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ABSTRACT
This paper analyzes the adequacy of shell models for pre-

dicting stresses and strains in thick-walled tubes subjected to det-
onation loads. Of particular interest are the large axial strains
which are produced at the inner and outer surfaces of the tube
due to bending along the tube axis. First, comparisons between
simple shell theory and a static finite element model are used to
show that the axial strain varies proportionally with wall thick-
ness and inversely with the square of the axial wavelength. For
small wavelengths, this comparison demonstrates nonlinear be-
havior and a breakdown of the shell model. Second, a dynamic
finite element model is used to evaluate the performance of tran-
sient shell equations. This comparison is used to quantify the
error of the shell model with increasing wall thickness and show
that shell models can be inaccurate near the load front where
the axial curvature is high. Finally, the results of these analyses
are used to show that the large axial strains which are some-
times observed in experiments cannot be attributed to through-
wall bending and appear to be caused instead by non-ideal con-
ditions present in the experiments.

NOMENCLATURE
a Mean tube radius
h Wall thickness
E Elastic modulus
G Shear modulus E/2(1+ν)

L Tube length
u Axial displacement

υd Dilatational Wave speed
√

E/ρ(1−ν2)

υs Shear wave speed
√

κG/ρ

υco First critical wave speed
w Radial displacement
wb Component of radial displacement due to axial bending
ws Component of radial displacement due to transverse shear
z Radial distance from middle surface of tube
β Shell thickness parameter h/

√
12a

εθ Hoop strain
εx Axial strain
κ Shear correction factor, taken to be 5/6
ν Poisson’s ratio
ρ Density of tube
ψx Angular deformation of tube

1 INTRODUCTION
Linear, elastic, thin-shell theories have formed the founda-

tion for our current understanding of the dynamic response of
cylindrical tubes and pipes. Although a large number of varia-
tions on the thin-shell equations have been proposed [1], most of
them are based on a set of assumptions commonly called “Love’s
first approximation” [2]. These assumptions are the following:

1. The wall thickness h is much smaller than any other dimen-
sion of the shell, including the radii of curvature

2. Non-linear terms in the strain-displacement relations are
negligible

3. Transverse normal stress is negligibly small
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4. During deformation, normals to the undeformed middle sur-
face remain straight and normal and their lengths are pre-
served (the Kirchhoff hypothesis)

Shell formulations based on these assumptions have been
used very successfully to predict the behavior of thin tubes sub-
jected to internal detonations and shock waves. For instance,
Beltman et al. used a steady-state shell model to analyze peak
strains in thin (a/h = 16) tubes subjected to internal shock waves
and found reasonably good agreement with finite element mod-
els and experimental measurements except in the vicinity of the
first critical velocity, where effects of material damping are im-
portant and the steady-state approximation is inadequate [3, 4].
Likewise Simkins measured hoop strains in a much thicker tube
(a/h = 5.2) and found good agreement with the predictions of
shell theory [5]. However, recent experiments [6] with thick-
walled tubes (a/h = 7.2) have demonstrated axial strains that
are 2-3 times larger than would be expected on the basis of thin
shell models, even though hoop strains are well-predicted. This
discrepancy calls for a thorough evaluation of the axial strains
that develop in thick tubes subjected to shock or detonation type
loads.

A possible explanation for the differences between experi-
mental measurements and the predictions of shell models is that
these models may no longer be adequate for tubes of large wall
thickness. Thus one objective of this paper is to quantify how
rapidly errors in shell models grow when the thin-wall approxi-
mation is violated. The thickness of a tube must be evaluated in
comparison to other length scales, including the radii of curva-
ture of the tube, and the tube can only be considered thin if the
wall thickness is much smaller than all other dimensions. The
most obvious scenario which breaks this constraint is that of a
tube with wall thickness h comparable to the undeformed radius
of curvature a. However, for both thick and thin tubes subjected
to dynamic loads, it is also possible for the axial radius of cur-
vature to become comparable to the wall thickness, which is a
second mechanism by which the thin-wall assumption might fail.
Both of these cases are considered in this paper.

Various authors have evaluated the performance of thin-shell
theories using comparisons with the three-dimensional equations
of elasticity [7–10]. These comparisons are usually made by as-
suming displacements in the form of harmonic vibrations and
comparing the dispersion curves from shell models with those
from 3D elasticity. For instance, Herrmann and Mirsky pro-
posed a shell model which included the effects of both shear de-
formation and rotary inertia and showed that the lowest branch
of the dispersion curve for this model differed negligibly from
that of 3D elasticity for all wavenumbers [10]. However, as
pointed out by Greenspon [9], for high frequency vibrations the
displacements may vary nonlinearly through the shell thickness
and outer-surface stresses and strains can be in considerable error
even when vibration frequencies are well-predicted.

Although the usual free-vibration analysis provides a sim-
ple framework in which solutions to the 3D equations of elastic-
ity are tractable, it also involves a considerable departure from
realistic loads, such as impulsive loads or shock waves, which
are more commonly encountered in practice. The structural re-
sponse of tubes subjected to shock and detonation loads often
features a dynamic load amplification [4, 11, 12] that leads to
large stresses and strains near or behind the load front. The mag-
nitude of these stresses and strains cannot be quantified using
free-vibration analysis.

This paper seeks to evaluate the performance of shell equa-
tions for thick tubes in the specific context of shock or detonation
type loads. Emphasis is placed on the prediction of stresses and
strains at the inner and outer surfaces of the tube, which are often
predicted less accurately than vibration frequencies or middle-
surface deformation. In the first part of this paper, static finite
element modeling is used to investigate the relationship between
the axial curvature of the deformation and the resulting axial
strains that are developed at the inner and outer surfaces of a
tube. In the second part of this paper, the predictions of dynamic
shell equations for shock wave type loads are evaluated through
comparisons with finite element simulations.

