One-Dimensional Flame Propagation Mechanisms

J. Chris Krok
Explosion Dynamics Laboratory
Department of Aeronautical Engineering
Rensselaer Polytechnic Institute

Troy, New York

July 10, 1991
Revised25 Junel993and29 June2012


Joe Shepherd
Typewritten Text
Revised 25 June 1993 and 29 June 2012

Joe Shepherd
Typewritten Text

Joe Shepherd
Typewritten Text


Contents

1 Introduction

2 Analysis

2.1
2.2
2.3
2.4

PHESE] o movomow 5 vo o one 0 5 56 % W% 5 % @ % M B G5 B B AR W R BT RN R R 5
Phase 2 . . . . . . . e e e e e e e e e e e e e e e
Phage:d ::niniim i o 80l B s s dinssimingss
Phaged ... ncnmus v onoamve o %% % 5 on &% % % % 8 &0 505 @

3 Results

4 Conclusion

List of Figures

00 ~1 O Ul = W b =

©

10
11
12
13

Basic setupof problem . . . . . .. ... . o oo oL
Four phases as they would appearintube .. ... ............
Relative velocitiesused inanalysis. . . . . ... .. ... .........
Phase 1 diagrams . . . . . . . . . . . i i i i e
Phase 2 diagrams . . .. . sonwn s s nos o8B 86 # @@ s 5o o
Phooe I IagElins « 5 s 5 s s s s s p e85 a0 ¥h SR G @ EH 8§ @
Phsoed disgidtiil o o oo v vme v 5 0 v owsm w0 0 8o B R B R s E
Tavs. Mpy o o oot i e e e e e e e e e e e e e
s Mpy s isssid s iBemen@idsd saamsmansnn
T VMg o v v o 500 0 0B B 76 S e R e R R R R W W @ R K B0R @ e
P-z V8. Mf'l ..................................
P3 Vs. anl ..................................
P4 Vs. Mf,l ..................................

List of Tables

1
2
3

FlanE heedl © o i n s w s s i S I B NS DI BT 55
TEMOBTRETER < oo o novw no v w5 0 0 o @ 5 o6 @ T R 0 B R R R B S B O R % R
Pressures . . . . . . . .. L e e e e e

—
W~ oo W

f—

15

-1 OV W=

12
14
20
20
21
21
22
22



Abstract

A computational analysis was performed of a one-dimensional flame propagating from
the closed end of a tube. The flow system was found to depend on the speed of the
flame. For low speed flames, only a shock wave and the flame exist; for faster flames,
an expansion region must be added to bring the flow to rest at the closed end of the
tube. The appearance of this expansion indicates a change in flame propagation mecha-
nism. Temperature and pressure variations with flame speed were found to be continuous
through this transition, indicating that the assumed mechanisms should be correct.

Perfect gas assumptions were used throughout the analysis. A test case was run to
generate P-v and z-t diagrams of the system for various speeds, as well as the aforemen-
tioned temperature and pressure plots. The test case used R = 287 J/kg-K, v = 1.25,
and ¢ = 2.307 MJ/kg. For these values, the change in propagation mechanism was found
to occur at Vy/c; ~ 2.5.

1 Introduction

This report covers the computational simulation and analysis of a one-dimensional flame
propagating in a tube with one closed end. This work is very relevant to the problem
of flame acceleration and, more importantly, DDT. The problem was treated in a quasi-
steady manner; for each set of calculations, the flame was assumed to be traveling at
a constant speed. This speed was varied from zero to the Chapman-Jouget detonation
velocity. For low speeds, the flame propagation mechanism consists of only a shock wave
and flame. At the highest speed, however, the ZND model of a detonation applies. This
model consists of a coupled shock and flame, followed by an expansion region. It seemed
likely that this expansion region would begin to appear at some intermediate speed; this
was found to be true in the analysis, which is described below.

In these calculations, reactants and products were assumed to be perfect and to have
identical properties. Plots were made of various temperatures and pressures versus flame
speed, and P-v and z-t diagrams were generated for four specific phases of a test case.
The test case used ¢ = 2.307 MJ/kg, v = 1.25, and R = 287 J/kg-K.

