
1

Supplementary Material: Reactive processes following transverse
wave interaction

Mark D. Frederick, J.E. Shepherd, Rohan M. Gejji, Carson D. Slabaugh

The purpose of this supplement is to provide context and the mathemat-
ical details of the modeling of reaction behind an unsteady, curved shock
front, discuss the approximations involved, and analyze two examples of un-
steady detonation fronts discussed in the main article. A concise summary
of the results in provided by presenting the results in terms of the expan-
sion time scale compared to critical values computed from detailed reaction
models.

1 Introduction

There are three main ingredients to approximate analysis of reaction zones
behind unsteady shock waves.

1. A model for the unsteady reaction zone following a curved shock.

2. A set of compatibility or shock change relations coupling the gradients,
curvature, and time rate of change of properties with shock unsteadi-
ness as characterized by the acceleration dU/dt.

3. A set of empirical relationships for shock speed, acceleration, and wave
curvature derived either from numerical simulations or experimental
data for U(t) and R(t).

The key idea in the simplest models of the unsteady reaction zone is to
use a control volume model of the energy equation with a prescribed volume
expansion rate. The volume expansion rate can be estimated in one of two
ways.

1. Assuming a shock trajectory R(t) and specified time dependence of
properties along a path line.

2. Assuming that the contributions of unsteadiness and lateral flow di-
vergence due to curvature are constant along path lines and given by
the values at the shock front as determined by the shock change rela-
tionships.
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1 INTRODUCTION 2

The key result of the model is that rate of change of temperature along a
path line behind a decaying, curved shock is a competition between energy
release by chemical reaction dYk/dt, and volume expansion

DT

Dt
= − 1

cv

∑
k

ek
DYk
Dt

− RT

cv

1

υ

Dυ

Dt

In general the volume expansion υ(t) is a function of time along a path line.
The gist of the model we use is to approximate the expansion rate as a
constant determined by the value at time the path line passes through the
the shock front. We use the shock change equations to define an expansion
time scale τv.
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The coefficients A and B are O(1) nondimensional functions of the shock
speed or equivalently shock Mach number Ms = U/a1 and mixture ther-
modynamics. The temperature equation is coupled to the evolution of the
species as determined by a reaction network model and a closure assumption
is required to relate thermodynamic properties on the path line.

A critical level of competition between energy release and flow work is
characterized by a critical expansion time τv. When the time is smaller than
a critical value,

τv < τ∗v quenching

the induction time becomes infinite and the reaction is decoupled from the
leading shock. This is observed in both detailed and simplified reaction
models. Using a detailed reaction model, realistic thermochemistry, and
experimental results for shock speed and curvature, we evaluate the coeffi-
cients A and B, and compute the evolution of temperature along selected
path lines for two cases. The critical decay times are evaluated and found to
be dominated by the contribution from shock unsteadiness for the cases we
examine. The results of the path line analysis are compared to the critical
decay time criteria and are shown to be in good agreement.

1.1 Background

The approach we take to modeling reaction behind unsteady, curved shock
waves, is based on Eckett et al. (2000). Many other researchers have con-
sidered this topic, and we provide in this section an appreciation of these
contributions and some historical context.
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The role of unsteadiness in detonation fronts was recognized following
the first observations of unstable structure of the front (Fickett and Davis,
1979, Lee, 2008) in the 1950s. Acknowledging the discussion by Soloukhin
(1969) on the effect of unsteadiness on the coupling between the shock front
and chemical reaction, Lundstrom and Oppenheim (1969) used a blast wave
model of the transient leading shock fronts in a cellular detonation to demon-
strate how the sensitivity of chemical reactions to temperature could lead to
decoupling of the shock and reaction fronts. Eckett et al. (2000) examined
the effect of nonsteadiness on the initiation of the detonation by blast waves
with computational fluid dynamics modeling of unsteady one-dimensional
flows. Analyses of the results on pathlines led to the development of the crit-
ical decay rate model and predictions of critical energy for detonation initia-
tion. Subsequently, Austin et al. (2005a,b) applied this model to simulations
of cellular structure by (Gamezo et al., 1999a,b). Jackson et al. (2019), Jack-
son and Short (2013) analyzed experimental and numerical simulations of
cellular detonation and observed that in some cases a unique relationship
between shock speed, acceleration and curvature could be found. Most re-
cently, Cheevers (2021) has carried out analyses with a approach similar to
the present study to examine the effect of shock acceleration and curvature
using experimental data for two mixtures: 2H2 + O2 + 7Ar and CH4 +
2O2.