It is worth noting that much of the discussion in this paper
regarding thin shell models is also applicable to finite element
simulations. Many types of shell elements are based on thin shell
models and assume linear strain variation through the element
thickness. As a result these models are subject to restrictions on
wall thickness that are similar to those of thin shell theory. These
restrictions can only be avoided by using several elements or in-
tegration points through the wall thickness in order to capture
non-linear strain variation.

2 STRAIN PREDICTIONS FROM SHELL MODELS
A diagram of an axisymmetrically bending tube is shown in

Fig. 1. The tube has a mean radius of a and a wall thickness of h
and is deformed into a series of waves of wavelength λ along the
tube axis. The thin-shell approximation involves the construction
of a local coordinate system along the middle surface of the tube
(dashed line) such that z = r− a is the radial distance from the
middle surface and x is the coordinate along the tube axis. Dis-
placements in the radial and axial directions are denoted w and
u, respectively.

For axisymmetric deformation, the only non-zero compo-
nents of strain at a point (x,z) on the tube are given by:

εz =
∂w
∂ z

εθ =
w

a+ z
(1)

εx =
∂u
∂x

εzx =
1
2

(
∂u
∂ z

+
∂w
∂x

)
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FIGURE 1. Axisymmetric deformation of a tube with a wavelength
λ of flexure. The coordinate system (x,z) is a local construction with
z parallel to the radial direction and x to the axial direction. The mean
radius is a, and the distance z is measured from the shell middle surface
(dashed line).

In these expressions, shell approximations have not yet been in-
troduced, so these strains are subject only to the constraint of
small deformations, i.e., the products of displacement gradients
are much smaller than the displacement gradients themselves.

Suppose that the displacements w and u are expressed using
Taylor series expansions centered at the middle surface:

u(x,z) = uo(x)+
∂u
∂ z

∣∣∣∣
z=0

z+O(z2) (2a)

w(x,z) = wo(x)+
∂w
∂ z

∣∣∣∣
z=0

z+O(z2) (2b)

In these equations, wo and uo are the displacements at the
middle surface z = 0. As described by [2], the Kirchhoff hypoth-
esis is comprised of two assumptions: 1) that normals to the un-
deformed middle surface remain straight and normal and 2) the
length of these normals is preserved, i.e., radial deformation is
constant through the wall thickness. The later condition dictates
that w(x,z) = wo(x) so only the first term in Eq. (2b) is non-zero.
The assumption that normals to the undeformed middle surface
remain straight and normal can only be satisfied if the shear strain
εzx from Eq. (1) is zero. Application of this constraint to Eq. (2)

reveals that:

∂u
∂ z

∣∣∣∣
z=0

=−∂wo

∂x
(3)

and the coefficients of all terms of quadratic and higher order in
Eq. (2a) are zero. As a result, the displacement field that satisfies
the Kirchhoff hypothesis is the following:

w(x,z) = wo(x) (4a)

u(x,z) = uo(x)−
∂wo

∂x
z (4b)

Upon substituting Eqs. (4) into Eqs. (1), the axial and hoop
strains become:

εx =
∂uo

∂x
− ∂ 2wo

∂x2 z (5a)

εθ =
wo

a+ z
=

wo

a
− wo

a2 z+O(z2) (5b)

In the latter of these equations, a Taylor series in z has been ap-
plied. These two equations relate the strain at any point through
the wall thickness of the tube to the displacements uo and wo of
the middle surface. The strains at the outer and inner surfaces of
the tube (z =±h/2) are then:

εx =
∂uo

∂x
∓ ∂ 2wo

∂x2
h
2

(6a)

εθ =
wo

a

(
1∓ h

2a

)
(6b)

By assuming that radial stresses are small in comparison to
hoop and axial stresses, Hooke’s law can be applied to show that
the stress resultants (i.e., the integrals of stresses through the wall
thickness) in the axial and circumferential directions are given
by [13]:

Nx =
E

1−ν2

∫ h/2

−h/2
(εx +νεθ )dz (7a)

Nθ =
E

1−ν2

∫ h/2

−h/2
(εθ +νεx)dz (7b)

Upon substituting the strain-displacement relations from Eq. 5,
the stress resultants become:

Nx =
Eh

1−ν2

(
∂uo

∂x
+ν

wo

a

)
(8a)

Nθ =
Eh

1−ν2

(
wo

a
+ν

∂uo

∂x

)
(8b)
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It is interesting to note that the strains in Eq. (6) have errors of
order O(h2), while the errors in the stress resultants of Eq. (8)
are of order O(h3). To demonstrate this, one could include terms
up to quadratic order in Eq. (5) and find that they are identically
equal to zero after the integration in Eq. (7). This result sug-
gests that middle-surface strains, which are computed by apply-
ing conservation laws to the stress resultants, may be predicted
more accurately than strains at the inner and outer surfaces of the
tube.

3 TYPES OF ERRORS IN SHELL MODELS
For a tube subjected to any set of load conditions, the cal-

culation of strains at the inner and outer surfaces consists of two
steps. First, conservation laws are applied to the stress and mo-
ment resultants in order to determine the displacements uo and wo
at the middle surface of the tube. Second, the strain-displacement
relations of Eq. (6) are applied to calculate strains at the inner and
outer surfaces. Each of these steps introduces errors, and one ob-
jective of this paper is to analyze and quantify them.

In the first part of this paper, we assume that the middle-
surface displacements wo and uo are known a priori. This elim-
inates errors that would arise in the calculation of uo and wo and
allows the errors due to the application of Eq. (6) alone to be
analyzed. To evaluate these errors, a prescribed middle-surface
displacement field is applied to both the shell model and a fi-
nite element model and the differences in outer-surface strain are
analyzed.

The second part of this paper focuses on the accurate predic-
tion of the middle-surface displacements uo and wo. Emphasis is
placed on predicting the behavior of thick-walled tubes that are
loaded by shock or detonation waves. A dynamic shell model
is developed and its predictions are compared with the results of
finite element simulations.

