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ABSTRACT

The problem of supersonic flow over a 5 degree half-angle cone with injection of
gas through a porous section on the body into the boundary layer is studied experi-
mentally. Three injected gases are used: helium, nitrogen, and RC318 (octafluoro-
cyclobutane). Experiments are performed in a Mach 4 Ludwieg tube with nitrogen
as the free stream gas. Shaping of the injector section relative to the rest of the body
is found to admit a "tuned" injection rate which minimizes the strength of shock
waves formed by injection. A high-speed schlieren imaging system with a framing
rate of 290 kHz is used to study the instability in the region of flow downstream of
injection, referred to as the injection layer. This work provides the first experimental
data on the wavelength, convective speed, and frequency of the instability in such a
flow. The stability characteristics of the injection layer are found to be very similar
to those of a free shear layer. The findings of this work present a new paradigm for
future stability analyses of supersonic flow with injection.
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C h a p t e r 1

INTRODUCTION

Injection of gas into boundary layers in hypersonic flight has the potential to enable
the next generation of high speed vehicles. Flight at hypersonic Mach numbers
presents a unique set of challenges, among which are high heating loads that create a
need for thermal protection systems and challenges related to supersonic combustion
ramjet (scramjet) propulsion. Figure 1.1 shows a sketch of a typical injection system
andflowfield. In this example, gas is injected orthogonally to themeanflowdirection
through a porous section in the wall. Injection modifies the velocity profile in the
boundary layer as shown in the figure, and also changes the temperature, density, and
sound speed profiles. Injection also creates a sudden increase in the displacement
thickness of the boundary layer which causes a shock to form in the supersonic free
stream. In this work the boundary layer downstream of injection is referred to as the
injection layer to avoid confusion with conventional boundary layers.

Figure 1.1: Sketch of the flow field associated with injection into a supersonic flow.
Velocity profiles are shown in blue before and after injection.

The problem of injection into high speed boundary layers has been studied inter-
mittently over the last half-century for a variety of reasons. The following section
reviews some of this research. The work presented here addresses some of the
remaining challenges associated with transition to turbulence in these flows.

1.1 Applications of Injection
This section outlines four of the applications for injection into high-speed boundary
layers that have motivated studies in the past. These are film and transpiration
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cooling, a surrogate for studying ablation, transition delay in hypervelocity boundary
layers, and enhancement of scramjet performance. For a more complete discussion
of the past work on this topic related to the first two applications, see Schneider
(2010).

Film and transpiration cooling
Heating in high speed boundary layers is a significant issue that creates a need for
substantial thermal protection systems on hypersonic vehicles. Traditionally these
systems are passive, such as the ceramic tiles on the Space Shuttle. The primary
drawback of such a system is additional vehicle weight, although lack of reusability
due to ablation of the protective material is also a concern. Gas injection has been
considered as an active thermal protection system because the layer of cold gas next
to the vehicle surface behind the injector has a cooling effect (Aupoix et al., 1998;
Cary and Hefner, 1971; Sahoo et al., 2005). The cold injected gas displaces the hot
boundary layer fluid away from the vehicle surface, leading to a reduction in heat
transfer. See e.g. Figure 7 of Marvin and Akin (1970). When the injected gas is
blown tangentially to the surface of the vehicle it is referred to as film cooling, and
orthogonally injected gas through a porous surface is called transpiration. Both of
these have been studied in the literature.

Transpiration and film cooling are more effective in high speed flows than low
speed flows, but covering the entirety or even the majority of a vehicle with such
a thermal protection system is likely impractical and the weight savings compared
to traditional passive systems may not be significant. Localized cooling, however,
remains promising. Local coolingwould allow placement of awindow or instrument
on the surface of a vehicle, which would not be possible if a passive system were
used. An injector placed directly upstream of the instrument could cool that area
actively while the rest of the vehicle is covered by a traditional passive system.

Egorov et al. (2015) performed a numerical study on a blunt geometry and showed
that such a scheme could be effective. Cooling in this type of an arrangement
is most effective while the interface between the injected gas and the free stream
fluid remains laminar. Turbulence enhances mixing of the streams and therefore
decreases cooling. This can be observed in Figure 7 of Marvin and Akin (1970)
where the heating rate returns to its value prior to gas injection after transition to
turbulence in the injection layer.
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Ablation surrogate
Ablation is an extremely complex phenomenon as it involves the coupling of a host
of effects including non-equilibrium gas dynamics, chemical reactions, outgassing,
boundary layer stability, turbulence, and heat transfer. Understandably, then, re-
searchers have sought to isolate some of the effects and study each in turn. Gas
injection has been studied for this reason to decouple the outgassing of pyrolysis
products from the other features of flow with ablation.

Some studies have concentrated on blunt geometries such as reentry capsules (Li
et al., 2013), while others have instead focused on slender bodies (Marvin and
Akin, 1970; Pappas and Okuno, 1960, 1964). The works cited here represent
investigations where the stability and transition of the flow were considered. Pappas
and Okuno (1960) observed that transition occurs earlier on a porous cone when
higher blowing rates are employed andwhen themolecular weight of the injected gas
is lower. This trend is corroborated in many other studies as well (Schneider, 2010),
but Li et al. (2013) curiously found computationally that transpiration stabilized the
second-mode instability on a flat plate and cone. The results of the current study
could be extended to ablation like the investigations cited in this section, but this is
not pursued here.

Transition delay
Boundary layer transition in hypersonic flows is dominated by the second or Mack
mode, particularly when the wall is cold compared to the adiabatic wall temperature
as is the case in hypersonic free flight (Mack, 1984). Current understanding of the
Mack mode is summarized by Fedorov (2011) and Fedorov and Tumin (2011) and
the interested reader is referred to these for further information. Fujii and Hornung
(2001) and Wagnild et al. (2009) have shown that the strength of the Mack mode
instability can be reduced via acoustic absorption by non-equilibrium effects in
the boundary layer gas. This occurs if the time scale of translational/rotational and
vibrational energy exchange in the gas molecules is on the same order as the acoustic
waves responsible for destabilizing the boundary layer (typically about 1 MHz) and
if the vibrational energy states in the gas are sufficiently populated. Both of these
conditions are met for carbon dioxide in hypersonic flows.

Leyva et al. (2009) and Jewell et al. (2012) performed experiments in the T5 hy-
pervelocity shock tunnel at Caltech to determine if transpiration of carbon dioxide
into an air boundary layer through a porous injector on a sharp cone could delay



4

transition. The injector in these studies was approximately 40 mm long and began
135 mm from the cone tip.

The data from these studies suggest a delay in transition for carbon dioxide injection
compared to argon injection, which would not have the non-equilibrium effects
required for acoustic absorption. They are inconclusive, however, regarding the
overall efficacy of carbon dioxide injection versus no injection. The results are
further complicated by the fact that Fedorov, Malmuth, et al. (2001) showed that
a porous surface such as the one on the injector section absorbs acoustic energy
and therefore contributes to stabilization of the Mack mode. Furthermore, Fedorov,
Soudakov, et al. (2014) found that injection in such a configuration has a destabilizing
effect when non-equilibrium effects are not considered. More work is warranted
on this subject, but the current study focuses on low-enthalpy flow where non-
equilibrium effects are not important and therefore the potential application of
transition delay in hypersonic boundary layers is not kept in mind.

Scramjet performance
Scramjet engines are considered by many to be the best method for propulsion at
very high Mach numbers in the atmosphere, and improving scramjet performance is
an active research topic. Gas injection in scramjet inlets in particular has a number
of promising benefits. In this application a small fraction of the vehicle’s fuel is
injected in the inlet prior to the gas reaching the combustor, where the remainder of
the fuel is injected.

Barth, Wheatley, et al. (2013) demonstrated that injection in scramjet inlets not only
produces the cooling effect described earlier in this section, but also significantly
reduces skin friction drag. This is important because skin friction drag in the inlet
forms a substantial fraction of the total scramjet drag, as much as 25%. The effect
is enhanced if combustion occurs. The mechanism seems to be twofold. First, the
modification of the velocity profile reduces the slope of the velocity curve at the
wall, thereby reducing skin friction. Secondly, combustion causes dilatation that
further favorably modifies the velocity profile and the temperature rise associated
with combustion reduces the magnitude of turbulent velocity fluctuations, which in
turn reduces the Reynolds shear stress.

Second, flow separation due to compression in scramjet inlets is a potential issue
that can degrade performance. Laminar boundary layers are more prone to sepa-
ration than turbulent boundary layers (Ogorodnikov et al., 1972), so trips are often



5

employed to encourage transition to turbulence (Berry et al., 2001). Injection desta-
bilizes the boundary layer, so injection in the engine inlet could eliminate the need
for physical trips.

Finally, Gehre et al. (2015) and Barth, Wise, et al. (2015) show that if the injected
fuel in the inlet mixes sufficiently with the air in the free stream and is combusted,
significant gains are made in overall engine efficiency. These gains are primarily
due to the production of radical species and heating in the inlet region that promote
combustion in the combustor. All of these effects are much stronger if the interface
between the injected gas and the free stream is turbulent.

1.2 Remaining Issues
The current study is focused on addressing issues related to the implementation of
injection for localized transpiration cooling and fuel injection in scramjet inlets.
Attention is given to the mechanics of the flow field and although the results of this
work have design implications, the design of an injection system is not considered
directly. Effects are subdivided into inviscid and viscous categories.

Formation of waves
Transpiration causes an abrupt increase in the displacement thickness of the bound-
ary layer, which the free stream perceives the same as a change in the geometry of the
body. The supersonic flow is turned in response to these changes by oblique shock
waves and expansion waves. The strength of the shock waves is dependent on the
injection rate and body geometry, but they can be strong enough to be detrimental
to performance, particularly in internal flows.

For instanceOgawa et al. (2015) found that the shockwave formed at the beginning of
the injector in a scramjet inlet was reflected several times in the narrow channel and
caused substantial pressure losses depending on the injection rate. They found that
for their geometry the benefits of injection were counteracted by the total pressure
loss. The amount of fuel that could be injected while maintaining a net benefit was
also limited to avoid larger pressure losses.

Wave formation is more important in internal flows than external flows, but Schmidt
et al. (2015) demonstrate that the shock wave at the beginning of the injector in an
external flow can be strong enough to create an adverse pressure jump capable of
causing the incoming boundary layer to transition to turbulence. Effective cooling
is dependent on a laminar flow downstream of injection, so immediate transition
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to turbulence would substantially limit the usefulness of transpiration for cooling.
The mitigation of waves is therefore important for the implementation of injection
systems for both applications considered.

Flow stability
Clearly in both applications the state of the boundary layer downstream of injection,
whether laminar or turbulent, is of importance. A laminar injection layer is crucial
for effective cooling because of reduced transport of heat compared to a turbulent
layer. In scramjet inlets, turbulence decreases the efficacy of cooling at the wall, but
it also substantially promotes mixing which is necessary for efficient combustion.
Combustion must occur in the inlet in order for the benefits of injection to be fully
realized.

Even so, the stability of this flow has not been studied in great detail. The vast
majority of experimental data pertaining to stability are transition locations, and
though these are useful, they contribute little to the understanding of the underlying
physics of the transition process. A handful of numerical studies have been per-
formed to analyze stability characteristics of supersonic flows with injection, e.g. Li
et al. (2013), but experimental measurements are scarce (Schneider, 2010). Flow
stability with injection of a foreign gas, i.e. one that is different from the free stream
gas, is more difficult to analyze computationally because fluid properties are depen-
dent on the local composition, which means that the transport equations are coupled
to the Navier-Stokes equations. Stability studies of this kind are even more rare,
but in most practical applications of injection the injected gas would differ from
the free stream gas. These factors motivate an experimental investigation of the
stability properties of supersonic flow with injection, including injection of foreign
gas species.

1.3 Project Scope and Outline
The instability in supersonic flow with injection is analyzed in this work. A method
for diminishing the strength of waves formed by injection by modifying the body
geometry is also presented. Experiments are performed in the Caltech Mach 4
Ludwieg tube with a 5-degree half-angle cone as the base model because of its
canonical shape. Injection is achieved by transpiration through a porous injector
section on the model, and three gases with different molecular weights are injected.
The primary aim of the study is to characterize the disturbances that lead to transition
in this flow.
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The Ludwieg tube facility and the test article are described in Chapter 2 along with
computations of the base flow. The choice of injected gases is also explained. In
Chapter 3 the high-speed schlieren technique used to measure instability waves in
the flow is described and is accompanied by a review of potential measurement
techniques that were also considered. Results of the experiments are given in
Chapter 4. Data processing routines are also presented in this chapter. The results
are analyzed in Chapter 5, and the work is summarized and concluded in Chapter 6.
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C h a p t e r 2

FACILITY & TEST PROCEDURE

The test facility and experimental apparatus are presented in this chapter. The
Ludwieg tube is described with special attention given to modifications made to the
facility for the current work. The test article is then described and the flow through
the porous injector section is analyzed. The choice of injected gases is explained
and the properties of the gases are given. The flow meter and calibration technique
are also described. Finally, the setup for numerical simulations of the experiments
in OpenFOAM is presented.

2.1 Ludwieg Tube
Experiments for this workwere performed in the Caltech Ludwieg Tube. The facility
is described in detail by Mouton (2007) and summarized here. It consists of a 17 m-
long, 300 mm-diameter tube, a nozzle, test section, and dump tank. Experiments in
this work exclusively use the axisymmetric Mach 4 nozzle described in Section 6.2
of Mouton (2007). The nozzle has an exit diameter of 315 mm. A perspective view
of the Ludwieg tube is shown in Figure 2.1.

Figure 2.1: Solid model of the Caltech Ludwieg tube shown with theMach 4 nozzle.
The overall length of the facility is 23.5 m. Republished with permission of AIAA.
From Schmidt et al. (2015); permission conveyed through Copyright Clearance
Center, Inc.

Most Ludwieg tubes use diaphragms to separate the high- and low-pressure sections.
A diaphragm is either inserted between the test section and dump tank, referred
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to here as a downstream diaphragm configuration, or just ahead of the nozzle
contraction, called an upstream diaphragm configuration. When it is operated with a
diaphragm, the Caltech Ludwieg Tube uses an upstream diaphragm configuration as
shown in Figure 2.2 because the facility has issues with starting when a downstream
diaphragm is used. This is described in Section 6.3 of Mouton (2007). When
operated with a diaphragm, the nozzle, test section, and dump tank are evacuated
and the driver tube is pressurized until the diaphragm ruptures. When the diaphragm
breaks, a weak shock wave propagates through the nozzle and test section and a
non-steady expansion wave propagates away from the nozzle in the driver tube and
reflects from the tube end wall. These processes establish steady supersonic flow
in the test section, and the reservoir conditions upstream of the nozzle contraction
remain constant until the reflected expansion wave returns to the nozzle-driver tube
junction.

Tube 

Diaphragm location 

Nozzle 
Test 

Section 

Figure 2.2: Section view of the Ludwieg tube nozzle with the upstream diaphragm
station labeled. Flow is from left to right.

Nitrogen is used as the test gas in this work, and the reservoir temperature in the
driver tube is nominally 297 K. The driver pressure can be varied between 100 and
600 kPa, but is determined by the strength of the diaphragm used when the facility
is operated with a diaphragm. Assuming quasi-1D, isentropic flow of a perfect gas
with a free stream Mach number of 4.0, the free stream temperature is 68 K, the
velocity is 672 m/s, and the unit Reynolds number is between 5−25×106 per meter
depending on the reservoir pressure. The maximum test time is fixed by the length
of the driver tube and is approximately 100 ms.

2.2 Pneumatic Valve
Operating the facility with a diaphragm has several drawbacks. First, the stagnation
pressures that can be accessed are limited by commercially available diaphragms.
Polycarbonate film diaphragms are used, and can only be bought in thicknesses of
25 µm, 127 µm, and 254 µm, meaning that only three nominal conditions can be
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used. The strength of a diaphragm with a given thickness varies, however, making
it difficult to repeat test conditions precisely. Second, the broken diaphragm creates
disturbances that propagate into the test section, adding to the free stream noise level
of the facility. Finally, the diaphragm needs to be changed after each run, placing a
lower limit on the turnaround time of about 30 minutes.

To address these issues, a fast-acting valve based loosely on the one used in the
Hypersonic Ludwieg tube Braunschweig (HLB) (Estorf et al., 2003) was designed
and installed in the Caltech Ludwieg Tube to replace the diaphragm. A solid model
of the installed valve is shown in Figure 2.3. The primary component of the valve is
a pneumatic cylinder that is suspended in the center of the Ludwieg tube driver. A
plug is attached to the shaft of the cylinder, which creates a seal in the nozzle throat,
separating the high pressure driver from the low-pressure test section until the run
begins, just as a diaphragm would. Operation is as follows. The upstream side of
the cylinder is pressurized with the downstream side open to the ambient air in the
laboratory, moving the plug into the throat of the nozzle (top of Figure 2.3). With
the plug in place, the nozzle, test section, and dump tank are evacuated while the
driver tube is pressurized with the test gas. When the desired stagnation pressure
is reached in the driver section, the upstream side of the cylinder is opened to
the laboratory air and the downstream side is pressurized. When the force on the
piston inside the cylinder becomes sufficiently high to overcome the force due to
the pressure difference across the plug, the plug quickly moves out of the nozzle
throat and joins with the cylinder housing, forming a smooth center body (bottom
of Figure 2.3). Steady flow in the test section is achieved once the plug is secure
against the housing.

Besides the requirement that the valve fit inside a 16.2 cm-diameter shroud, the
primary requirement for the valve is that the plug must move far enough to fully
retract from the converging part of the nozzle while leaving sufficient time for
steady test flow once the valve is open, and it must not recoil upon reaching the
open position. The design point is 15 cm in 20 ms for a 500 kPa stagnation pressure
condition. Opening time is expected to be longer than this for lower-pressure
conditions, but as long as the opening time is sufficiently less than 100 ms the tunnel
will still have a satisfactory steady run time. Operation of the pneumatic cylinder
is modeled assuming isentropic expansion and compression inside the cylinder and
quasi-steady Fanno flow through the exhaust line which is open to the atmosphere
from the upstream section of the cylinder. The fill line is assumed to be closed
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upstream 
section 

(a) 

(b) 

downstream 
section 

1.04m 

Figure 2.3: Section view of the Ludwieg tube with the valve installed. The valve is
shown in both the closed (a) and open (b) positions. The sections of the cylinder
are labeled upstream and downstream corresponding to the direction of flow in the
Ludwieg tube.

once the piston begins to move. These assumptions lead to a system of three
ODEs describing a nonlinear spring-mass-damper system and can be integrated
numerically using standard Runge-Kutta methods.

The valve was bench tested to validate the numerical model using string to hold the
plug in place to simulate the pressure difference during a run. The string was cut
to simulate the start of a run after pressurizing the cylinder. The position of the
plug was measured with a Keyence LK-G407 laser range finder. Figure 2.4 shows a
comparison between the numerical ODE model and the performance of the valve,
indicating the utility of the model for design purposes.

The valve was designed iteratively with the numerical solution to the model until a
suitable design was obtained. To minimize cost, the cylinder chosen is an off-the-
shelf Parker pneumatic cylinder. The piston is enclosed in a streamlined cylindrical
shroud to minimize perturbation to the flow. The sealing face of the plug, shown in
black in Figure 2.3, is made from polyurethane and is designed to match the slope
of the nozzle contour when the piston is in the closed position. The end of the plug
is made from aluminum and is a streamlined shape. The cylindrical shroud is made
from PMMA and the upstream end of the shroud is rapid-prototyped nylon to reduce
the weight of the structure. Its shape is an ellipsoid and the surface is roughened to
encourage boundary layer transition and therefore minimize flow separation at the
trailing end of the plug. Pressurized gas to operate the valve is supplied from the
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Figure 2.4: Comparison of the bench test data with the numerical ODE model
described in this section.

compressed gas cylinders used to fill the driver tube. A photograph of the installed
valve is shown in Figure 2.5.

Figure 2.5: A photograph of the installed valve in a partially-opened position.

Figure 2.6 shows the free stream pitot pressure traces and spectra for nominal
300 kPa-reservoir pressure runs with a diaphragm and the valve. The left-hand plot
shows that the opening process of the valve reduces the total test time from 100 ms
to about 60 ms. This is not detrimental, however, as 60 ms still provides for over
100 flow times for a 30 cm-long test article. The right-hand plot reveals that the
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valve reduces the noise in the stagnation pressure across all frequencies by a factor
of 2-3. The RMS noise level in stagnation pressure is reduced from 1-2% to 0.7%.
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Figure 2.6: Left: Pitot pressure traces from a run with a diaphragm and a run with
the valve. The effective opening time of the valve is about 40 ms and the resulting
run time is approximately 60 ms. Right: Power spectra of pitot pressure during the
steady run time for a shot with a diaphragm and a shot with the valve. The valve
reduces the noise level in the tunnel by a factor of about 2-3 across all frequencies.
High-frequency spikes in both spectra are due to electrical noise.

The other advantages of the valve over operation with the diaphragm are that the
tunnel can be operated at any pressure between the limits of 100 kPa and 600 kPa
instead of only those determined by available diaphragms. Test conditions are also
now repeatable to within a few percent (see e.g. Appendix D). Additionally, the
Ludwieg tube does not need to be opened after each run to replace a diaphragm, so
the turnaround time is reduced from 30 minutes to about 12 minutes. The remaining
gas in the driver tube after a run does not need to be evacuated after each experiment
as it does when using a diaphragm, so there is also a cost savings associated with
using less gas in the driver per shot along with the cost savings of no longer needing
to purchase diaphragms to operate the tunnel.

2.3 Test Articles
Two test articles are used in this work, both based on a sharp-tipped 5 degree half-
angle cone. The tip radius is measured to be 300 µm. This radius is sufficiently
small that the entropy layer is swallowed before the injector section is reached and
therefore the cone tip can be treated as sharp (Stetson, 1987). The models are shown
in Figure 2.7. Both have an aluminum tip section that is 131 mm long measured
along the surface of the cone, followed by a 40mm long injector section, followed by
a frustum. The frustum is made from Delrin, a machinable plastic. One model has a
conical injector and is only used to examine the effects of shaping the injector. The
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other has a cylindrical injector, and this article is used to analyze the instability in
the flow. The frustum section of this model is instrumented with five PCB 132A31
piezoelectric pressure transducers along its length.

Figure 2.7: Both models used in this work. One has a cylindrical injector section
(top) and the other has a conical section (bottom). The ruler scale is in inches.
Republished with permission of AIAA. From Schmidt et al. (2015); permission
conveyed through Copyright Clearance Center, Inc.

The injectors are manufactured by Mott Corporation and are made of sintered
stainless steel. The surface area of the injectors is 2.66 × 10−3 m2. Magnified
images of the injectors are shown in Figure 2.8.

(a) Conical injector (b) Cylindrical injector

Figure 2.8: 5x-magnified images of the surface of injectors. The red line in the lower
right corner of each image is 100 µm. Republished with permission of AIAA. From
Schmidt et al. (2015); permission conveyed through Copyright Clearance Center,
Inc.

The models are assembled on a 1/2-inch diameter aluminum tube. The cone tip,
injector, and rear frustum interlock. The cone tip has 1/2”-13 internal threads to
match the threading on the end of the tube. The tube has slots that line up with the
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injector to facilitate the flow of gas from the tube to the injector. An O-ring at the
rear of the frustum section ensures that gas does not escape through the rear of the
model. Sections of the tube are threaded and twist-on 1/2”-13 nuts are used on these
sections. One nut tightens the frustum, injector, and cone tip together. The other
tightens against the sting sleeve, which interlocks with the back of the frustum. The
sting sleeve fits in the sting in the Ludwieg tube test section. A plastic end cap is
used between the back of the sting sleeve and the corresponding twist-on nut, and
a slot is cut in the end cap to allow wires from the PCB sensors to pass through.
A 1/2-inch Swagelok fitting is fixed to the rear end of the aluminum tube which
mates with the injected gas plumbing line. A solid model of the assembly and an
exploded view are shown in Figure 2.9. Machine drawings for the parts, including
the pneumatic valve components, are included in Appendix B.

Porous Flow Analysis
The flow through the porous material of the injectors is modeled using the compress-
ible version of Darcy’s Law. Darcy’s Law is a well-known relation between the flow
rate and pressure difference for low Reynolds number flows through porous media
(Dullien, 1979). The derivation is straightforward from conservation of momentum.
The 1-D, steady, incompressible equation is

Q =
κA
µ

p1 − p2

h
, (2.1)

where Q is the volumetric flow rate, p1 and p2 are the pressures at the beginning and
end of the porous media section, respectively, h is the thickness of the media, A is the
cross-sectional area, µ is the viscosity of the fluid, and κ is the permeability of the
media (see Figure 2.10). Permeability is the key parameter that relates the pressure
drop to the flow rate and has units of area. It must be determined experimentally.

A compressible version of Equation 2.1 can be derived from the continuity and
momentum equations. The analysis here follows closely that of Shepherd and
Begeal (1988). The injectors in this work are axisymmetric, so the continuity
equation is

d
dr

(
ρu

)
+
ρu
r
= 0 , (2.2)

which reduces to
ρur =

ṁ
2πL

= constant (2.3)

for a cylinder of length L, where ṁ is the mass flow rate. The geometry is shown in
Figure 2.11 and is slightly different from that shown in Figure 2.10.
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Figure 2.9: Exploded view and assembly of solid model of the test article with the
cylindrical injector. Threaded segments of the aluminum tube are colored yellow.
Holes for the PCB pressure transducers are visible on the frustum section.

The momentum equation is a balance between viscous forces and the pressure drop
across the porous material:

−
dp
dr
=
ρu2CD

d̄
. (2.4)

In this expression d̄ is a characteristic length of the porous material. A common
assumption is that themedia can be approximated as a bed of closely-packed spheres.
In this case d̄ is the mean sphere diameter.

CD is a drag coefficient for the media. If the Reynolds number based on d̄ (Red̄) is
small, then the Forchheimer equation (Forchheimer, 1901) can be used to calculate
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Figure 2.10: Sketch illustrating 1-D porous flow. The porous media has thickness h
and cross-sectional area A. If the flow is incompressible, the flow rate is related to
the pressure drop by Equation 2.1.

Figure 2.11: Sketch of porous flow through an axisymmetric geometry such as the
cylindrical injector used in this work. The injector has inner radius ri and outer
radius ro.

the drag coefficient:

CD =
d̄2

κ

(
1

Red̄
+
λ

d̄

)
. (2.5)

κ is again the permeability of themedia, and λ is the Forchheimer constant, which is a
property of themedia thatmust also be determined experimentally. The Forchheimer
constant can be related to the permeability by the Carman-Kozeny expression for
the permeability of a bed of packed spheres:

κ =
d̄2ε3

180(1 − ε )2 , (2.6)
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and the Ergun relation for the Forchheimer constant:

κ

λ
=

d̄ε3

1.8(1 − ε )
. (2.7)

ε in these equations is the porosity, or volume fraction of empty space, of the porous
material (Macdonald et al., 1979). According to the manufacturer of the injectors
this is equal to 0.4. Equations 2.5, 2.6, and 2.7 can be combined to give

CD =
d̄
κ

(
µ

ρu
+

d̄
100(1 − ε )

)
. (2.8)

A set of experiments was performed to simultaneously measure the pressure inside
the injectors and the gasmass flow rate using aKulite XT-190 piezoresistive pressure
transducer and a Sensirion EM1 flowmeter, respectively, to determine the properties
of the porous media. The two terms in Equation 2.8 can first be compared to
determine if both are necessary to model the flow through the injectors. According
to the manufacturer, the mean pore size is on the order of 10 µm, so this can be used
as an estimate for d̄ that is assumed to be accurate within an order of magnitude.
The viscosity of air at room temperature is 1.9 × 10−5 kg/m s, and the largest mass
flow rate in this set of calibration experiments is 4.5 g/s. Using these values, the
second term in Equation 2.8 is at most 5% of the first term and can be neglected.
This simplifies the expression for the drag coefficient to

CD =
d̄µ
κρu

. (2.9)

Equation 2.9 can be substituted into Equation 2.4 to give

−
dp
dr
=

uµ
κ

. (2.10)

The velocity u can be expressed in terms of the mass flow rate by using Equation 2.3:

−ρ
dp
dr
=

ṁµ
2πLκr

. (2.11)

Equation 2.11 is integrated from pi to po in p and from Ri to Ro in r by expressing
the density as a function of pressure using the ideal gas law and assuming isothermal
flow through the porous media. The resulting expression is

p2
i − p2

o =
ṁµRT
πLκ

ln
(
ro

ri

)
. (2.12)
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In the experiments performed in this work the pressure outside the injector is of the
order 1 kPa while the pressure required to drive flow through the injector is of the
order 100 kPa, so p2

o << p2
i and p2

o can be neglected in Equation 2.12. The final
relation between pressure and mass flow rate is

p2
i =

ṁµRT
πLκ

ln
(
ro

ri

)
. (2.13)

From Equation 2.13, it is clear that if pressure and mass flow rate are measured
simultaneously then the permeability κ is the only unknown parameter and can be
determined by linear least squares. Figure 2.12 shows the data from the calibration
experiments with a fit of Equation 2.13 to determine the permeability. κ is equal to
3.5± .003× 10−12 m2 for the cylindrical injector and 1.1± .0006× 10−14 m2 for the
conical injector. Uncertainties are determined by the 95% confidence interval of the
least-squares fit and the measurement uncertainties in pressure and mass flow rate.
These values are typical of those reported for sintered stainless steel (Frederking
et al., 1986).