A number of researchers have independently used similar methodologies
to consider the effect of unsteadiness on ignition. Vázquez-esṕı and Liñán
(2001) considered the problem of homogeneous, non-diffusive ignition with
rapid, concentrated deposition of energy. They identified a critical condi-
tion associated with the competition between expansion waves and chemical
energy release that determined if thermal runaway would occur. Vidal and
Khasainov (1999) considered the ignition behind unsteady shock waves and
identified a critical condition for ignition this is essentially identical to that
used in the present study: the rate of heat release has to exceed the rate
of volume expansion. The role of unsteadiness in transient jet initiation of
combustion was considered in depth by Radulescu and Law (2007), Rad-
ulescu and Maxwell (2010), Maxwell and Radulescu (2011) who formulated
ignition criteria in terms of a competition between volume expansion and
energy release by chemical reaction. The transient ignition due to water
hammer compression events Coronel et al. (2020) in pipelines was analyzed
using these concepts by Shepherd (2020). Recently, Tan et al. (2023) have
reviewed a number of studies applying the concepts of unsteady ignition
modeling.

The approach we used of focusing on the processes just behind the wave
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front to obtain an evolution equation for the wave strength is known as
the shock change equation. Versions of the shock change or acceleration
wave formalism has been derived independently by a number of researchers
over the past century as discussed by Becker (1972) and Chen and Gurtin
(1971). The results have been used to analyze the growth and decay of shock
waves in inhomogeneous (Nunziato and Walsh, 1972, 1973) and chemically
reacting flows (Nunziato, 1973, Kennedy and Nunziato, 1976). Fickett and
Davis (1979, p. 101) discuss the application to detonations and the impli-
cations for steady flow in the reaction zone. Recently, Radulescu (2020)
derived expressions for shock propagation in quasi-one dimensional flows,
gave explicit expressions for nonreactive perfect gases and discussed the re-
lationship to the shock dynamics approximation of Whitham. Extension to
fully three-dimensional shock fronts was given by Rabie and Wackerle (1978)
defining the local shock shape with principle radii of curvature. Emanuel
(2013) discusses in great detail the computation of spatial derivatives for
curved shocks in a perfect gas; there is brief mention of unsteadiness but no
consideration of reaction processes.

2 Unsteady Reaction Zone Models

The analyses of Eckett et al. (2000) and Arienti and Shepherd (2005) of
reaction zones behind decaying blast waves in one and two dimensions ex-
amined the dominate balance along path lines in the reaction zone and di-
vided contributions into terms representing the effects of chemical reaction
(effective heat release), stream tube divergence (curvature), and unsteadi-
ness. The balance equations along a streamline behind a propagating shock
appear identical in form to the shock change relations but the terms apply
throughout flow, not just at the shock front. For example, (2.6c) of Eckett
et al. (2000) describes the evolution of the pressure along a particle path
with downstream distance from a spherical shock (radius Rs and velocity
U) measured by x = Rs(t)− r and with relative velocity w = U(t)− u(r, t),
U = dRs/dt. The equations of motion in the (x, t) coordinates are:

η
DP

Dt
= −ρw2σ̇ +

j

Rs − x
ρw2(U − w) + ρw

dU

dt
− ρw

∂w

∂t
+

∂P

∂t
. (1)

where the sonic parameter is defined using the frozen (fixed chemical com-
position) sound speed af

η = 1− w2/a2f (2)
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The corresponding density equation is

η
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and the velocity equation is
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The species evolution equation transforms without any addition terms

DYk
Dt

= Ωk . (5)

In this coordinate system, the substantial derivative is

D(·)
Dt

=
∂(·)
∂t

+ w
∂(·)
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. (6)

The approximate control volume model of the reaction along the fluid path
lines is formulated in terms of temperature. The exact evolution equation
for temperature behind a spherical blast wave is

η
DT
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= T (1− γM2)σ̇ − ηT

∑
k
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[
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+
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]
. (7)

where M = w/a is the downstream flow Mach number in the shock reference
frame and γ = cp/cv is the (frozen) ratio of specific heats. The thermicity
(for an ideal gas) can be expressed as

σ̇ =
∑
k

(
W
Wk

− hk
cpT

)
Ωk (8)

or equivalently

σ̇ =
1

γ

∑
k

(
W
Wk

− ek
cvT

)
Ωk (9)

At the shock front, x = 0, (1) identical with (36) and this is also the case
for the ρ and w evolution equations. Downstream of the front, these equa-
tions are an exact transformation of the unsteady, one-dimensional reactive
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flow equations. However, this system of equations is not closed for a given
streamline even if we are given a prescription for the blast wave trajectory
Rs(t). The partial derivatives with respect to time of P and w depend on
the time variation on adjacent streamlines at a fixed x location, informa-
tion that can only be reliably found by direct simulation of the entire flow
field using the reactive Euler equations. However, this formulation is useful
for analyzing direct simulations and serves as motivation for approximate
models based on estimating the time derivatives.