4 ERRORS DUE TO STRAIN-DISPLACEMENT RELA-
TIONS
This section considers the ability of strain-displacement re-

lations such as those in Eq. (6) to accurately predict strains at the
inner and outer surfaces of a tube. This is done by conducting
finite element simulations of a section of pipe subjected to pre-
scribed middle-surface displacements and then comparing the re-
sulting outer-surface strains with those predicted by Eq. (6) using
the same middle surface deformation.

For both the shell model and the finite element model, a
sinusoidal deformation of the following form is imposed at the
middle surface of the tube:

wo =
δ

2

[
1− cos

(
2πx
λ

)]
(9)

where λ is the wavelength of the sinusoid. This deformation is
zero at the ends of the tube and reaches a maximum radial dis-
placement of δ at the center. Deformation of this form is mo-
tivated by the sinusoidal vibrations that are observed behind a
shock or detonation wave [4], which will be considered in more
detail in Sec. 5.

4.1 Expectations from Shell Theory
After substituting the deformation of Eq. (9) into Eq. (5b),

the hoop strain evaluated at z =±h/2 is found to be:

εθ =
δ

2a

(
1∓ h

2a

)[
1− cos

(
2πx
λ

)]
(10)

and its maximum value is:

εθ ,max =
δ

a

(
1+

h
2a

)
(11)

This maximum occurs at the inner surface of the tube (z =−h/2)
at an axial position of λ/2, and its value does not depend on the
wavelength of the deformation.

The axial strain in Eq. 5a consists of two terms. The first
term is known as the membrane strain, and evaluation of this term
requires a model for the axial displacement uo. Since the defor-
mation imposed here is motivated by the sequence of vibrations
following a shock or detonation wave, it would be appropriate to
choose an axial displacement model that is consistent with that
scenario. One model that is frequently used is to assume that the
axial stress behind the detonation wave is small, that is, Nx ≈ 0.
Referring to Eq. (8a), the assumption of zero axial stress implies
that the membrane strain is given by:

εx,membrane ≡
∂uo

∂x
=−ν

wo

a
(12)

Upon substituting the assumed displacement field from Eq. (9),
the membrane strain becomes:

εx,membrane =−
νδ

2a

[
1− cos

(
2πx
λ

)]
(13)

This component of strain arises due to the Poisson coupling be-
tween radial and axial motion. When the tube expands radially,
stretching of the tube is accompanied by a contraction in the ax-
ial direction, and the magnitude of this contraction is the axial
membrane strain. By comparison of this equation with Eq. 10, it
is seen that the membrane strain is always out of phase with the
hoop strain.
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The second term in Eq. 5a is known as the bending strain,
given by:

εx,bend ≡−
∂ 2wo

∂x2 z (14)

Upon substituting the assumed deformation from Eq. (9) and
evaluating at z =±h/2, the bending strain becomes:

εx,bend =∓π
2 hδ

λ 2 cos
(

2πx
λ

)
(15)

This component of the axial strain is the result of changes in cur-
vature of the middle surface. At the outer surface of the tube, the
bending strain is out of phase with the hoop strain from Eq. (10),
while at the inner surface it is in phase.

After adding together the membrane and bending strains, the
total axial strain evaluated at z =±h/2 is:

εx =−
δν

2a
+

(
δν

2a
∓ π2δh

λ 2

)
cos
(

2πx
λ

)
(16)

At the inner surface of the tube, both terms in the coefficient
of the cosine are positive, and hence they are additive. As a re-
sult, the maximum axial strain occurs when the cosine takes on a
value of −1, which produces a maximum strain of:

εx,max =−
νδ

a
−π

2 δh
λ 2 (Inner Surface) (17)

At the outer surface of the tube, however, the terms involved in
the coefficient of the cosine are of opposite sign and cancellation
occurs. At a critical wavelength λcr, these two terms cancel out
entirely leaving an axial strain with no spatial variation. The
critical wavelength at which this occurs is:

λcr

h
= π

√
2a
νh

(18)

The axial strain in Eq. (16) can only reach positive values if
the wavelength is smaller than this critical value. Furthermore, if
λ > λcr, then the outer surface axial strain is out of phase with
the hoop strain, while for smaller values of λ it is in phase.

4.2 Static Finite Element Model
Static finite element simulations were conducted using the

program FEAPpv [14], discussed in Chap. 19 of [15]. The pipe

Axial Stress σx [Pa] 

FIGURE 2. Contours of axial stress σx for a tube with a/h = 7 and
three different values of λ/h. These values are top: λ/h = 2; middle:
λ/h = 5; bottom: λ/h = 10. In all three cases, E = 193 GPa, ν = 0.29,
Ri = 26.25 mm, and the maximum displacement of the middle surface
is δ = 20 µm.

was modeled using 4-node, axisymmetric quadrilateral elements.
The number of nodes through the wall thickness was always 20,
while the number of nodes along the axis was varied as the tube
length was changed in order to preserve an element aspect ratio
of 1.0. The pipe was assumed to be made from an isotropic ma-
terial with E = 193 GPa and ν = 0.29, which are representative
of 304 stainless steel. The inner radius of the pipe was fixed at
26.25 mm, which is the nominal value for 2 inch schedule 40
pipe, and the outer radius was varied to model pipes of several
wall thicknesses. Three different pipe sizes with a/h = 20, 7, and
4 were analyzed. These values of a/h are close to those for 2
inch pipe of schedules 5, 40, and 120.

The same sinusoidal deformation from Eq. (9) was applied
at the middle surface of the tube. Since the objective is to model
the series of vibrations that occurs behind a detonation wave,
periodic boundary conditions were imposed at the ends of the
pipe. Several examples of axial stress fields for various values of
λ/h are shown in Fig. 2. These plots demonstrate the increasing
stresses (for fixed radial displacement) at the inner and outer sur-
faces of the tube as the wavelength of deformation approaches
the tube wall thickness.