2.4 Injected Gases
Pappas and Okuno (1960) observed that the molecular weight of the injected gas
affects the transition location on a porous cone in Mach 4.8 flow. The choice of
injected gas is therefore considered to be an important parameter in the investigation
of the instability that leads to transition in this work. Nitrogen was chosen as one
injected gas because it is simpler to model since the free stream gas is also nitrogen
and diffusion of species need not be considered. Helium was selected as a second
injected gas because it is the lightest gas available (that does not require additional
safetymeasures to use) and therefore produces the largest deviations in behavior. The
properties of helium are similar to those of hydrogen which is a candidate scramjet
fuel, making it particularly relevant to the application of injection in scramjet inlets.

Helium is approximately seven times lighter than nitrogen, so a gas that is seven
times heavier than nitrogen (a molecular weight of 196 g/mol) was sought as the
final injected gas. Most substances with molecules of that size are not gases at room
temperatures, and many that are gases are highly toxic, corrosive, combustible,
and/or prohibitively expensive. Refrigerants were seen as a category of fluids that
may fit the criteria of being a gas at room temperature, non-toxic, compatible with
most materials, non-reactive, and reasonably priced. One refrigerant, RC318, fits
these criteria and has a molecular weight of 200 g/mol. Figure 2.13 shows a 3-D
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(a) Cylindrical injector
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(b) Conical injector

Figure 2.12: Pressure vs. mass flow rate data for air for both injectors fit with
Equation 2.13 to determine permeabilities. Republished with permission of AIAA.
From Schmidt et al. (2015); permission conveyed through Copyright Clearance
Center, Inc.

ball-and-stick model of an RC318 molecule. The black spheres represent carbon
atoms and the green spheres are fluorine atoms.

RC318 is a fluorocarbon, its IUPAC name is octofluorocyclobutane. It is effectively
a cyclobutane molecule where all the hydrogen atoms have been replaced with
fluorine atoms. It has few documented applications, but is used in the production
of semiconductor materials and is therefore readily available. It is chemically inert
under most conditions, as the carbon-fluorine bond is extremely strong, often listed
as the strongest in organic chemistry (O’Hagan, 2008). Properties and safety hazards
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Figure 2.13: 3-D model of an RC318 molecule. The black spheres represent carbon
atoms and the green spheres are fluorine atoms. Image by Fvasconcellos - Own
work, Public Domain.

are detailed in the safety data sheet provided by Praxair (Praxair Inc., 2015). Some
properties of the three selected injected gases for this work at 295 K are summarized
in Table 2.1.

Gas Formula Molecular weight Specific heat ratio Sound speed
(W ) [g/mol] (γ) [m/s]

Helium He 4.00 1.67 1011
Nitrogen N2 28.02 1.4 350
RC318 C4F8 200.04 1.054 114

Table 2.1: Properties of injected gases at 295 K.

Flow Rate Measurement
Themass flow rate of the injected gas is measured directly by an Omega FMA1742A
thermal flow meter. The meter outputs a voltage that is linearly proportional to the
mass flow rate, but the constant of proportionality depends on the properties of the
gas. The meter was calibrated for each gas using a King Instruments rotameter in
series with the thermal meter. During experiments, the thermal meter is in series
with the injector and is approximately 3m upstream of the test section. Flow through
the injector is started several seconds before the wind tunnel is started to ensure that
steady flow has been established and the flow meter gives an accurate reading. The
meter has a rated accuracy of 1.5% of the full scale reading. The uncertainty used
for error propagation is twice this value to conservatively account for potential errors
incurred by the calibration process.
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2.5 OpenFOAM Computations
The experiments performed in this work were complemented by simulations using
the open-source finite-volumeCFDpackageOpenFOAM(Weller et al., 1998) to lend
additional insight into the flow physics. The solver used is a hybrid scheme based
on the PISO algorithm and the Kurganov-Tadmor scheme developed by Kraposhin
et al. (2015). The resulting hybrid method is accurate across a wide range of Mach
numbers, from 0.01 to 3 or higher.

The simulations are performed as laminar computations of the compressible un-
steady Navier-Stokes Equations including species transport. The mass and momen-
tum conservation equations take their usual form, neglecting body forces:

∂ρ

∂t
+ ∇ ·

(
ρu

)
= 0 , (2.14)

∂ρu
∂t
+ ∇ ·

(
ρu ⊗ u

)
= −∇p + ∇ · τ . (2.15)

The fluid is assumed to be Newtonian and Stokes’ hypothesis is used to ensure zero
bulk viscosity (F. M. White, 1991):

λ = −
2
3
µ . (2.16)

The stress tensor τ is then

τ = −
2
3
µ

(
∇ · u

)
I + µ

(
∇u +

(
∇u

)T)
, (2.17)

where I is the identity tensor and superscript T indicates a transpose operation.

The gases are treated as perfect gases that obey the Sutherland formula for the
temperature-dependence of viscosity:

µ = As
T

3
2

T + Ts
, (2.18)

where As and Ts are coefficients for a given gas and are tabulated for common gases.
Sutherland coefficients for RC318 were fitted using data from NIST. Coefficients for
all three gases are given in Table 2.2. Transport and thermodynamic properties are
calculated with a mass-weighted average where multiple species are present, which
is an approximation that can incur some errors.

Species are conserved according to the species transport equation:

∂ρYi

∂t
+ ∇ ·

(
ρuYi

)
= −∇ · ji . (2.19)
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Gas As [µPa·s] Ts [K]
Helium 1.484 79.4
Nitrogen 1.407 111
RC318 1.34 299.7

Table 2.2: Sutherland coefficients for the three injected gases to be used in calculating
viscosity in Equation 2.18.

Yi is the mass fraction of species i and ji is the flux of species i due to diffusion. The
species production term is omitted here because the flow studied is non-reactive.
Diffusion is assumed to occur according to Fick’s Law, neglecting mass diffusion
due to temperature and pressure gradients (Kee et al., 2003). The diffusive flux ji is
given by

ji = −ρDi,m∇Yi . (2.20)

Di,m is the mass diffusivity for species i into the mixture m. When ji is written
in terms of mass fractions instead of mole fractions, conservation of species is not
guaranteed. The constraint

ΣYi = 1 (2.21)

is strictly enforced to ensure continuity instead of computing a correction velocity
in the expression for ji as is done in many reacting flow solvers (Kee et al., 2003).
This introduces some error in cases where the molecular weights of the species are
significantly different. In mixtures with only two components, such as the ones in
the flow studied here, Equation 2.21 is satisfied by solving Equation 2.19 only for
one species, for instance the free stream gas, and then determining the mass fraction
of the other species, the injected gas in this example, by solving Equation 2.21, i.e.

∂ρY1

∂t
+ ∇ ·

(
ρuY1

)
= ∇ ·

(
ρD1,m∇Y1

)
(2.22)

and
Y2 = 1 − Y1 (2.23)

are solved sequentially.

Mass diffusivity is calculated by assuming a Schmidt number of unity:

Sci,m =
µm

(ρD)i,m
= 1 . (2.24)

This is accomplished by setting ρD equal to µm for a given species since the
diffusivity never appears by itself but is always multiplied by the density. µm is
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the mixture viscosity, so this assumption means that the mass diffusivity is the
same for both species in the binary mixture, but changes as a function of both
temperature and composition. The true diffusion coefficient for a binary mixture
is insensitive to composition but is a function of temperature. The assumptions
made concerning mass diffusion are examined in more detail in Appendix A. The
analysis there concludes that the handling of diffusion by OpenFOAM introduces
errors in cases with helium-nitrogen and RC318-nitrogen diffusion, so some degree
of discrepancy between the computational and experimental results is expected for
helium and RC318 injection cases. Even in these cases, errors in the OpenFOAM
computations in the handling of diffusion of species andmixture-averaged properties
such as viscosity are confined to the thin layer where both gases exist in appreciable
amounts and therefore are not likely to significantly impact the overall solutions.

The energy equation is formulated in terms of the mass-specific enthalpy h:

∂

∂t

[
ρ
(
h +

u · u
2

)]
+ ∇ ·

[
ρu

(
h +

u · u
2

)]
=
∂p
∂t
+ ∇ ·

(
τ · u

)
− ∇ · q . (2.25)

q is the heat flux vector, and energy production by chemical reaction has again been
neglected. The heat flux is assumed to obey Fourier’s law and includes transport of
enthalpy by diffusion,

q = −κ∇T + Σ jihi . (2.26)

κ is the thermal conductivity, hi is the enthalpy carried by species i, and ji is again
the diffusive flux of species i, calculated with Equation 2.20. There is no correction
in the energy equation to ensure conservation of species as there is in the transport
equation (Equation 2.23), so this term is susceptible to errors associated with writing
Fick’s Law in terms of themass fractions without implementing a correction velocity
to ensure species conservation.

The thermal conductivity is approximated by a modified Eucken model,

κ = µ (1.32cv + 1.77R) . (2.27)

Here R is the specific gas constant and cv is the specific heat at constant volume.
This model gives constant Prandtl numbers of 0.69, 0.67, and 0.74 for nitrogen,
helium, and RC318 respectively.

The flow is solved on a 2-D axisymmetric grid which extends from 10 mm ahead of
the cone tip to 70 mm downstream of the end of the injector section. A quasi-steady
state is first reached on a coarse grid, then the result is mapped to the refined grid
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shown in Figure 2.14 and the solution is again marched forward in time until a new
quasi-steady state is reached. Waves appear in the injection layer downstream of the
injector so the flow is never truly steady for the entire field but the flow ahead of
the injector does become steady after a sufficient number of time steps (see Section
4.3). Cells are clustered near the wall (see Figure 2.14b), extending just beyond
the interface of the injected gas and the free stream gas. A study was performed to
ensure sufficient spatial resolution for grid independence; the final refined grid has
a total of 755857 points with a resolution of 45 µm per cell in the refined region,
which gives a Reynolds number based on cell size of 405. For comparison, gradients
in the injection layer occur over a region of approximately 3-10 mm depending on
the case.

Boundary conditions are chosen to match the conditions in the Ludwieg tube test
section with a free stream pressure of 1.32 kPa: the free stream gas is nitrogen, the
temperature is 68 K and the velocity is 672 m/s. Outflow boundary conditions are
zero-gradient for all variables, both at the downstream end of the domain and at
the top boundary above the model. The velocity of the injected gas is prescribed
as uniform across the injector surface and the pressure is allowed to match the
pressure in the flow above the injector. The temperature of the injected gas is fixed
at 295 K. Solid walls are treated as adiabatic and a no-slip condition is applied to the
velocity. The test time in the Ludwieg tube is too short for the adiabatic condition
to be reached in experiments, but the adiabatic wall temperature differs from room
temperature by only 15% in these experiments so the adiabatic condition is used in
the simulations for simplicity without a significant loss in accuracy.
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(a) Computational grid for OpenFOAM simulations. The red box shows the loca-
tion of the zoomed image in 2.14b.

(b) Zoomed image of the grid showing the
refined portion near the wall.

Figure 2.14: Refined computational grid for the OpenFOAM simulations.
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C h a p t e r 3

DIAGNOSTICS

The diagnostics used in the experiments in this work are described in this chapter. A
brief review of relevant experimental techniques is conducted. The selected surface
measurement scheme is then described. A thorough analysis of the focused laser
differential interferometry (FLDI) technique is performed, and the justification for
using other techniques is given. The high-speed schlieren imaging method used in
this work is then described.

3.1 Measurement Technique Review
Based on preliminary linear stability analysis performed by Schmidt et al. (2015),
the characteristic frequency of the instability waves in the injection layer is expected
to be on the order of 50-100 kHz. Several measurement techniques have been used
to detect flow phenomena in this frequency range in supersonic flows. A brief
summary of some of these techniques is presented here.

Hot-wire anemometry is a common method for detecting velocity fluctuations in
subsonic flows, and it has been used in some high-speed facilities as well. Kovansz-
nay (1950) highlights some of the challenges of using this technique in supersonic
flows. In order to attain the frequency response required in this regime, the wiremust
be very thin, which makes it prone to breakage, particularly during establishment of
steady flow. Furthermore, the response of the probe is sensitive not only to velocity
fluctuations, but also to fluctuations in density and temperature. Nonetheless, many
researchers have successfully used hot-wire probes to measure instability waves in
supersonic and hypersonic boundary layers.

PCB piezoelectric pressure transducers have also been used successfully to measure
wall pressure fluctuations in supersonic boundary layers (see e.g. Laurence,Wagner,
Hanneman, et al. (2012) andWard et al. (2013)). Typically the transducers are flush-
mounted to themodel surface. These transducers have a resonant frequency in excess
of 1 MHz. The transducers are sensitive to vibration of the model, so care must be
taken to distinguish the pressure fluctuations in the flow from model vibration when
analyzing the output from the transducers.

Parziale et al. (2015) report detection of Mack-mode waves in a hypervelocity
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boundary layer with frequencies in excess of 1 MHz using focused laser differential
interferometry (FLDI). This technique uses a two-beam focused interferometer to
detect density fluctuations along the line of sight of the instrument, and is explained
in further detail in Section 3.3.

Schlieren and shadowgraph techniques have been used by researchers to study
phenomena in compressible flows for well over a century. Laurence, Wagner,
Hanneman, et al. (2012) report using high-speed imaging at several hundred kHz
to make time-resolved measurements of instability waves in a hypersonic cone
boundary layer. They used a pulsed, incoherent laser light source to limit the
effective exposure time of a high-speed camera to visualize the waves. Images
were cross-correlated to detect the phase speed and a spatial Fourier analysis was
performed to measure their wavelength. The results agree well with simultaneous
surface measurements made with piezoelectric pressure transducers. Laurence,
Wagner, and Hanneman (2014) present additional techniques for measuring density
fluctuations in high speed flows based on the schlieren visualization method.

3.2 Surface Measurements
Schlieren visualization in preliminary experiments show that the instability waves
appear at the interface between the injected gas and the free stream gas, which is
several millimeters away from the surface of the cone model. This may limit the
usefulness of surface measurements in this work, however the signature of the waves
is still expected to propagate to the wall. PCB piezoelectric pressure transducers
were chosen because of their commercial availability, small size, high frequency
response, and successful use by other researchers. The frustum section of the cone
model is instrumented with five PCB 132A31 transducers along its length (see the
machine drawing in Appendix B), and they are sampled at 2 MHz with a PCI-6133
data acquisition card.

3.3 FLDI Analysis
A thorough analysis of FLDI was conducted as part of this work and was published
as Schmidt and Shepherd (2015a). That article is reproduced in Appendix C as its
conclusions are relevant to the final choice of optical diagnostics for this research.
A focused laser differential interferometer is a line-of-sight point-wise optical mea-
surement technique that is sensitive to refractive index changes in the flow. A key
advantage of FLDI is its increased sensitivity at its best focus, which allows it to
filter out disturbances at the edges of the flow in a wind tunnel test section where
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turbulent shear layers corrupt many other optical techniques. The output of an FLDI
is measured with a photodetector, which means that it is both potentially quantitative
regarding the magnitude of the refractive index change in the test field and has a
very high frequency response, on the order of 10 MHz. One of the main findings
of Schmidt and Shepherd (2015a), however, is that in order for the density change
measured by the FLDI to be quantified, some knowledge regarding the geometry of
the flow field and the density field itself must be known a priori.

3.4 High-speed Schlieren Technique
FLDI was carefully weighed against high speed schlieren imaging like that per-
formed by Laurence, Wagner, and Hanneman (2014). FLDI has an order of mag-
nitude higher frequency response, is more sensitive, and is potentially quantitative
in terms of the density change measured, which would make measurements of am-
plification rate possible. The schlieren technique, however, is a line-of-sight field
measurement as opposed to a line-of-sight point measurement and could therefore
yieldmore information about the instability waves than a point measurement method
like FLDI. Furthermore, the schlieren technique is easier to implement, particularly
if multiple FLDI measurement locations are required.

Ultimately the schlieren technique was selected because it was determined to be
better suited to study the instability in flow with injection. Because the instability
has not been studied previously in the experimental configuration used in this work,
it is unknown a priori where the instability waves will form for a given injected
gas and flow rate. This makes accurate placement of the FLDI beams impossible
without a field measurement beforehand. Additionally, the advantages of FLDI
over schlieren for this problem are not significant. The frequency of the instability
waves is predicted to be on the order of 50-100 kHz, which is accessible by many
commercial high-speed cameras. Shadowgraph images taken by Pappas and Okuno
(1964) clearly show the development of instabilitywaves, so the additional sensitivity
of the FLDI compared to schlieren visualization is not necessary in this case. Finally,
because the character of the instability waves is unknown, in contrast to the Mack-
mode waves in a hypersonic boundary layer studied in the example in Section C.5, it
would not be possible to make quantitative measurements of the density fluctuations
or growth rate with FLDI according to the conclusions of Schmidt and Shepherd
(2015a). Finally, both Laurence, Wagner, and Hanneman (2014) and Schmidt and
Shepherd (2015b) were able to make time-resolved measurements of fluctuations
in supersonic flows with schlieren imaging, which suggests strongly that a similar
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method could successfully be applied to the flow in this work.

A description of a high-speed imaging system nearly identical to the one used in
this work is given by Parziale, Damazo, et al. (2015). Images are acquired with a
Phantom v710 high speed CMOS camera. It is capable of a frame rate of 7530 fps
at its maximum resolution of 1280 x 800 pixels but can achieve frame rates up to 1.4
million fps with reduced resolution. Pixels are 20 µm square and have 12-bit depth.
The most significant limitation of the camera for this application is the minimum
exposure time. If a continuous light source such as an LED is used, the practical
minimum exposure time to illuminate an image is approximately 1 µs. Assuming
the instability waves propagate at a velocity close to that of the free stream, an
exposure time of 1 µs means that the waves will propagate more than 0.5 mm in a
single exposure, causing appreciable motion blur.

The solution is to use a pulsed light source to limit the effective exposure time of the
system. Haley andSmy (1988) performed pioneeringwork using a pulsed laser diode
for schlieren visualization, although at that time laser diodes were quite expensive
and not as practical as light sources as they are today, and high-speed cameras did
not nearly have the capabilities of modern CMOS cameras. Modern commercially
available laser diodes are capable of providing pulses with widths between 20-100 ns
that are sufficiently strong to illuminate schlieren images. The diode is powered by
a current controller. In this work the controller is a PicoLAS LDP-V 03-100 UF3
laser diode driver. It can supply pulses of up to 3.5 A at a repetition rate of up to
2 MHz at a duty cycle of 2% at 3 A. The light from the diode is expanded and then
propagated through a typical Z-type schlieren setup. A schematic of the setup is
shown in Figure 3.1.

The timing of the system is as follows. The camera sends a pulse when the shutter
opens, which is sent to a Berkeley Nucleonics Model 555 pulse delay generator.
The delay generator then sends a pulse of the desired light pulse width to the
current controller, which sends an amplified current pulse to the laser diode. The
current controller is supplied by a steady 15 V DC power supply. The outputs from
the camera, pulse delay generator, and current controller are monitored with an
oscilloscope. Figure 3.2 shows a qualitative timing diagram for the camera and light
source. The delay is determined experimentally by changing the delay time until the
light pulse is synchronized with the camera. The light source used in this work is
capable of producing a continuous pulse train which allows the optics to be aligned
and the pulse delay to be determined in real time.
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Figure 3.1: Schematic and wiring diagram for a schlieren imaging setup with a
pulsed laser diode light source. Light paths are shown as dashed lines, electrical
connections are solid arrows. A: turning mirror, B: concave mirror ( f = 150 cm),
C: diverging lens, D: focusing lens, K: schlieren cutoff, P: phase object.

Using a laser as a light source for schlieren imaging has several well-known issues
which are outlined in detail in Section 7.1 of Settles (2001). First, temporally
coherent light is generally not good for imaging because it creates artifacts like
speckle and fringes that corrupt the image. Second, diffraction tends to occur
around sharp edges in the image plane. Finally, laser light is also spatially coherent
and can be focused to a very small point. This creates difficulties at the schlieren
cutoff and generally produces a binary cutoff effect instead of a proper schlieren
image.

A laser light source does have some advantages over a white-light source, however.
First, the narrow-band emission alleviates chromatic aberrations. Narrow-band
emission also allows researchers to use a narrow-band filter in front of the camera
to filter out any luminescence in the flow that would otherwise corrupt a schlieren
image. This is not a concern in the present work as the flow is nonreactive. An
infrared diode in particular has an additional advantage. The sensitivity of a schlieren
system to a phase object is proportional to the change in index of refraction, which
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Figure 3.2: Example timing diagram for the camera and light source. The timing
of this diagram is not specific to any particular experimental case but is simply to
show the desired scheme. Republished with permission of AIAA. From Parziale,
Damazo, et al. (2015); permission conveyed through Copyright Clearance Center,
Inc.

is given by the Gladstone-Dale relation in a gas,

n = K ρ + 1 . (3.1)

The Gladstone-Dale constant K increases for increasing illumination wavelength,
meaning that a schlieren system with an infrared light source will be more sensitive
than one with a visible light source, all other parameters held equal.

The laser diode used in this work is a Laser Components 905D3S3J08, and its
properties address many of the disadvantages listed above, making it ideal for
imaging in the present application. It has a maximum forward current of 40 A
with a duty factor of 0.1%. Light from the diode has a wavelength of 905 nm,
which is in the near-infrared range, and has a spectral bandwidth of 7 nm. This
relatively broad bandwidth for a laser dramatically reduces the coherence length of
the light and eliminates the majority of the speckle and fringes that would appear
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with a more monochromatic source. Furthermore, the diode is composed of a 3
x 3 stacked emitter array instead of a single emitter, which helps to reduce both
spatial and temporal coherence. The emitter size is 200 x 250 µm, also fairly large
for a laser aperture. The reduced spatial coherence and large aperture eliminates
the difficulties with using a traditional knife-edge schlieren cutoff that are typically
encountered with laser light sources. These properties coincidentally make this
diode very inexpensive, on the order of $100 per diode, especially compared to the
cost of highly coherent lasers with much better beam quality. Finally, since the light
is in the near-infrared band, the schlieren system is inherently more sensitive than
a system using visible light for the reasons explained above. The Phantom v710
camera is reasonably sensitive at this wavelength, as shown in Figure 3.3, and is
about as sensitive at 905 nm as it is to blue light in the visible spectrum.

Figure 3.3: Spectral response chart for the Phantom v710 camera. The black curve
is the total response. The orange arrow marks 905 nm, the wavelength of the laser
light source. Chart ©Vision Research, Inc.

The primary disadvantages of this light source are first that the infrared emission
makes alignment of the system difficult. Once the system is aligned, however,
no further difficulties resulting from the wavelength of the light are encountered.
Second and more importantly, the small size of the diode emitter makes the depth
of field of the imaging system quite large, on the order of 1-2 meters. The width of
the region in focus is larger than the width of the test section of the Ludwieg tube,
which means the system is sensitive to the turbulent shear layers on the edges of
the core flow in the wind tunnel described in Section 3.3. Disturbances from these
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shear layers appear in the images and must be accounted for when the images are
processed and analyzed. This is discussed in Section 4.2.

The output of the diode for a nominal 25 ns pulse is plotted in Figure 3.4. The
output is measured with a Thorlabs APD110A avalanche photodetector, which has
a rise time of < 1 ns. The full width at half maximum of the output is 30 ns, and the
shape of the pulse is reasonably square. Data from the photodetector was recorded
with a Tektronix DPO2024 digital oscilloscope.
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Figure 3.4: Output of the laser diode measured with a photodetector. The full width
at half maximum is shown in red, and is 30 ns for a nominal 25 ns pulse.
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C h a p t e r 4

RESULTS

Experimental results are given in this chapter. Data from experiments with low-
speed images of the full flow field are presented first. This includes a set of exper-
iments that demonstrate the mitigation of waves formed by injection by shaping of
the test article, and a set of experiments that focus on properties of the injection
layer and transition location. Next, results from high-speed imaging cases are pre-
sented. Image processing routines are discussed, as are algorithms for extracting
properties of the instability waves from the images. Finally, results from the Open-
FOAM simulations are presented. All experimental run conditions can be found in
Appendix D.

4.1 Full-field Imaging
Minimization of waves
A set of experiments was performed to investigate the effect of shaping the injector
section of the model on the waves formed by injection. This initial work was
inspired by a hypothesis of Fedorov, who suggested that an injector section with a
negative slope could compensate for the increased displacement effect of injection
and minimize the strength of waves for a "tuned" injection flow rate. The concept
was validated numerically by Fedorov, Soudakov, et al. (2014). Figure 4.1 shows
a sketch of the idea. The added displacement creates an effective surface, which
matches the slope of the model ahead of the injector for the tuned flow rate, and
therefore no waves propagate into the inviscid region of the flow. The two injectors
described in Section 2.3 are used to test the hypothesis experimentally.

The experiments performed for this subsection differ slightly from the other experi-
ments in this work. They were performed before the Ludwieg tube was configured
to operate with nitrogen as the free stream gas, so the free stream gas in these ex-
periments is air. The injected gas is likewise air. They were also performed before
the installation of the pneumatic valve described in Section 2.2, so diaphragms were
used to operate the Ludwieg tube in these runs. Since only the mean flow field is
being observed in this study and not the properties of the instability, a continuous
white light LED (Cree X-Lamp MC-E Cool White) was used as a light source in-
stead of the pulsed laser diode for improved image quality. Images were acquired
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Figure 4.1: Sketch of Fedorov’s hypothesis of a negatively-sloped injector compen-
sating for the additional displacement thickness created by injection. The graphic
on the right shows the desired idealized shock pattern on a cone model: only the
shock at the tip of the cone is present. Republished with permission of AIAA. From
Schmidt et al. (2015); permission conveyed through Copyright Clearance Center,
Inc.

at 3000 fps with an exposure time of 30 µs. The data from these experiments is
reported in Schmidt et al. (2015).

In this chapter, a parameter F is used to report the mass flow rate of the injected gas.
It is defined as

F =
(ρu)inj

(ρu)∞
. (4.1)

It is the mass flux of the injected gas divided by the mass flux of the free stream.
(ρu)inj is calculated by dividing the mass flow rate measured by the flow meter by
the surface area of the injector. This parameter is used because it is common in the
literature, e.g. Pappas and Okuno (1960). In Chapter 5 it will be noted that F is
not appropriate for scaling many of the quantities measured in the experiments and
its use will be discontinued, but its use is retained here for the sake of continuity
with past studies and because no rigorous analysis of the results is presented in this
section.

Four example schlieren images from experiments with the conical injector are shown
in Figure 4.2. Red vertical lines on the cone model are drawn to show the location
of the porous section. The value of F for each case is shown in yellow on the
appropriate image.

The image in the upper left with F = 0 has no injection and is the baseline case
for these experiments. A characteristic propagates from the joint of the cone tip
section and the front of the injector due to the very small disruption to the solid
surface. The oblique shock wave from the cone tip is visible in the region above
the cone. The shock angle is measured from the images to be 15 ± 0.1◦. This angle
matches the shock angle calculated from the Taylor-Maccoll solution (Taylor and
Maccoll, 1933) for Mach 4 flow over a 5◦ half-angle cone. The non-dimensional
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Figure 4.2: Example schlieren images with the conical injector. The free stream gas
and injected gas for these cases is air.

pressure jump ∆p/p1 for this shock is 0.084 ± 0.016 calculated from perfect gas
shock relations.