Analyzing several cases of direct numerical simulation of decaying, reac-
tive blast waves with a simple chemical reaction models, Eckett et al. (2000)
proposed an approximate model of the reaction zone based on examining
the magnitude of the terms in (1 - 5) for path lines leaving the shock near
the time when the reaction was quenched due to the decay of the blast wave.
For sufficiently large shock wave radii, the dominant balance was found to
be between unsteadiness and chemical energy release with lateral (stream
tube) expansion playing a minor role. An approximate model was developed
using a constant value of the unsteadiness contribution and neglecting the
curvature contribution. An asymptotic analysis of this approximate model
revealed that there existed a critical magnitude of the unsteadiness that de-
termined when the reaction was quenched. This critial decay rate model was
applied to the problem of direct initiation of detonations by point energy
sources to estimate the magnitude of minimum energy required to establish
a self-sustaining detonation. The idea of competition between unsteadiness
and chemical energy release has subsequently been applied to other situa-
tions such ignition by transient compression events (Shepherd, 2020).

Approximate reaction zone structure equations can be formulated by
recognizing that the right-hand side of (36) represents the quasi-steady,
thin reaction zone model terms and the left-hand side as contribution of
the unsteadiness of the shock wave. If approximations for the unsteady
and curvature terms can be found, then these reaction zone equations can
be integrated to determine the effect of contributions on the reaction zone
structure along a particular particle path line downstream of an unsteady
shock wave. Consider the pressure (1) and density (3) equations. These
each involve the combination of terms

j

Rs − x
ρw2(U − w) + ρw

dU

dt
− ρw

∂w

∂t
+

∂P

∂t
. (10)
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At the shock front, these terms are identical to corresponding terms in the
shock change equation. The magnitude of the curvature term at the shock
front is therefore

j

R− x
ρw2(U − w) = κsρ2w

2
2u2 at x = 0 and t = t0 , (11)

where to is the instant of time when the fluid element passes through the
shock and the subscript 2 indicates the postshock value. The magnitude of
the sum of the unsteady terms is

ρw
dU

dt
− ρw

∂w

∂t
+

∂P

∂t
= ρ1a

2
1fs

dMs

dt
at x = 0 and t = t0 . (12)

We seek models of each of these terms - models that only depend on time or
location on a path line in order to integrate (1) along the path. The location
on a path line is implicitly given by integration of the relative velocity

dx

dt
= w and

dr

dt
= U(t)− w(t; t0) = u(t; t0) (13)

to obtain path lines labeled by the time t0 when the fluid element crosses
the shock front

x(t; t0) =

∫ t

t0

w(t′; t0) dt
′ and r(t; t0) =

∫ t

t0

u(t′; t0) dt
′ +Rs(t0) . (14)

Computing density and flow speed on a path line can be accomplished
using relationship developed from the exact path line equations

Dρ

Dt
= ρ

[
1

ρa2
DP

Dt
− σ̇

]
, (15)

Dw

Dt
= − 1

ρw

[
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Dt
− ∂P

∂t

]
+

dU

dt
, (16)

and an approximation for either the substantial derivative of density

η
Dρ

Dt
= −ρσ̇ +

1
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[
ρw2uκ+ ρw

∂u

∂t
+

∂P

∂t

]
(17)

or pressure

η
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Dt
= −ρw2σ̇ + ρw2uκ+ ρw

∂u

∂t
+

∂P

∂t
. (18)
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The effects of transverse divergence can be approximated by an emprical
effective curvature function κ(t). For a one-dimensional blast wave and a
thin reaction zone

j

Rs − x
→ j

Rs
= κ . (19)

The unsteady terms are more challenging to estimate. One approach, mo-
tivated by the shock change relations, is to consider these terms as due to
effective shock decay rate and equal to the values at the shock front

ρw
∂u

∂t
+

∂P

∂t
→ ρ1a1f

dU

dt
. (20)

A similar approximation can be proposed for the unsteady pressure term in
the w equation

1

ρw

∂P

∂t
+

dU

dt
→

[
1 +

1

ρ1U

(
∂P

∂U

)
H

]
dU

dt
, (21)

using the nondimensional function

g =

[
1 +

1

ρ1U

(
∂P

∂U

)
H

]
. (22)

For perfect gases, this function is independent of shock speed and depends
only on the ratio of specific heats

g =
γ + 5

γ + 1
3 ≥ g ≥ 2.5 for 1 ≤ γ ≤ 5/3 . (23)

Critical evaluation of the approximations (19) and (20) requires analyzing
direct numerical simulations. This is the approach taken by Eckett et al.
(2000), Arienti and Shepherd (2005).