4.3 Comparison between Shell Model and FEM
Since the boundary conditions chosen for the finite element

model are periodic, ∂uo/∂x = 0 is imposed at the boundaries and
hence the membrane strain is zero. As a result, the axial strains
can be computed using only the bending contribution, given in
Eq. (15). These predictions are compared with finite element
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FIGURE 3. Variation of maximum axial strain (same for both inner
and outer surfaces of tube) with dimensionless wavelength of deforma-
tion. Solid line: shell theory. Markers: finite element analysis.

results in Fig. 3. Equation (15) suggests that if the wavelength
λ is normalized by the wall thickness h and the axial strains are
scaled by h/δ , the strains for different wall thicknesses should
collapse onto a single curve. As shown in the Fig. 3, this is the
case, even for small wavelengths where the predictions of the
finite element model deviate from those of the shell model. This
scaling demonstrates that the axial strains do not depend strongly
on the mean radius a of the tube.

For large wavelengths λ/h, the finite element predictions are
asymptotic to those from shell theory. In this limit, the slope of
−2 on the log-scale plot confirms the inverse quadratic relation-
ship between the outer-surface axial strain and the wavelength of
the deformation that was predicted by Eq. (15). At small wave-
lengths, the predictions of the finite element model deviate sub-
stantially from this trend. Nevertheless, for wavelengths having
λ/h > 10, the relative error between the finite element and shell
models is less than 10%.

Figure 4 shows the ratio of axial strain (Eq. 15) to hoop
strain (Eq. 11) as a function of axial wavelength. For long wave-
lengths the axial strain is negligible in comparison to the hoop
strain, but for small wavelengths the axial strains can be of sim-
ilar magnitude or larger than the hoop strains. In Section 5 it
is demonstrated that for tubes loaded by shock waves, λ/h can
take on values in the range of 2-10 and axial strains can have
similar amplitudes to the hoop strains. This demonstrates that
in designing piping systems to withstand detonation loads, it is
often necessary to consider the bi-axial state of stress at the in-
ner and outer surfaces of the tube rather than assuming that hoop
component is dominant.

FIGURE 4. Ratio of maximum axial strain to maximum hoop strain
as a function of wavelength for several tube sizes. Axial strains are
greater than hoop strains above horizontal line.

5 PERFORMANCE OF DYNAMIC SHELL EQUATIONS

We have now shown that for a given set of middle-surface
displacements wo and uo, the shell equations adequately predict
outer-surface strains as long as the wavelength of the deforma-
tion is greater than about λ/h∼ 10. We now consider whether
or not the middle-surface actually deforms into such small wave-
lengths under practical conditions and investigate whether or not
transient shell models are capable of accurately predicting the
middle-surface displacements for thick tubes. This is done by
comparing the predictions of a transient shell model with those
of highly resolve finite element simulations.

5.1 Shell Models of Dynamic Tube Response

In the sections that follow, an axisymmetric dynamic shell
model based on the work of Tang [11] is described and a solution
technique is presented for solving the initial value problem of a
shock wave pressure load traveling along the tube at a fixed ve-
locity. The chosen shell model includes the effects of transverse
shear deformation and rotary inertia of the pipe, both of which
are important when modeling thick-walled tubes and high-speed
loads [16, 17].

5.1.1 Equations of Motion Following the approach
of [11], the dynamic shell equations for a pipe under a pressure
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load p are given by:

ρh
∂ 2uo

∂ t2 =
∂Nx

∂x
(19a)

ρh
∂ 2wo

∂ t2 =
∂Qx

∂x
− Nθ

a
+ p (19b)

ρh3

12
∂ 2ψx

∂ t2 =
∂Mx

∂x
−Qx (19c)

Here uo, wo, and ψx are the axial, radial, and angular displace-
ments of the middle surface, and ρ , h, and a are the tube’s den-
sity, wall thickness, and mean radius. The axial and circumfer-
ential stress resultants, denoted Nx and Nθ , and the shear and
moment resultants, Qx and Mx, are given by

Nx =
Eh

1−ν2

[
∂uo

∂x
+ν

wo

a

]
(20a)

Nθ =
Eh

1−ν2

[
wo

a
+ν

∂uo

∂x

]
(20b)

Qx = κGh
[

ψx +
∂wo

∂x

]
(20c)

Mx =
Eh3

12(1−ν2)

∂ψx

∂x
(20d)

The stress resultants above are the same as those obtained in
Eq. (8), so the present formulation is consistent with the strains
presented in Eq. (6).

Using the approach of [11], the radial displacement wo of the
middle surface is decomposed into a component due to bending,
wb, and a component due to shear, ws, such that wb +ws = wo.
The bending contribution satisfies (by definition) the relation
∂wb/∂x = −ψx. Here a slight departure from the formulation
in Sec. 2 is introduced by the inclusion of transverse shear de-
formation, ws. Since the shear deformation ws does not change
the axial curvature of the middle surface, it has no effect on the
axial strains at distances z away from the middle surface. Thus to
properly calculate the axial strains at the inner and outer surfaces
of the tube, only the part of the deformation due to bending, wb,
should be used to evaluate wo in Eq. (5a). However, hoop strains
do not involve the change in axial curvature of the middle sur-
face, so the total deformation wo = ws +wb should be used to
evaluate the hoop strains in Eq. (5b).

It is convenient to develop and solve the shell model in terms

of the following dimensionless parameters:

Wb =
wb

h
Ws =

ws

h

U =
uo

h
β

2 =
h2

12a2

(21)

X =

√
12
h

x T =

√
12υd

h
t

δ
2 =

κG(1−ν2)

E
P =

1−ν2

12E

The parameter υd is the shell dilatational wave velocity, given
by υd =

√
E/(1−ν2)ρ , and κ is the shear correction factor, as-

sumed here to have a value of 5/6 as proposed by [16]. Elimi-
nating the stress resultants from Eqs. (19-20) and expressing the
result in terms of the dimensionless parameters (21) gives:

∂ 2U
∂T 2 −

∂ 2U
∂X2 −νβ

(
∂Wb

∂X
+

∂Ws

∂X

)
= 0 (22a)

∂ 2

∂T 2 (Ws +Wb)−δ
2 ∂ 2Ws

∂X2 +β
2 (Ws +Wb)+νβ

∂U
∂X

= P

(22b)

∂ 2Wb

∂X2 −
∂ 2Wb

∂T 2 +δ
2Ws = 0 (22c)

The boundary conditions chosen for this analysis are the follow-
ing:

W (0,T ) =W (L,T ) = 0 (23a)

∂ 2W
∂X2

∣∣∣∣
X=0,L

= 0 (23b)

∂U
∂X

∣∣∣∣
X=0,L

= 0 (23c)

The radial boundary conditions are those of a simply-supported
tube. Referring to Eq. (20a), the axial boundary condition is one
of zero axial stress (Nx = 0) corresponding to a tube with ends
that can deform freely in the axial direction.