A shock stronger than the one generated at the cone tip is visible at the beginning
of the injector section in all three cases with non-zero injection rate, as predicted in
Section 1.2. The angle of this shock is 21 ± 0.1◦ in all cases studied. The shock is
curved, so making a precise measurement of the shock angle at the cone surface is
difficult. A shock angle of 21◦ gives a non-dimensional pressure jump of 1.00±0.02
for the incoming flow that has already been processed by the shock from the cone
tip. This shock is therefore about 13 times stronger than the shock at the tip of the
cone and significantly impacts the state of the injection layer downstream. Closer
examination of the data from these experiments reveals that the shock created by
injection causes bypass transition of the injection layer immediately downstream of
the start of the injector section, likely due to separation of the incoming boundary
layer. It is for this reason that the experiments studying the instability in the layer
do not use the model configuration with the conical injector.

For cases with higher injection flow rates, a second shock forms at the rear of the
injector. This shock serves to redirect the inviscid region of the flow as the injection
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layer adjusts to match the angle of the cone frustum downstream of the injector.
The flow pattern is the one that would be predicted if the additional displacement
resulting from injection were replaced by a convex bump on the surface of the cone.

Experiments with the cylindrical injector were conducted to examine the effect of
shaping the injector. Figure 4.3 shows four example images from these experiments.
The injector is again marked with red vertical lines and F is shown for each case in
yellow.

Figure 4.3: Example schlieren images with the cylindrical injector.

Three flow regimes are possible for this configuration. If the injection flow rate is
high enough, the additional displacement caused by injection overcomes the effect of
the negative slope of the injector and a shock will still be produced at the beginning
of the injector section as in the cases with the conical injector in Figure 4.2. This is
demonstrated by the bottom two images in Figure 4.3. Even so, at the highest mass
flow rate tested in this set of experiments the shock angle is 18± 0.1◦ relative to the
slope of the cone tip ahead of the injector, which corresponds to a non-dimensional
pressure jump of 0.442 ± 0.017, about half of that caused by the shock formed by
injection with the conical injector. Shaping of the injector is therefore beneficial
compared to an injector that matches the slope of the surface of the model for
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reducing the strength of waves formed by injection even if the tuned flow rate is
exceeded.

The second regime is illustrated by the picture in the upper-left of Figure 4.3. If the
injection flow rate is low enough (or zero), the displacement of the injected gas is
not enough to compensate for the negative slope of the injector and a Prandtl-Meyer
expansion forms at the beginning of the injector section. This forms a favorable
pressure gradient for the boundary layer, so no destabilization occurs.

The third regime is the tuned condition described above. This is shown in the
upper-right picture in Figure 4.3. The injection flow rate is such that the slope of
the interface between the injected gas and the free stream gas matches the slope of
the cone tip ahead of the injector section and no perceivable waves are generated.
Some compression waves are observed where the injection layer edge meets the
edge of the frustum section. These form because a cylindrical injector is evidently
not the proper shape to entirely compensate for injection on a cone model; some
curvature is likely needed to minimize all waves. Finding the correct injector shape
for a given geometry is beyond the scope of the current work, but it could be
done computationally using an Euler flow solver and an optimization algorithm.
The experiments presented here validate Fedorov’s hypothesis and demonstrate that
waves generated by injection can be mitigated by shaping the injector.

Injection layer properties
The remaining experiments to be described in this chapter are performed with
the model with the cylindrical injector section and the diagnostics described in
Sections 3.2 and 3.4. Before the instability waves were measured in detail, a set of
experiments were performed where the full flow field was imaged with the pulsed
laser light source. These experiments allow trends in injection layer thickness
and mean transition location with respect to injection rate to be examined. The
determination of where the instability waves begin to appear for a given condition is
also very important because it aids in determining where best to place the camera’s
field of view when the waves are analyzed at a high frame rate.

The images in these experiments have a resolution of 912 x 240 pixels with a scale
of 0.18 pixels per millimeter. The pulse width is set to 40 ns to provide good
illumination while still freezing the motion of structures in the injection layer so that
the transition location can be determined. Images are recorded at 30,262 frames per
second. This is not nearly fast enough for image pairs to be correlated in time, but
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it allows a large quantity of images to be recorded for averaging purposes.

Runs were performed at nominal unit Reynolds numbers of 9 × 106 per meter and
18 × 106 per meter for each injection rate. It should be noted that because the free
stream temperature is effectively the same for every run, the Reynolds number in
the test section of the Ludwieg tube depends only on the density in the free stream,
which in turn only depends upon the free stream pressure. Therefore effects of
Reynolds number, pressure, and free stream density cannot be decoupled from one
another.

Figure 4.4 shows images from three cases with different injection rates with nitrogen
injection. The injector is again marked by red lines in the images and the locations
of the PCB pressure transducers are marked by blue lines on the cone frustum. The
injection rates are reported as F on each image in the figure. The unit Reynolds
number for all three of these cases is nominally 9 × 106 per meter. The injection
layer thickness δ is measured at the rear of the injector section for consistency.
This choice is arbitrary because the injection layer thickness is observed to scale
similarly with injection rate at a fixed location along the model. The trends observed
in Figure 4.4 are that δ increases and the transition location moves forward with
increasing injection rate.

Figure 4.5 shows a similar set of images but for cases with different injected gases.
The nominal unit Reynolds number is again 9 × 106 per meter. The injection rates
were chosen such that δ is approximately the same for all three cases, and each
one is a tuned case. It is observed that a lighter injected gas causes the transition
location to move forward. Both of the observed trends for transition location agree
qualitatively with the findings of Pappas and Okuno (1960). The instability waves in
the three cases also appear to have different character depending on the injected gas.
In helium, the waves appear as large-amplitude "rolling" structures reminiscent of
those observed in free shear layers, e.g. by Brown and Roshko (1974). The waves in
the nitrogen injection cases are lower-amplitude and more sharply inclined. Waves
in RC318 injection cases are difficult to visualize in single images because they
have a very long wavelength, but slow oscillations in the interface are visible if a
sequence of images is viewed as a movie. Transition in RC318 cases appears to
be influenced by the compression waves generated where the interface of the two
gases meets the wall on the frustum rather than purely being due to the instability
of the injection layer. The waves are analyzed quantitatively and in more detail in
Sections 4.2 and 5.2.
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Figure 4.4: Full-field images with a 40 ns-pulse width from three cases with nitrogen
injection at different injection rates. The injector is marked by red lines and the
PCB locations are shown with blue lines.

Figure 4.5: Full-field images with a 40 ns-pulse width from three cases with different
injected gases but the same value of δ. The injector is marked by red lines and the
PCB locations are shown with blue lines.
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Comparing Figures 4.3, 4.4, and 4.5 reveals that the conditions that result in a tuned
case do not depend directly on F, but rather on the displacement thickness δ. This
supports the idea that F is not the appropriate parameter for systematically reporting
results as alluded to earlier in this section.

Figures 4.4 and 4.5 also demonstrate the quality of the images acquired with the
pulsed laser diode light source. The images in Figures 4.4 and 4.5 have been mini-
mally post-processed, with only some contrast enhancement and partial background
subtraction. The effective incoherence of the light source gives nearly speckle-free
images, although there is some non-uniformity in the illumination across the image
and between multiple images from the same experiment.

The visual injection layer thickness δ is plotted versus F in Figure 4.6. δ is non-
dimensionalized by the length of the injector Linj, but this choice is arbitrary. Solid
symbols have a nominal unit Reynolds number of 9 × 106 per meter while hollow
symbols have a nominal unit Reynolds number of 18× 106 per meter. This labeling
scheme is used throughout the remainder of this chapter and in Chapter 5. The
vertical error bars represent the uncertainty in δ due to the finite resolution of the
images. Horizontal error bars are calculated from both the uncertainty in measured
injection mass flow rate and the uncertainty in free stream conditions (assumed to
be ±5% for all variables) using standard error propagation. Note that δ varies by
about a factor of three for the injection rates studied.

The distance from the front of the injector to the mean transition location is plotted
versus F in Figure 4.7. The transition distance is measured along the surface of the
model, and is determined by observing where the interface between the injected gas
and free stream gas ceases to be smooth and laminar. Making this determinationwith
an optical method is admittedly less precise than with a surface measurement like
thermocouples or pressure transducers as is commonly done for boundary layers,
but it is sufficient to determine trends in the data. It is reported in dimensional units
here so that the location of the transition front can bemore readily compared with the
geometry of the model. The vertical error bars represent the uncertainty in transition
location due to unsteadiness in its position, as this is much larger than the width of a
pixel. Figure 4.7 shows the same trends that are suggested by Figures 4.4 and 4.5 and
observed by Pappas and Okuno (1960), namely that the transition location moves
forward with increasing injection rate, increasing unit Reynolds number, and for
lighter injected gases.

The data shown in Figures 4.6 and 4.7 are analyzed more closely in Section 5.1.
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Figure 4.6: Injection layer thickness measured at the rear of the injector section,
normalized by the injection length, plotted versus the non-dimensional mass flux F.
High Reynolds number cases have a nominal unit Reynolds number of 18× 106 per
meter.
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Figure 4.7: Transition location measured from the front of the injector section
plotted against the non-dimensional mass flux F.

4.2 High-speed Imaging
Experiments at the same nominal conditions as those in Section 4.1 were performed
at a reduced resolution but much higher frame rate to analyze the instability waves
in the injection layer. The resolution used is 224 x 64 pixels at the same scale of
0.18 pixels per millimeter. The reduction in resolution allows images to be recorded
at a frame rate of 289,361 frames per second. The pulse width of the laser diode is
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reduced to 25 ns to decrease motion blur and the duty factor. At these conditions the
duty factor is 0.72%, much higher than the rated maximum of 0.1% for the diode,
but reducing the forward current to 3 A from the rated value of 40 A prevents it
from being damaged. A set of 10,000 images is acquired for each case, so statistics
can be generated at each condition from a single tunnel run.

Image processing routine
An extensive image processing routine is employed to treat the raw images before
wave properties are extracted. Figure 4.8 illustrates the routine, beginning with a
raw image and ending with the final image that is to be analyzed. The image comes
from a case with nitrogen injection at the low unit Reynolds number free stream
conditions (9 × 106 per meter).

Figure 4.8: Images from a sample case to illustrate the image processing routine.
Images (a) through (e) represent stages in the routine with (a) being the raw image
and (e) being the final, processed image.

Image (a) shows a raw image recorded by the camera. The image is rotated so
that the interface between the injected gas and free stream gas is horizontal. This
simplifies the automated analysis routine described later in this section. Next, a
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mean image is constructed by averaging 200 images before and after the image
being processed. This is done for each image in the sequence of 10,000 for a given
case. The mean image is used to create a correction image that, when subtracted
from the mean image, forms an image that is uniformly gray with pixel intensities
of 0.5 for each pixel. That correction image is subtracted from the image being
processed. This subtraction eliminates speckle and other artifacts from the imaging
system and accentuates flow features that are changing in time from image to image,
such as the instability waves in the injection layer. The resulting image in the
example in Figure 4.8 is image (b).

MATLAB’s imadjust function is then used to enhance the contrast in the image.
The function linearly maps pixels from the current intensity map to a new one by
specifying high and low cutoffs for the input image and the output image. Any pixel
with a value above the high input cutoff or below the low input cutoff ismapped to the
high or low output cutoff, respectively. Pixels with values between the cutoffs in the
input image are mapped linearly to the new image. This is image (c) in Figure 4.8.
This step would be sufficient for a single image with appropriate cutoffs, but non-
uniformities in the light output from the diode for different pulses are amplified by
the previous step in the routine, so images in a sequence can have very different
mean brightness. This makes cross-correlation between images difficult, and must
be corrected.

Illumination is made uniform by shifting the mean of each column of pixels in the
image to 0.5. This is done by simply subtracting a fixed value µ from each pixel in
the column that is the difference between the current mean intensity of the column
and the desired value of 0.5. For a vector of length N with elements xi and mean
value x̄, µ is given by

µ = x̄ − 0.5 . (4.2)

It is clear that µ can be subtracted from each xi to give a mean of 0.5 by employing
the definition of the mean,

0.5 = x̄ − µ =
Σxi

N
− µ =

Σ(xi − µ)
N

= x̄′ . (4.3)

Here x′ is the shifted version of x with a new mean. The resulting image is image
(d) in Figure 4.8.

The final step in the routine is to enhance the contrast of the processed image, but
this cannot be done by again employing MATLAB’s imadjust function because the
mean intensity of each image must be maintained for the reason explained above.
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The intensity map of the image is stretched such that either the darkest pixel in the
image has a value of 0 or the brightest pixel has a value of 1, whichever is closer
to the current map, and the other pixels are mapped linearly such that the mean
intensity of the image is maintained. Finally, the edge of the model is found using
a Canny filter on the mean image formed in the first step of the routine, and the
model is superimposed on the final image in black. The resulting processed image
is labeled (e) in Figure 4.8. This routine also amplifies the noise from the shear
layers at the edges of the test section described in Section 3.4. The image analysis
routines presented in this section rely primarily on auto- and cross-correlation of the
images, but the noise from the turbulent shear layers is largely uncorrelated. This
allows instability waves to be studied in spite of noise created by the large depth of
field of the imaging system.

Image analysis: Wavelength
The wavelength of the instability waves in cases with nitrogen and helium injection
can be determined directly from the images. The wavelengths in cases with RC318
injection are too long to be determined accurately with the field of view of the
imaging system, so wavelength in these cases is calculated by measuring convective
speed Uc and frequency and invoking Taylor’s hypothesis:

Uc = λ f . (4.4)

Wavelengths are determined using autocorrelation. The accuracy of autocorrelation
is limited only by the digitization of the image. The uncertainty is therefore approx-
imately 200 µm. Figure 4.9 shows a sample image relative to a full-field image like
that in Figure 4.4. The dashed yellow lines show the region of the image that is used
for autocorrelation; it is centered on the interface between gases. The correlated
region is translated horizontally to produce the autocorrelation curve.

The autocorrelation curve is shown in Figure 4.10. The curve displays a peak value
of 1 at a lag of zero as do all autocorrelation curves, but also shows a peak with
non-zero lag. This peak corresponds to the wavelength of the waves observed in the
image, about 9 mm for this image.

Many images for a given case do not show instability waves. Transition is an
unsteady process, so waves occasionally appear before or after the field of view of
the imaging system and are not measured. Large disturbances are also occasionally
produced in the free stream which create turbulent bursts in the injection layer.
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Figure 4.9: Processed image showing instability waves to be analyzed by autocor-
relation. The yellow dashed lines show the region used for autocorrelation.
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Figure 4.10: Autocorrelation curve for the image shown in Figure 4.9. The peak at
non-zero lag corresponds to a wavelength of 9 mm.

Several logic steps are employed by the analysis algorithm to ensure that only the
instability waves are analyzed by the routine.

Criteria are placed on the absolute value of the peak at non-zero lag, its relative
magnitude relative to the magnitude of the curve at the local minimum between
the peak at non-zero lag and the maximum at zero lag, and the slope of the curve
between the local minimum and the peak at non-zero lag. The cutoff values for
these criteria are somewhat arbitrary and were determined by examining individual
images where a wavelength was apparent and those where no wavelength appeared
and adjusting the values until the correct result was obtained. Changing the cutoff
values by small amounts does not change the result of the algorithm significantly.
For a given case with 10,000 images, 2000-4000 images will typically contain a
wavelength that meets the criteria.

The measured wavelengths can be plotted in a histogram, like the one in Figure 4.11.
Determination of a single wavelength that is representative of the case is made by
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fitting a probability distribution to the population. An appropriate distribution is
the log-normal distribution, which assumes that the logarithm of the data follows a
normal distribution. This solves the difficulty of using a normal distribution, which
can have zero or negative values, which is obviously non-physical for wavelengths.
Themaximumof the fitted distribution is taken to be thewavelength for the condition
being studied, with the standard deviation representing the uncertainty.
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Figure 4.11: Histogram of measured wavelengths for an example case. The red line
shows a fitted log-normal distribution.

Wavelength normalized by the injector length is plotted versus F in Figure 4.12
for all cases. Recall that the wavelength for RC318 is not measured directly, but
computed with Taylor’s hypothesis. The injection layer is too thin for the wavelength
to be measured in cases with the high nominal unit Reynolds number and nitrogen
injection, so it is only reported for cases with helium injection. Vertical error bars
represent the standard deviation of the underlying distribution for each case.

The wavelength appears to be relatively constant for each injected gas. Recall that
the displacement thickness of the injection layer δ varies by a factor of three with
increasing F for each injected gas. This means that the wavelength of the instability
waves does not scale with the displacement thickness of the injection layer, a trait
not shared by waves in boundary layers.

Image analysis: Convective speed
The convective speed of the instability waves can be determined relatively easily
by image cross-correlation. The high, constant framing rate allows each image to
be correlated with several images before or after itself. The same region used to
detect the wavelength is used for cross-correlation. In nitrogen and helium injection
cases, only images with waves present are correlated with their neighbors to avoid
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Figure 4.12: Wavelength normalized by the injector length plotted against the non-
dimensional injection rate F for all cases analyzed. The wavelength is measured
directly for helium and nitrogen injection and calculated assuming Taylor’s hypoth-
esis for RC318 injection.

incorrectly tracking other phenomena, such as turbulent bursts. In cases with RC318
injection cross-correlation is attempted near the interface of the gases for all images,
so the results in those cases are less accurate than those for nitrogen and helium
injection.

Images are correlated with each of the four previous images in an attempt to mitigate
pixel locking. Figure 4.13 shows a sequence of images from a case with nitrogen
injection. The frame rate is sufficiently high that the waves move a very short
distance, only a few millimeters, between images. Motion of the waves is indicated
by the arrow in the figure.

Aswith wavelength detection, a criteria is applied to a correlation curve to determine
if a velocity can be reliably measured. An example correlation curve is shown in
Figure 4.14. In order to be accepted for velocity measurement, the peak of the curve
must occur at a non-zero lag and must have an absolute value greater than a specified
cutoff. The value for the cutoff is again somewhat arbitrary, but one is chosen that
gives 1000-2000 velocity measurements for most cases. The lag is converted to a
velocity by multiplying by the framing rate, assuming a constant velocity between
frames.

The histogram in Figure 4.15 shows the distribution of measured velocities for the
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Figure 4.13: Series of images of a case with nitrogen injection showing the propa-
gation of waves. Their velocity is determined by cross correlating the region in the
images where the waves are present.

Figure 4.14: Correlation curve for the example case shown in Figure 4.13. The lag,
indicated by the red arrows, is converted to a velocity by multiplying by the framing
rate.

sample case presented in this section. Significant pixel locking is present, evidenced
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by the gaps between bins in the histogram. This is to be expected given the short
distance traversed by the waves between images.

Figure 4.15: Distribution of measured velocities for the example case.

The mean and standard deviation of the population are used to calculate a single
value and uncertainty for a given case. Figure 4.16 shows measured convective
velocities for all cases. Error bars for the RC318 cases are quite large, reflecting
the reduced accuracy in those measurements because images with waves could not
be reliably identified. The data shows no discernible trend for nitrogen injection
with increasing injection mass flow rate, while for helium injection an increase in
convective velocity is observed and for RC318 injection it appears that the velocity
may be decreasing. This data is more closely analyzed in Section 5.2.
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Figure 4.16: Convective velocity normalized by the free stream velocity plotted
versus the non-dimensional mass flux F for all cases studied.
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Image Analysis: Frequency
The frequency of the waves is determined from imaging by invoking Taylor’s hy-
pothesis for nitrogen and helium injection cases. With RC318 injection, however, it
can be measured directly in most cases. The edge of the injection layer in these cases
is reasonably stable in time and easy to see with the naked eye, so edge-detection
routines are used to find a point along the edge and track it from image to image. Its
position moves up and down as waves pass, and the frequency can be extracted by
temporal Fourier analysis.

It is not expected that the edge will be able to be located in each individual image,
particularly if a burst of turbulence is passing. All six edge-findingmethods available
in MATLAB are therefore used to increase the chance that at least one method will
consistently detect the edge and extract a frequency. The Canny, log, Roberts, and
zero-cross methods are omni-directional while the Prewitt and Sobel methods search
for either horizontal or vertical edges. The edge of the injection layer is horizontal in
the images, so the Prewitt and Sobel methods are instructed to search for a horizontal
edge. Thresholds for the methods are determined by trial and error.

Figure 4.17 shows an example image to illustrate the success of the edge-detection
routines. The concentric colored dots represent where each of the six methods
indicates the edge of the injection layer is. Each method successfully locates the
desired edge in this image.

Figure 4.17: Example image from a case with RC318 injection. The colored dots on
the left side of the image represent the location of the injection layer edge determined
by the Canny, log, Roberts, zero-cross, Prewitt, and Sobel edge-detection methods.

The position of the edge is recorded in time for each edge-detection method and a
temporal Fourier analysis is performed for each. In some cases none of the methods
show a significant peak in the spectrum, but most cases exhibit a peak for at least one
method. The Prewitt and Sobel methods are successful most often, likely because
they can be instructed to search for only horizontal edges which prevents them from
being fooled by noise in the images. Figure 4.18 shows power spectral density
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spectra for the Prewitt and Sobel methods for the example case; both exhibit a peak
at 24.5 kHz.
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(b) Spectrum from the Sobel method.

Figure 4.18: Power spectral density plots from the Prewitt and Sobel methods for the
example RC318 injection case. Peaks are observed at 24.5 kHz for both methods.

PCB frequency results

Data from the PCB pressure transducers were also analyzed for each case. Tem-
poral Fourier analysis was applied to detect frequencies. Many cases, particularly
for nitrogen injection, do not show a significant peak in the spectra for any of the
transducers. This could have several causes. First, the instability waves are not
consistently present in the flow field, and in order to be detected by the pressure
transducers they need to not only be present but also occur very near to the trans-
ducers which are quite small (diameter 3.2 mm). This could prevent the transducers
from detecting a single frequency. Second, the pressure fluctuations from the insta-
bility waves may be somewhat localized to the interface between the injected gas and
free stream gas and do not propagate to the wall of the model consistently. Finally,
the transducers may be located too far behind the onset of transition to measure
the frequency of the waves before they break down to turbulence. The location
of the transducers relative to the transition location can be seen for a few cases in
Figures 4.4 and 4.5.

In some cases, however, a discernible peak is seen in the PCB spectra. Piezoelectric
pressure transducers are sensitive to mechanical vibration, and since the model has
a high stiffness and low mass the characteristic frequency of the model’s vibration is
expected to be in the range of 10-100 kHz, similar to the frequency of the instability
waves. The response of the five PCB transducers in the model to vibration was
tested by striking the sting in the Ludwieg tube test section with a rubber mallet.
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The resulting spectra are shown in Figure 4.19. The transducers show strong
mechanical vibrations around 20 kHz, but the signal is fairly broad band and the
energy is concentrated below 50 kHz. Transducer 4 at 211 mm from the cone tip
shows particular sensitivity to vibration.
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Figure 4.19: Response of the PCB pressure transducers in the cone frustum to
mechanical vibration. They are labeled in the figure legend according to their
distance from the cone tip, measured along the surface of the model.

Four example spectra from experiments are shown in Figure 4.20. The plot in the
upper-left (4.20a) is for a case where the boundary layer is tripped using a trip
wire upstream of the injector and the injection layer is fully turbulent by the time
it reaches the first transducer. This serves as a baseline case where no peaks are
visible in any of the spectra. Note that transducer 4 shows a strong peak at around
20 kHz in all four cases shown, but recall that this is due to mechanical vibration
and not pressure disturbances in the flow.

The remaining plots show spectra from cases with injection of the three different
gases. The peak with nitrogen injection (plot 4.20b) is quite weak and only visible
in the spectrum of transducer 1, but it is discernible when compared to the fully
turbulent case and the spectra for the other gases. The spectra for helium injection
(plot 4.20c) show a much stronger peak compared to the peak in the spectra for
nitrogen injection. This is likely due in part to the much higher sound speed
in helium, as pressure fluctuations due to acoustic waves are related to density
fluctuations by ∆p = a2∆ρ. Assuming the density fluctuations are of the same order
in each case, the pressure fluctuations detected by the pressure transducers will be
stronger if the injected gas has a higher sound speed, such as helium compared to
nitrogen. The peak in the spectra for RC318 injection (4.20d) occurs in the same
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(a) Spectra for a runwhere the injection layer
is turbulent. This serves as a baseline when
analyzing other spectra.
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(b) Spectra for a casewith nitrogen injection.
A peak is visible for the first transducer at
69 kHz.
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(c) Spectra for a case with helium injection.
A peak is visible at 101 kHz.
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(d) Spectra for a case with RC318 injection.
A peak is visible at 24.6 kHz.

Figure 4.20: Spectra from the PCB pressure transducers for four example experi-
ments with injection.

frequency band as mechanical vibrations, but the peak is distinguishable in several
of the PCB spectra when they are compared to spectra from the other cases.

Figure 4.21 shows the spectra from transducer 1 for each injection case shown
in Figure 4.20 compared to the spectrum from the turbulent baseline case. The
axes have been adjusted to make the peaks easier to discern. The scales have also
been adjusted such that the baseline noise levels are similar for the two cases being
compared.
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(a) Comparison of transducer 1 spectra for a case with
nitrogen injection versus the turbulent baseline case.
Compare to Figure 4.20b.
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(b) Comparison of transducer 1 spectra for a case with
helium injection versus the turbulent baseline case.
Compare to Figure 4.20c.
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Figure 4.21: Spectra from transducer 1 for the three injection cases shown in
Figure 4.20 compared to the turbulent baseline shown in Figure 4.20a.
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Frequency Results
Frequency data from image analysis and the pressure transducers are plotted together
in Figure 4.22. The uncertainties in the nitrogen and helium visualization data are
propagated from the wavelength and velocity data. Uncertainty in frequency for
the RC318 visualization data and all pressure transducer data is calculated from the
full width at half maximum of the peak in the spectra. The frequency is relatively
constant for nitrogen injection cases, increases with increasing injection mass flow
rate for helium injection cases, and decreases slightly with increasing injection
mass flow rate for RC318 injection cases. The data are analyzed in more detail in
Section 5.2.
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Figure 4.22: Frequency from image analysis and pressure transducers. The fre-
quency from image analysis for the helium and nitrogen injection cases is computed
using Taylor’s hypothesis while the frequency in the RC318 cases is computed
directly from the image processing routine.

4.3 OpenFOAM Computations
Nine cases were computed in OpenFOAM (see Section 2.5), three injection rates
for each of the three injected gases. The injection rate is varied by specifying the
velocity of the injected gas as it exits the injector. Flow conditions are listed in
Table 4.1. The non-dimensional mass flux F is averaged across the surface of the
injector since the density is not uniform due to the zero-gradient boundary condition
on the pressure. The non-dimensional momentum flux J is also listed in Table 4.1
for reference.
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Injected gas uinj [m/s] F = (ρu)inj
(ρu)∞

J = (ρu2)inj
(ρu2)∞

Nitrogen 6 2.75 × 10−3 0.28 × 10−4

Nitrogen 16 7.56 × 10−3 1.80 × 10−4

Nitrogen 35 19.67 × 10−3 10.25 × 10−4

Helium 20 1.20 × 10−3 0.38 × 10−4

Helium 40 2.65 × 10−3 1.59 × 10−4

Helium 70 5.21 × 10−3 5.42 × 10−4

RC318 3 10.35 × 10−3 0.51 × 10−4

RC318 7 26.06 × 10−3 2.78 × 10−4

RC318 12 50.60 × 10−3 9.14 × 10−4

Table 4.1: Flow conditions for the OpenFOAM computations.

Grid independence
The case with nitrogen injection at uinj = 16 m/s was computed on eight grids with
different levels of refinement to assess the independence of the solution to the grid
resolution. Resolutions in the refined region near the wall are 191, 145, 113, 85, 69,
57, 45, and 38 µm/cell, corresponding to Reynolds numbers based on cell size of
1719, 1305, 1017, 765, 621, 513, 405, and 342, respectively. The grid used for the
computations in this work has a resolution of 45 µm/cell. Convergence criteria such
as the value of y+ at the wall, commonly used for boundary layers, are not well-
suited to this flow because the steepest gradients of the flow variables occur near the
interface of the gases and not at the wall like they do for boundary layers. Images
of the full flow field show very little qualitative difference for all grid resolutions.
Profiles of flow variables are taken vertically from the rear of the injector section for
a quantitative comparison and plotted against y, the coordinate normal to the wall.

A second check can be performed on these profiles by examining the relative dif-
ference, (xcoarse − xfine) /xfine, for each flow variable x as a function of y for grids
of different resolutions. This is shown in Figure 4.24 for grids with resolutions
of 38 µm/cell (the most refined grid) and 69 µm/cell. The maximum error occurs
where the gradient is steepest, but it does not exceed about 10% through the majority
of the domain, which is likely on the order of the errors incurred due to approxi-
mations regarding diffusion. This agreement provides further support for adequate
convergence of the test grid.