2.1 Temperature Model

The path line energy balance equation can be used to develop an equation
for temperature that is more convenient for further simplifications. One
version of the balance equation is

Dh

Dt
=

1

ρ

DP

Dt
. (24)
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Expanding the mixture enthalpy and distributing the differentiation, we
obtain

cp
DT

Dt
= −

∑
k

hk
DYk
Dt

+
1

ρ

DP

Dt
. (25)

To complete the model, we need an estimate of the substantial derivative
of pressure. The exact value is given by (1) but as pointed out previously,
absent a detailed simulation of the flow field, it is necessary to estimate the
unknown terms. A possible approach is to use (19) and (20) and assume
these terms are constant through the reaction zone.

DP

Dt
≈ DP

Dt

∣∣∣∣
S
=

1

η

[
ρw

(
du

dt

)
S
+

(
dP

dt

)
S
+ ρw2uκ

]
S

(26)

where the contribution of thermicity σ̇ is neglected at the shock front. An
equivalent approach is to use the energy equation in the form

De

Dt
=

P

ρ2
Dρ

Dt
, (27)

cv
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∑
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+RT
1

ρ

Dρ

Dt
, (28)

and the shock change relations to estimate the substantial derivative of
density

1

ρ

Dρ

Dt
≈ 1

ρ

Dρ

Dt

∣∣∣∣
S
=

1

ρa2η

[
ρw

(
du

dt

)
S
+

(
dP

dt

)
S
+ ρw2uκ

]
S

(29)

or in terms of shock acceleration

1

ρ

Dρ

Dt
≈ 1

η

[
ρ1a1
ρa2

f
dU

dt
+

w2

a2
uκ

]
S

(30)

Note that for decaying shock waves with κ > 0, the contribution of transverse
divergence due to wave curvature is positive and that of unsteadiness is
negative. The approximate evoluation equation for temperature is

DT

Dt
= − 1

cv

∑
k

ek
DYk
Dt

+
R

cv

T

η

[
ρ1a1
ρa2

f
dU

dt
+

w2

a2
uκ

]
S
. (31)
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We can explicitly identify three separate constributions to temperature change

DT

Dt
= − 1

cv

∑
k

ek
DYk
Dt︸ ︷︷ ︸

chemical

+
T

η

R

cv
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ρa2

f
dU

dt︸ ︷︷ ︸
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+
T

η

R

cv

w2

a2
uκ︸ ︷︷ ︸

curvature

. (32)

The coefficients of the unsteady and curvature terms are positive so that the
sign of these terms depends on the sign of the acceleration and curvature.
The chemical term in exothermic reactions has a large positive contribution
during the important energy-release phase of the reactions. A key issue in
unsteady shock waves such as observed in initiation or propagation of deto-
nations, is the potential for competition between unsteadiness and chemical
reaction if the wave is decaying, dU/t < 0. This competition is responsible
to the quenching of reaction behind decaying shock waves and the basis of
the critical decay rate model proposed by Eckett et al. (2000).

2.2 Shock Change Relations with Uniform Curvature

Modeling the flow as one-dimensional in a planar (j = 0), cylindrical (j = 1),
or spherical (j = 2) coordinate system, the conservation of mass equation
can be written as in terms of a radial coordinate r

1

ρ

Dρ

Dt
= −∂u

∂r
− j

r
u (33)

For a shock wave of radius Rs moving with a speed U = dRs/dt, the method-
ology used for the planar shock change relations can be extended to a curved
wave. For the case of a uniform, stationary upstream the following versions
of the shock change relation can be derived

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
= ρa2

(
−η

∂u

∂r
+ σ̇ − j u

Rs

)
(34)

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
= ρa2

(
η
1

ρ

Dρ

Dt
+ σ̇ − w2

a2
j u

Rs

)
(35)

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
= ρa2

(
η

1

ρa2
DP

Dt
+

w2

a2
σ̇ − w2

a2
j u

Rs

)
(36)

Using the thermodynamic transformations and shock jump conditions, the
left-hand side can be written in terms of the derivatives on the Hugoniot
and the shock acceleration

ρw

(
du

dt

)
S
+

(
dP

dt

)
S
=

[
1 + ρ1U

(
du

dP

)
H

](
dP

dU

)
H

dU

dt
(37)
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The coefficient multiplying shock acceleration can written in terms of a
nondimensional function f

f =
1

ρ1a1

[
1 + ρ1U

(
du

dP

)
H

](
dP

dU

)
H

, (38)

and the left-hand side of (36) can be written as

ρ1U

(
du

dt

)
S
+

(
dP

dt

)
S
= ρ1a1f

dU

dt
. (39)

For a perfect gas, the function f can be given analytically in terms of shock
Mach number Ms = U/a1

f =
4

γ + 1

[
3

2
Ms +

1

2Ms

]
(40)

Expressing the unsteady contributions in terms of shock acceleration, the
the substantial derivative of pressure at the shock front can be expressed as

η
DP

Dt
= − ρw2σ̇︸ ︷︷ ︸

chemical

+ρw2u j

Rs︸ ︷︷ ︸
curvature

+ρ1a1f
dU

dt︸ ︷︷ ︸
unsteady

. (41)