A Fourier series expansion in the X coordinate which satis-
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fies these boundary conditions is taken in the following form:

U =
∞

∑
n=1

Un cos(kX) (24a)

Ws =
∞

∑
n=1

Sn sin(kX) (24b)

Wb =
∞

∑
n=1

Bn sin(kX) (24c)

P =
∞

∑
n=1

Pn sin(kX) (24d)

where k = nπ/L. Inserting these series into Eqs. (22) reduces
the system to a set of three linear, second order ODEs in time:

Ün = kνβ (Bn +Sn)− k2Un (25a)

S̈n = Bn
(
k2−β

2)−Sn
[
δ

2 (1+ k2)+β
2]

+ kνβUn +Pn(T ) (25b)

B̈n = δ
2Sn− k2Bn (25c)

These can be expressed as a first order linear system:

∂X
∂ t

= ÃX+ FPn(T ) (26)

where

X =
[
Un,Bn,Sn,U̇n, Ḃn, Ṡn

]T
F = [0,0,0,0,0,1]T

and

Ã =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−k2 kνβ kνβ 0 0 0

0 −k2 δ 2 0 0 0
kνβ (k2−β 2) −(β 2 +δ 2 + k2δ 2) 0 0 0


The form of the forcing term Pn(T ) is found by assuming that the
pressure load is a step function of amplitude Po traveling along
the tube at a dimensionless velocity V = υ/υd

P(x, t) = PoH(V T −X) =
∞

∑
n=0

Pn(t)sinkX (27)

where H is the Heaviside step function. By integrating over the
domain and using the orthogonality of the eigenfunctions, the
coefficients Pn are determined to be:

Pn(t) =
2Po

nπ
[1− cos(kV T )] (28)

In this analysis, the eigenvalues of the matrix Ã always con-
sisted of six distinct values which were purely imaginary. Al-
though it has not been proven that this is always the case, the
eigenvalues differ only slightly from those in shell formulations
without shear deformation and rotary inertia, for which it can be
shown that the eigenvalues are always distinct and purely imag-
inary. Further support for the assumption of distinct imaginary
eigenvalues is obtained on physical grounds: If any eigenvalue
has a non-zero real part, then the tube’s response will grow expo-
nentially with time, even if no pressure load is applied. Likewise,
a repeated eigenvalue will produce unbounded linear growth of
deformation with time even when the system is unforced. Such
behavior is non-physical in the absence of applied loads since no
mechanism for the addition or depletion of energy is available.
When the system is forced (for instance, by a traveling pressure
wave), unbounded growth may occur due to resonance between
the tube vibration and the applied load, but this does not involve
complex or repeated eigenvalues.

Dispersion curves for three tube thickness of a/h = 4, 7, and
20 are shown in Fig. 5. For real wavenumbers the velocity spec-
trum is composed of three branches, with branch 1 consisting of
coupled radial and axial motion, branch 2 being predominantly
axial, and branch 3 being predominantly rotary. For practical
cases involving detonations or shock waves in metal tubes, the
velocities are small enough that the first branch plays the most
important role in the response. The dispersion curves can be
used to estimate the most prominent wavelengths in the response:
these are the intersection points between the load speed and the
dispersion curve, which correspond to steady-state solutions to
the shell equations [3, 11]. As discussed by Tang, these steady-
state solutions exhibit a resonance at the critical velocity υco cor-
responding to the minimum of the first branch of the dispersion
curve [11]. Our simulations show that except near this velocity,
the tube response rapidly approaches these steady-state solutions
after the load has traveled several flexural wavelengths past in in-
cident end of the tube. In the sections that follow, loads traveling
at a constant speed of 1800 m/s are applied to the tube, which
corresponds to the horizontal line at 0.35 in Fig. 5.

5.1.2 Solution Technique The homogeneous solu-
tion Xh to Eq. 26 is obtained using the matrix exponential:

Xh(t) = eÃtCh (29)

8 Copyright © 2013 by ASME
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where Ch is a constant vector which will be determined after
finding the particular solution and applying initial conditions. To
find the particular solution Xp, the method of undetermined co-
efficients is used with the solution assumed to be of the following
form:

Xp = Co +C1 cos(kVt)+C2 sin(kVt) (30)

This form of particular solution is valid as long as kV is not an
eigenvalue of Ã. If kV is an eigenvalue, then additional terms are
needed in the particular solution; however, in a numerical calcu-
lation the value of kV is usually not exactly equal to an eigen-
value, so it is not necessary to include these additional terms.
Upon substituting this particular solution into Eq. 26 and equat-
ing the coefficients of constants, sines, and cosines, the following
set of matrix equations is obtained:

C1kV + ÃC2 = 0

ÃC1−C2kV = F
(

2Po

nπ

)
(31)

ÃCo =
2Po

nπ
F

The first two of these equations can be expressed in block-matrix
form as follows:

[
kV I Ã
Ã kV I

](
C1
C2

)
=

(
0
F

)
2Po

nπ
(32)

where I is the 2x2 identity matrix and 0 is a 2x1 vector of zeros.
Inverting1 and solving gives:

(
C1
C2

)
=

(
0
F

)[
kV I Ã
Ã kV I

]−1 2Po

nπ
(33)

Co =
2Po

nπ
FÃ−1 (34)

The particular solution is now completely determined. Together
with the homogeneous solution from Eq. (29), the general solu-
tion of the equations of motion (Eq. 26) is given by:

X(t) = eÃtCh +Co +C1 coskVt +C2 sinkVt (35)

An appropriate initial condition is that all displacements and ve-
locities are zero (i.e., X = 0) when t = 0. Since the matrix expo-
nential of a zero matrix is the identity matrix, the initial condition
leaves:

X(0) = 0 = Ch +Co +C1→ Ch =−C1−Co (36)

All parameters of the general solution (Eq. 35) are now known.
This solution can now be computed for each value of n, and the
coefficients Bn, Sn, and Un can be extracted from the vector X.
The middle surface displacements are then evaluated from the
summations in Eq. (24), and strains are computed using Eq. (6).
As discussed previously, only the bending component of radial
displacement wb is used in Eq. (5a) while the total radial dis-
placement wb +ws is used in Eq. (5b).

