustic impedancesρa of the projectile and fluid. The
pressure-velocity matching method (Meyers, 1994) can be used to construct the
solution by assuming simple waves in both fluid,

∆P= (ρa) f ∆u , (55)

and projectile,

∆P=−(ρa)p∆u . (56)

For the case of a steel projectile impacting water, the results are shown in Fig. 17.
The pressure amplitude∆P of the initial wave in the water is proportional to the
velocity of the projectile before impact,

∆P=
(ρa)p(ρa)w

(ρa)p+(ρa)w
Vp . (57)

As shown, the impedance of steel is much higher than that of water which leads to
the approximation,

∆P≈ (ρa)wVp . (58)

The projectile begins slowing down immediately after impact creating expansion

Fig. 17 Pressure-velocity diagram for computing peak pressure dueto a steel projectile impacting
on water. The case of a 15 m/s projectile is shown.

waves that follow the initial compression wave in the water.The water is treated as
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x

t

shock

piston

Fig. 18 Wave system created by reverberation following impact of the projectile on the fluid sur-
face.

compressible using the Tait equation of state described in the subsequent section,

P= P(ρ ,s) . (59)

For small projectile velocities relative to the sound speedin the projectile, there are
many reverberations of the waves within the projectile during the characteristic time
of slowing. This means that the projectile can be approximately treated as a rigid
body and treated with the methods of Newtonian mechanics. This idea has been
used by a number of researchers to develop simple analytical(Deshpande et al.,
2006, Espinosa et al., 2006) and numerical solutions (Skewset al., 2004) for the
wave generation process. The equation of motion of the projectile is

Mp
dVp

dt
=−Ap(P−P1) , (60)

whereP is the pressure on the water face of the projectile andP1 is the ambient
pressure on the free (rear) surface of the projectile. For weak shock waves, we can
treat the motion in the water as approximately isentropic sothat the method of char-
acteristics can be used to compute the relationship betweensound speedap and fluid
velocity up at the water face of the piston. For the Tait equation, this is

ap−
n−1

2
up = a1 , (61)

wheren is an empirical constant with a value of 7 for water. At the face of the
piston, the fluid velocity is the same as the piston velocity so that changes in the
piston velocity are related to changes in the sound speed by
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dVp = dup , (62)

=
2

n−1
dap . (63)

For weak shock waves, the motion is isentropic and the changes in sound speed can
be uniquely related to changes in pressure through the equation of state,

dap =

(
∂a
∂P

)

s
dP . (64)

This results in a simple ordinary differential equation forthe pressure difference
∆Pp = Pp−P1 at the water face of the piston,

d∆Pp

dt
=−

n−1
2

(
∂P
∂a

)

s

Ap

Mp
∆Pp . (65)

The solution to this is

∆Pp(t) = ∆Pp(0)exp(−t/τ) , (66)

where the time constant is

τ =
Mp

Ap

(
∂P
∂a

)

s

n−1
2

. (67)

The initial velocity Vp(0) and pressure∆Pp(0) are determined by the initial impact
analysis of (58). If we neglect the dependence of the characteristic speeds on am-
plitude, the temporal variation of pressure on the face of the piston will also be the
temporal variation behind the wave. In experiments, the pressure behind the leading
front will show a series of steps due to the discrete wave interactions at the interfaces
between buffer, water, and projectile.

An example of the comparison of this model with the measured pressure is shown
in Fig. 19. The peak pressure of 27.4 MPa was computed using (58) and the projec-
tile initial speed of 18.5 m/s. A time constant ofτ = 0.41 ms was computed using
(67) and the projectile length of 75 mm. The model does remarkably well aside
from the obvious differences in the first 200µs due to wave motion in the buffer
and projectile.

Tait Equation of State

The Tait equation of state is a simple analytic model that is useful for modeling a
compressible liquid like water under modest compression. Experimental observa-
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Fig. 19 Comparison of measured and model pressure for water in a 12.5mm thick steel tube and
an 0.67 kg steel impactor with an initial speed of 18.5 m/s.

tions suggest that the isentropic compressibility can be described by the following
empirical formula,

−
1
υ

(
∂υ
∂P

)

s
=

1
n(P+B)

, (68)

wheren andB are empirical constants,B = 2.995× 108 Pa andn = 7 for water.
From the definition of sound speed,

a2 =−υ2
(

∂P
∂υ

)

s
, (69)

we have that

a2 = nυ(P+B) . (70)

This leads to the following differential equation for pressure,

dP
P+B

=−n
dυ
υ

, (71)

which can be integrated to yield

P= B
[(υ1

υ

)n
−1
]

, (72)
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or as a function of sound speed

P= B

[(
ρ1a2

nB

) n
n−1

−1

]

. (73)

The reference density isρ1 = 953.26 kg/m3 and the resulting reference sound speed
is a1 = 1483 m/s. Using the expression for pressure, we can rewritethe sound speed
as

a2 = nBυ1

(υ1

υ

)n−1
. (74)

In the derivation of the piston motion, we need the derivative of the pressure with
respect to the sound speed,

(
∂P
∂a

)

s
=

2n
n−1

P+B
a

. (75)

Evaluating this at the nominal initial conditions, we obtain the value

(
∂P
∂a

)

s
= 4.714×105 Pa⋅s⋅m−1 . (76)

A short table of compressed water states estimated by the Tait equation are given
in Table 3 for the parametersρ1 = 953.263,B = 2.995× 108, n = 7.

Table 3 Compressed liquid water states estimated by the Tait equation.

a P ρ/ρ1 up Us
(m/s) (bar) (m/s) (m/s)

1483.3 1 1.0001 0.10 1483.20
1503 95 1.0045 6.67 1496.33
1528 216 1.0100 15.00 1513.00
1553 340 1.0155 23.34 1529.67
1578 467 1.0209 31.68 1546.34
1603 596 1.0263 40.02 1563.01
1628 728 1.0316 48.36 1579.68
1653 863 1.0368 56.72 1596.36
1678 1001 1.0420 65.07 1613.04
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Shock Hugoniot for Water

Shock wave researchers conventionally represent theHugoniotor locus of shock
states using relationships between the fluid velocity up and the shock velocity Us
(Marsh, 1980). A typical empirical relationship used to correlate data is Us = ao +
sup. For water, fitting the Nagayama et al. (2002) data gives the parameters ofao =
1450 ands = 1.99. Using the shock jump conditions in the form:

Us = υ1

√
P−P1

υ1−υ
, (77)

up =
√

(P−P1)(υ1−υ) . (78)

For the Tait equation of state over the range of interest in the present study (P <
1 GPa), the Us-up relationship is highly linear and the fitting coefficients are ao =
1484 m/s ands = 1.974. This is consistent with the evaluation of Nagayama et al.
(2002) who also show that the irreversible temperature riseis on the order of 10∘C
at 1 GPa so that the Hugoniot can be reasonably approximated by the isentrope as
we have done using the Tait equation.
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