(42)

The chemical term represents the exchange of energy between molecular
process and the flow. This contribution is identical to that obtained in
the previous analyses of reaction zones behind steady shock waves. The
curvature term is more properly described as a transverse divergence con-
tribution and can be generalized as discussed below. The unsteady terms
are all proportional to the shock acceleration dU/dt. The sign and mag-
nitude of each term depends on the specific details of chemistry and shock
wave configuration. The main distinctions are between exothermic σ̇ < 0
and endothermic σ̇ > 0 reactions at the shock front, diverging (Rs > 0) and
converging (Rs < 0) shock waves, accelerating (dU/dt > 0) and decelerating
(dU/dt < 0) shocks.

The interpretation of the curvature term is facilitated by considering
quasi-steady flow behind a propagating curved shock, which gave the rela-
tionship of stream tube area A change immediately behind the front to the
shock radius Rs. In the shock-fixed coordinate system, this correspondence
is

j u

Rs
= w

1

A

dA

dx
(43)
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In an unsteady flow, there are no well-defined stream tubes so it is more
appropriate to refer to the curvature term as being associaed with the trans-
verse component of flow divergence. The kinematics of fluid motions links
the flow divergence to the density or volume rate of change through the
continuity equation

1

ρ

Dρ

Dt
= −1

υ

Dυ

Dt
= −∇ · u (44)

The divergence can be divided into components parallel and transverse to
the path line. In cartesian coordinates, the divergence is

∇ · u =
∂u

∂x︸︷︷︸
parallel to path

+
∂v

∂y
+

∂w

∂z︸ ︷︷ ︸
transverse to path

(45)

In radially symmetric coordinates attached to the shock front, the transverse
component is

∇ · u︸ ︷︷ ︸
transverse to path

=
j u

Rs − x
. (46)

3 Application to Cellular Structure Modeling

We have used the critical decay rate model to examine the flow behind the
leading shock waves for two cases (Fig. 1 and Fig. 2) examined in the NCF
experiments. The initial conditions and nominal CJ conditions are given in
Table 1.

The reaction zone structure and associated length and time scales de-
pend strongly on the shock speed which determines the postshock temper-
ature and pressure, Fig. 1. The induction time dependence on temperature
displays an Arrhenius behavior, ti ∝ exp(−Ea/R̃T ), with an effective ac-
tivation energy Ea varying from 33 to 47 kcal·mol−1 with increasing shock
speed. The effective activation energy Ea is an important parameter in the
analytical model for the critical decay rate in reduced form, Θ = Ea/R̃T ,
shown in Fig. 2

Using these parameters, the magnitude of the thermodynamic deriva-
tives, unsteady and curvature terms in the model temperature equation can
be evaluated and used to compute the density time derivative at the shock
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Table 1: Reaction parameters for CH4-2O2-2.5N2 mixture.

P0 18.8 kPa
T0 295 K
UCJ 2016.8 m · s−1

PvN 751.5 kPa
TvN 1663.5 K

ZND reaction

ti (σ̇max) 23.4 µs
te (σ̇1/2) 0.261 µs

∆i (σ̇max) 0.888 mm
∆e (σ̇1/2) 0.157 mm

Constant-pressure reaction

ti (Ṫmax) 26.4 µs

te (Ṫ1/2) 0.231 µs

Ea 45.1 kcal· mol−1

Θ 13.6 -

Constant-volume reaction

ti (Ṫmax) 24.4 µs

front from the shock change equation (30). Using a detailed reaction mecha-
nism and realistic thermochemistry gri30 highT, the Cantera software and
Shock and Detonation Toolbox was used to evaluate all quantities and per-
form numerical integration of the model temperature equation.

The two thermodynamic properties f and g were computed using finite
differences. As expected from the perfect gas expressions, there is a modest
dependence of f on shock speed and essentially no dependence of g on shock
speed. The effective value of γ = cp/cv based on frozen postshock properties
has a modest dependence on shock speed, Fig. 3.

In order to apply the model to a decaying shock we will estimate the
volume expansion rate along a path line using the measured shock decay
rate and curvature, assuming these quantities have constant values equal to

https://cantera.org/
http://shepherd.caltech.edu/EDL/PublicResources/sdt
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Figure 1: Time scales computed for constant pressure reaction behind shock
waves in the CH4-2O2-2.5N2 mixture.

those at the shock front. We can write the temperature equation on the
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Figure 2: Effective activation energy for constant pressure reaction behind
shock waves in the CH4-2O2-2.5N2 mixture.

path line as

DT

Dt
= − 1

cv

∑
k

ek
DYk
Dt

+ T
R

cv

1

ρ

Dρ

Dt
, (47)
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Figure 3: Shock adiabat derivatives and effective specific heat ratio γ for for
CH4-2O2-2.5N2 mixture mixture.

where the rate of change of density on the path line is given by

Dρ

Dt
= − ρ

τv
, (48)
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and the time constant τv is determined from the unsteadiness and curvature
of the shock at the time the path line passes through the shock.