The number of terms required in the Fourier series depends
on the length of the tube and the speed of the applied load. For
example, if the length of the tube is doubled, the number of
terms must be doubled in order to resolve the same maximum
wavenumber. The largest wavenumber that must be resolved can
be estimated from the dispersion curves (Fig. 5) by finding the
intersection points between the load velocity and the dispersion
curves.

5.2 Dynamic Finite Element Modeling
To analyze the performance of the above shell model, fi-

nite element simulations were conducted using the commercial
software package LS-DYNA [18]. The pipe was modeled us-
ing axisymmetric, quadrilateral elements with 35 nodes through
the tube wall, and the number of nodes along the tube axis was
chosen by setting the aspect ratio of the elements equal to 1.0.

1The matrix is invertible as long as the assumed particular solution Eq. 30 is
not also a solution to the homogeneous equation.
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For the results presented in this paper, these conditions corre-
spond to 130-150 elements per axial wavelength for the shortest
waves observed in the response. At this resolution the results are
well-converged; however, no attempt was made to determine the
coarsest mesh that is sufficiently resolved to accurately capture
the smallest wavelengths.

As was done in the static analysis of Sec. 4, the pipe was
modeled as elastic and isotropic with an E = 193 GPa, ν = 0.29,
and ρ = 8040 kg-m-3 (nominal values for 304 stainless steel).
A 2 m long segment of pipe was modeled with inner radius of
26.25 mm and wall thicknesses of 7.5, 4.0, and 1.3 mm. These
give values a/h of 4, 7, and 20, which are similar to those for
2-inch pipe of schedules 5, 40, and 120. The load applied to the
tube was taken to be a shock wave of amplitude po = 2.5 MPa
traveling along the tube with a speed of 1800 m/s. These con-
ditions are representative of detonations in hydrocarbon-air mix-
tures at atmospheric initial pressure [19].

The boundary conditions for the finite element model were
chosen to mirror those of the dynamic shell model as closely as
possible. At the ends of the tube, only the nodes lying on the
middle surface of the pipe were constrained radially so that the
ends of the pipe are free to rotate. This matches the boundary
condition in the shell model from Eq. (23), where the radial dis-
placements are zero but the slope ∂w/∂x at the ends of the pipe
can be non-zero. In order to match the axial boundary condi-
tion in Eq. (23), the ideal constraint would be ∂u/∂x = 0 at both
ends of the tube, which is satisfied if the ends of the tube are
free of axial forces. However, such a boundary condition is not
admissible in FEM since the tube must be anchored axially in at
least one place, so the boundary condition u(L, t) = 0 was also
applied. As a result, the solutions from the finite element simu-
lation are only expected to match the shell model until the wave
system that develops first encounters the end of the pipe x = L.

5.3 Comparison of Transient Shell Model with FEM
Before making comparisons between the different tube

sizes, it is worth noting that the qualitative features of the tube
response depend strongly on the ratio of the applied load speed
υ to the “first critical velocity,” υco. The behavior of tubes
near this critical velocity has been studied by numerous authors
[4,11,12,20] who have found that a resonance between the trav-
eling load and the speed of flexural waves results in highly am-
plified displacements, stresses, and strains. This critical veloc-
ity is the minimum phase speed of sinusoidal waves in the tube,
and hence is located at the minimum of the lowest branch of the
dispersion curve (see Fig. 5). As indicated in that figure, the
critical speed increases significantly as the tube is made thicker.
In the results that follow, the speed of the load is held fixed at
1800 m/s while the thickness of the tube is increased. As a result,
for thicker tubes the load speed is closer to the critical velocity.

Strain traces for three different tube sizes are compared in

FIGURE 6. Comparison finite element and shell model predictions
of hoop and axial strains at the outer surface of a pipe. The pipe has
mean radius a = 26.9 mm and wall thickness h = 1.34 mm (a/h = 20).
Load velocity is υ = 1800 m/s, which corresponds to υ/υd = 0.35 and
υ/υco = 2.2. Axial strains have been offset by -1 for clarity. Inset plot
magnifies the high frequency waves ahead of the load.

Figs. 6-8. To facilitate comparisons between the different wall
thicknesses, all strains have been normalized by the static hoop
strain that would occur at the applied pressure of po = 2.5 MPa:

εθ ,static =
poa(1−ν2)

Eh
(37)

Figure 6 compares hoop and axial strains for a rather thin
tube with a/h = 20. The position of the pressure wave corre-
sponds to the large jump in hoop strain at about 0.75 m. The re-
sponse of the tube consists primarily of two wavelengths: ahead
of the pressure load the vibrations have a very short wavelength
of about λ = 5.0 mm (λ/h = 3.7) while behind the pressure load
the wavelength is 62 mm (λ/h = 46). These two wavelengths
correspond to the two intersection points between the load speed
and the dispersion curve, as shown in Fig. 5. The predominance
of these two frequencies has also been verified experimentally by
Beltman et al. [3]. Within the low-frequency vibrations behind
the load, the peak hoop and axial strains from the finite element
and shell models differ only by 2-3%, which is expected since
the wavelength of these is vibrations fairly large compared to the
wall thickness.