Finally, the sumof the relative differences squared between each gridσ (Equation 4.5
for flow variable x and resolution i) and the most highly-resolved grid are plotted in
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Figure 4.23: Profiles taken at the rear of the injector section for the various grid
resolutions tested.
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Figure 4.24: Relative difference in the flow variables plotted as a function of y for the
grid with a resolution of 69 µm/cell compared to the most refined grid (38 µm/cell).

Figure 4.25,

σx,i = Σ

(
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xfine

)2
. (4.5)
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The absolute values of σx mean little, but measuring convergence this way allows
the accuracy of each grid resolution to be assessed for all flow variables simultane-
ously. The value of σ is similar for the three finer resolutions, indicating adequate
convergence at 45 µm/cell.
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Figure 4.25: Total relative difference (see Equation 4.5) in flow variables as a
function of grid resolution.

Nitrogen results
Figure 4.26 shows the flow field for the three cases with nitrogen injection. The
coloring represents the density, with blue to red corresponding to low to high density.
The color scale is normalized for each individual case so that flow features can be
more easily identified.

The flow field looks qualitatively similar to the schlieren images in Figure 4.4. The
thickness of the injection layer increases with increasing injection rate and a shock
is produced at the start of the injector section for sufficiently high injection rate.
Some waviness is present in the interface region for the two lower injection rates,
but the properties of these waves are not expected to be similar to the ones in the
experiment, as they may be influenced by the grid.

Eight wall-normal profiles are taken for each case to analyze flow variables. Lo-
cations are marked by orange arrows in Figure 4.27. One profile is taken of the
incoming boundary layer near the end of the cone tip section, three profiles are
taken over the injector, and four are taken on the frustum section downstream of
the injector section. The distances measured along the cone surface from the tip
of the cone for each profile are 120 mm, 132.5 mm, 152 mm, 172 mm, 180.6 mm,
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Figure 4.26: Results from the three computations with nitrogen injection. Coloring
corresponds to density, with the color scale normalized to each case. The value for
the non-dimensional mass flux F is given in the upper-left for each case.

189.2 mm, 197.8 mm, and 206.4 mm, respectively. The data is interpolated to 1000
equally-spaced points on each profile.

Figure 4.27: Location of wall-normal profiles for all OpenFOAM cases. They are
located 120 mm, 132.5 mm, 152 mm, 172 mm, 180.6 mm, 189.2 mm, 197.8 mm,
and 206.4 mm from the cone tip, measured along the surface of the model. The case
with nitrogen injection with uinj = 16 m/s is shown as an example.

Profiles of tangential velocity, density, temperature, andmass fraction of the injected
nitrogen are shown in Figure 4.28. Black, blue, and red curves represent the three
injection rates studied from lowest to highest, respectively, listed in Table 4.1. The
case with the highest injection rate produces a strong shock wave at the beginning
of the injector, which is evident in the second profile, taken just past the beginning
of the injector section. The effect of nitrogen injection is to displace the velocity,
density, and temperature profiles in y over the injector, and they return to profiles
typical of a boundary layer over the frustum as the streamwise momentum and
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temperature diffuse through the injection layer. The distance that the profiles are
displaced depends on the injection rate, but the injection rate apparently has little
effect on the profile shapes otherwise.

The injected nitrogen diffuses into the free stream gas fairly quickly in the case
with lowest injection rate, but the mass fraction at the wall remains nearly unity for
the other cases and the injected nitrogen diffuses notably more slowly. The mass
fraction of injected nitrogen at the wall is plotted as a function of distance from the
end of the injector along the surface of the frustum section in Figure 4.29. The color
scheme is the same as the one used in Figure 4.28. The concentration at the wall
is higher for cases with higher injection rates, and hardly deviates from unity in the
case with highest injection rate over the entire frustum. The mass fraction in the
case with lowest injection rate appears that it may asymptote to a non-zero value,
but this cannot be determined with certainty from these results.
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(d) Evolution of mass fraction of the injected nitrogen.

Figure 4.28: Evolution of flow variables for cases with nitrogen injection. Profiles
are taken at the locations indicated in Figure 4.27. Black, blue, and red curves
correspond to cases with low, medium, and high rates of injection listed in Table 4.1,
respectively.
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Figure 4.29: Mass fraction of injected nitrogen at the wall as a function of s, the
variable measured along the cone surface. Here, s = 0 corresponds to the end of
the injector section. Black, blue, and red curves correspond to increasing injection
rate with injection velocities listed in the legend.
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Helium results
Figure 4.30 shows the density field for the three cases with helium injection. Color-
ing is again normalized to each individual case. The results are qualitatively similar
to the schlieren images from the experiments. For the time step shown in the figure,
the case with uinj = 40 m/s shows "rolling" structures seen in the schlieren image
with helium injection in Figure 4.5 (top image). The waves in the OpenFOAM
simulations will not be analyzed in detail but it is interesting that the computations
exhibit qualitatively similar waves as those observed in the experiments.

Figure 4.30: Results from the three computations with helium injection. Coloring
corresponds to density, with the color scale normalized to each case. The value for
the non-dimensional mass flux F is given in the upper-left for each case.

Profiles of tangential velocity, density, temperature, and mass fraction of helium
are taken at the same locations shown in Figure 4.27. The profiles are shown
in Figure 4.31. A strong shock is again formed at the beginning of the injector
section for the cases with high injection rates. Some qualitative differences in the
profiles between helium injection and nitrogen injection are apparent. Streamwise
momentum diffuses much faster into the slow-moving helium than it does into
nitrogen, due to helium’s much lower inertia. The velocity profiles rapidly return to
boundary layer-like profiles, and begin to do so even over the injector (profiles 3 and
4 in Figure 4.31a). The lower heat capacity of helium compared to nitrogen causes
viscous heating to have a more pronounced effect where helium is present, and the
temperature profiles develop local maxima. The temperature at the wall on the
frustum also becomes dependent on the injection rate, because it depends strongly
on the mass fraction of helium. The density profiles depend both on the temperature
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and mass fraction of helium, and the net result is that the density profiles for helium
injection look qualitatively similar to those for nitrogen injection.

The concentration of helium at the wall is plotted versus distance along the frustum
section in Figure 4.32. The two cases with lower injection rates provide further
evidence that the mass fraction of the injected gas at the wall may asymptote to
a non-zero value, and the cases with helium injection reach a relatively constant
value in a shorter distance than nitrogen injection cases for similar mass flow rates.
Inspecting Figures 4.29 and 4.32 and Table 4.1 reveals that the helium concentration
is higher at the wall than injected nitrogen for the same injection mass flow rate at a
given s-location. This is likely a consequence of the free stream being displaced by
a larger distance for injection of a lighter gas for a given injection rate. It should be
kept in mind that the simulation is over-predicting the effect of diffusion for helium
due to the unity Schmidt number assumption (see Appendix A), so these results
should be tempered by a degree of skepticism.
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(d) Evolution of mass fraction of helium.

Figure 4.31: Evolution of flow variables for cases with helium injection. Profiles
are taken at the locations indicated in Figure 4.27. Black, blue, and red curves
correspond to cases with low, medium, and high rates of injection listed in Table 4.1,
respectively.
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Figure 4.32: Mass fraction of helium at the wall as a function of s, the variable
measured along the cone surface. Here, s = 0 corresponds to the end of the injector
section. Black, blue, and red curves correspond to increasing injection rate with
injection velocities listed in the legend.
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RC318 results
Figure 4.33 shows the density field for the three cases with RC318 injection. Col-
oring is again normalized to each individual case, which makes the results look
somewhat different from those presented in Figures 4.26 and 4.30. The injected
RC318 has a very high density due to its high molecular weight, resulting in qualita-
tively different density fields compared to cases with nitrogen and helium injection,
where the density of the injected gas is substantially lower than the free stream gas
due to the higher temperature of the injected gas and lower molecular weight in the
case of helium injection.

Figure 4.33: Results from the three computations with RC318 injection. Coloring
corresponds to density, with the color scale normalized to each case. The value for
the non-dimensional mass flux F is given in the upper-left for each case.

Profiles of flow variables are again taken at the same locations given in Figure 4.27
and are plotted in Figure 4.34. The velocity and temperature profiles are qualitatively
similar to those for nitrogen injection, except that the streamwisemomentum diffuses
more slowly due to the higher inertia of the RC318. The velocity and temperature
profiles are effectively displaced versions of the ones in the incoming boundary
layer. The mass fraction profiles are also qualitatively similar to those for nitrogen
injection.

The density profiles are quite different, however. The density is a function of
both the local temperature and average molecular weight, so it depends on both
the temperature and mass fraction distributions. Unlike in cases with nitrogen and
helium injection where the density profile is monotonic because the low molecular
weight of the injected gas and higher temperature both contribute to a lower density
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near the wall, RC318’s high molecular weight tends to increase the density which
competes with the effect of temperature. The density profiles can then develop
local maxima and minima between the wall and the free stream. This may have
implications for the properties of the instability waves that form in the injection
layer.

The mass fraction of RC318 at the wall is plotted in Figure 4.35. The concentration
does not reach an approximately constant value by the end of the frustum in any of
the cases with RC318 injection, which agrees with the trend observed by comparing
Figures 4.29 and 4.32. The mass fraction of injected gas is again observed to
decrease more rapidly for a heavier injected gas for similar injection mass flow rate
by comparing Figures 4.29, 4.32, and 4.35 and Table 4.1. Recall again that the
OpenFOAM solution is under-predicting the effect of diffusion for RC318 based on
the findings presented in Appendix A.
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(d) Evolution of mass fraction of RC318.

Figure 4.34: Evolution of flow variables for cases with RC318 injection. Profiles
are taken at the locations indicated in Figure 4.27. Black, blue, and red curves
correspond to cases with low, medium, and high rates of injection listed in Table 4.1,
respectively.
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Figure 4.35: Mass fraction of RC318 at the wall as a function of s, the variable
measured along the cone surface. Here, s = 0 corresponds to the end of the injector
section. Black, blue, and red curves correspond to increasing injection rate with
injection velocities listed in the legend.
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Composite results
The computational results can be compared directly to experiments by measuring
the displacement thickness of the injection layer in the computations at the rear of
the injector. Displacement thickness in a compressible flow is defined as

δ? =

∫ ∞

0

(
1 −

ρu
ρ∞u∞

)
dy . (4.6)

This integral is computed numerically using trapezoidal integration for the profile
taken at the rear of the injector section for each case and the result is plotted in
Figure 4.36 along with the experimental measurements of δ presented in Figure 4.6.
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Figure 4.36: Experimental measurements of the injection layer thickness measured
at the rear of the injector section compared with the displacement thickness at
the same location from the OpenFOAM computations (indicated with "OF" in the
legend).

Results from the nitrogen and helium injection cases agree remarkably well with
the experimental results, but the displacement thickness in the RC318 cases is
consistently higher than the measured value in the experiments. This disagreement
is likely a result of the assumptions made by the solver in handling diffusion, which
were identified as a possible issue for cases with RC318 injection in Section 2.5.
OpenFOAM under-predicts diffusion of RC318, which would act to increase the
displacement of the interface between gases from the wall in the computations. It is
interesting that caseswith helium injection do not also show significant disagreement
between experiments and computations, this is likely just a fortunate coincidence
for the specific flow studied. In all cases the disagreement is not too large, which
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is a consequence of the errors being confined to the thin mixing region as stated in
Section 2.5.

Another potential source of disagreement is that schlieren imaging is sensitive to
gradients in the index of refraction of a gas, not the density. The two are related by
the Gladstone-Dale relation (Equation 3.1):

n = K ρ + 1 .

TheGladstone-Dale constantK is dependent on thewavelength of the light traversing
the gas and also weakly dependent on temperature for a given gas, but can be quite
different for different gases (Merzkirch, 1987). The Gladstone-Dale constant for a
mixture of gases is dependent on the local composition,

Kmix = ΣKiYi . (4.7)

Hence the index of refraction of a gas is sensitive not only to the local density but
also to the local composition through K .

The index of refraction can be estimated along the profile at the rear of the injec-
tor from the OpenFOAM computations for each case to investigate whether there
is an appreciable difference between the density and index of refraction profiles.
A displacement thickness (Equation 4.6) can be calculated using n − 1 instead of
the density to estimate the magnitude of the effect. Values for the Gladstone-Dale
constant for several common gases are tabulated in Merzkirch (1987) at wave-
lengths of 589 and 633 nm and temperatures of 273 and 295 K. These values are
used to estimate the Gladstone-Dale constants for nitrogen and helium assuming a
similar relationship to wavelength and temperature for both gases. The Gladstone-
Dale constant is not tabulated for RC318, but it can be estimated roughly from
the Gladstone-Dale constant for other species with similar characteristics, such as
carbon tetrafluoride, sulfur hexafluoride, and Xenon. Gladstone-Dale constants, the
displacement thickness, and the thickness computed using the index of refraction
(δn−1) are given in Table 4.2. Profiles are taken at the rear of the injector for cases
with uinj = 16, 40, and 3 m/s for nitrogen, helium, and RC318 injection, respectively.

The effect of varying Gladstone-Dale constant throughout the profile has little effect
in cases with helium injection because the Gladstone-Dale constants for helium and
nitrogen are similar. There is a small but appreciable effect with RC318 injection,
but it acts to make the displacement thickness larger in visualization experiments,
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Injected Gas K × 103 [m3/kg] δ? [mm] δn−1 [mm]
Nitrogen 0.238 4.92 4.92
Helium 0.196 4.73 4.75
RC318 0.11 4.34 4.49

Table 4.2: Estimated Gladstone-Dale constants for the three gases at a wavelength
of approximately 600 nm and room temperature with the computed displacement
thicknesses and thicknesses based on index of refraction calculated at the rear of
the injector section for cases with uinj = 16, 40, and 3 m/s for nitrogen, helium, and
RC318 injection, respectively.

not smaller. Therefore the effect of composition on the Gladstone-Dale constant can
be ruled out as a source of disagreement between the experiments and computations.

Three cases with different injected gases have similar values of δ?, which allows
profiles for these cases to be compared directly. Figure 4.37 shows profiles of the
flow variables taken at the rear of the injector section for the three gases where
uinj = 16, 40, and 3 m/s for nitrogen, helium and RC318 injection, respectively. The
differences observed by comparing Figures 4.28, 4.31, and 4.34 aremademuchmore
apparent. Streamwise momentum diffuses downward much more rapidly in gases
with lower density, where the kinematic viscosity ν = µ

ρ is higher. Figure 4.37b
clearly illustrates the drastic difference in the density profile of cases with RC318
injection compared to the lighter gases. The region where the density gradient is
positive is approximately of the same length, but the density increases to a high
value at the wall in the case of RC318 injection due to the increasing mass fraction
of injected gas. Figure 4.37c shows the local maximum in the temperature profile
in the case with helium injection, which is produced by the competition between
heat capacity and mass fraction of injected gas, which does not occur in cases with
nitrogen or RC318.

It is also worth while to consider profiles taken some distance downstream from
the injector for the three cases presented in Figure 4.37 so that the evolution of the
profiles can be compared directly. Profiles taken at the furthest sampling location
206.4 mm from the cone tip are presented in Figure 4.38. The velocity profile at this
location for the case with RC318 injection appears qualitatively similar to the one at
the rear of the injector, and there remains an appreciably thick region of slow-moving
fluid in the near-wall region. Streamwise momentum has diffused rapidly into the
gas near the wall in the case with helium injection and the profile is significantly
different from the other two. The density profile in the case with RC318 injection
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Figure 4.37: Profiles taken at the rear of the injector section for cases with all three
injected gases. Cases are selected such that the value of δ? is similar for all three.

still has a local minimum away from the wall, but the value of density at the wall
has decreased below the free stream value due to diffusion of nitrogen to the wall.
Figure 4.38c illustrates the higher wall temperature of helium due to its lower heat
capacity.
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Figure 4.38: Profiles taken 206.4 mm from the cone tip for cases with all three
injected gases. Cases are selected such that the value of δ? is similar for all three.
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C h a p t e r 5

ANALYSIS

The results presented in Chapter 4 are analyzed in this chapter. The data from the
full-field images in Section 4.1 are collapsed and the non-dimensional momentum
flux J is shown to be a more appropriate parameter than the non-dimensional mass
flux F for presenting and analyzing the data. Data from the high-speed imaging
processing described in Section 4.2 is analyzed in conjunction with the results from
the OpenFOAM computations to draw conclusions about the nature of the dominant
instability in the flow. The properties of the instability are compared with those
for the boundary layer on a cone without injection in the Caltech Ludwieg Tube
measured using the same technique and with results for compressible mixing layers.

5.1 Full Field Data
It was found in Section 4.1 that the "tuned" condition does not depend on the
injection mass flux F but rather on the injection layer thickness δ. Figures 4.6
and 4.36 show that δ does not only depend on F when different injected gases are
considered. A new parameter to describe the injection rate that will collapse the
data for δ is therefore desired.

One approach is to consider the injection process as a low-momentum jet in a
supersonic crossflow. The trajectory of such a jet, which is related to the penetration
height, is most strongly a function of the momentum flux ratio J:

J =
ρ ju2

j

ρ∞u2
∞

. (5.1)

It can also depend upon the pressure, density, and temperature ratios of the jet to the
free stream as well as the molecular weights and Mach numbers of the jet and free
stream (Mahesh, 2013). Most empirical correlations take the form

y

d
= fn

(
J,

x
d

)
. (5.2)

y is the height of the jet above the orifice, x is the coordinate along the direction
of the free stream velocity, and d is a characteristic size of the jet, typically the jet
diameter in the case of a circular orifice. The functional dependence on J and x/d

is often cast as a power law, with different exponents on J and x/d.
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At a fixed location x, then, the penetration height y can be considered to be a
function of J only with a power law dependence. In the present work, y/d at the
rear of the injector is equivalent to δ/Linj where Linj is the length of the injector
section. The momentum flux of the injected gas is computed by assuming that the
average pressure over the injector is the same for all experiments, which allows the
density to be extracted from the measured mass flux. The pressure is determined
by averaging the pressure at the injector exit in the OpenFOAM computations. This
introduces additional uncertainty in J that is not present in F, which is accounted
for in the error bars on subsequent plots.

Figure 5.1 shows both experimental and computational measurements of δ normal-
ized by Linj plotted against J. The black line represents a power law fit, where only
the nitrogen and helium injection data have been included in the fit because of the
discrepancy between experimental and computational measurements of δ for the
RC318 data found in Section 4.3. The calculated fit is

δ

Linj
= 1.256J0.333 + 0.0358 . (5.3)

Mahesh (2013) reports values between 0.276 and 0.5 for the exponent on J in his
review article.
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Figure 5.1: δ, measured at the rear of the injector section, normalized by the length
of the injector Linj plotted against the dimensionless momentum flux ratio J for all
experimental and computational data. The black line is a fitted power law curve
considering only data from nitrogen and helium injection cases. The expression for
the curve is given in Equation 5.3. The ⊕ symbol indicates the tuned condition.
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The data is collapsed reasonably well by considering a dependence on J, and it
approximately follows a power law. Computational data for RC318 injection cases
are outliers, which may indicate that the disagreement between measurements of
δ in experiments and computations is due at least in part to the invalidity of some
assumptions made by the solver instead of exclusively because of the sensitivity
of schlieren visualization to gradients in refractive index and not density alone, as
explored in Section 4.3. In addition to collapsing the data for δ, using J as an
abscissa produces more similar ranges for injection rate across the different injected
gases and allows for more convenient comparison of results. For this reason wave
properties will be plotted against J instead of F in Section 5.2. It should also
be noted that because "tuning" of the injection rate to minimize shock formation
appears to depend on δ, J also predicts tuning for a given injection geometry.

Collapsing the data for transition location by plotting against a single variable is
far more difficult, as even boundary layer transition without injection depends on
a wide range of parameters. For supersonic flow over a cone for instance, Stetson
(1987) identifies Mach number, nosetip bluntness, angle of attack, unit Reynolds
number, environmental effects such as wind tunnel noise, wall temperature, surface
roughness, pressure gradient, mass transfer, real gas and non-equilibrium effects,
body curvature, and vibration as major factors that influence the transition Reynolds
number, and even this list is not exhaustive for all situations. In the present work,
many of these variables are identical for all cases studied. A proposed functional
form for the transition location xtr presented in Figure 4.7 normalized by the injection
layer thickness δ is

xtr

δ
= fn

(
ReL,

uinj

u∞
,
ρinj

ρ∞
,
Tinj

T∞
,

Winj

W∞
,
γinj

γ∞

)
(5.4)

and may include other variables as well.

A trial-and-error procedure reveals that for the experiments conducted for this work
the transition location normalized by δ is primarily dependent on the ratio of the
velocity of the injected gas to the free stream velocity. Figure 5.2 shows the collapse
of the transition data when plotted in this manner. It is not knownwhy this parameter
achieves a suitable collapse of the data, and it may not apply to transition data for
other studies with injection. Clearly more work is required in other facilities and
with other model geometries to make a more definitive determination.
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Figure 5.2: Transition location xtr, measured from the front of the injector section,
normalized by the injection layer thickness δ measured at the rear of the injector
plotted against the velocity ratio of the injected gas to the free stream gas.
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5.2 Instability Wave Analysis
Analysis of the data presented in Section 4.2 is begun by re-plotting the results using
J as the abscissa instead of F. Figures 5.3, 5.4, and 5.5 show the dimensionless
wavelength, convective velocity, and frequency, respectively, of the instability waves
plotted against J. Recall from Section 4.2 that wavelength and convective velocity
data in these plots represent populations. Vertical error bars for these points are the
standard deviation of the population for each data point. An alternative measure of
the uncertainty for each data point is the standard deviation of the mean, defined for
large data sets as σ√

N
whereσ is the standard deviation of the population and N is the

number of samples. The standard deviation of the mean can also be estimated using
a bootstrap method (W. Menke and J. Menke, 2012). The standard deviation of the
mean is found to be one percent or less of the value of the mean, so the size of the
error bars in the figures over-represents the actual uncertainty in the measurements.
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Figure 5.3: Wavelength normalized by the injector length plotted against the non-
dimensional injection momentum flux J for all cases analyzed. The wavelength
is measured directly for helium and nitrogen injection and calculated assuming
Taylor’s hypothesis for RC318 injection. Vertical error bars reflect only uncertainty
due to measurement error.

Trends in the data can now be much more clearly discerned than in Section 4.2.
Wavelength remains essentially constant across all injection rates studied for a
given injected gas. Convective velocity increases for increasing injection rate with
helium injection, increases more slowly with increasing injection rate with nitrogen
injection, and decreases with increasing injection rate for RC318 injection. Trends
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Figure 5.4: Convective velocity normalized by the free stream velocity plotted
versus the non-dimensional momentum flux J for all cases studied. Vertical error
bars represent uncertainty due to measurement error, including pixel-locking.

0 2 4 6 8 10 12 14

(ρu2)inj
(ρu2)∞

×10
-4

0

2

4

6

8

10

12

f
L
in
j

U
∞

Nitrogen

Helium

Helium (High Reynolds number)

RC318

Nitrogen (PCB)

Helium (PCB)

RC318 (PCB)

Figure 5.5: Frequency from image analysis and pressure transducers. The frequency
from image analysis for the helium and nitrogen injection cases is computed using
Taylor’s hypothesis while the frequency in the RC318 cases is computed directly
from the image processing routine.

in frequency are similar to those for convective velocity as a consequence of Taylor’s
hypothesis (Equation 4.4).

Fedorov, Soudakov, et al. (2014) and Schmidt et al. (2015) performed theoretical
studies on the stability of flow with injection on the geometry used in the current
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work using linear stability analysis. Both studies were performed with air injection
into an air free stream, and so do not include effects of varying the injected gas.
Both studies found that injection destabilizes several acoustic modes, but the mode
with the highest growth rate is two-dimensional. The most amplified frequency,
non-dimensionalized using the length of the injector and free stream velocity as
in Figure 5.5, is found by Schmidt et al. (2015) to be approximately 5.2, which
agrees with the frequency found for nitrogen injection in this work. Neither of
these theoretical studies investigate the waves in the nonlinear regime, but the waves
observed in this work by schlieren visualization are likely nonlinear.

The remainder of this chapter is devoted to characterizing the dominant instability
in the test flow so that a framework can be developed for future studies. Supersonic
flow with injection appears qualitatively similar to supersonic boundary layer flow
and also compressible free shear layers, both of which have instabilities that have
been extensively researched. The behavior of flow with injection is compared to
each of these flows to determine which properties, if any, are shared.

High-speed boundary layers
As mentioned in Section 1.1, current understanding of the stability of high speed
boundary layers is summarized by Fedorov (2011) and Fedorov and Tumin (2011).
When the free stream Mach number is sufficiently high, transition is dominated by
the two-dimensional Mackmode ("secondmode") caused by trapped acoustic waves
inside the boundary layer for sharp cone geometries. Otherwise transition is due
to the growth of oblique Tollmien-Schlichting waves, often referred to as the "first
mode" in the literature. Figure 10.10 of Mack (1984) shows the relative strengths of
the first and second modes as a function of Mach number for a flat plate. This chart
predicts that bothmodesmay be active in the flow in theCaltechLudwiegTubewhere
M∞ = 4. Linear stability calculations performed by Schmidt et al. (2015) confirm
that both modes are unstable but that the first mode is dominant. Questions remain
whether highly oblique waves can exist on a cone where the spanwise wavenumber
is small compared to the local cone radius, but Tollmien-Schlichting waves do not
necessarily have a small spanwise wavenumber and can be nearly two-dimensional.

Several experiments were performed in the Ludwieg tube to analyze the dominant
instability mode in the boundary layer on a straight cone with no injection. The
model is the same as the one described in Section 2.3 but with no injector section.
The cone tip is mated directly to a frustum section that has a female connection at
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its front instead of a male connection like the one shown in Figure 2.9. The female
frustum section is instrumented with five PCB pressure transducers, identical to the
male frustum.

The samemeasurement and processing techniqueswere applied to these experiments
as those described in Sections 3.4 and 4.2. The only difference is that the camera
resulution is changed from 224 by 64 pixels to 384 by 40 pixels since the thickness
of the boundary layer is much less than that of flow with injection. The change in
resolution allows the framing rate to be increased from 289,361 frames per second
to 345,177 frames per second.

Figure 5.6 shows a sample image from an experiment with a free stream unit
Reynolds number of 9 × 106 per meter. Crests of consecutive waves are indicated
in the figure. The local visual boundary layer thickness is determined from the
images to be 0.9 mm. The wavelength of the instability waves is determined to
be 11.7 ± 3 mm or 13δvis and their convective speed is 557 ± 60 m/s or 0.83u∞.
Using Taylor’s hypothesis, the frequency is 46.4 kHz. These values are typical of
first-mode waves, as second-mode waves have amuch shorter wavelength and higher
frequency. The waves are potentially weakly oblique, evidenced by the fact that they
are seldom observed in long trains of more than three or four consecutive waves.
Second-mode waves have been visualized in trains of ten or more waves because of
their two dimensional nature (Laurence, Wagner, Hanneman, et al., 2012).

Figure 5.6: Sample image of instability waves in a cone boundary layer at a unit
Reynolds number of 9 × 106 per meter. Yellow arrows indicate the crests of three
consecutive waves, and blue vertical lines indicate the locations of the first four
pressure transducers. The fifth transducer is outside the viewing window of the
camera to the right of the image in the figure.

The pressure transducers on the cone frustumproduce a strong signal at the frequency
of the waves. The spectral density of the output of the five transducers is shown
in Figure 5.7. The spectra are typical of an instability that grows as it progresses
downstream before breaking down to turbulence. The insert in the figure shows
the spectrum from the first transducer which exhibits a strong peak at 45.9 kHz,
indicating excellent agreement between the optical measurement technique and
surface measurements.
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Figure 5.7: Spectra from the pressure transducers on a straight cone under the
same conditions as the visualization in Figure 5.6. The spectra show growth of an
instability around 46 kHz that breaks down to a turbulence at or before the location
of the final transducer. The insert shows the spectrum of the first transducer so that
the peak at 45.9 kHz can be clearly perceived.