1

τv
= −1

η

[
ρ1a1
ρa2

f
dU

dt
+

w2

a2
uκ

]
S

. (49)

The variation of species concentrations along the path line is determined by
the net reaction rate Ωi and the network of reactions in the mechanism

DYk
Dt

= Ωk . (50)

This model has obvious deficiencies, most notably that it does not account
for the variation of shock unsteadiness and curvature with time and the
propagation of these effects into the flow behind the leading shock front.
For certain situations, as discussed in Eckett et al. (2000), these assumptions
can be justified but in general these need to be examined on a case by case
basis. The expression for the time constant can be simplified and written as

1

τv
= −A(U)

dMs

dt
−B(U)a1κ (51)

where M = U/a1 is the shock Mach number, and the nondimensional co-
efficients A and B are a function of shock speed U for a given mixture
composition and initial conditions.

A =
1

η

ρ1a
2
1

ρa2
f (52)

B =
1

η

w2

a2
u

a1
(53)

The values bracketing the velocities considered (1600 to 2600 m·s−1) in the
NCF study are shown in Fig. 4. Analytical approximate expressions for
these coefficients can be obtained from the strong shock limits of the perfect
gas shock jump conditions.

lim
Ms→∞

A =
1

Ms

6

γ + 1
= Ass (54)

lim
Ms→∞

B = 2Ms
γ − 1

(γ + 1)2
= Bss (55)

The approximate values have the same qualitative dependence on shock
speed as the values based on thermodynamics derivatives of the actual shock
adiabat but the values are lower by 15% in the case of A and 25% in the
case of B.
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the CH4-2O2-2.5N2 mixture.



4 FIGURE 4 ANALYSIS 19

4 Figure 4 Analysis

The estimated lead shock speed and curvature for this case are shown in
Fig. 5 The curvature and shock speed data are sufficiently smooth that these
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Figure 5: Lead shock speed and curvature for Fig. 4 of the main text.

can be used directly in evaluating the model terms. However, we also need
to estimate the shock acceleration. Given the discrete nature of the data, it
is necessary to make an estimate using finite differences. We are, of course,
in a “state of sin” in attempting to extract derivatives from sparse and noisy
data. Plowing ahead, we have used the time-honored dodge of applying a
filtering technique to reduce the noise. We interpolated the original data
onto 100 points and then used a third-order Savitzky-Golay filter with a
seven-point frame1 to make the estimate shown in Fig. 6.

Given the noisy and unreliable nature of the computed acceleration
(shown as open symbols for selected paths on Fig. 6), we opted to use the
average acceleration of -6.2×107 m · s−2, shown as the horizontal line in the
figure. This is a crude approximation and as a consequence, the results of
the modeling only give a qualitative indication of the effects of unsteadi-
ness. The expansion time scale τv and the individual contributions due to
unsteadiness and curvature are shown in Fig. 7. The contribution of shock

1This operation was performed in MATLAB using the interp1 function with the pchip
option and the sgolay filter.



4 FIGURE 4 ANALYSIS 20

unsteadiness is a factor of 5 to 10 times larger than the curvature throughout
the duration analyzed. This is consistent with findings of Eckett et al. (2000)
who observed that during spherical blast wave initiation of detonation, the
unsteadiness clearly dominated the effect of curvature.
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Figure 6: Acceleration of lead shock of Fig. 4 estimated using the polynomial
fit to the data.

The approximation reaction zone equations (47-50) were integrated for
each path and the results are shown in Fig. 8. As the shock decays, the
reaction time increases due to the decrease of post shock temperature and
reaction rate with decreasing shock speed. An additional increase in reaction
time occurs due to the competition between volume expansion and chemical
reaction, further increasing the reaction time as expansion becomes more
competitive with reaction in the latter portions of the decay process. Ulti-
mately, this results in the quenching of the reaction and disappearance of
the exothermic reaction temperature rise for path lines later than number
7.
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Figure 7: Expansion time scales τv for the path lines of Fig. 4 in the main
text. For clarity, extreme values of the time scales for small values of the
acceleration are omitted.
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Figure 8: Results of modeling unsteady reaction along the path lines of
Fig. 4 in the main text.
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Associated with each path line is an induction time ti (defined as the
time to maximum temperature gradient) and a critical decay time τ∗v that
results in quenching of the reaction for a decay time τv ≤ τ∗v . The critical
decay time can be detemined by a parameter study, varying τv for a given
path line until quenching is observed. An example of this computation for
path 8, which is close to the critical condition for quenching is shown in
Fig. 9.
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Figure 9: Results of parametric study of the effect of τv for reaction along
the path line 8 of Fig. 4 in the main text.