The high-frequency vibrations ahead of the pressure load
(magnified in the inset plot) are much more prominent in the
axial strains than in the hoop strains. Although the frequency
of these waves is well-predicted, the peak strains from the shell
model are 10-30% greater than those from finite elements. This

10 Copyright © 2013 by ASME



FIGURE 7. Comparison finite element and shell model predictions
of hoop and axial strains at the outer surface of a pipe. The pipe has
mean radius a = 28.3 mm and wall thickness h = 4.0 mm (a/h = 7).
Load velocity is υ = 1800 m/s, which corresponds to υ/υd = 0.35 and
υ/υco = 1.32. Axial strains have been offset by -1 for clarity.

result is in agreement with the expectations from Fig. 3, where
significant errors are predicted for the present value of λ/h= 3.7.

The leading edge of the high-frequency wave packet trav-
els at the shear wave speed, υs =

√
κG/ρ ∼ 2800 m/s, which is

faster than the load speed, so this packet increases in width as
time progresses. Ahead of the shear waves is a small amplitude
bar wave, primarily an axial wave, which travels at the dilatation
wave velocity υd =

√
E/ρ(1−ν2). At the time shown in Fig. 6,

the bar wave is just reaching the end of the pipe.
The results in Fig. 6 demonstrate that for very thin tubes,

the predictions of the transient shell models are virtually indis-
tinguishable from those of finite element simulations, which is
expected given the relatively long axial wavelength of the vibra-
tions. Only in the high-frequency shear waves ahead of the load
do the predictions of the shell model and the finite elements differ
appreciably.

Figure 7 shows the hoop and axial strains for a slightly
thicker tube with a/h = 7. Again very good agreement is ob-
served; however, the peak hoop strains predicted by the shell
model are about 7% greater than those reported in the FEM. The
low-frequency flexural waves behind the load again have a wave-
length of about 62 mm which corresponds to λ/h= 16, while the
high-frequency waves ahead of the load have λ = 15.7 mm, or
λ/h = 4.

Figure 8 shows hoop and axial strains at the outer surface
of an even thicker-walled tube with a/h = 4. In this case, the
load speed of 1800 m/s is only about 1.04 times the first critical
velocity υco, so strains are highly amplified relative to the static

FIGURE 8. Comparison finite element and shell model predictions
of hoop and axial strains at the outer surface of a pipe. The pipe has
mean radius a = 30.0 mm and wall thickness h = 7.5 mm (a/h = 4).
Load velocity is υ = 1800 m/s, which corresponds to υ/υd = 0.35 and
υ/υco = 1.04. Axial strains have been offset by -5 for clarity.

values. As shown in Fig. 5, the nearness of the load speed to
the critical velocity causes the wavelengths ahead of the pres-
sure wave (35 mm) and behind it (56 mm) to be very close to
one another. These wavelengths correspond to λ/h = 7.5 and
4.7, respectively. This behavior has also been observed in exper-
iments by Beltman et al., who recorded hoop strain traces that
look much like those in Fig. 8.

In Fig. 8 the wavelengths of the deformation are well-
predicted by the shell model, but the peak strains are in error
by about 20% for the hoop strain and 30% for the longitudinal
strain, with the strains from FEM being lower than those from
the shell model. It should be noted that similar errors are ob-
served in the middle surface displacements, so in this case the
shell model’s errors at the outer surface of the tube cannot be
attributed to the strain-displacement relations alone. It is also
worth noting that the axial and hoop strains have about the same
amplitude, which demonstrates the importance of including the
biaxial state of stress or strain in design calculations.

The differences in the qualitative features of the strain traces
in Figs. 6-8 are primarily due to the changes in load velocity
relative to the first critical velocity υco. Although the load ve-
locity was held fixed at υ = 1800 m/s for all three figures, the
critical velocities increased as the tube was made thicker, result-
ing in smaller values of υ/υco for the thicker tubes. By com-
paring Figs. 6-8, it can be seen that the frequency of the longer
wavelength vibrations behind the shock wave does not depend
strongly on the wall thickness of the tube. In fact, this frequency
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and outer surfaces of the tube have been offset by -2 and +1.5 for clarity.

is usually close to that of an infinitely long tube [21]:

fn =
1

2πa

√
E

ρ(1−ν2)
(38)

For metal pipes in 2-6 inch sizes, this frequency is on the order of
10-30 kHz, and for detonations in the range of 1500-2500 m/s,
the associated wavelengths are 5-15 cm. Such frequencies and
wavelengths usually are not difficult to measure in experiment
using ordinary strain gauges or predict in finite element models.
In contrast, the wavelengths of the high frequency vibrations in
the precursor wave ahead of the pressure load fall in the range of
1-10 times the wall thickness of the tube. As a result, these wave-
lengths are often in the range of 1-10 mm and have frequencies of
300 kHz - 3 MHz. Such small wavelengths and high frequencies
are very difficult to measure experimentally and require high spa-
tial and temporal resolution to predict correctly in finite element
models.

5.4 Variation of Strain through Wall Thickness
So far, only the strains at the outer surfaces of the tube have

been considered. However, often the axial strains at the inner sur-
face are even larger than those at the outer surface. To illustrate
this, axial strains at the inner, middle, and outer surfaces of a tube
with a/h = 7 are plotted in Fig. 9. At the middle surface of the
tube, strains are due only to stretching of the tube and bending
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to stretching (dashed) and bending (solid) of the middle surface. For
clarity, strains at the inner and outer surfaces have been offset by -2 and
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plays no role. This plot reveals axial strains at the inner surface
of the tube that are more than twice as large as those observed at
the middle and outer surfaces.

The reason for the larger strains at the inner surface of the
tube can be explained by decomposing the axial strain into the
membrane and bending components. These two terms are plot-
ted in Fig. 10 along with the total axial strains at the inner and
outer surfaces of the tube. As this figure shows, the components
of axial strain due to bending and stretching are of similar ampli-
tude, but are very nearly out of phase. Thus at the outer surface
of the tube, there is significant cancellation and the net strain is
rather small. At the inner surface of the tube, however, the super-
position of these two components results in very large strains.