2 Analysis

The setup is shown in figure 1, with the regions of interest numbered as they are used
in the analysis. State 1 is therefore the initial state of the gas. State 2 represents the
shocked reactants, while state 3 refers to the combustion products immediately after they
come out of the flame. State 4 is the final state of the gas, after it has expanded to zero
velocity. For low flame speeds, state 3 is equivalent to state 4 (see below). The left end
of the tube is closed, while the right end remains open. The tube is filled with a reactive
mixture and ignited at the left end. The flame propagates to the right, with the burned
gas to its left. Initially, the gas in the tube is at ambient pressure and temperature P;, T3,
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Figure 1: Basic setup of problem, showing regions used in the analysis.

and at zero velocity. Since the flame expands the gas that it burns, the gas ahead of
it must move out of the tube to make room for this expansion. This is done through a
shock wave that travels ahead of the flame. The shock wave imparts a velocity to the
gas as it passes through, allowing the gas to move out of the tube. The faster the flame,
of course, the stronger and faster the shock must be to move the unburned reactants out
of the way.

Since the left end of the tube is closed, the burned gas there must have zero velocity.
For low flame speeds, the flame itself will stop the gases that were put in motion by the
shock wave. At some point, however, the flame velocity will become sonic with respect to
the burned gas behind it. When this occurs, the flame no longer knows that the left end
is closed, as perturbations in the burned gas can’t keep up with the speed of the flame
(they are restricted to sonic velocities). When the flame reaches this speed, an isentropic
expansion fan must be inserted behind it to bring the gas fully to rest. The flame speeds
are thus broken up into four phases: Phase 1, where the flame is slow enough to bring the
gases to rest; Phase 2, where the flame still brings the gases to rest, but the exit velocity
w3 is sonic; Phase 3, where an isentropic expansion fan is in place; and Phase 4, when
the flame speed equals the shock speed. This last phase represents the Chapman-Jouget
detonation. The four phases as they would appear in the tube at a single moment in
time are shown in figure 2.

The flame speed itself isn’t actually the independent variable in these computations.
The way that the relations are set up, it is much easier to specify the velocity of the
shock wave. The relations will then determine the velocity of the flame. Also note that
the velocity of the flame in the lab reference (V;) is not the actual speed at which the
flame processes the shocked gas. The lab frame velocity V; is actually the superposition
of the burning velocity, Sy, and the velocity of the gas behind the shock, u;. All of these
velocities can be interrelated through the continuity equation.
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Figure 2: Situation in tube for four different phases, all frozen at same time. (a) slow
flame; (b), slow flame with sonic exit; (c), flame with isentropic expansion; (d), deto-
nation. Expansion in (c), (d) is actually continuous, although it is shown as a series of
waves.



2.1 Phasel

This phase describes the shock/flame system for a slow flame. Figure 2a shows the flame
and shock in the tube, and Figure 4 shows the z-t and P-v diagrams for the system. In
this phase, the speed of the flame is slow enough that it can bring the moving gas behind
the shock wave to rest to satisfy the left-end boundary condition.
The equations across the shock wave are the well-known relations from gas dynamics
i B 021
P 2yME 4 -1
P, y+1 y+1

(1)
and

v (v + 1) M}
A similar relation also exists for temperature, but is much larger than these. It is much
easier to use equations (1) and (2) first, and find T, through the ideal gas law,

Pv=RT. (3)

Hence, by specifying the shock Mach number, M;, all of the properties behind the
shock can be found: T3, P,,v,, and the gas velocity u, (through continuity).

Next, the change in properties across the flame are found. This is a bit more involved;
we wind up creating two equations in two unknowns, P and v, but these relations are
not explicit and a numerical solution to the equations must be found. This was done
through the subroutine ZEROIN from Sandia National Laboratories. The equations are
as follows. We start with a jump relation derived from the continuity and momentum

equations [2, p. 316]:
[w]* = —[P][v]. (4)

The brackets denote a difference in a quantity across the flame, e.g. [P] = P; — P,, and
the relative velocities are shown in figure 3.
Substituting from the quantities in figure 3, we get

uy = —(Ps = Pp)(vs — vo) . (5)

This equation is solved for (P; — P;) and substituted into the Rankine-Hugoniot
equation (2, p. 317],

hs— hy = (Ps — PQ)L"—‘?—;EU—"’) (6)
to give
(vs + v2)uj
hy = hg — -2, 7
- 4 2(03 — 'Ug) ( )
Using constant properties and the ideal gas law, we can write
TRT3; _ yPsv;
ha = = . 8
Sl — (8)

6



fixed shock

w=V,—u e (——u; =V,

fixed flame a |

‘UJ3=V!'-'U3P- h‘UJg=Vf—UQ=Sf

8 2

Figure 3: Shock and flame independently fixed, showing relative velocities used in equa-
tions

Putting all of this together, we get

_ 2
p =2 l[hz_w], (9)
Y3 2(‘03 —vy)
where p
YI2V2
_ 10
ha =1 +q (10)

and q is the heat of combustion of the fuel.
To get a second equation for P; in terms of vs, the Rankine-Hugoniot equation alone
can be rearranged and combined with (8) to give

_ hg — %Pz(vg + ’Ug)

Py =
vazZ; — L(va + v2)

(11)

where h, is again given by (10).