The critical parameters associated with each path line are given in Ta-
ble 2

The critical decay time can be visualized by plotting the induction time
as a function of decay rate, shown for path 8 in Fig. 10. The critical decay
time corresponds to the vertical asymptote corresponding to ti → ∞ as τv
→ τ∗v . The qualitative dependence of the reaction time ti on the expansion
time τv is consistent with the analytical model derived by Eckett et al. (2000)
and described in more detail by Shepherd (2020).

ti = − t◦i
α
ln(1− α) , α =

τ∗v
τv

. (56)

where t◦i is the induction time as defined by the singularity in the asymptotic
theory (high activation energy expansion) of ignition of a constant volume
(τv → ∞) explosion. The critical value of the expansion time scale, τ∗v , is
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Table 2: Reaction zone and critical decay parameters for Fig. 4.

Path U/UCJ ti τ∗v τv
(µs) (µs) (µs)

1 1.260 0.621 1.18 19.3
2 1.233 0.844 1.61 18.4
3 1.176 1.69 3.63 16.9
4 1.143 2.61 5.74 15.7
5 1.140 2.71 6.20 15.3
6 1.125 3.37 7.86 14.8
7 1.108 4.29 10.0 14.3
8 1.062 8.95 23.35 13.4
9 1.041 12.7 34.9 13.0
10 1.037 13.5 37.7 12.8
11 1.007 23.6 68.8 12.2
12 0.948 76.5 252 11.3

given by the asymptotic model in terms of the reduced activation energy Θ
= Ea/R̃T , where T is the postshock temperature.

τ∗v = (γ − 1)Θt◦i (57)

For path line 8, Θ = 12.6, γ = 1.215, t◦i = 9.5 µs and the predicted value of
the critical expansion time scale is 25.7 µs, about 10% higher the value of
23.35 µs computed using the reaction zone model with a detailed reaction
mechanism and realistic thermochemistry.

4.1 Path lines 7 and 8

Path lines 7 and 8 are predicted to bracket the critical decay case. Details of
the thermodynamic properties, terms in the energy equation and species are
shown in Fig. 11-14. These two path lines illustrate the crossover between
reactive and quenched paths. For path 7, the maximum chemical reaction
contribution to temperature rate of change is two orders of magnitude larger
than the unsteadiness (Fig. 11) and the reaction is not quenched. Rapid
energy release occurs at about 32 µs as observed in both the large increase
in pressure, consumption of fuel and generation of products, Fig. 12.

For path 8, the maximum chemical reaction contribution to tempera-
ture rate of change is one order of magnitude smaller than the unsteadiness
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Figure 10: Induction time ti vs. expansion time τv for reaction along the
path line 8 of Fig. 4 in the main text and the model of (56).

(Fig. 13) and the reaction is quenched. An energy release transient is not ob-
served, the pressure decreases with increasing time in an approximately isen-
tropic relationship to volume. There are intermediates and radical species
created following the passage of the shock wave but the concentrations are
not sufficient to initiate a coupled chain-branching thermal explosion that
characterizes the energy release zone observed in reactive path lines like
number 7.

The shock speed decreases by only 4% from path 7 to path 8, Table 2.
Due to the sensitivity of induction time ti and critical expansion time τ∗v to
postshock temperature, this variation is sufficient to tip the balance between
chemical and unsteady contributions to the temperature rate of change.
Note that the shock speed in both cases is greater that the CJ value and
the unsteady effect plays an essential role that cannot be accounted for by
the classical models of detonation propagation.



4 FIGURE 4 ANALYSIS 25

‘
24 26 28 30 32 34 36 38 40

t [7s]

-1

0

1

2

3

4

5

6

7

_ T
(K

/
s)

#109

0

1

2

3

4

5

6

7

_ T
(K

/
s)

#107

chemistry
-unsteadiness
curvature

24 26 28 30 32 34 36 38 40
t [7s]

0.6

0.8

1

1.2

1.4

1.6

1.8

2

v
(m

3
/k

g)

500

600

700

800

900

1000

1100

1200

P
(k

P
a
)

Figure 11: Path 7 energy equation terms (defined in 32), pressure and vol-
ume variation in reaction zone.
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Figure 13: Path 8 energy equation terms, pressure and volume variation in
reaction zone.
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Figure 14: Path 8 major and minor species variation in reaction zone.
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5 Figure 5 Analysis

The estimated lead shock speed and curvature for this case are shown in
Fig. 15 The most significant difference with the Fig. 4 lead shock is the lower

25 30 35 40 45 50
t [7s]

0.8

0.85

0.9

0.95

1

1.05

1.1

U
=U

C
J

20

30

40

50

60

70

5
[m

!
1
]