The dominant instability in flow with injection is apparently different than the one
present in the boundary layer on a straight cone with no injection. Characteristics of
the instability waves in flowwith injection depend on the injected gas, but comparing
caseswith nitrogen injection to the analysis of waves in the boundary layer eliminates
this issue. The frequency of the waves in flowwith nitrogen injection is substantially
higher than the frequency observed in waves in the boundary layer, even though the
injection layer is several times thicker than the boundary layer. This is the opposite
behavior from what is observed in boundary layers, where the frequency scales
inversely with boundary layer thickness (Mack, 1984). For second-mode waves,

f = A
UE

2δ
. (5.5)

Here A is a constant of proportionality and the subscript E indicates boundary layer
edge conditions. The frequency of first-mode waves also scales with UE

δ although
the constant of proportionality is quite different than the one in Equation 5.5. The
wavelength of the first-mode waves in the boundary layer is also much longer, both
in dimensional terms and in terms of the local layer thickness, than waves observed
in flow with injection. Longer trains of waves are observed in flow with nitrogen



87

and helium injection, indicating that the disturbance is potentially two-dimensional.
It can therefore be concluded that the instability in the injection layer is not the same
as the first-mode instability present in the cone boundary layer with no injection.

It can also be concluded that injection does not activate a second-mode instability,
or at least that the instability does not behave like the second mode for boundary
layers. It can be observed from Figure 5.1 that the injection layer thickness varies
by a factor of more than two in the experiments performed, yet Figure 5.3 indicates
only a very weak dependence of wavelength on injection layer thickness, if there
is any dependence at all. This is not at all like the behavior of the second mode
in boundary layers given in Equation 5.5. Furthermore, Fedorov (2011) explains
that second-mode disturbances grow because of acoustic waves trapped inside the
boundary layer which turn around at the so-called sonic line where the phase speed
of the waves is equal to the sum of the local velocity and sound speed,

Uc = u(y) + a(y) . (5.6)

It can be shown using the experimentally determined convective speed of the waves
and the velocity and sound speed profiles from the OpenFOAM computations that
there is no location where Equation 5.6 is satisfied for cases with helium injection,
so this cannot be the mechanism for the instability in general.

Shear layers
Two-dimensional free shear layers are a canonical flow in fluidmechanics. Figure 5.8
illustrates the situation. Conditions as y → ±∞ are well-defined as the conditions
of streams 1 and 2, respectively. This flow is unstable due to the well-known Kelvin-
Helmholtz instability of the interface between parallel streams at different velocities.
In the remainder of this work stream 1 will be defined to be the high-speed stream.

A great deal of theoretical, computational, and experimental work has been devoted
to the study of the instability in free shear layers, particularly when the flow can
be approximated as incompressible as in liquid flows. Other approximations, such
as assuming that ρ1 = ρ2 and/or γ1 = γ2 for shear layers in gases are also often
employed. Studies where all three quantities, velocity, density, and the ratio of
specific heats are allowed to be different for the two streams are less common.
Papamoschou (1987) performed an extensive study of high-speed, variable density,
heterogeneous (γ1 , γ2) shear layers for his Ph.D. thesis, and some of the results are
also reported in peer-reviewed articles. The description that follows of the properties
of the instability waves in these shear layers is reported mainly from his work.
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Figure 5.8: Sketch of a two-dimensional free shear layer flow. Two streams with
different velocities and potentially different densities and specific heats are initially
separated by a splitter plate and allowed to mix downstream of the plate. A mean
velocity profile is sketched in the mixing region. Stream 1 is the high-speed stream
and stream 2 is the low-speed stream by definition.

First, it should be noted that the instability of developing shear layers and the struc-
tures in turbulent shear layers are distinct from one another. However researchers
have noted that the persistent large-scale structures in turbulent shear layers share
many propertieswith the initial instabilitywaves (Papamoschou andRoshko, 1988b).
Therefore for characteristics such as wavelength and convective speed that are of
interest in the current work, it is not unreasonable to compare with both the devel-
oping instability waves in laminar shear layers and the larger structures in developed
shear layers.

The most common length scale used to non-dimensionalize features in both com-
pressible and incompressible shear layers is the vorticity thickness δω:

δω =
∆U(

du
dy

)
max

. (5.7)

∆U is the velocity difference between streams 1 and 2, so the vorticity thickness is
equivalently the maximum-slope thickness of the mean velocity profile. Dimotakis
and Brown (1976) report values for the wavelength normalized by the vorticity
thickness of 3.1 < λ

δω
< 5.0 for incompressible shear layers in water. Brown

and Roshko (1974) performed experiments on shear layers with both subsonic and
supersonic streams with ρ1 , ρ2 and found that λ

δω
= 2.9. Papamoschou (1987)

found that λ
δω
= 3.2 for similar experiments where the convective Mach number of

the high-speed stream Mc1 is less than unity. The concept of a convective Mach
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number is discussed later in this section. It is noteworthy that the wavelength
observed in free shear layers is approximately three vorticity thicknesses across a
very wide range of conditions.

There is not a simple expression for the phase speed of unstablewaves in a developing
shear layer. Papamoschou (1987) performs a temporal linear stability analysis on
small-amplitude disturbances of a compressible heterogeneous infinitesimal vortex
sheet in Section 4.1 of that work. The disturbance to the velocity potential in
stream j, φ j , is assumed to take the form

φ j = ψ j (y)eiα(x−ct) , (5.8)

where ψ is the disturbance amplitude, α is the wavenumber (assumed to be real),
and c = cr + ici is the complex phase speed of the disturbance. The governing
equation from small-perturbation theory is

1
a2

j

D2φ j

Dt2 = ∇
2φ j . (5.9)

Here a j is the sound speed in stream j. The form of the general solution to this
equation suggests the introduction of a convectiveMach number Mcj for each stream.
The convective Mach number is the Mach number of each stream in the frame of
reference moving with the disturbance:

Mcj =
Uj − cr

a j
. (5.10)

Implementing the boundary conditions that the disturbancesmust be finite at infinity,
the velocities on either side of the vortex sheet must be equal to the motion of the
sheet, and that the pressure is matched on either side of the sheet results in an
eigenvalue problem for the phase speed c, with the solution being

µ4
1

(
1 − µ2

2

)
=

(
γ2

γ1

)2
µ4

2

(
1 − µ2

1

)
. (5.11)

Here µ j is the complex convective Mach number in stream j:

µ j =
Uj − cr

a j
− i

ci

a j
. (5.12)

Equation 5.11 can be solved numerically for c given the conditions in the two
streams. The stability of the vortex sheet can be determined by the sign of ci, which
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can be expressed as a function of Mc1 for a given ratio of sound speed (or density)
and ratios of specific heats. Papamoschou and Roshko (1988a) found that the vortex
sheet becomes stable for sufficiently high Mc1 , but the limiting value depends upon
the other parameters. The limiting value is always found to be greater than unity.

A vortex sheet is obviously a simplification of a finite-thickness shear layer. As
pointed out by Papamoschou (1987), in a shear layer there is no clear interface
between the two streams, and all variables become a function of y, including the
convective Mach number,

Mc(y) =
u(y) −Uc

a(y)
. (5.13)

This means that there is always a subsonic sublayer where Mc < 1, so shear
layers are always unstable even though compressibility does have a stabilizing effect
(Papamoschou and Roshko, 1988b). As previously mentioned, there is not a simple
method for finding the phase speed of disturbances in a compressible, heterogeneous
shear layer of finite thickness. There is, however, a method to find the convective
velocity of structures in a developed shear layer. This velocity is not expected to be
substantially different from the phase speed of instability waves both because of the
fact that structures in a developed shear layer inherit their properties from the initial
instability (Papamoschou, 1987) and also because of the argument used to develop
the expression for the structures’ convective velocity.

The equation for convective velocity of large structures is commonly used in the
literature. The essence of its derivation is given in Section 6 of Papamoschou and
Roshko (1988b). The structures are observed in a reference frame convecting at
Uc, the convective velocity of the structures. The formulation of a convective Mach
number is the same in this case as in Equation 5.10 except Uc is substituted for
cr . Sketches of the streamlines in the convective frame are shown in Figure 5.9.
There are stagnation points between the structures in this frame, which indicates
that the total pressures of the streams must match. The nature and shape of the
structures is not important to the argument, so long as structures exist between low-
and high-speed streams. Assuming isentropic compression, the resulting relation is

(
1 +

γ1 − 1
2

M2
c1

) γ1
γ1−1

=

(
1 +

γ2 − 1
2

M2
c2

) γ2
γ2−1

. (5.14)

Given the conditions in the two streams, one can solve for Uc by finding the root
of Equation 5.14 numerically. Papamoschou (1989) shows that although the two
convective Mach numbers for the two streams may not be equal if γ1 , γ2 or
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if a convective Mach number is sufficiently high to produce a shock wave along
the stagnation line of one or both streams, the higher of the two convective Mach
numbers is the important one in determining the effect of compressibility on the
shear layer. This point will be discussed further later on in this section. It can
be shown that Equations 5.11 and 5.14 give approximately the same result within
a few percent for the velocity of the waves given the same free stream properties,
so Equation 5.14 will be used to evaluate convective velocity going forward for
simplicity.

Figure 5.9: Streamlines in a frame convecting with structures in a shear layer. There
are stagnation points for each stream between the structures.

The comparison of the structures observed in flow with injection to structures in
shear layers can begin with a comparison of wavelengths. As noted above, the
wavelength of structures in shear layers scales with the vorticity thickness δω,
defined in Equation 5.7. The computed profiles reported in Section 4.3 can be
used to calculate an equivalent length scale to non-dimensionalize the wavelengths
observed in experiments.

Equation 5.7 cannot be applied directly to the velocity profiles because although
there is a clear choice for the parameters for stream 1 (the free stream values over the
cone), there is not a clear choice for stream 2 conditions because of the influence of
the wall. This can be resolved by defining a new thickness δc, which is the vertical
distance between the points of maximum curvature of the momentum profile. δc

will be referred to in this work as the curvature thickness of the profile. It is roughly
equivalent to δω except that it allows for either or both of conditions 1 and 2 to be not
well-defined. It is only required that there is an inflection region in the profile. The
momentum profile is chosen instead of the velocity profile, motivated by the fact
that many features in jets, wakes, and shear layers depend on the initial momentum
thickness (Michalke, 1965). The velocity and momentum profiles yield very similar
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results in most cases, with slight differences due to the fact that the density and
velocity profiles evolve differently due to the presence of the wall and convection
of the injected gas in the direction normal to the mean flow from the injector. This
is not a concern in free shear layers where the velocity and density profiles behave
similarly to one another. An example momentum profile for a case with nitrogen
injection is shown in Figure 5.10 with the curvature thickness indicated.
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Figure 5.10: Example momentum profile for a case with nitrogen injection. The
curvature thickness δc is indicated with black dashed lines.

δc increases with downstream distance as streamwisemomentum diffuses downward
from the free stream towards the wall, so the choice of streamwise location at which
δc is evaluated is not arbitrary. It is assumed that the instability begins to develop
nearly instantaneously as soon as the profiles are modified with injection and that
the wavelength scales with the initial injection layer profiles at the beginning of the
injector. Hence the profiles at the beginning of the injector are used to evaluate δc

for each case. There is some difficulty in locating the furthest point of curvature
from the wall in cases where a strong shock is present at the beginning of the injector
section, so the uncertainty in δc is higher in these cases. Values for δc for each case
are given in Table 5.1.

The value of δc is effectively constant for each injected gas within the degree of
uncertainty in determining the points of maximum curvature. Figure 5.11 shows the
experimental values for wavelength normalized by corresponding values for δc from
Table 5.1. The values of δc are averaged over the injection rates so that there is a
single value for each injected gas since the values of δc for a given gas are so similar.
Data from the cases with helium injection performed at a higher unit Reynolds
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Injected gas J = (ρu2)inj
(ρu2)∞

δc [mm]
Nitrogen 0.28 × 10−4 0.71
Nitrogen 1.80 × 10−4 0.70
Nitrogen 10.25 × 10−4 0.70
Helium 0.38 × 10−4 0.64
Helium 1.59 × 10−4 0.65
Helium 5.42 × 10−4 0.64
RC318 0.51 × 10−4 0.72
RC318 2.78 × 10−4 0.75
RC318 9.14 × 10−4 0.76

Table 5.1: Values of δc for momentum profiles at the beginning of the injector
section for the OpenFOAM computations.

number are not included because δc is a function of the free stream conditions in
the wind tunnel and the computations all have a unit Reynolds number of 9 × 106

per meter.
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Figure 5.11: Wavelength normalized by δc using the values in Table 5.1 for the
experiments performed with the lower unit Reynolds number condition (9× 106 per
meter nominally).

The results for nitrogen and helium injection collapse remarkably well to a value
of λ

δc
= 8.5, and the results for RC318 injection are self-consistent in the sense

that the measured wavelength and calculated δc are both approximately constant
across all injection rates tested. The value of 8.5 is higher than the values reported
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in the literature for λ
δω

of between 3 and 5 for free shear layers, but there is a
difference between the definitions δc and δω used to normalize the wavelength so
some discrepancy is expected. The values of λ

δc
for RC318 injection cases are much

higher than those for helium and nitrogen injection, however. This may be due to
the fact that the momentum profile for RC318 injection has an additional inflection
region close to the wall where the density reaches a local maximum which is not
present in the velocity profile. This could change the scaling of the wavelength
relative to the other cases where the momentum profile is monotonic. The fact that
the curvature thickness collapses the wavelengths in each data set in this study much
in the same way that the vorticity thickness collapses the wavelength data in free
shear layers is evidence that the instability present in supersonic flow with injection
may be of the same type as that active in supersonic shear layers.

Predicting a convective velocity for waves in the injection layer is not straightforward
using Equation 5.14 and the data from the OpenFOAM computations. Condition 1
is obviously the free stream over the cone, but the choice of condition 2 is not clear
because of the presence of the wall. Based on a similar argument to the one used
to define δc, namely that the properties of the layer are governed by the inflection
region in the momentum profile as long as the inflection point is sufficiently far
from the wall, condition 2 can be specified at the lower point of curvature in the
momentum profile which is indicated by the lower dashed line in Figure 5.10. Using
this definition for condition 2, the value of Uc calculated from Equation 5.14 varies
only slightly in the streamwise direction, so the choice of streamwise location for
evaluatingUc is somewhat arbitrary. The profile used to computeUc is the one at the
rear of the injector, which is close to where the convective speed is measured in the
experiments. The inflection point in the momentum profile is several δcs from the
wall at this location. Table 5.2 lists the values for Uc

U∞
computed from Equation 5.14.

The values in Table 5.2 show the same qualitative trends for a given injected gas as
those observed in Figure 5.4, namely thatUc increases with increasing injection rate
for cases with nitrogen and helium injection and decreases slightly with increasing
injection rate for cases with RC318 injection. Figure 5.12 shows the measured
convective velocity for each experiment normalized by a corresponding predicted
convective velocity from Table 5.2. Linear interpolation and extrapolation of the
data in Table 5.2 is used to estimate the predicted convective velocity.

Using the lower point of curvature in the momentum profile to calculate the condi-
tions in stream 2 for Equation 5.14 predicts the measured convective velocity almost
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Injected gas J = (ρu2)inj
(ρu2)∞

Uc

U∞
Nitrogen 0.28 × 10−4 0.75
Nitrogen 1.80 × 10−4 0.79
Nitrogen 10.25 × 10−4 0.81
Helium 0.38 × 10−4 0.86
Helium 1.59 × 10−4 0.91
Helium 5.42 × 10−4 0.96
RC318 0.51 × 10−4 0.70
RC318 2.78 × 10−4 0.69
RC318 9.14 × 10−4 0.67

Table 5.2: Values of Uc

U∞
computed with Equation 5.14 and the data from the

OpenFOAM computations using the lower point of curvature in the momentum
profile to determine the conditions in stream 2. Profiles are taken at the rear of the
injector section.
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Figure 5.12: Ratio of the measured experimental value of wave convective speed
to that predicted using Equation 5.14 (tabulated in Table 5.2) plotted against J for
cases with a nominal unit Reynolds number of 9 × 106 per meter.

exactly for all cases. Recall from Section 4.2 that there is some additional uncer-
tainty in computing the convective velocity in cases with RC318 injection because
the long-wavelength structures are difficult to track with the limited camera reso-
lution available. The fact that the convective velocity of structures in the injection
layer can be so accurately predicted using a relation for free shear layers, along with
the evidence provided by the scaling of the wavelengths, provides a strong case that
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the instability present in the injection layer is of the Kelvin-Helmholtz type resulting
from the inflection in the velocity profile.

If transition in flow with injection is due to shear layer instabilities, then the findings
of past research efforts on shear layers can be brought to bear on understanding and
predicting the behavior of flow with injection under different conditions, beyond
just predicting the wavelength, velocity, and frequency of the waves. First, Brown
and Roshko (1974) report that the vorticity thickness is lower for shear layers with
a heavier gas in the high-speed stream, or, equivalently, for a lighter gas in the low-
speed stream. The same qualitative trend is observed in the current work. Inspection
of Table 5.1 shows that δc for the injection layer is indeed thinner for lighter injected
gases which constitute the majority of the low-speed stream.

Since its introduction many researchers e.g. Papamoschou and Roshko (1988b)
have noted the importance of the convective Mach number in representing the effect
of compressibility on a shear layer. Mc is particularly important in predicting the
amplification rate of disturbances in a compressible shear layer and therefore its
stability. As noted by Papamoschou (1987), Mc is a function of y, the coordinate
normal to the mean flow direction, in shear layers with finite thickness. This
definition of Mc is given in Equation 5.13. Mc is plotted as a function of y at the
rear of the injector section for three example cases, one for each injected gas, in
Figure 5.13. The profiles of Mc(y) are very similar for cases at injection rates other
than the ones shown in the figure. Black dashed lines mark the location of the points
of maximum curvature in each case’s momentum profile which are used to specify
the conditions of streams 1 and 2.
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(a) Mc (y) for an example case with nitrogen
injection. The black dashed lines mark the
location of the curvature points in the corre-
sponding momentum profile.
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(b) Mc (y) for an example case with helium
injection. The black dashed lines mark the
location of the curvature points in the corre-
sponding momentum profile.
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(c) Mc (y) for an example case with RC318
injection. The black dashed lines mark the
location of the curvature points in the corre-
sponding momentum profile.

Figure 5.13: Convective Mach number Mc plotted as a function of the wall-normal
coordinate y for three example cases. Profiles are taken at the rear of the injector
section.
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It can first be noted that, defining stream 2 in this way, the convective Mach number
for each stream is approximately equal, so there are no "asymmetric" cases as
described by Papamoschou (1989) where the convectiveMach number is supersonic
in one stream and subsonic in the other. This avoids complications in choosing a
convective Mach number to characterize the stability of the flow. The convective
Mach number increases close to the wall and becomes supersonic in cases with
nitrogen and RC318 injection. This is a feature that is not observed in free shear
layers so it is unknown how this affects the transition process. It should also
be noted that a subsonic sublayer exists in the center of the inflection region of the
momentum profile where the convective Mach number is small in all cases, a feature
also observed by Papamoschou and Roshko (1988b) for free shear layers.

It has been well-documented that the amplification of disturbances in a shear layer
decreases with increasing Mc and therefore shear layers with higher convectiveMach
numbers are more stable. This explains the trend in transition location observed in
the experiments performed in this study and also past studies that have observed the
same trend. Recall from Figure 4.7 in Section 4.1 that the transition location moves
downstream as the molecular weight of the injected gas decreases. Figure 5.13
shows that the convective Mach number increases with the molecular weight of the
injected gas, enhancing the stability of the resulting injection layer.

Mc1 and Mc2 are subsonic in cases with nitrogen and helium injection and weakly
supersonic in cases with RC318 injection. This difference may contribute to the
different values observed in λ

δc
(see Figure 5.11) along with the qualitative difference

in density profile shape mentioned previously. Papamoschou (1987) observes a
difference in λ

δω
in free shear layers when the convective Mach number changes

from subsonic to supersonic, although in his work the wavelength becomes shorter
as the convective Mach number becomes supersonic, which is the opposite of what
is observed here. Sandham and Reynolds (1991), Clemens and Mungal (1992), and
others have also documented that oblique modes can become active in compressible
shear layers when the convective Mach number is sufficiently high, which could
also help explain why the waves have different characteristics in cases with RC318
injection.

The effect of the cone wall can be inferred qualitatively from the linear stability
analysis of Zhuang et al. (1990). They consider a two-dimensional, constant density,
homogeneous shear layer propagating in a confined two-dimensional channel with
frictionless walls on both sides of the shear layer. The analysis cannot predict the
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influence the profile shapes (density, temperature, etc.) of the injection layer have
on the instability, but it does give some insight into how the walls interact with the
shear layer. They find that for subsonic convective Mach numbers the walls have
no discernible effect, but that the walls weakly destabilize the instability in cases
with supersonic convective Mach number. Interestingly, they find that multiple
instability modes are active in cases with supersonic convective Mach number and
that the Kelvin-Helmholtz mode is not the most unstable mode. Disturbances are
amplified by the reflection of acoustic waves generated in the shear layer from the
walls. Both of these findings, that there are multiple unstable modes when the
convective Mach number is supersonic and the modes are amplified by acoustic
wave reflection, are similar to the findings of Mack (1984) for high-speed boundary
layers. It may be that the cone wall has a similar influence on the injection layer in
the current study.

The difference in behavior when the convective Mach number is supersonic in
the presence of a wall or walls perhaps better explains the significant qualitative
difference observed in the injection layer with RC318 as the injected gas compared
to cases with the other two gases. If the most unstable mode is not of the Kelvin-
Helmholtz type then it may very well exhibit a different scaling for its wavelength
from the other cases which are Kelvin-Helmholtz unstable. The most unstable mode
in caseswithRC318 injectionmay also be oblique. Themode of the instabilitywould
not affect the predicted convective velocity, as the formulation of Equation 5.14 for
predicting the convective velocity does not require that the waves be of any particular
type, so long as they exist between two streams with different speeds.
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C h a p t e r 6

SUMMARY AND CONCLUSIONS

This work has provided primarily experimental evidence to support the hypothesis
that the dominant instability in flow with injection is a shear layer instability and
that the flow can be treated as a shear layer to predict its behavior, as long as care
is taken to select the wall-normal location where the properties for the low-speed
stream are computed. Data detailing the wavelength, convective speed, frequency,
injection layer thickness, and transition location have been presented for a range of
injection rates for three injected gases which have significantly different molecular
weights. This chapter summarizes the thesis chapter by chapter, presents a set of
conclusions, and then provides recommendations for future research.

6.1 Introduction
The problem of supersonic flow with mass injection through a porous wall is intro-
duced and described. The motivations for previous studies of this flow are listed and
some example studies are cited. The two applications considered to be most promis-
ing are localized transpiration cooling and the enhancement of scramjet performance
by fuel injection in the engine inlet.

Injection of a cold gas has long been noted as a potential solution for handling the
significant heating loads encountered in high-speed flight. An active cooling system
of this type on a vehicular scale is considered to be impractical and would likely
have little, if any, net benefit. Passive cooling systems e.g. ceramic tiles and other
heat-resistant materials are ubiquitous on high-speed vehicles, but such systems do
not allow for the inclusion of windows or sensing equipment on the surface of the
vehicle. Localized transpiration of a cooling gas could enable this technology.

Several recent computational studies have identified the benefits of injecting a small
amount of fuel through the walls of a scramjet inlet in enhancing overall engine
performance. Fuel injection provides some cooling effect and also reduces skin
friction drag, as well as producing radicals as the fuel reacts with the air entering
the inlet. These radicals help to enhance the combustion efficiency when the air
reaches the combustor and is reacted with the remaining majority of the fuel.

Two main issues are identified and addressed in this work. First is the formation of
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waves by injection, particularly a strong oblique shock that forms at the beginning of
the injector. The wave is strong enough in some cases to cause the layer of injected
gas to transition to turbulence, dramatically reducing the efficacy of cooling. It also
creates total pressure losses that can become significant in internal flows, such as
scramjet inlets.

The second issue is that of the stability of the injection layer downstream of injection.
Understanding the instabilities active in the flow that lead to transition to turbulence
is of great importance for both applications. Turbulent flow has enhanced transport
of temperature, meaning that the cooling effect of transpiration is significantly
reduced after the layer has transitioned from laminar to turbulent. Turbulent mixing
is crucial for combustion in scramjet inlets, so transition is highly desired in that
application.

The current work seeks to address both of these issues by studying injection on a
sharp 5-degree half-angle cone in the Mach 4 Ludwieg tube at Caltech.

6.2 Facility & Test Procedure
The Ludwieg tube facility is presented and described. A pneumatic fast-acting
valve was designed, constructed, and implemented to replace the primary upstream
diaphragm for operating the wind tunnel. Details of the design process as well as the
many advantages of the valve over traditional diaphragm operation are reported. The
run procedure of the Ludwieg tube both with diaphragms and the valve is described.

A description of the test article is given. The primary article is a 5-degree half-angle
cone with a cylindrical porous injector section. The injected gas is supplied by a
pipe that enters through the rear of the cone. Flow through the porous material is
modeled using a compressible version of Darcy’s Law to determine the permeability
of the material.

The properties of the injected gas compared to those of the free stream gas has been
observed to affect the transition location in similar previous studies, so three injected
gases are used in this study: nitrogen, helium, and RC318 (octafluorocyclobutane).
The free stream gas is nitrogen for the primary experiments. There is approximately
a factor of 7 difference in the molecular weight of helium to nitrogen and nitrogen
to RC318. Other properties of the three gases are given. A description of the
measurement of the flow rate of the injected gas is given.

Computations performed using the reactingCentralFoam solver in OpenFOAM, an
open source finite volume computational fluid dynamics package, are described.
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The conditions for the computations are specified to match experimental conditions
as closely as possible. The equations solved by the code are given and assumptions
made by the solver are identified. Chief among these is the assumption of a unity
Schmidt number for computing mass diffusivities based on the mixture viscosity
and density. The assumption is examined in detail in Appendix A and implications
for the results of the computations are given. The computational grid and boundary
conditions are also described.

6.3 Diagnostics
Common diagnostic techniques for measuring instabilities in high-speed flows are
identified. Hot-wire anemometry, piezoelectric and piezoresistive pressure trans-
ducers, laser interferometry, and high-speed photography are identified as potentially
suitable techniques for the current work. PCB piezoelectric pressure transducers
are selected as a surface measurement technique due to their commercial availabil-
ity, small size, and high frequency response. The model is instrumented with five
PCB 132A31 transducers along the frustum downstream of the injector section.

Laser interferometry, specifically focused laser differential interferometry (FLDI) is
analyzed in detail in Appendix C. FLDI has a very high signal-to-noise ratio and
frequency response, but it is effectively a point measurement and can only measure
frequency quantitatively without a priori knowledge of the density field. Therefore
FLDI was ruled out after consideration.

A high-speed schlieren visualization technique is selected as the primary diagnostic.
The system uses a pulsed laser diode light source which limits the effective exposure
time of the images to tens of nanoseconds. This freezes the motion of instability
waves in the injection layer flow, allowing them to be analyzed. Images are acquired
at several hundred kHzwith a Phantom v710 high speed camera. The timing scheme
for the camera and light source is described. The advantages and disadvantages of
the selected laser light source compared to a traditional white light source are listed.
Light from the laser diode is narrow-band but effectively incoherent, mitigatingmany
of the issues typically associated with using a laser light source for visualization.

6.4 Results
Results of experiments with the cylindrical injector are compared to those performed
with a frustum-shaped injector that matches the slope of the cone surface. The
cylindrical injector is found to minimize the strength of the shock wave formed at
the beginning of the injector. The negative slope of the injector compared to the
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cone surface compensates for the increase in flow displacement due to injection. A
"tuned" situation exists where the injection flow rate is such that the slope of the
flow displacement matches that of the cone ahead of the injector and therefore no
shock wave is produced.

Full-field images are presented of the test flow with injection of the three gases.
The images are analyzed to measure the injection layer thickness δ at the rear of the
injector section and the mean transition location of the injection layer. δ is found
to increase with increasing injection mass flow rate and is higher for a given mass
flow rate for lighter injected gases. Transition distance decreases with increasing
injection rate, decreasing molecular weight of the injected gas, and increasing free
stream unit Reynolds number. These findings agree with the results of other studies.

Results from experiments using a high frame rate of approximately 290 kHz are
presented. 10,000 images are recorded from each case. The algorithm for processing
the images is described. Analysis routines for measuring the wavelength, convective
speed, and frequency of the instability waves from the images are reported.

In cases with helium and nitrogen injection several wavelengths are observed in
each image. Wavelength is determined using an autocorrelation method, which
is described in detail. Each test run produces a population of several thousand
wavelengths, which are condensed to a mean value and standard deviation by fitting
the population with a log-normal distribution. Wavelength cannot be measured
directly for cases with RC318 injection in this study due to limitations of the optical
system, so it is calculated using Taylor’s hypothesis because the convective speed
and frequency are known.