Since the shock Mach number and the initial conditions are known, P;,vs, and u,
are known. So, we have two equations in two unknowns, P3 and v3. These are solved
by the routine ZEROIN. Since ZEROIN needs an initial guess for one of the variables,
vz = 4v, is substituted, since the flame expands the gas. ZEROIN then returns the
proper values for both of the variables, which specifies the state of the gas next to the

7



wall. Temperature T3 is found through the ideal gas law. The flame velocity V; is found
through the continuity equation, which reduces to:

Uz

Vi (12)

- 1—-‘02/1}3 '

Finally, as seen from the flame velocity specifications in figure 3, Sy = V; — u,.

The situation inside the tube is shown in figure 2a. The shock, traveling faster than
the flame, puts the gas in the tube in motion to allow for the expansion of the gas through
the flame. The flame then comes along, expanding the gas and bringing it to a rest to
satisfy the left-end boundary condition (u4 = 0). Note that for this phase, state 4 is
equivalent to state 3, since there is no expansion fan present.

Figure 4a is the z-¢ diagram for this phase. Here it is easy to see that the shock is
moving faster than the flame, and that the gap between them continually increases. The
P-v diagram for this phase is figure 4b. In a P-v diagram, the shock adiabats show all
of the possible states that can be arrived at through a shock from a given initial state.
In this case, we are starting at state 1. The actual final state depends on the strength of
the shock itself. Note that the end point, state 2, must lie above state 1 on the pressure
axis. This indicates a compression shock; rarefaction shocks, where pressure decreases,
are not allowed by the second law of thermodynamics. The flame is represented by the
straight line from state 2 to state 3, which is known as a Rayleigh line. The slope of this
line is seen to be negative, which it must be for mathematical reasons. (Basically, the
slope of the Rayleigh line is equal to —m?, where 1 is the mass flux through the flame.
Since m? must always be positive, the slope must always be negative to match the sign
of —m?2.)

2.2 Phase 2

Phase 2 simply represents the upper limiting case of phase 1. The flame speed V;} is
now sonic with respect to the gas behind it, so characteristics (which travel with sonic
velocity) can just barely reach the flame. These characteristics inform the flame that the
left end is closed and that the flow must be brought to zero velocity. If the flame moves
any faster, it will no longer receive this information, and will not stop the flow. This will
bring us into phase 3, where an expansion fan is required to stop the flow.

Figure 2b shows the situation in the tube, while 5a shows the z-t diagram for this
phase. Note here that not only are both the shock and flame moving faster, but the flame
is moving faster with regard to the shock. The flatter slopes of the shock and flame lines
on the z-t diagram show the higher speeds, while the smaller angle between them shows
the smaller difference in speed.

The P-v diagram for this phase is shown in figure 5b. Here we see that the line from
state 1 to state 2 is steeper, indicating a stronger shock. Also note that the Rayleigh line
still has a negative slope, as it must.
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Figure 4: Phase 1 diagrams. Flame is able to bring moving fluid to rest to match left
end boundary condition. (a), z-t diagram of system; (b), P-v diagram of system.
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Figure 5: Phase 2 diagrams. Relative velocity of gas leaving flame (ws;) is now sonic.
This is the highest flame speed for which the flame can bring moving fluid to rest. (a),
z-t diagram of system; (b), P-v diagram of system.
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2.3 Phase 3

In this phase, the flame is moving fast enough to require an expansion fan behind it to
bring the flow to rest, but it is not up to the detonation stage yet. The major assumption
of phase 3 is that the relative velocity of the flow leaving the flame (w3,see figure 3) is
sonic, or Vy — u3 = ¢3. Applying continuity across the flame, we get

Vi = 23+ uy. (13)

U3

This can be used to find an expression for [w] in equation (4), and the same procedure
as before is used to find an equation for P; in terms of v3. Namely, we substitute the
new version of (4) into the Rankine-Hugoniot equation, (6), and use (8) to generate an
expression for Pj:

=1 o [es(1 — va/v3)]? (v3 + v2)
vPs : 2 (*u3 = Uz)

(14)

Uy =

Note that c3 = \/YRT3 = \/yPsv; and that h, is given by (10), so the equation contains
only P; and vz as variables. This time, however, P; is not given explicitly. Since (11)
still applies, it is used first to find a value for P; from the guess for v3. Then, (14) is used
to find a new v3. This all works very well with ZEROIN, and the proper values of P
and vz can be found. With these quantities specified, T5, c3, Vy, Sy, and us can be found.
(Now that the expansion fan is in place, uj is no longer equal to zero.)