6 DISCUSSION OF EXPERIMENTS
As described in the introduction, the analysis performed in

this paper was intended to clarify the behavior of axial strains for
thick-walled tubes subjected to detonation loads. In this section,
examples of experimental strain measurements are provided and
evaluated on the basis of the models developed in this report.

Figure 11 shows axial and hoop strain traces measured
by [22] for a thin-walled tube with a/h = 39. The tube was
loaded by a detonation with a Chapman Jouguet (CJ) speed of
UCJ = 2343 m/s and pressure of PCJ = 1.5 MPa. These measure-
ments are compared with the predictions of the transient shell
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FIGURE 11. Hoop and axial strain measurements for a thin tube
(a/h = 39) loaded by an internal detonation [22]. Tube is made from
C1010 steel with Ri = 63.5 mm and h = 1.65 mm, and is loaded
by a detonation with CJ speed and pressure of UCJ = 2343 m/s and
PCJ = 1.5 MPa. The first critical velocity is υco = 650 m/s. Solid
lines are measurements, dashed lines are predictions from transient shell
model.

model described in Section 5.1 (dashed lines). Very good agree-
ment is observed, especially in the first few cycles following the
arrival of the pressure wave at t = 0. The high-frequency shear
waves ahead of the pressure wave are not observed in the exper-
iments due to limitations on spatial and temporal resolution, but
the frequency and amplitude of the vibrations behind the wave-
front are well predicted. For such a thin tube, the contribution
of bending to the axial strains is very small: the ratio of axial to
hoop strain is very close to ν = 0.3 and the measured axial strain
is out of phase with the hoop strain.

Figure 12 plots axial and hoop strains measured by [6] for
a 2 inch, schedule 40, stainless steel pipe with a/h = 7.2. The
tube was loaded using a detonation in H2-N2O with CJ speed and
pressure of UCJ = 2090 m/s and PCJ = 2.5 MPa. The measure-
ments are again compared with the predictions of shell theory,
shown as dashed lines. The amplitude and frequency of the hoop
strains are close to the expectations from shell theory, but both
the qualitative features and quantitative values of the axial strains
are significantly different. The wavelength of these vibrations is
about 70 mm, or λ/h = 18. For these conditions, the ratio of λ

to the critical wavelength given by Eq. (18) is about 0.82, so the
membrane and bending components of strain at the outer surface
of the tube are expected to nearly cancel out. This behavior is
observed in the shell model, but not in the experiments. Instead,
the measured axial strains exhibit large vibrations with ampli-
tudes that are nearly the same size as the hoop strains.

This paper has demonstrated that the predictions of shell
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FIGURE 12. Hoop and axial strain measurements for a thick
tube (a/h = 7.2) loaded by an internal detonation with CJ speed of
Uc j = 2090 m/s and pressure Pc j = 2.5 MPa. Tube is 2-in schedule 40,
304 stainless steel pipe. Data was recorded in [6], series ES1, test 3,
gauges 4 and 5. The first critical velocity is υco = 1350 m/s. Solid
lines are measurements, dashed lines are predictions from transient shell
model.

models agree quite adequately with the results of highly resolved
finite element simulations, even for tubes with wall thickness as
large as a/h= 4. As a result, the discrepancy between the predic-
tions of shell models and the experimental measurements cannot
be attributed to the breakdown of the shell model for thick tubes.
The large axial strains observed in the experiments also cannot
be explained by the through-wall bending effect since the wave-
lengths of the vibration are too large to produce bending strains
as large as those measured in experiment.

The source of the unusual features of the measured strains
must therefore be non-ideal conditions that are present in exper-
iments and are not included in the modeling. Several potential
causes are the following:

1. Transition to detonation (DDT) after ignition, which occurs
inside of the specimen pipe, may produce a non-ideal, tran-
sient wave system.

2. Non-axisymmetric features of the pipe specimen, such
as weldments and inserts where pressure transducers are
mounted, might excite non-axisymmetric modes of vibra-
tion that involve coupling between radial and axial motion.

3. Interactions between the vibrating pipe and the mounting
hardware used to support the pipe might generate additional
wave systems.

4. The cellular structure of the detonation wave may produce to
local pressure transients or a non-normal wavefront, which
would introduce temporal or spatial variations in pressure
near the wavefront.
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Because there are many potential sources of non-ideal be-
havior, additional experiments conducted under more precisely
controlled conditions are needed in order to understand the
source of the large axial strains that have been observed.

7 CONCLUSIONS
By applying a prescribed middle-surface displacement to

both finite element models and shell models, it has been shown
that the axial strain at the inner or outer surface of a tube varies
inversely with the square of the deformation’s wavelength. This
scaling is valid until the wavelength decreases below about 10
times the tube’s wall thickness, at which point nonlinear behav-
ior is observed and the strains predicted by shell equations be-
come substantially greater than those obtained from finite ele-
ment models.

Comparisons between dynamic shell models and finite el-
ement simulations for shock wave type loads have shown that
shell models which include the effects of rotary inertia and trans-
verse shear deformation can adequately predict the response of
tubes for most practical tube sizes. For the thickest tubes sim-
ulated (a/h = 4), vibration frequencies were found to be better
predicted than the peak strains, and the peak strains predicted by
shell models were up to 20-30% greater than those obtained us-
ing finite element models. Nevertheless, the predictions of shell
models adequately capture most features of the response, so such
models can be useful tools for understanding the response even
of very thick-walled tubes.

The analysis in this paper has demonstrated that the large
axial strains which have been observed in experiments cannot be
explained by the ideal situation of a shock wave traveling along
the inside of a perfect pipe. The magnitude of the through-wall
bending strains is not large enough to account for the measured
strains, and the breakdown of shell models for thick-walled tubes
is also not sufficiently large (nor of the correct sign) to explain
those results. Instead, non-ideal features of the experiment such
as pipe imperfections or mounting hardware seem to be respon-
sible for these large strains.
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