Convective velocity is measured in all cases by cross-correlation of image pairs
where awavelength ismeasured in one of the images. The high, constant framing rate
used in these experimentsmakes cross-correlation simple and accurate. Wavesmove
only a small fraction of their wavelength from frame to frame. Pixel-locking does
occur, but the size of the population as well as cross-correlation of non-consecutive
images help to mitigate this issue. The convective speed can be determined more
reliably in cases with helium and nitrogen injection because small features can be
readily identified. This is more difficult in cases with RC318 injection where the
characteristic size of structures in the injection layer is significantly larger.

Frequency is difficult to measure directly in cases with helium and nitrogen injection
and so is determined using Taylor’s hypothesis. Frequency is measured in RC318
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injection cases by using an edge-finding method to detect the edge of the injection
layer in each image and tracking its motion in time. Prewitt and Sobel methods are
found to work best for this as they search for edges with a specified orientation and
are not fooled by edges created by noise at other orientations. A peak frequency
is detected in the spectra of the PCB pressure transducers for some cases, and
the frequencies measured by pressure transducers agree well with the frequencies
determined by the optical method.

Results from the OpenFOAM computations are presented. A check for convergence
of the grid is performed by evaluating one example case on grids with varying
levels of refinement. The grid is determined to be sufficiently resolved with an
acceptable processing time for a spatial resolution of 45 µ/cell in the most-refined
region where the injection layer is present. Wall-normal profiles of velocity, density,
temperature, and injected gas mass fraction are taken at several locations in the
domain. Streamwise momentum is found to diffuse fastest for lighter injected gases.
Lighter injected gases also feature a higher adiabatic wall temperature downstream
of injection. The density profile with RC318 injection develops a local minimum
away from the wall, which is a consequence of the competing effects of temperature
and composition. Measurements of the displacement thickness in the computations
compare favorably to the visual thickness measured in the experiments for cases
with helium and nitrogen injection but not for RC318 injection. This is believed to
be due most likely to the inaccuracy of the unity Schmidt number assumption for
RC318-nitrogen diffusion.

6.5 Analysis
The momentum flux ratio J is presented as a more appropriate parameter for pre-
senting results for this type of experiment than the mass flux ratio F which is used
in the literature. J is shown to collapse the data for δ for different injected gases
and unit Reynolds numbers and δ follows a power law dependence on J. This is the
same scaling and dependence used for the penetration height of jets in supersonic
crossflows.

The transition location normalized by δ is shown to collapse reasonably well when
plotted against the velocity ratio of the injected gas to the free stream gas. It is
unknown why this parameter successfully collapses the data, and it may be specific
to the geometry of the model, the test facility, or both. More work is recommended
to determine how universal this finding is.
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The measured wavelength, convective velocity, and frequency of the waves are
plotted against J and the uncertainties in each of these measurements are split
into the uncertainty due to the experimental technique, governed mainly by the
resolution of the camera, and natural variability in the flow. The wavelength for
a given injected gas does not show a discernible trend with injection rate. The
convective speed increases very slightly for nitrogen injection, increases for helium
injection, and decreases slightly with RC318 injection with increasing injection rate.
Frequency follows approximately the trends in convective velocity as a consequence
of Taylor’s hypothesis.

Properties of the instability waves in the injection layers are then compared to those
of two well-characterized flows: high speed boundary layers and free shear layers.
If instabilities in the injection layer can be determined to behave like those in a flow
that has been extensively researched, then great strides can bemade in understanding
their physics with little additional effort. Trends, scaling, and the values of important
non-dimensional properties are used to make the comparisons.

Transition in high-speed boundary layers is summarized. The dominant mode
is dependent on the Mach number of the flow, but is either oblique Tollmien-
Schlichting waves (the first mode) or two-dimensional waves due to the trapping of
acoustic energy (the second mode). The frequency and wavelength of waves caused
by both of these modes scale with the local boundary layer thickness. Experiments
were performed to analyze the instability in the boundary layer on a straight cone
with no injection in the Ludwieg tube. The results reveal long-wavelength waves
with a frequency of 45 kHz that are thought to be due to the first mode. The
frequency is identical for both the optical method and pressure transducers. This
frequency agrees well with the predicted most-amplified frequency of both first-
and second-mode waves from a linear stability analysis. The fact that neither the
frequency nor the wavelength of waves in the injection layers vary significantly with
δ indicates that their stability characteristics are not like those of boundary layers.
Furthermore, the second mode instability requires a "sonic line" in the boundary
layer profile where the disturbance phase velocity is equal to the sum of the local
velocity and sound speed. Such a condition does not exist for cases with helium
injection.

The findings of several studies of compressible, heterogeneous free shear layers
are reported. The spacing between structures scales reasonably well with the local
vorticity thickness for shear layers with widely varying properties. The convective
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velocity can be computed knowing the velocities, sound speeds, and ratios of specific
heats of the two streams of a shear layer using a relatively simple argument based
on the idea that the two streams must have a common stagnation point in between
structures in a shear layer in the frame of reference convecting with the structures.

Defining the high-speed stream for modeling the injection layer as a shear layer to
be the free stream above the cone surface is an obvious choice. It is more difficult
to define the conditions for the low-speed stream due to the presence of the wall. A
thickness analogous to the vorticity thickness for shear layers, called the curvature
thickness, is defined for injection layers. The wavelength of the waves in cases
with helium and nitrogen injection is found to scale identically with the curvature
thickness. The ratio of wavelength to curvature thickness is constant for cases with
RC318 injection but the value of the ratio is different than the value for the other
two cases.

The choice for defining the conditions for the low speed stream is the wall-normal
location where the momentum profile has its lower point of high curvature (see
Figure 5.10). This is roughly equivalent to the location of stream 2 in free shear
layers, except that the density, temperature, and velocity are not constant between
this wall-normal location and the wall in the case of the injection layer. Using
this location to compute the convective speed for a free shear layer, the computed
convective speed matches the experimental values within experimental uncertainty
for all cases.

The characteristics of the wavelength and convective speed of the waves observed in
flow with injection indicate that the instability can be treated and analyzed as a shear
layer instability. Considering the injection layers as shear layers correctly predicts
that the curvature thickness is lower for lighter injected gases. The convective Mach
number for the injection layers is found to increase with increasing molecular weight
of the injected gas and is subsonic for helium and nitrogen injection cases and slightly
supersonic for cases with RC318 injection. Shear layers are known to be more stable
as the convective Mach number increases. This explains the trend observed in the
transition data, namely that transition distance decreases with lighter injected gases.
The fact that the convective Mach number is supersonic for RC318 injection means
that the presence of the wall likely creates multiple unstable modes for these cases,
the most unstable of which is not the Kelvin-Helmholtz mode. This may explain
why the wavelength is much longer in terms of curvature thicknesses for RC318
injection than it is for nitrogen and helium injection, where the Kelvin-Helmholtz
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mode is likely the transition mechanism.

6.6 Conclusions
The primary findings of this work are as follows. First, shaping the injector section
to compensate for the increased displacement effect of injection is effective in
mitigating waves produced in the free stream flow. The parameter that determines
proper minimization of the strength of the waves for a given injector geometry is
the momentum flux of the injected gas normalized by the momentum flux of the
free stream. The thickness of the injection layer is found to be a function of the
dimensionless momentum flux and follows the same scaling as jets in supersonic
crossflow. The characteristics of the instability waves in the injection layer are
determined to be similar to those in a shear layer. Their wavelength scales with the
so-called curvature thickness of the momentum profile, which is analogous to the
scaling of waves in a shear layer with the vorticity thickness. The convective speed
of waves in the injection layer can be accurately predicted using the well-known
relation for the speed of waves in a free shear layer but the conditions for the low-
speed stream must be taken at the lower curvature point in the momentum profile of
the injection layer. Other properties of the injection layer regarding stability can be
predicted from the convective Mach number of the waves using theory from shear
layers.

6.7 Recommendations for Future Work
There is a large parameter space associated with the problem of supersonic flow
with injection, and this work was only able to probe a small fraction of that space.
For future studies in the Caltech Ludwieg Tube it would be interesting to experiment
with model and injector geometries different from the ones used in this campaign
to examine the effect of geometry on the injection layer properties, particularly the
tuning effect and mean transition location. Accurate computational fluid dynamics
simulations could assist with this process, particularly in attempting to find an
injector and model shape combination than can minimize the formation of all waves,
not only the strong oblique shock at the beginning of the injector. Injection parallel
to the free stream was considered by Schmidt et al. (2014) as a method to stabilize
the injection layer, but accelerating the injected gas to a speed comparable to that of
the free stream would be very difficult, and the resulting flow would still be subject
to wake instabilities, so it is unlikely that such a configuration would be successful.

Using other injected gases could also prove fruitful. In the current work, the
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effects of molecular weight and ratio of specific heats of the injected gas are not
separated from one another, but it may be worth while to attempt to vary these
properties independently to the furthest extent possible and analyze their effects on
the instability. Computations would also be beneficial for this type of study.

Other experimental techniques would complement the results of this study. Ve-
locimetry, performed either with hot-wire anemometry or with optical techniques,
would be very useful to verify the velocity profile in the injection layer computed
from OpenFOAM. Hot-wire anemometry has the additional benefit of potentially
being able to further corroboratemeasurements of frequency of the instabilitywaves.
Seeding the injected gas with particles for optical velocimetry may be difficult be-
cause of the small pore size of the injector, which is designed to filter particles
larger than about 10 µm. Experiments using techniques such as Rayleigh scattering
or planar laser induced fluorescence (PLIF) to determine the species concentration
and/or temperature in the injection layer would also be immensely helpful in under-
standing the diffusion processes. Inclusion of trace species such as acetone in the
injected gas stream would be quite easy with the current setup.

It would also be interesting to perform similar analyses to the current study in other
test facilities with different free stream Mach numbers, unit Reynolds numbers,
noise characteristics, etc. Testing in a high-enthalpy environment such as in a shock
tunnel would be more difficult than in traditional wind tunnels, but it is crucial to
understand the effects of having conditions more similar to free flight than the cold
flow of a Ludwieg tube. For instance, the temperature distribution is effectively
reversed: the free stream gas is hot and the injected gas is cold in flow in a high-
enthalpy facility and in flight, and it would be interesting to learn what effect this
has on parameters like the convective Mach number.

Clearly computational studies with a CFD solver designed to more accurately solve
binary diffusion of species in a high-speed, compressible flow with a wide range of
Mach numbers than the one used in this work would be very beneficial. The solver
used in this work is reasonably effective, but the unity Schmidt number assumption
limits its accuracy in flows where diffusion is important such as this one. It may not
be prohibitively difficult to simply modify the reactingCentralFoam solver to accept
diffusion coefficients for each species which would be a significant improvement,
but more sophisticated computational efforts would obviously be more effective. An
in-depth computational or theoretical study of the stability properties of the flow that
can account for different gases, is valid in the nonlinear regime, and does not rely



109

on a locally-parallel flow assumption, which is dubious near the injector, would also
be extremely helpful in sorting out the underlying physics of the active instability
or instabilities.
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A p p e n d i x A

MASS DIFFUSION IN OPENFOAM

The validity of the unity Schmidt number assumption made by the OpenFOAM
solver can be assessed by estimating the diffusivity for each species into nitrogen (the
free stream gas) and computing the Schmidt number as a function of temperature.
This is done by evaluating the Chapman-Enskog relation for diffusivity with the
method outlined in Section 11-3 of Poling et al. (2001). The diffusion coefficient
for species A into species B, DAB, is given by Equation A.1 (Equation 11-3.2 in
Poling et al. (2001)) assuming an ideal gas and setting the correction term in the
Chapman-Enskog relation to one:

DAB =
0.00266T

3
2

pW
1
2

ABσ
2
ABΩD

. (A.1)

Written this way, DAB is the diffusion coefficient in cm2/s, T is the temperature in
Kelvin, p is the pressure in bar, σAB is the characteristic length of the selected inter-
molecular force law in Angstroms, and ΩD is the dimensionless collision integral
for diffusion, which is a function of temperature and the characteristic energy ε of
the chosen intermolecular force law. WAB is a function of the molecular weights of
gases A and B:

WAB =
2

1
WA
+ 1

WB

. (A.2)

The 12-6 Lennard-Jones potential is a popular choice for the intermolecular force
law, and values of σ and ε are tabulated for many common gases, including nitrogen
and helium. The interaction values σAB and εAB are commonly computed from the
values of σ and ε for the individual species by taking the geometric mean of the ε’s
and the arithmetic mean of the σ’s:

εAB = (εAεB)
1
2 , (A.3)

σAB =
σA + σB

2
. (A.4)

ΩD is tabulated as a function of the reduced temperature kT
ε where k is Boltzmann’s

constant for the 12-6 Lennard-Jones potential, and the accurate analytical approxi-
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mation of Neufeld et al. (1972) is used to compute it here; the relation is listed as
Equation 11-3.6 in Poling et al. (2001).

Values for σ and ε are not tabulated for RC318, so they are estimated using the
method of Wilke and Lee (1955). The relations are

σ = 1.18V
1
3

b , (A.5)

ε

k
= 1.15Tb , (A.6)

where Vb is the liquid molar volume at the normal boiling point (at 1 atm pressure)
in cm3/mol and Tb is the normal boiling point in Kelvin. The values for σ and ε

k are
given in Table A.1 for the three gases.

Gas σ [Å] ε
k [K]

Helium 2.55 10.22
Nitrogen 3.80 71.4
RC318 5.86 307

Table A.1: Parameters from the Lennard-Jones potential model for the three gases
for computing diffusion coefficients.

Instead of computing the diffusion coefficients by themselves, the density-weighted
diffusion coefficients can be computed by substituting for the pressure in Equa-
tion A.1 with the ideal gas law. This eliminates the pressure dependence and allows
the Schmidt number to be easily computed as a function of temperature since the
viscosity is only a function of temperature when Sutherland’s formula is used:

ρDAB =
0.0266T

1
2

RAW
1
2

ABσ
2
ABΩD

. (A.7)

RA is the specific gas constant for gas A. The coefficient in Equation A.7 is adjusted
such that if σAB is given in Angstroms and WAB in g/mol, all other quantities are in
m-k-s units.

The computed Schmidt number is plotted for each species diffusing into nitrogen
as a function of temperature in Figure A.1. The temperature range is restricted to
those relevant for experiments in the Caltech Ludwieg Tube. The Schmidt number is
approximately constant for each species with respect to temperature and is of order
one for helium and nitrogen, so the unity Schmidt number assumption made by the
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solver is reasonable in cases with helium and nitrogen injection. It is somewhat
smaller than unity for RC318 diffusing into nitrogen, however, so the unity Schmidt
number approximation made by the solver may produce some errors in cases with
RC318 injection.

50 100 150 200 250 300
Temperature [K]
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1
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S
ch
m
id
t
n
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m
b
er

Nitrogen

Helium

RC318

Figure A.1: Schmidt number as a function of temperature for each injected gas
diffusing into nitrogen.

A second test was applied to assess the accuracy of the OpenFOAM solver in solving
diffusion problems. We consider a one-dimensional box at constant temperature and
pressure that is filled on the right half with nitrogen and on the other half with a test
gas, either nitrogen, helium, or RC318, for t < 0. At t = 0, the gases are allowed to
mix. Equation 2.19 reduces to a simple diffusion equation when written in terms of
the mole fraction instead of mass fraction:

∂X1

∂t
= D

∂2X1

∂x2 . (A.8)

The value for D is the value predicted from Equation A.7 for the test gas into
nitrogen. D is independent of composition in a binary mixture, so it is a constant
in this test case where pressure and temperature are held constant. The solution to
Equation A.8 is found from separation of variables. ANeumann boundary condition
at the ends of the box is used to ensure zero flux of species through the walls.

The problem is also solved using the OpenFOAM solver on a spatial grid of 2000
points. Velocity is set to zero at the ends of the box and temperature, pressure, and
species concentrations are specified to have zero gradient at the ends. The interface
is sharp at t = 0.

Figure A.2a shows the evolution of the species concentration profiles on the left side
of the box (initially filled with the test gas) for both the analytic solution (dashed
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lines) and the solution from OpenFOAM (solid lines) for the case with nitrogen as
the test gas. The mass fraction is computed from the analytical solution, which
is initially in terms of the mole fraction, by using the definition of mole and mass
fractions:

Yi =
XiWi

ΣXiWi
. (A.9)

In all the figures that follow the dashed lines represent the analytical solution and
the solid lines represent the solution from OpenFOAM. Figure A.2b shows the
associated percent error in the OpenFOAM solution.
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(a) Species concentrations for nitrogen dif-
fusion into nitrogen for the solution to Equa-
tion A.8 (dashed) and the solution from
OpenFOAM (solid) on the left half of the
box.
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(b) Percent error in the OpenFOAM solution
compared to the solution of EquationA.8 for
nitrogen diffusion.

Figure A.2: Comparison of results of the diffusion box test case for nitrogen.

The error is at most about 10% even for late times. It is straightforward to assess
what portion of this error is due to the OpenFOAM solver’s assumption of a unity
Schmidt number by substituting that value for D into Equation A.8. The results for
that case are shown in Figure A.3.

The error in this case is dramatically reduced and is almost zero at the box boundary.
This is the expected result because no errors are incurred by using the mass fractions
to compute the diffusive flux in Equation 2.19 instead of the mole fractions if the
molecular weights of the species are equal.

Figures A.4 and A.5 show the results from identical test cases with helium and
RC318 as the test gas, respectively. The diffusivity D used by OpenFOAM varies
as a function of composition with µ and ρ, which are both weighted by the mass
concentrations of the species present. This changes the behavior of the solution as
diffusion progresses.
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(a) Species concentrations for nitrogen dif-
fusion into nitrogen for the solution to Equa-
tion A.8 assuming Sc = 1 (dashed) and the
solution fromOpenFOAM (solid) on the left
half of the box.
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(b) Percent error in the OpenFOAM solution
compared to the solution of Equation A.8
with Sc = 1 for nitrogen diffusion.

Figure A.3: Comparison of results of the diffusion box test case for nitrogen assum-
ing Sc = 1 in Equation A.8.
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(a) Species concentrations for helium diffu-
sion into nitrogen for the solution to Equa-
tion A.8 (dashed) and the solution from
OpenFOAM (solid) on the left half of the
box.
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(b) Percent error in the OpenFOAM solution
compared to the solution of EquationA.8 for
helium diffusion.

Figure A.4: Comparison of results of the diffusion box test case for helium.

Several observations can be made from these results. First, the error in the Open-
FOAM simulation is appreciable especially at late times, on the order of 50% in
helium diffusion cases. The error in cases with diffusion of gases with different
molecular weights is a combined effect of both the unity Schmidt number assump-
tion and the use of mass fraction instead of mole fraction to compute diffusive
fluxes without employing a correction velocity. The trend in the error can be pre-
dicted from Figure A.1 for short times where the concentration of nitrogen is low.
OpenFOAM over-predicts diffusion in helium-nitrogen diffusion cases and under-
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(a) Species concentrations for RC318 diffu-
sion into nitrogen for the solution to Equa-
tion A.8 (dashed) and the solution from
OpenFOAM (solid) on the left half of the
box.
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(b) Percent error in the OpenFOAM solution
compared to the solution of EquationA.8 for
RC318 diffusion.

Figure A.5: Comparison of results of the diffusion box test case for RC318.

predicts diffusion in RC318-nitrogen cases. As the diffusion coefficient changes
with increasing nitrogen concentration as diffusion progresses, diffusion becomes
under-predicted in helium-nitrogen cases and the under-prediction becomes worse
in RC318-nitrogen cases.

The conclusion of this analysis is that the OpenFOAM solver’s handling of diffusion
produces systematic errors which introduce some uncertainty into the computations
performed for the current study. The uncertainty in simulations of supersonic flow
with injection is unknown, but it is anticipated that the errors may be significant in
cases with helium and/or RC318 injection.
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Pneumatic valve drawings
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A p p e n d i x C

ANALYSIS OF FOCUSED LASER DIFFERENTIAL
INTERFEROMETRY

This appendix contains a reproduction of Schmidt and Shepherd (2015a). The full
citation is Schmidt, B. E. and J. E. Shepherd (2015). "Analysis of focused laser
differential interferometry". In: Applied Optics 54.28, pp. 8459-8472.

C.1 Introduction
Focused laser differential interferometry is a promising technique for measuring
density disturbances in supersonic and hypersonic flows, particularly in measuring
boundary-layer instabilities. Focused laser differential interferometry is a subset of
laser differential interferometry, a field with many examples in the literature, e.g.
Azzazy et al. (1987), Laderman and Demetriades (1976), and Smeets (1974) and
others. Texts that describe the general principles of interferometry and describe
several types of interferometers are abundant, e.g. Steel (1967). The focused laser
differential interferometer (FLDI) was first described by Smeets (1972) where it
was used to measure density fluctuations in wind tunnel flows and turbulent jets
in a desktop-type experiment. The technique was limited in its usefulness at that
time because of limitations on photodetectors and data acquisition systems as well
as the availability of suitable lasers. Parziale revitalized the technique in 2013
Parziale et al. (2013a,b, 2015) to measure instabilities in a hypervelocity boundary
layer on a slender body in the T5 hypervelocity tunnel at Caltech and to make
measurements of the free stream environment in T5 (Parziale et al., 2014). This
paper will develop some general results for the FLDI but will concentrate on the
application of measuring second-mode (Mack) waves in hypersonic boundary layers
(Mack, 1984).

The FLDI is a very attractive instrument for making such measurements for several
reasons. It has high frequency response of greater than 10 MHz, spatial resolution
on the order of hundreds ofmicrons in the streamwise direction, and a high signal-to-
noise ratio. Additionally, because of the focusing ability of the FLDI, it rejects much
of the unwanted signal away from the flow feature of interest near the instrument’s
best focus. A key advantage then is that for many flows the FLDI is largely immune
to large-amplitude density disturbances created by the shear layers of a wind tunnel
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with a free jet inside the test section. Preliminary qualitative evidence of this
property of the FLDI has been observed in experiments involving translating a
small turbulent jet, e.g. Section 3.2.3 of Parziale (2013). The effect was examined
in detail by Fulghum in Section 3.10.2 of Fulghum (2014) and is also studied in this
paper.

As more researchers use the technique, it is critical to better understand how the
FLDI signal is produced and how to properly analyze experimental results to extract
meaningful quantitative information about the fluctuating density field in the flow.
Fulghum presents a very thorough description of the FLDI technique from an aero-
optical point of view and derives system transfer functions for the instrument for a
few simple flow geometries (Fulghum, 2014). This paper presents a computational
method for simulating the response of the FLDI to arbitrary density fields in order to
determine the sensitivity of the instrument to more complicated flows with a special
emphasis on measurements in hypersonic boundary layers.

C.2 FLDI Theory
The essential operating principles of the FLDI are presented here; for a more com-
plete explanation the reader is referred to Section 3.6 of the Ph.D. thesis by Fulghum
(Fulghum, 2014). The FLDI is a non-imaging shearing interferometer. A sketch of
the instrument layout is shown in Figure C.1. The linearly-polarized laser beam is
expanded and sheared by a prism by a small angle σ which is placed at the focal
point of a converging lens. This fixes the shear distance between the beams to ∆x.
The two beams have mutually-orthogonal polarization. Wollaston prisms are the
most common choice of prism in the literature, but Fulghum demonstrates great
success with Sanderson prisms (Sanderson, 2005), where the divergence angle can
be adjusted and the aperture can be larger so as not to truncate the expanded beam.
Sanderson prisms are also generally less expensive thanWollaston prismswith small
divergence angles. The choice of prism does not change the fundamental character-
istics of the interferometer (Biss et al., 2008) or impact the analysis presented here.
An illustration of the operation of a prism is shown in Figure C.2.

After the prism, the focusing lens brings the beams to a sharp focus. The system
is symmetric about the focus so that the beams can be recombined by means of a
second polarizer and the interference signal is measured by a change in intensity
on a photodetector. Inhomogeneities are spatially filtered by the beams, with a
much stronger filtering effect where the beam diameter is large, which makes the
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Figure C.1: Schematic of an FLDI setup. The two beams are shown as blue and
green. Regions where the beams overlap are shown as striped. The coordinate
system shown will be the one used throughout this paper.

instrument most sensitive near the point of best focus and least sensitive close to the
focusing lenses on either side of the focus, which in a free-jet wind tunnel would be
close to the turbulent shear layers at the edges of the test flow. This spatial filtering
effect allows the FLDI to "see through" the strong turbulence at the edges of a wind
tunnel flow and measure density fluctuations of much lower intensity in the region
of interest in the core of the tunnel.

Figure C.2: Illustration of a prism (here, a Wollaston prism). The incident beam of
aribtrary polarization is split into two beams by an angle σ, and the two beams at the
exit have mutually orthogonal polarization. The ordinary ray is linearly polarized in
the direction of beam separation and the extraordinary ray is polarized 90 degrees
from the direction of separation.

As an interferometer, the FLDI is sensitive to phase differences between the two
beams of the instrument. Equations describing the interference of two superimposed
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waves are derived in Section 7.2 of Born and Wolf (1999). The equations in this
section follow directly by considering a set of rays that are integrated over a detector.
A phase difference is created by a change in the index of refraction of a transparent
medium along the paths of two rays according to Equation C.1.

∆φ =
2π
λ

*..
,

D(ξ,η)∫
s1

n(x1) ds1 −

D(ξ,η)∫
s2

n(x2) ds2
+//
-

(C.1)

Here n is the index of refraction field through which the rays pass, the vector xi

represents the ray path parametrized by si, i.e. xi = (x(si), y(si), z(si)), D(ξ, η) is
the point on the detector where beams 1 and 2 terminate, and λ is the wavelength of
the laser used. ξ and η are the coordinates on the detector face. Note that both rays
terminate at the same point on the detector. Corresponding rays are separated in the
test region by ∆x in the x-direction, x1 = x2 + ∆x x̂. If the rays are interfered in an
infinite fringe configuration, as they are in the FLDI, the intensity of the interfered
ray at point (ξ, η) on the photodetector is given by Equation C.2

I (ξ, η) = I1(ξ, η) + I2(ξ, η) + 2
√

I1(ξ, η)I2(ξ, η) cos(∆φ(ξ, η)) (C.2)

If we assume that the two rays have the same initial intensity, I1 = I2 =
I0
2 , then

Equation C.2 simplifies to

I (ξ, η)
I0(ξ, η)

= 1 + cos(∆φ(ξ, η)) (C.3)

where I0(ξ, η) is the normalized intensity profile of the beam. In practice we adjust
the instrument to the middle of an interference fringe such that there is a constant
phase shift of −π/2 between the two beams so that Equation C.3 can be linearized
for ∆φ << 1.

I (ξ, η)
I0(ξ, η)

= 1 + sin(∆φ(ξ, η)) ≈ 1 + ∆φ(ξ, η) (C.4)

The signal output by the detector ∆Φ is proportional to the integral of Equation C.4
over the detector face D which gives the total weighted average phase change ∆Φ:

∆Φ =

"
D

(
I (ξ, η) − I0(ξ, η)

)
dξ dη =

"
D

I0(ξ, η)∆φ(ξ, η) dξ dη (C.5)
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Or, substituting Equation C.1

∆Φ =

"
D

(
I (ξ, η) − I0(ξ, η)

)
dξ dη

=
2π
λ

"
D

I0(ξ, η)
*..
,

D(ξ,η)∫
s1

n(x1) ds1 −

D(ξ,η)∫
s2

n(x2) ds2
+//
-

dξ dη

(C.6)

Finally, the index of refraction n in a gas is related to the density of the gas by the
Gladstone-Dale relation:

n = K ρ + 1 (C.7)

This allows the output of the FLDI to be related to the density field of the gas being
probed.

The photodetector converts the total intensity to a voltage. Large phase changes
(∆Φ > π/2) causes phase ambiguity to occur, as the interference wraps over several
periods of light waves. Therefore it is best to keep the phase change small enough
such that the sine function can be linearized. For the FLDI, it is most useful to
interpret the output not as a phase change ∆Φ between the two closely-spaced
beams, but rather as a finite-difference approximation to the first derivative of the
phase change, ∆Φ/∆x. For small values of ∆x, this approximates the first derivative
of phase change in the direction of beam separation. Smaller values of ∆x result in
more accurate approximations of the derivative and therefore increased frequency
response, but smaller beam separations result in lower signal magnitudes overall,
which becomes an issue in practice as the electronic noise floor is approached.