(a) (b)

Figure 15: Shock speed and curvature for path lines shown in Fig. 5 of the
main text.

value of the lead shock speed and more rapid decay in the early and late
phases of the wave propagation. The lower shock speeds than Fig. 4 result
in much longer induction and critical expansion times. The instantaneous
acceleration for this case is quite irregular, Fig. 16 and for the purposes of
computing the reaction zone the acceleration was modeled with two constant
values depending on the time range.

dU/dtavg -9.1×107 m·s−2 29.2 to 32.3 µs paths 1-4
dU/dtavg -1.6×107 m·s−2 32.3 to 45.7 µs paths 5-7

The critical parameters associated with each path line are given in Ta-
ble 3. In all cases, the effective volume expansion time τv is smaller than
the critical decay time τ∗v , indicating that the reaction will be quenched.
This is a consequence primarily of the lower shock speeds which results in
much longer induction and critical decay times as compared to the path
lines of Fig. 4 in the main text. This is verified by the reaction zone com-
putations shown in Fig. 17. An example of a quenched case is path 1. The
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Figure 16: Acceleration of lead shock of Fig. 4 estimated using the polyno-
mial fit to the data.

energy equation terms, pressure and volume dependence on time are shown
in Fig. 18. Selected species dependence on time are shown in Fig. 19.

Table 3: Reaction zone and critical decay parameters for Fig. 4.

Path U/UCJ ti τ∗v τv
(µs) (µs) (µs)

1 1.084 6.18 16.3 7.94
2 1.050 11.0 29.5 8.65
3 0.980 39.3 124 8.30
4 0.950 72.1 242 8.02
5 0.983 36.7 116 105
6 0.969 48.6 157 99.7
7 0.941 88.0 302 90.8
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Figure 17: Results of modeling unsteady reaction along the path lines of
Fig. 5 in the main text.
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Figure 18: Path 1 energy equation terms (defined in 32), pressure and vol-
ume variation in reaction zone.
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6 Summary

The results of the unsteady reaction zone simulations are concisely repre-
sented in Fig. 20. Symbols to the left of the critical expansion time scale,
τ∗v are predicted to correspond to path lines with quenched reaction due to
effects of shock wave unsteadiness. Consistent with the detailed computa-
tions of reaction processes, Fig. 4 cases are predicted to quench between
path lines 7 and 8 while all path lines for the Fig. 5 cases are predicted to
quench.
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Figure 20: Summary of the CDR study for path lines of Fig. 4 and Fig. 5
in the main text.

We acknowledge that there are significant limitations to our modeling
approach, particularly the assumptions that the characteristic time τv is con-
stant along path lines. It is also challenging to extract reliable acceleration
and shock curvature from discrete experimental data of shock location vs.
time. Even using the most advanced diagnostic instruments at our disposal,
there are large uncertainties in these values.

Despite the uncertainties, the qualitative results provide significant phys-
ical insight and are consistent with the visual observations of reaction zone
structure. Our results are also limited to a single mixture composition and it
is known Shepherd (2009) that the stability and regularity of cellular struc-
ture is a strong function of composition and the coupling to the confining
channel. We anticipate that mixtures with more regular cellular patterns
will be more amenable to analysis with lower uncertainties.
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A ZND Reaction Zone Structure
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Figure 21: Temperature profile for ZND reaction model of CJ detonation in
CH4-2O2-2.5N2 mixture at 18.8 kPa and 295 K initial conditions. The star
symbol indicates the thermicity peak location and the crosses indicate the
thermicity 50% locations. The temperature rise after 1 mm is due to the
slow recombination of the non-equilibrium concentrations of radicals and
intermediate species following the consumption of fuel in the energy release
zone.
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Figure 22: Pressure profile for ZND reaction model of CJ detonation in
CH4-2O2-2.5N2 mixture at 18.8 kPa and 295 K initial conditions.
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Figure 23: Density profile for ZND reaction model of CJ detonation in CH4-
2O2-2.5N2 mixture at 18.8 kPa and 295 K initial conditions.
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Figure 24: Mach number profile for ZND reaction model of CJ detonation
in CH4-2O2-2.5N2 mixture at 18.8 kPa and 295 K initial conditions.
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Figure 25: Thermicity profile for ZND reaction model of CJ detonation in
CH4-2O2-2.5N2 mixture at 18.8 kPa and 295 K initial conditions.
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Figure 26: Major species profile for ZND reaction model of CJ detonation
in CH4-2O2-2.5N2 mixture at 18.8 kPa and 295 K initial conditions. The
vertical line indicates the location of the the thermicity peak.
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Figure 27: Major species profile for ZND reaction model of CJ detonation
in CH4-2O2-2.5N2 mixture at 18.8 kPa and 295 K initial conditions.
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