The first prism (Prism 1 in Figure C.1) not only splits the light beams, but the two
beams exit the prism polarized orthogonally to one another. Therefore in order
to compute the response of the instrument at the photodetector after the beams
have been recombined, it is necessary to consider the state of polarization of the
light along the beam paths and perform an analysis like the one in Section 3.6.1
of Fulghum (2014). However, if the light is polarized at 45 degrees relative to the
separation angle of the prism before entering the first prism, the equations governing
the polarization state simplify considerably, as each beam leaving the prism will
have equal amplitude and the beams can be recombined and mixed on the detector
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side without explicitly using Jones vectors to combine the electric fields as long as
the polarization is not rotated by the optical system. This is the configuration used
by Parziale (Parziale, 2013).

C.3 Computational Method
As analytically determining the response of the FLDI instrument for a given density
field is extremely difficult for all but the simplest flow geometries, a computational
model of the FLDI is developed to numerically evaluate Equation C.6 for a given
arbitrary density field that can vary in space and time and simulate the FLDI
output. The software described in this section is referred to as the FLDI software
throughout this paper. The software replicates the FLDI configuration used at
Caltech (Parziale et al., 2013a) but can be modified to suit the dimensions of any
FLDI setup. Dimensions are given in Table C.1. The general procedure followed
by the software is to first compute the region traversed by the FLDI beams and
then to discretize the domain as described in this section. Finally, the integral in
Equation C.6 is evaluated numerically along the beam paths.

Divergence angle of prisms (σ) 2 arc minutes
1/e2 beam diameter at focusing lens (D4σ) 48 mm

Focal length of focusing lenses ( f ) 300 mm
Distance from focusing lens to focus (d) 515 mm

Laser wavelength (λ) 532 nm

Table C.1: Optical parameters for simulated FLDI.

The beams are assumed to have equal Gaussian intensity distributions I0(ξ, η) and
the beams are assumed to propagate according to Gaussian beam propagation. As-
suming Gaussian propagation means that the angle of paraxial rays and higher-order
terms can be neglected from the full electromagnetic wave propagation equations.
This is a good approximation as long as all the rays form a sufficiently small angle
with the primary beam axis such that the small-angle approximation can be invoked.
The validity of this assumption is examined later in this section. For a more detailed
discussion of the approximations involved in assuming Gaussian beam propagation,
see Chapter 4 of Born and Wolf (1999).

The beam separation ∆x is calculated by simple trigonometry to be
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∆x = 2 f tan
σ

2
= 174.5 µm (C.8)

This calculation is confirmed to be accurate by photographing the beams of the
physical FLDI setup at Caltech near the best focus with a CCD camera and neutral
density filters to prevent saturation.

Equations C.9-C.11 can be found in Section 14.5 of Milonni and Eberly (1988). The
beam waist radius at best focus w0 is computed for Gaussian beams using Equation
C.9, which is found by substitution for the divergence angle of a Gaussian beam.

w0 ≈
λ

πθd
≈

2λd
πD4σ

(C.9)

For a diffraction-limited beam, this corresponds to a spot size of about 7 µm. The
1/e2 radius of the beam as a function of z, the coordinate along the beam path, is
given by Equation C.10 where z = 0 at the beam waist.

w(z) =

√√√√
w2

0
*.
,
1 +



λz
πw2

0



2
+/
-

(C.10)

Figure C.3 shows computed beam widths near the best focus of the FLDI. For
simplicity when calculating the beam profile, polar-cylindrical coordinates are used
with r̂ and θ̂ orthogonal to ẑ and r2 = x2 + y2. The normalized beam intensity
cross-section at a point in z is then:

I0(r) =
2

w2(z)π
exp

(
−2r2

w2(z)

)
(C.11)

The computational domain encompassing the beams between the focusing lenses is
discretized into a uniform grid of 10300 points along the beam paths, corresponding
to a dimensional step size of 100 µm which is found to be sufficient that the
computation is not affected by the step size. Convergence is shown below in Section
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Figure C.3: Computed beam widths (out to 1/e2) within 30 mm of the best focus.
One beam is outlined in red and the other in blue. The width of the beams at the
waist is too small to see on this scale.

C.4. The beam cross-section is divided into a polar grid with r non-dimensionalized
by w(z), the local 1/e2 beam radius. Therefore each point (r0, θ0) on the polar grid
at a point z1 is on the same ray as the point (r0, θ0) at any other location in z. In this
way the software can be considered to be performing geometric ray-tracing, except
the eikonal equation is not used to evaluate ray deflections due to the density field.
Density perturbations are approximated as small enough (in magnitude and in extent
along the ray path) that they only cause a change to the phase of each individual
ray but do not cause the rays to refract significantly. The beam profiles and rays
are calculated assuming a zero-disturbance field first, and then the total change in
phase of the beams are calculated using an input density field. Alternatively the
method can be thought of as computing a pixel-wise phase change for each beam
on the face of the detector where each grid point at a cross-section in z is a pixel.
Such a method is shown to produce accurate results compared to the parabolic beam
method developed by White and the Rayleigh-Sommerfeld equation as long as the
beam is not analyzed close to an aperture (M. D. White, 2010). Because the polar
grid is normalized by the local beam radius, integration occurs along each individual
ray path instead of along the z-axis.

The polar cross-section grid extends to r/w = r̄ = 2, which contains 99.99% of
the beam energy. We can now consider if assuming Gaussian beam propagation is
accurate. The maximum angle formed by a beam in the domain will be the angle
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formed by a beam at the outer edge of the grid. Using Equations C.9 and C.10
and Table C.1, the maximum ray angle is calculated to be 5.32◦ or 92.9 mrad. The
small-angle approximation for this angle gives an error of 0.14%, hence assuming
Gaussian beam propagation is clearly justified. The grid has 300 equally-spaced
points in the θ̂-direction, and grid points are chosen in the r̂-direction such that each
cell has an aspect ratio as close to 1 as possible. Points are computed starting at
r̄ = 2 inward to a specified limiting radius r̄0, which is chosen to be 0.001, resulting
in 363 points in r̂ . Each point is computed using the previous point according to

r̄k = r̄k−1

(
2 − δθ
2 + δθ

)
(C.12)

where δθ is the step size in the θ̂-direction. The grid also contains one point in
the center at r̄ = 0, bringing the total number of points at each cross-sectional grid
to 108901. The grid is shown in Figure C.4. The resolution was determined by
limiting the error of numerically integrating a Gaussian using the trapezoidal rule
on the grid to less than 1%.
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Figure C.4: Polar grid cross-section non-dimensionalized by the local beam waist
size
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The simulated FLDI response to an input density field ρ(x, y, z) is computed by
numerically evaluating Equation C.6. The integral in z is calculated using Simpson’s
Rule and the 2-D integral over the face of the beam is calculated using trapezoidal
integration.

C.4 Software Verification
System Transfer Functions
It is possible to analytically derive an overall system transfer function H as a function
of wavenumber for simple density disturbance fields. This is performed in detail
in Fulghum (2014), the essence of which is summarized in this paper. Here H is
defined as the ratio of the output of the instrument to the actual first derivative of
the phase field as shown in Equation C.13.

H ≡

(
∆Φ

∆x

)
meas.

dΦ
dx

(C.13)

H for the FLDI is the convolution of two filters, one resulting from the finite beam
separation approximating a derivative, and the other resulting from the Gaussian
intensity distribution of the beams. In wavenumber (k) domain, these filters are
simply multiplied together to give the overall H (k) for the system. Here k is
the wavenumber of the density disturbance field, not the wavenumber of the laser.
In general, H (k) will be different for every density field geometry in (x, y, z)-
space. One simple field geometry that can be analyzed analytically is a sinusoidal
disturbance in x that is uniform in y and infinitesimally-thin in z at z = 0, i.e.
n′ = A sin(k x)δ(z) where A is some arbitrary disturbance amplitude and δ is the
Dirac delta function. The transfer function from the Gaussian intensity distribution
of the beam Hw (k) can be derived from Equations C.6, C.11, and C.13. We consider
a detector over all space with the detector coordinates ξ and η aligned with Cartesian
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coordinates x and y and take the limit as the beam separation ∆x approaches zero.

Hw (k) =
1

d
dx [sin(k x)]x=0

lim
∆x→0

[ 1
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,
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w2k2

8

)

(C.14)

At z = 0 this is simply

Hw,0(k) = exp *
,
−
w2

0 k2

8
+
-

(C.15)

Equation C.14 reveals how the FLDI rejects unwanted signal away from the best
focus. The FLDI rapidly attenuates disturbances with wavelengths sufficiently
smaller than the local beam diameter where the product of w and k is large. w is
approximately linear in z away from the best focus so a disturbance with a given
wavenumber is attenuated with Gaussian decay as it moves away from the focus.

The FLDI software can compute the response for a single beam probing k cos(k x)
at a beam cross-section at z = 0 over relevant wavenumbers for disturbances in
supersonic and hypersonic flows, and this is compared with the analytical result of
Equation C.15 in Figure C.5. The computed response curve is nearly identical to the
analytical result. The response curve is flat with a value of 1 for low wavenumbers
(long wavelength) with a sharp exponential rolloff beginning at about k = 100/mm,
which is a disturbance wavelength of 63 µm, much smaller than most relevant waves
in supersonic flows. From Equation C.14 it is apparent that the rolloff point occurs
at lower wavenumbers for larger beam diameter, i.e. further from best focus. This
is what makes the FLDI immune to density disturbances away from the focus, such
as the turbulent shear layers at the edges of a free-jet supersonic wind tunnel.
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Figure C.5: Transfer function Hw (k) for a single beam for 1-D sinusoidal distur-
bances in x in an infinitesimally-thin plane at z = 0

Note however that since the FLDI is actually measuring a finite difference approxi-
mation to the first derivative of density along the direction of beam separation, the
magnitude of the raw signal will be smallest where that derivative is smallest, i.e.
at low wavenumbers. Therefore the effect of the electronic noise floor will become
significant for low-wavenumber disturbances. The issue of the noise floor will be
discussed later in this section.

Hw (k) can also be computed analytically for a disturbance field that is uniform in
z but has a finite width 2L, i.e. n′ = A sin(k x)(U (z + L) −U (z − L)) where U is
the Heavyside step function. This is a more physically meaningful transfer function
than Equation C.15. Hw (k) is simply the integral of Equation C.14 from −L to L in
z divided by 2L.
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1
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) (C.16)

Equation C.16 is plotted for various values of L, the density disturbance half-width
in z, in Figure C.6. As L increases, rolloff begins at lower values of k because the
instrument is integrating over portions of the beam where the diameter is larger,
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thus filtering high wavenumber disturbances according to Equation C.14. The error
function in Equation C.16 introduces a k−1 rolloff that extends until the Gaussian
decay cuts in at a wavenumber of about 103/mm.
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Figure C.6: Transfer function of Equation C.16 plotted for various values of L. As
L increases, or, as more signal away from best focus is considered, the error function
in Equation C.16 contributes a k−1 rolloff beginning at lower values of k. This leads
to attenuation of high-wavenumber disturbances away from best focus.

Figures C.7 and C.8 compare the output of the FLDI software with the analytical
result from Equation C.16 for two values of L, 10 mm and 30 mm. Excellent
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Figure C.7: Transfer function Hw (k) for a single beam for uniform 2-D sinusoidal
disturbances in x between z = ±10 mm centered at z = 0.
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Figure C.8: Transfer function Hw (k) for a single beam for uniform 2-D sinusoidal
disturbances in x between z = ±30 mm centered at z = 0.

agreement is again observed between the analytical and computed transfer functions
except at high wavenumbers where numerical errors manifest away from best focus
where the beam is larger and the cross-sectional grid is therefore coarser with respect
to the high-wavenumber disturbances.

In addition to the filtering effect due to the changing beam size there is a second filter
due to the beams being separated by a finite distance. Hs (k), the transfer function
based on beam separation, is calculated by computing the response of the FLDI by
approximating the FLDI as two point-detectors separated by ∆x, again compared to
the ideal case of the true derivative of the disturbance:

Hs (k) =
2 sin

(
k∆x

2

)
∆x d

dx [sin(k x)]x=0
=

2 sin
(

k∆x
2

)
k∆x

(C.17)

This is a sinc function, which has zeros for k = 2nπ
∆x for integers n. This will only

be true for strictly two-dimensional disturbances, which is not physical. Fulghum
(2014) has shown by Monte-Carlo simulation that for randomly-oriented distur-
bances the transfer function is not oscillatory and does not contain zeros. The
precise form of the transfer function can in theory be determined by similar means
using the FLDI software presented here, but the process is very time-consuming and
it has been observed that the effect from Hw (k) is much more significant.
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Hw (k) and Hs (k) are combined for strictly two-dimensional disturbances here for
verification purposes because an overall transfer function can be derived analytically.
Because the transfer functions are written in wavenumber space, the overall transfer
function H (k) is simply the product of Hw (k) and Hs (k). For instance, for density
disturbances in the infinitesimal plane at best focus, the overall transfer function is

H (k) =
2

k∆x
sin

(
k∆x

2

)
exp *

,
−
w2

0 k2

8
+
-

(C.18)

Three overall transfer functions for L = 0 mm (infinitesimal plane at best focus),
L = 10mm, and L = 30mm, respectively, are shown in Figures C.9-C.11. Excellent
agreement is observed between the FLDI software (points in Figures C.9-C.11) and
the analytical functions (lines in Figures C.9-C.11), affirming the accuracy of the
computational method. The apparent oscillations in the transfer functions result
from the sinc filter because of the strictly two-dimensional nature of the disturbance
field simulated. It is also worth noting here that there is no filtering effect resulting
from the overlap of the beams away from best focus as can be seen in Figure C.3. In
other words, the FLDI does not reject signals by "common-mode" rejection because
the beams overlap away from the best focus, but because the beam diameter is large
compared to the wavelengths of the disturbances being measured. The fact that the
beams overlap in space is irrelevant to signal rejection.
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Figure C.9: Transfer function H (k) for the two-beam FLDI for 1-D sinusoidal
disturbances in x in an infinitesimally-thin plane at z = 0.

A convergence study was performed by computing the total sum-of-squares error
for the transfer function shown in Figure C.11 as a function of the resolution in z,
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Figure C.10: Transfer function H (k) for the two-beam FLDI for uniform 2-D
sinusoidal disturbances in x between z = ±10 mm centered at z = 0.
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Figure C.11: Transfer function H (k) for the two-beam FLDI for uniform 2-D
sinusoidal disturbances in x between z = ±30 mm centered at z = 0.

the direction of mean beam propagation. This is shown in Figure C.12 with the red
square indicating the chosen resolution. Absolute error is chosen over relative error
because the small absolute errors at small values of the transfer function at high
wavenumbers are not important to the output of the software, but these dominate
the relative error. The grid is converged with approximately 4000 points in z,
corresponding to a step size of 257.5 µm. The chosen step size of 100 µm is
therefore sufficiently small.
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Figure C.12: Convergence study for the transfer function shown in Figure C.11. The
red square indicates the chosen resolution.

The issue of the electronic noise floor can best be seen here. Figure C.13 shows the
absolute response of the instrument for a disturbance propagating between ±10 mm
on either side of the focus in terms of intensity due to a difference in phase change,
which is converted to voltage by the photodetector. The density field is the same
as used to compute the transfer function of Figure C.10. Although the FLDI
can accurately measure the derivative of a density field at wavenumbers below the
rolloff, themagnitude of the output signal decreases on either side of the rolloff point.
Evaluating the magnitude of density disturbances from an FLDI signal necessarily
involves integration to counteract the differentiation performed by the instrument
and this resolves the issue of the output signal being lower for low wavenumbers,
but one must be aware of this issue in order to avoid the electronic noise floor of the
physical FLDI system.

Comparison with Experiment
An experiment with a controlled density gradient was devised to compare the FLDI
software against experimental data. A gravitationally-stabilized argon jet with a
high-aspect ratio, rectangular cross-section is probed with the beams of the FLDI
experimentally, and a model of the resulting density field is input into the FLDI
software so that the results can be compared. The experimental apparatus is shown
in Figure C.14. The primary component is a rectangular cavity of length 165 mm,
width 10 mm, and depth 152 mm. Argon is fed through the hole at the bottom of
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Figure C.13: Normalized FLDI output signal for sinusoidal disturbances within
±10 mm of the focus in z, corresponding to the transfer function plotted in Fig-
ure C.10.

the chamber at a specified pressure using a needle valve. The chamber is filled with
20-40 mesh size (approximately 400-800 µm diameter) corn cob abrasive media
to ensure the flow at the exit of the chamber is laminar and uniform across the
exit plane. The top of the chamber is covered with a woven-wire steel cloth with
230-by-230 µm openings to contain the abrasive media.

The jet was imaged using schlieren visualization and is found to achieve the stable
configuration shown in Figure C.15. The argon is moving vertically upward at the
chamber exit with an average velocity of 0.22 m/s, computed from the measured
flow rate delivered by a King Instruments rotameter, but stops and reverses direction
due to gravity. The maximum height achieved at y = 0 is determined by the flow
rate and is typically about 15 mm. A 2D planar computation was performed using
OpenFOAM with the rhoReactingFoam solver (Weller et al., 1998). Figure C.16
shows the steady-state result of the computation, with velocity vectors on the left
and streamlines on the right with both superimposed on a contour plot of argon mass
fraction. Numerical schlieren from the computation exhibits qualitative agreement
with the schlieren image in Figure C.15.

The flow is observed to be uniform along the length of the chamber in z, stable in
time, and laminar. The chamber is placed in the test section of the Caltech Ludwieg
Tube and made parallel to the z-axis of the FLDI beams by using a level suspended
between two parallel circular cavities.
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Figure C.14: A solidmodel of the chamber for the argon jet with dimensions given in
mm. The coordinate system shown corresponds to the orientation of the coordinate
system of the FLDI beams.

(a) Schlieren image of the argon jet
in the x−y plane. The top of the jet is
about 15 mm from the chamber exit
and is observed to be uniform across
the jet cross-section, temporally sta-
ble, and laminar.

(b) Pseudo-schlieren image of the ar-
gon jet showing the vertical gradient
in density for comparison with the
experiment.

Figure C.15

The FLDI beams are separated in the x-direction and located at the interface of
the argon and air, such that they measure the density change across the interface as
shown in FigureC.15a. The resulting phase change is less than π/2 so the small-angle
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Figure C.16: Steady-state result of OpenFOAM computation of the flow out of the
argon jet. Velocity vectors are shown on the left and streamlines on the right. Both
are superimposed on a contour plot of argon mass fraction. Ljet is the length out of
the page (in z) that the cross-section shown here extends.

approximation can be invoked as in Section C.2. Portions of the jet can be covered
with tape such that only sections of the jet are active. Fluctuations in the ambient air
are negligible compared to the density difference across the interface. The optical
index field can therefore be approximated for computational purposes as varying in
x and being uniform in y and z over the portion(s) where the chamber exit is not
covered, and uniform everywhere else, i.e. n′ = njet(x)(U (z0+L/2)−U (z0−L/2)).
This allows for comparison between the FLDI software and experiment for a number
of different configurations. At each condition the flow rate of the argon is adjusted
to produce the maximum FLDI signal, meaning that the beams are centered on the
maximum of the density gradient. Test cases performed are presented in Table C.2
by total length of the jet in z (Ljet) and the center of the jet in z (z0).

The variation in index of refraction in the x-direction across the argon-air interface
is shown in Figure C.17. Cubic spline interpolation is used in the FLDI software
when evaluating the index of refraction on the computational grid. The index of
refraction for a mixture of gases is calculated from Equation C.19, which is derived
from Equation B29 in Glass and Kawada (1962) by substituting the definition of
mass fraction (Y ):

n′ = YAr
(
ρAr + ρair

)
(KAr − Kair) + Kair

(
ρAr + ρair − ρair |x→∞

)
(C.19)

The computational and experimental FLDI phase change outputs for each case
in Table C.2 are plotted versus one another in Figure C.18. Uncertainty in the
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Configuration Ljet z0
A 165 0
B 130 0
C 110 0
D 90 0
E 70 0
F 50 0
G 30 0
H 20 0
I 10 0
J 82.5 41.25
K 20 10
L 20 20
M 20 30
N 32.5 66.25

Table C.2: Argon jet configurations tested (dimensions in mm).
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Figure C.17: Index of refraction field from the OpenFOAM computation with spline
interpolation.

experiment is difficult to quantify, but errors are believed to be largely due to three-
dimensional effects at the ends of the jet. The error bars in Figure C.18 are a bound
on the error from calculating the response with an additional 5 mm of jet length
on either side of the jet for each configuration. Three-dimensional effects have a
larger influence on shorter jet lengths, which explains the scatter in the data at the
low-response end of the figure. A linear regression analysis was carried out to test
the correlation of experimental data and numerical results. The regression line has
a slope of 0.99 and an intercept of 0.00, compared to the ideal values of 1 and
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0 for slope and intercept, respectively, and all but one of the individual points lie
on the regression line within the computed uncertainty. The FLDI software can
therefore be considered verified versus analytical calculations and validated against
experimental data with a high degree of confidence.
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Figure C.18: Experimental vs. numerical data for the argon jet experiments detailed
in Table C.2. The letters marking each data point correspond to the configurations
in Table C.2. The line is the ideal line y = x.

C.5 Simulated Measurements
Description
One of the more promising applications of the FLDI is measuring instability waves
in hypervelocity boundary layers where other more conventional techniques such
as surface-mounted pressure transducers or hot-wire anemometry are not suitable.
The FLDI is capable of making such measurements because of its high temporal
resolution and ability to reject signals away from best focus. This was done by
Parziale at Caltech in his PhD thesis (Parziale, 2013). These instability waves are
Mack-mode waves and propagate two-dimensionally in the mean flow direction.
Because the waves are two-dimensional, one can assume that waves only propagate
along the x-axis of the FLDI. As such, the FLDI is quite capable of measuring
their frequency, but because of the path-integrated nature of FLDI measurements
it is impossible to determine their amplitude from the FLDI output alone. This
point is possibly made clearest by Smeets himself (Smeets, 1977): "From the
signals received [from a 2D shear layer], primarily qualitative information could be
achieved, e.g., on the frequency spectra of the turbulent fluctuations near the focal
point. The deduction of quantitative data on the level of local density fluctuations
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is only possible by means of assumptions and approximations. The accuracy of the
results is, therefore, only moderate."

From Equation C.6 we see that the change in phase between the two FLDI beams,
which is converted to a voltage by the photodetector, is an integrated function of the
density fluctiations along the beam paths.

∆Φ(t)
∆x

=
2πK
λ∆x

"
D

I0(ξ, η)
( D(ξ,η)∫

s1

ρ′(x1, t) ds1

−

D(ξ,η)∫
s2

ρ′(x2, t) ds2

)
dξ dη (C.20)

where ρ′ represents the local density fluctuations. We seek the amplitude of ρ′, the
density fluctuation. If ∆x is sufficiently small and recalling that x1 = x2 + ∆x x̂, we
can write this equation in terms of derivatives in x instead of finite differences and
approximate the two beam paths in Equation C.20 as being common.

s1 ≈ s2 ≈ s (C.21)

ρ(x1) ≈ ρ(x2) +
∂ρ

∂x
∆x (C.22)

dΦ(t)
dx

≈
2πK
λ

"
D

I0(ξ, η)
∫
s

∂ρ′(x, t)
∂x

ds dξ dη (C.23)

Since the output of the FLDI is a function of time, not space, it is much more useful
to take derivatives with respect to time. This conversion can be done using Taylor’s
hypothesis x = crt for a constant phase speed cr . We then have

dΦ(t)
dt

≈
2πK
λ

"
D

I0(ξ, η)
∫
s

∂ρ′(x, t)
∂t

ds dξ dη (C.24)

We can then apply the mean value theorem for integrals to the right-hand side to
obtain

dΦ
dt
=

2πK
λ

Z
∂ρ′

∂t
(C.25)

Here
∂ρ′

∂t
represents the averaged value of the time-derivative of ρ′ over the spatial

integral. Z is an unknown parameter with units of length that makes ρ′ equal to the
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actual ρ′ fluctuation in the boundary layer. It is approximately equal to the length of
the region where the FLDI is probing the boundary layer, but it cannot be determined
a priori from experimental data alone. However, Z is primarily a function of the
flow geometry, and can be calculated with knowledge from the FLDI software for a
given geometry and used with experimental data for the same flow. It is sensitive to
the spatial filtering of the FLDI as indicated in Equation C.16, so care must be taken
to ensure that the wavelengths being measured are not significantly attenuated.

We can then integrate the FLDI output in time to obtain the density fluctuations as
a function of time

cr

∆x

∫ t

0
∆Φ(τ) dτ =

2πK
λ

Z ρ′(t) (C.26)

or, solving for ρ′

ρ′(t) =
crλ

2π∆xZK

∫ t

0
∆Φ(τ) dτ (C.27)

The integral can be evaluated using standard numerical integration methods, e.g.
Simpson’s rule. Alternatively, since instabilitywaves are often analyzed in frequency
space, we can write the Fourier transform in time of Equation C.27

F [ρ′] =
crλ

2π∆xZK
1

iω
F [∆Φ] (C.28)

The FLDI software can be used to make simulated measurements of a Mack mode
wave packet in a boundary layer, and the result of that simulation can be used to
calculate a value for Z that can be used in experiments to determine the magnitude
of the fluctuations. The wavepacket is calculated for T5 shot number 2789. The
boundary layer edge conditions are as follows:

Me 4.55
Te 2105 K
Ue 4191 m/s
pe 47.1 kPa

Re/m 4.76 × 106 /m
ρe 0.0777 kg/m3

Table C.3: Boundary layer edge conditions for T5 shot 2789.

The FLDI measurement location is 710 mm from the tip of a 5-degree half-angle
cone model as shown in Figure C.19. Wave packet characteristics are calculated
using the method described in Bitter and Shepherd (2015) and Mack (1965).
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Figure C.19: Cone model used in T5 studies

The density field in a hypersonic boundary layer contains a propagating disturbance
that can be approximated as

ρ(x, y, t) = ρ̄(x, y) + ρ′(x, y, t) (C.29)

a mean spatial density field ρ̄(x, y) and a fluctuating component ρ′ representing
a wave packet containing high-frequency waves representative of Mack (second
mode) instabilities.

ρ′ = ρSFE(x, t)ρ′∗ (C.30)

Here ρSF is a dimensional scale factor that determines the amplitude of the density
fluctuation. It is chosen such that the maximum density fluctuation is 0.1% of the
free stream value. E(x, t) is an envelope describing the extent of the wave packet in
x, and ρ′∗ is a non-dimensional fluctuation of the form

ρ′∗ = Re
[
g(y) exp

(
i(αx − ωt)

)]
(C.31)

where g is a complex eigenfunction in y, α is a complex wavenumber containing
information on both the spatial wavenumber (αr = k) and the spatial growth rate
(αi), and ω is the temporal frequency of the wave. Written in terms of of real and
imaginary parts, ρ′∗ is

ρ′∗ = exp(−αi x)
(
gr (y) cos(αr x − ωt) − gi (y) sin(αr x − ωt)

)
(C.32)

The eigenfunctions and eigenvalues were computed by Bitter (Bitter and Shepherd,
2015) using parallel flow linear stability theory for a boundary layer on a cone with
flow conditions given in Table C.3. The real and imaginary eigenfunctions are
plotted versus height above the cone surface in Figure C.20 along with the mean
density profile through the boundary layer.

From Figure C.20c and examination of the cone geometry it is determined that the
FLDI beams are inside the boundary layer within about 10 mm on either side of
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Figure C.20

the best focus. The envelope is chosen to be a Gaussian that it contains about 15
wavelengths inside the region where its value is greater than 1%. Functionally, this
has the form

E(x, t) = exp
(
−A(x − crt − x0)2

l2

)
(C.33)

for envelope length l and spatial starting location x0.

Equation C.30 has the final form

ρ′ = ρSF exp
(
−A(x − crt − X0)2

l2 − αi x
) (

gr (y) cos(αr x − ωt)

− gi (y) sin(αr x − ωt)
)

(C.34)

The parameters in Equation C.34 have the values given in Table C.4. It is important
to recognize that we should not expect significant spatial filtering for αr = 2.116/mm
based on Figure C.10. Note that Figure C.10 does not represent the transfer function
for this cone boundary layer flow but is the transfer function for two-dimensional
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disturbances propagating in x and uniform in z from −10 < z < 10 mm and so the
exact magnitude of the transfer function at a given wavenumber is not directly appli-
cable here. Still, Figure C.10 does predict whether or not a particular wavenumber
will be appreciably attenuated.

ρSF 2.276 × 10−20 kg/m3

A − ln 0.01 = 4.6
l 14π/αr = 20.8 mm

x0 710 mm - l = 689.2 mm
cr 3633 m/s
αi -0.0488/mm

αr = k 2.116/mm
ω = 2π f = crαr 7.697 × 106 rad/s

Table C.4: Boundary layer wave packet parameters.

The FLDI beams are positioned in the simulation at the local maximum of the
density eigenfunction at y = 0.81 mm. The density fluctuations are converted to
refractive index fluctuations by the Gladstone-Dale relation (Equation C.7) with
K = 0.227 × 10−3 m3/kg. The wavepacket is assumed to be axisymmetric with
respect to the cone axis. The local density is transformed from the FLDI coordinate
system (subscript f ) to a coordinate system relative to the cone surface normal
(subscript c) so that Equation C.34 can be evaluated by a series of trigonometric
operations for cone half-angle θc. Note that at z f = 0, (x f , y f ) = (xc, yc) as
expected.

yc = cos θc

(√[
(x f − y f tan θc) tan θc +

y f

cos θc

]2
+ z2

f

− tan θc(x f − y f tan θc)
) (C.35)

xc = x f + tan θc(yc − y f ) (C.36)

The index of refraction change, relative to the index of refraction outside the bound-
ary layer, at a point (xc, yc, t) is

∆n = K ( ρ̄(yc) + ρ′(xc, yc, t) − ρe) (C.37)

Functions ρ̄, gr , and gi are tabulated on a uniform stencil in yc with step size 0.74 µm,
and values are interpolated from the tabulated functions for each simulated ray in
the FLDI software. The wave packet is propagated in time and the sample rate of the
simulated FLDI is 20 MHz, sufficient to fully temporally resolve the wave packet.
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Results
The output of the simulation is shown in Figure C.21 along with the input density
disturbance at the probe location in x, which is halfway between the two FLDI
beams, and z = 0, i.e. best focus. Note that the output is in phase change, as
it would be if output from a photodetector in a physical FLDI setup, and that the
output is proportional to the time derivative of the input wave packet as indicated
by Equation C.27.
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Figure C.21: Output of the FLDI simulation compared to the input boundary layer
wave packet density disturbance. The y-axis on the left corresponds to the FLDI
output and the y-axis on the right corresponds to the input density at the location of
the beams at z = 0.

Equation C.27 is applied to the simulated FLDI output and Z is determined by
means of iteration until the peak magnitude of the measured power spectral density
of the simulated output is equal to that of the input. For the flow geometry studied
here, Z is calculated to be 12.6 mm. Figure C.22 shows the both the measured
and input density fluctuations with respect to time. Note that the only difference
between the two is that the measured fluctuations are slightly ahead of the input
with respect to time. This is simply a consequence of the conical geometry of the
flow: the wave packet will first be observed by the FLDI beams away from the focus.
Equations C.35 and C.36 make the issue clear. For z , 0, yc > y f so xc > x f .

Figure C.23 shows the power spectral density of the input and output density fluctu-
ations. The two curves match each other almost exactly with the appropriate value
of Z except that the simulated measurement has higher noise away from the peak in
frequency. Presumably even more noise would be present in an experiment, so this
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Figure C.22: Output of the FLDI simulation, scaled with Equation C.27, compared
to the input boundary layer wave packet for the optimum value of Z = 12.6 mm.

slight increase in noise is inconsequential.
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Figure C.23: PSD of the FLDI simulation, scaled with Equation C.27 and optimum
Z value, compared to the PSD of the input boundary layer wave packet.

The parameters in Table C.4, namely αr and cr , are changed to determine the
universality of the value of Z for wave packets of different spatial wavenumber and
frequency. The values for αr and cr are given in Table C.5 along with the computed
frequency and the error in the peak amplitude of the simulated measurement relative
to the peak magnitude of the input wave packet.

The error in the peak amplitude of the wave packet is appreciable only in cases 3
and 4. The reason for the large error can be deduced by examining the values of αr
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Case No. αr [1/mm] cr [m/s] f [Hz] % Error
1 2.116 3633 1.22 × 106 0.0
2 0.4 3633 2.31 × 105 4.0
3 7 3633 4.05 × 106 -26
4 30 3633 1.73 × 107 -94
5 2.116 2500 8.42 × 105 0.0
6 2.116 5000 1.68 × 106 0.0

Table C.5: Wave packet properties tested with fixed value of Z .

in these cases and consulting Figure C.10. Recall again that the transfer functions
plotted in Figures C.9-C.11 are not transfer functions for the conical boundary layer
under examination in this section, but nonetheless they lend some insight to when
the instrument will begin to roll off in wavenumber space. Notice that at αr = 7/mm,
the transfer function has dropped to about -2 dB, which corresponds to about a 35%
reduction in signal magnitude, close to the observed error in Table C.5. Similarly, for
αr = 30/mm, the transfer function is approximately equal to -17 dB, corresponding
to a 98% reduction in magnitude which is again quite close to the error in Table C.5
for case 4. Physically, this means that the wavelength of the Mack-mode waves is
sufficiently small that it is comparable in size to the beam width in the region where
the FLDI is probing the boundary layer and therefore the waves are being heavily
spatially filtered by the beams.

It is interesting to examine further the output from the FLDI software for case 4where
αr = 30/mm. The density change as a function of time and the power spectral density
of the disturbance are shown in Figure C.24. As Table C.5 indicates, the measured
signal magnitude is significantly reduced compared to the input disturbance using
the same value of Z calculated for case 1 where there is very little spatial filtering
by the instrument. Interestingly, though, the FLDI is able to measure the frequency
of the signal correctly. This is a somewhat surprising result because if one were to
approximate the FLDI as two point measurements separated by the beam separation
∆x, onewould predict spatial aliasing if the wavenumber of the disturbance is greater
than π

∆x , which would be 18 mm here. This spatial aliasing would become temporal
aliasing when Taylor’s hypothesis is applied. Figure C.24b clearly does not display
this behavior, however, so the finite beam diameter seems to prevent spatial aliasing
based on wavenumber. An FLDI will only suffer from aliasing if the sampling
frequency is not sufficiently high compared to the frequency of the disturbance
being measured. The only effect of high wavenumbers is the attenuation of the
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signal due to spatial filtering, which will lead to a limitation from the electronic
noise floor of the system.
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(a)Output of the FLDI simulation for case
4 in Table C.5 scaled with the same value
of Z found in case 1 compared to the
actual density disturbance at the focus.
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Figure C.24

Based on this analysis we conclude that the value of Z in Equation C.27 is only a
function of the geometry of the density field being probed and the attenuation of the
signal due to spatial filtering based on wavenumber. If the attenuation is sufficiently
small for all wavenumbers of interest in the experiment then only a single value of
Z needs to be calculated to accurately compute the density change quantitatively.
Even if the wavenumbers of interest are high enough to be filtered by the FLDI, new
values of Z can be calculated for given wavenumbers without much difficulty. The
measurement will still be a point measurement at the focus of the FLDI and the phase
speed of the disturbance must be known a priori, but for the specific application of
measuring Mack-mode waves on a slender-body boundary layer these restrictions
are not problematic. The phase speed can either be calculated from stability theory
as is done here or it can bemeasured as in Laurence, Wagner, and Hanneman (2014).
One also needs some knowledge regarding the shape of the density eigenfunctions.

To summarize, the routine to accurately compute the density change of Mack-mode
waves in a hypervelocity boundary layer from FLDI data is as follows:

1. Compute wave properties and eigenfunctions from linear stability analysis,
e.g. in Bitter and Shepherd (2015)

2. Input this data into FLDI software such as the one in the current study
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3. Compute a value for Z in Equation C.27 by matching the results of step 2 to
the specified density change of the input wavepacket

4. Apply Equation C.27 to the experimental FLDI data using the value of Z from
step 3, taking care to ensure that the wavenumber of the Mack mode wave is
not appreciably spatially filtered by the FLDI

The simple procedure used in Parziale (2013) for computing the density disturbance
magnitude for T5 shot 2789 can give an estimate accurate within an order of mag-
nitude if the "integration length" is estimated based on the length through which
the FLDI beams are inside the cone boundary layer. However, such a procedure
makes significant approximations that limit its accuracy to within about a factor
of 2. The routine outlined above, on the other hand, requires knowledge of the
form of the disturbances and is limited in accuracy by experimental uncertainty and
any uncertainties associated with the computations performed in step 1. One could
alternatively simply make an estimate of Z based on the boundary layer geometry
and skip directly to step 4 above. Estimating Z would likely give results that are
more accurate than the procedure in Parziale (2013) because Equation C.27 takes
into account the fact that the FLDI is differentiating the density disturbance in space
while the simplified procedure does not, but the results would be less accurate than
those obtained by following the full routine outlined above.

There is a caveat to these results. The free stream disturbances outside the boundary
layer have been neglected in this analysis, but in an experiment the FLDI beams
integrate through these disturbances and they will contribute to the output signal.
Therefore care must be taken to ensure that the free stream disturbances do not
occupy the same frequency space as the disturbance of interest at the focus, or that
the wavenumber of the free stream disturbance at the frequency of the disturbance
of interest is sufficiently high that it is heavily spatially filtered by the FLDI away
from the focus. It is important to recognize that the characteristic velocity of
the free stream disturbances can be different from the characteristic velocity of
the disturbance of interest, as it is for hypervelocity boundary layers. Based on
measurements taken in T5, it appears that the frequency range over which there is
significant FLDI signal in the free stream is significantly below the 1.2 MHz of a
typical Mack-mode wave packet, so signal contamination from the free stream is not
expected to be problematic when using the FLDI to measure Mack-mode waves on
a cone boundary layer. The effect of free stream disturbances on the output signal
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ought to be evaluated for each facility on a case-by-case basis for future experiments
before attempting to quantify boundary layer instability measurements to ensure
the measurements are accurate. This is particularly true for low-enthalpy facilities
where the frequency content of the free stream disturbances and that of Mack-mode
waves are not as far apart as they are in high-enthalpy flow.

Another word of caution is warranted regarding measuring Mack-mode waves in
hypervelocity boundary layers with an FLDI. From Figure C.20, it is clear that the
magnitude of density fluctuations varies significantly with height in the boundary
layer, and as such the output of the FLDI is quite sensitive to the location above the
cone surfacewhere the disturbance ismeasured. Indeed, if themeasurement location
is moved only 400 µm from the specified measurement location of y = 0.81 mm to
y = 1.2 mm, the error in the measurement using the value of Z calculated for case
1 in Table C.5 is greater than 50%. Therefore great care must be taken to accurately
measure the height of the beam centers from the model surface in an experiment.

C.6 Conclusions
Focused laser differential interferometry is a promising technique for measuring lo-
calized, high-frequency density disturbances in supersonic and hypersonic flows. In
particular, the FLDI is an attractive instrument for measuringMack-mode instability
waves in hypersonic boundary layers. A computational tool has been developed here
that has been verified against analytical predictions of the FLDI response as well as
experimental measurements with a physical FLDI setup. Using the FLDI software,
it is possible to calculate the output of an FLDI to an arbitrary density field. Such
a prediction can only be made analytically for very simple density fields. These
computations allow FLDI experiments to give quantitative measurements of the
density fluctuation amplitude if certain details about the flow in question are known
by applying correction factors to the computational output such that the FLDI output
matches the input density disturbance of interest. This procedure is shown to work
well for hypersonic boundary layer disturbances where the disturbance is localized
near the best focus of the FLDI, is two-dimensional in nature, and the phase speed
of the instabilities can be accurately predicted from theory.

Some general statements can be made concerning using the FLDI to make measure-
ments in compressible flows. The FLDI does reject signals away from its best focus,
but this signal rejection is not related to common-mode rejection associated with
the beams sharing common paths. The rejection is in fact attenuation due to spatial
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filtering because of the increasing beam diameters away from the focus. As such,
disturbances with small enough wavenumbers (long enough wavelengths) will not
be attenuated away from the FLDI focus and will therefore contribute to the FLDI
signal over a significant extent of the beam paths. As a result the FLDI can accu-
rately measure the frequency content of density disturbances in a flow, but it does
not in general yield information as to where along the beam path the disturbances
are located or their amplitude at any given point along the beam path. In order
to extract quantitative density information, details regarding the geometry of the
density disturbance field, the preferred direction of the disturbances (if any), and the
characteristic velocity of the disturbances must be known. If these are known, then
the FLDI output can be simulated using a procedure such as the one presented here,
or, if the flowfield is simple enough, by analytical methods, and then experimental
measurements can be adjusted as necessary such that the density fluctuation mag-
nitude is correct. The authors are not aware of any other method to extract suitably
accurate quantitative density fluctuation magnitudes from FLDI data.
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A p p e n d i x D

EXPERIMENTAL CONDITIONS

Flow conditions

Shot Injected pfill ṁinj F J p∞ ReL,∞
No. Gas [kPa] [g/s] ×103 ×104 [kPa] [106/m]
425 N/A 204 N/A N/A N/A 1.21 9.16
441 N/A 202 N/A N/A N/A 1.20 9.06
444 Nitrogen 403 0.097 0.45 0.0066 2.40 17.98
445 Nitrogen 202 0.097 0.91 0.026 1.20 9.01
446 Nitrogen 394 0.40 1.94 0.12 2.34 17.81
447 Nitrogen 204 0.42 3.89 0.48 1.21 9.14
448 Nitrogen 399 0.61 2.87 0.26 2.37 17.99
449 Nitrogen 203 0.65 6.01 1.17 1.20 9.05
450 Nitrogen 403 0.68 3.20 0.33 2.39 17.97
451 Nitrogen 203 0.71 6.65 1.41 1.21 9.09
452 Nitrogen 403 0.90 4.22 0.57 2.40 18.17
453 Nitrogen 203 0.88 8.24 2.16 1.21 9.09
454 Nitrogen 401 1.075 5.09 0.82 2.38 17.89
455 Nitrogen 200 1.14 10.79 3.70 1.19 8.95
456 Nitrogen 402 1.28 6.03 1.16 2.39 18.11
457 Nitrogen 201 1.32 12.39 4.88 1.20 9.04
458 Nitrogen 401 1.49 7.02 1.57 2.38 18.03
459 Nitrogen 203 1.56 14.58 6.76 1.20 9.05
460 Nitrogen 399 1.66 7.89 1.98 2.37 17.95
461 Nitrogen 201 1.70 16.04 8.19 1.19 8.97
462 Nitrogen 402 1.83 8.60 2.35 2.39 18.09
463 Nitrogen 201 1.97 18.54 10.93 1.19 9.03
464 Nitrogen 403 0.091 0.43 0.0058 2.39 18.02
465 Nitrogen 202 0.081 0.76 0.018 1.20 9.03
466 Nitrogen 400 0.33 1.57 0.079 2.38 18.09
467 Nitrogen 201 0.36 3.35 0.36 1.20 9.03
468 Nitrogen 404 0.57 2.69 0.23 2.40 18.15
469 Nitrogen 202 0.59 5.51 0.96 1.20 9.03
470 Nitrogen 403 0.69 3.26 0.34 2.39 18.17
471 Nitrogen 202 0.71 6.67 1.42 1.20 9.06
472 Nitrogen 401 0.90 4.26 0.58 2.38 18.02
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Shot Injected pfill ṁinj F J p∞ ReL,∞
No. Gas [kPa] [g/s] ×103 ×104 [kPa] [106/m]
473 Nitrogen 201 0.92 8.67 2.39 1.19 8.99
474 Nitrogen 402 1.17 5.49 0.96 2.39 18.26
475 Nitrogen 199 1.22 11.58 4.27 1.18 9.00
476 Nitrogen 402 1.37 6.45 1.32 2.39 18.11
477 Nitrogen 201 1.40 13.12 5.47 1.20 9.10
478 Nitrogen 402 1.50 7.04 1.58 2.39 18.28
479 Nitrogen 201 1.59 14.93 7.09 1.19 9.08
480 Nitrogen 401 1.71 8.07 2.07 2.38 18.10
481 Nitrogen 204 1.76 16.32 8.48 1.21 9.20
482 Nitrogen 403 2.05 9.60 2.93 2.40 18.29
483 Nitrogen 205 2.12 19.56 12.17 1.22 9.25
524 Helium 401 0.059 0.28 0.017 2.38 18.20
525 Helium 202 0.063 0.59 0.077 1.20 9.11
526 Helium 403 0.16 0.76 0.13 2.39 18.07
527 Helium 202 0.17 1.56 0.54 1.20 9.02
528 Helium 404 0.20 0.96 0.21 2.40 18.02
529 Helium 203 0.21 2.00 0.89 1.20 9.09
530 Helium 404 0.23 1.07 0.25 2.40 18.28
531 Helium 202 0.23 2.20 1.08 1.20 9.07
532 Helium 404 0.28 1.34 0.40 2.40 18.05
533 Helium 201 0.30 2.79 1.74 1.19 9.01
534 Helium 404 0.34 1.62 0.59 2.40 18.05
535 Helium 202 0.35 3.28 2.40 1.20 9.05
536 Helium 404 0.40 1.87 0.78 2.40 18.23
537 Helium 202 0.40 3.74 3.12 1.20 9.13
538 Helium 403 0.45 2.09 0.97 2.40 18.16
539 Helium 202 0.45 4.23 3.98 1.20 9.07
540 Helium 406 0.48 2.23 1.11 2.41 18.27
541 Helium 202 0.49 4.59 4.69 1.20 9.10
542 Helium 403 0.55 2.60 1.50 2.40 18.19
543 Helium 202 0.56 5.28 6.21 1.20 9.08
544 Helium 413 0.060 0.27 0.017 2.45 18.55
545 Helium 202 0.062 0.58 0.77 1.20 9.12
546 Helium 403 0.15 0.72 0.12 2.40 18.26
547 Helium 202 0.16 1.48 0.49 1.20 9.06
548 Helium 404 0.19 0.91 0.18 2.40 18.13
549 Helium 202 0.20 1.88 0.79 1.20 9.04
550 Helium 401 0.21 1.00 0.22 2.38 18.16
551 Helium 202 0.22 2.06 0.95 1.20 9.12
552 Helium 401 0.27 1.29 0.37 2.38 18.18
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Shot Injected pfill ṁinj F J p∞ ReL,∞
No. Gas [kPa] [g/s] ×103 ×104 [kPa] [106/m]
553 Helium 204 0.28 2.60 1.51 1.21 9.21
554 Helium 402 0.34 1.61 0.58 2.39 18.25
555 Helium 204 0.35 3.26 2.37 1.21 9.22
556 Helium 403 0.39 1.84 0.75 2.40 18.14
557 Helium 203 0.39 3.62 2.92 1.21 9.10
558 Helium 402 0.43 2.04 0.93 2.39 18.26
559 Helium 204 0.45 4.17 3.88 1.21 9.20
560 Helium 404 0.47 2.22 1.10 2.49 18.15
561 Helium 203 0.48 4.48 4.48 1.20 9.09
562 Helium 404 0.55 2.56 1.46 2.40 18.32
563 Helium 203 0.54 5.02 5.60 1.20 9.12
580 RC318 405 0.84 3.96 0.070 2.40 18.05
581 RC318 202 0.81 7.61 0.26 1.20 9.09
582 RC318 404 1.30 6.08 0.16 2.40 18.23
583 RC318 203 1.38 12.90 0.74 1.21 9.12
584 RC318 405 1.61 7.53 0.25 2.41 18.13
585 RC318 203 1.52 14.13 0.89 1.21 9.12
586 RC318 404 1.52 7.14 0.23 2.40 18.23
587 RC318 203 1.73 16.09 1.15 1.21 9.14
588 RC318 404 1.94 9.12 0.37 2.40 18.08
589 RC318 203 2.15 20.05 1.79 1.21 9.12
590 RC318 404 2.42 11.30 0.57 2.40 18.36
591 RC318 205 2.67 24.66 2.70 1.22 9.26
592 RC318 405 2.62 12.26 0.67 2.40 18.19
593 RC318 204 2.82 26.20 3.05 1.21 9.15
594 RC318 404 3.04 14.25 0.90 2.40 18.26
595 RC318 204 3.07 28.53 3.62 1.21 9.16
596 RC318 405 3.11 14.51 0.94 2.40 18.29
597 RC318 203 3.28 30.55 4.15 1.21 9.16
598 RC318 404 3.43 16.07 1.15 2.40 18.20
599 RC318 203 3.65 33.98 5.13 1.21 9.14
600 RC318 404 0.16 0.73 0.0024 2.40 18.24
601 RC318 202 0.61 5.74 0.15 1.20 9.12
602 RC318 404 1.08 5.05 0.11 2.40 18.07
603 RC318 205 1.10 10.19 0.46 1.22 9.15
604 RC318 403 1.37 6.41 0.18 2.40 18.20
605 RC318 205 1.44 13.27 0.78 1.22 9.25
606 RC318 404 1.61 7.57 0.25 2.40 18.09
607 RC318 205 1.66 15.38 1.05 1.22 9.15
608 RC318 405 1.97 9.20 0.38 2.41 18.33
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Shot Injected pfill ṁinj F J p∞ ReL,∞
No. Gas [kPa] [g/s] ×103 ×104 [kPa] [106/m]
609 RC318 203 2.01 18.78 1.57 1.21 9.16
610 RC318 412 2.49 11.44 0.58 2.45 18.49
611 RC318 202 2.28 21.48 2.05 1.20 9.02
612 RC318 403 2.63 12.33 0.68 2.39 18.26
613 RC318 202 2.83 26.41 3.10 1.20 9.15
614 RC318 404 3.22 15.11 1.01 2.40 18.14
615 RC318 205 3.15 29.11 3.77 1.22 9.20
616 RC318 404 3.08 14.41 0.92 2.40 18.24
617 RC318 206 3.37 30.97 4.26 1.22 9.26
618 RC318 406 3.65 17.08 1.30 2.41 18.12
619 RC318 205 3.61 33.39 4.96 1.22 9.15
637 N/A 206 N/A N/A N/A 1.22 9.26
639 N/A 205 N/A N/A N/A 1.22 9.29
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Diagnostic conditions

Shot Experiment Framing Pulse Resolution
No. Type Rate [fps] Width [ns] [pixels]
425 Cone with trip N/A, PCB only N/A N/A
441 Cone N/A, PCB only N/A N/A
444 Injection, full field 30,262 40 912 x 240
445 Injection, full field 30,262 40 912 x 240
446 Injection, full field 30,262 40 912 x 240
447 Injection, full field 30,262 40 912 x 240
448 Injection, full field 30,262 40 912 x 240
449 Injection, full field 30,262 40 912 x 240
450 Injection, full field 30,262 40 912 x 240
451 Injection, full field 30,262 40 912 x 240
452 Injection, full field 30,262 40 912 x 240
453 Injection, full field 30,262 40 912 x 240
454 Injection, full field 30,262 40 912 x 240
455 Injection, full field 30,262 40 912 x 240
456 Injection, full field 30,262 40 912 x 240
457 Injection, full field 30,262 40 912 x 240
458 Injection, full field 30,262 40 912 x 240
459 Injection, full field 30,262 40 912 x 240
460 Injection, full field 30,262 40 912 x 240
461 Injection, full field 30,262 40 912 x 240
462 Injection, full field 30,262 40 912 x 240
463 Injection, full field 30,262 40 912 x 240
464 Injection, high speed 289,361 25 224 x 64
465 Injection, high speed 289,361 25 224 x 64
466 Injection, high speed 289,361 25 224 x 64
467 Injection, high speed 289,361 25 224 x 64
468 Injection, high speed 289,361 25 224 x 64
469 Injection, high speed 289,361 25 224 x 64
470 Injection, high speed 289,361 25 224 x 64
471 Injection, high speed 289,361 25 224 x 64
472 Injection, high speed 289,361 25 224 x 64
473 Injection, high speed 289,361 25 224 x 64
474 Injection, high speed 289,361 25 224 x 64
475 Injection, high speed 289,361 25 224 x 64
476 Injection, high speed 289,361 25 224 x 64
477 Injection, high speed 289,361 25 224 x 64
478 Injection, high speed 289,361 25 224 x 64
479 Injection, high speed 289,361 25 224 x 64
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Shot Experiment Framing Pulse Resolution
No. Type Rate [fps] Width [ns] [pixels]
480 Injection, high speed 289,361 25 224 x 64
481 Injection, high speed 289,361 25 224 x 64
482 Injection, high speed 289,361 25 224 x 64
483 Injection, high speed 289,361 25 224 x 64
524 Injection, full field 30,262 40 912 x 240
525 Injection, full field 30,262 40 912 x 240
526 Injection, full field 30,262 40 912 x 240
527 Injection, full field 30,262 40 912 x 240
528 Injection, full field 30,262 40 912 x 240
529 Injection, full field 30,262 40 912 x 240
530 Injection, full field 30,262 40 912 x 240
531 Injection, full field 30,262 40 912 x 240
532 Injection, full field 30,262 40 912 x 240
533 Injection, full field 30,262 40 912 x 240
534 Injection, full field 30,262 40 912 x 240
535 Injection, full field 30,262 40 912 x 240
536 Injection, full field 30,262 40 912 x 240
537 Injection, full field 30,262 40 912 x 240
538 Injection, full field 30,262 40 912 x 240
539 Injection, full field 30,262 40 912 x 240
540 Injection, full field 30,262 40 912 x 240
541 Injection, full field 30,262 40 912 x 240
542 Injection, full field 30,262 40 912 x 240
543 Injection, full field 30,262 40 912 x 240
544 Injection, high speed 289,361 25 224 x 64
545 Injection, high speed 289,361 25 224 x 64
546 Injection, high speed 289,361 25 224 x 64
547 Injection, high speed 289,361 25 224 x 64
548 Injection, high speed 289,361 25 224 x 64
549 Injection, high speed 289,361 25 224 x 64
550 Injection, high speed 289,361 25 224 x 64
551 Injection, high speed 289,361 25 224 x 64
552 Injection, high speed 289,361 25 224 x 64
553 Injection, high speed 289,361 25 224 x 64
554 Injection, high speed 289,361 25 224 x 64
555 Injection, high speed 289,361 25 224 x 64
556 Injection, high speed 289,361 25 224 x 64
557 Injection, high speed 289,361 25 224 x 64
558 Injection, high speed 289,361 25 224 x 64
559 Injection, high speed 289,361 25 224 x 64
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Shot Experiment Framing Pulse Resolution
No. Type Rate [fps] Width [ns] [pixels]
560 Injection, high speed 289,361 25 224 x 64
561 Injection, high speed 289,361 25 224 x 64
562 Injection, high speed 289,361 25 224 x 64
563 Injection, high speed 289,361 25 224 x 64
580 Injection, full field 30,262 40 912 x 240
581 Injection, full field 30,262 40 912 x 240
582 Injection, full field 30,262 40 912 x 240
583 Injection, full field 30,262 40 912 x 240
584 Injection, full field 30,262 40 912 x 240
585 Injection, full field 30,262 40 912 x 240
586 Injection, full field 30,262 40 912 x 240
587 Injection, full field 30,262 40 912 x 240
588 Injection, full field 30,262 40 912 x 240
589 Injection, full field 30,262 40 912 x 240
590 Injection, full field 30,262 40 912 x 240
591 Injection, full field 30,262 40 912 x 240
592 Injection, full field 30,262 40 912 x 240
593 Injection, full field 30,262 40 912 x 240
594 Injection, full field 30,262 40 912 x 240
595 Injection, full field 30,262 40 912 x 240
596 Injection, full field 30,262 40 912 x 240
597 Injection, full field 30,262 40 912 x 240
598 Injection, full field 30,262 40 912 x 240
599 Injection, full field 30,262 40 912 x 240
600 Injection, high speed 289,361 25 224 x 64
601 Injection, high speed 289,361 25 224 x 64
602 Injection, high speed 289,361 25 224 x 64
603 Injection, high speed 289,361 25 224 x 64
604 Injection, high speed 289,361 25 224 x 64
605 Injection, high speed 289,361 25 224 x 64
606 Injection, high speed 289,361 25 224 x 64
607 Injection, high speed 289,361 25 224 x 64
608 Injection, high speed 289,361 25 224 x 64
609 Injection, high speed 289,361 25 224 x 64
610 Injection, high speed 289,361 25 224 x 64
611 Injection, high speed 289,361 25 224 x 64
612 Injection, high speed 289,361 25 224 x 64
613 Injection, high speed 289,361 25 224 x 64
614 Injection, high speed 289,361 25 224 x 64
615 Injection, high speed 289,361 25 224 x 64
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Shot Experiment Framing Pulse Resolution
No. Type Rate [fps] Width [ns] [pixels]
616 Injection, high speed 289,361 25 224 x 64
617 Injection, high speed 289,361 25 224 x 64
618 Injection, high speed 289,361 25 224 x 64
619 Injection, high speed 289,361 25 224 x 64
637 Cone, full field 30,262 40 912 x 240
639 Cone, high speed 345,177 25 384 x 40
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