To get the properties at the wall, the method of characteristics [2, pages 374-417] is
used. Figure 6a includes a left-running (C~) characteristic that starts at the back of the
flame and runs to the wall. Since this is an isentropic expansion, the C~ characteristic
has a constant value along its path, the value known as the Riemann invariant. For a
perfect gas, the Riemann invariant of a C~ characteristic is given by

"9 (15)

Immediately behind the flame, both ¢ and u are known, so J~ can be found. At the
wall, © = 0, so the soundspeed ¢4 can be found. The soundspeed, of course, gives the
temperature. P4 can then be found through the isentropic relation

Py \Ty
and state 4 is fixed.

Figure 2c shows the shock, flame, and expansion fan in the tube. The expansion is
shown as a series of discrete waves for clarity; in reality, this is a continuous process. The
wave system is also shown on the z-t diagram for this phase, figure 6a. The shock and
the flame are both moving faster than before, and the speed of the flame is approaching
that of the shock.

11
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Figure 6: Phase 3 diagrams. Relative velocity of gas leaving flame (wj3) is assumed to
still be sonic. Isentropic expansion must now be used to bring the fluid to rest. Note
that the expansion is drawn as a series of discrete waves for convenience; this is actually
a continuous process starting immediately behind the flame. (a), z-t diagram of system;
(b), P-v diagram of system.

12



Figure 6b, the P-v diagram for phase 3, shows the effect of the expansion fan. The
stronger shock gives a higher jump from state 1 to state 2 on the shock adiabat, and a
steeper Rayleigh line connects states 2 and 3. The expansion between states 3 and 4 is
shown on the isentrope for those states. In this diagram, the dashed line represents the
isentrope, and we see that it is almost directly superimposed on the adiabat for state 3.
This is expected, as an adiabat can be approximated by an isentrope for small changes
In pressure.

2.4 Phase 4

This phase represents the maximum steady speed attainable by the system, the Chapman-
Jouget detonation velocity (Ugy). This phase is the upper limit of phase 3, and is solved
through the same equations. At this point, the flame speed V; and the shock speed are
the same. Both proceed forward in a coupled fashion.

Figure 2d shows the detonation wave in the tube, followed by the expansion fan.
The z-t diagram, figure 7a, also shows the shock and flame proceeding forward as a
detonation. Figure 7b, the P-v diagram, shows an interesting fact of the C-J detonation
phase. The shock wave takes the reactants from state 1 to state 2 on the lower adiabat,
and the line connecting these states is tangent to the adiabat of the products. State 3
lies at the point of tangency. This is the definition of the C-J detonation, and is the
point at which the products exit the detonation with sonic velocity. Immediately after
exiting the detonation, the products expand along the isentrope to state 4. Again note
the high coincidence of the shock adiabat and the isentrope in the region of interest.

3 Results

The results for the specific case that was simulated are shown in tables 1-3, and the same
data is plotted in figures 8 through 13. As stated previously, the calculations are done by
specifying the Mach number of the initial shock, M;. Then, using the equations outlined
in the analysis, all of the states and the flame speed can be found. The Mach numbers
used run from zero, which is the constant-pressure combustion case, up to the C-J Mach
number, which was found to be approximately 5.2 for the test case.

As the Mach number is increased from zero, the flame speed is checked against the
soundspeed in region 3-4 at every increment. Since the gas in region 3-4 is at rest, the
flame speed V; is equal to the relative speed at which the gas leaves the flame. When
Vi = c3, the system is at phase 2. All of the lower Mach numbers fall in the phase 1
regime. Once phase 2 is hit, the program switches to the next set of equations, which
govern phases 3 and 4. The system is in phase 3 until the flame speed V; matches the
speed of the shock, at which point the system in phase 4. Note that phases 2 and 4 are
single points which are special cases of phases 1 and 3, respectively. For the test case,
phase 2 was found to occur at M; =~ 2.8, or My, = 2.5, where My, = Vj/c;.

At this point it is interesting to note that the mathematics provided solutions beyond
the phases for which they were derived and valid. Initially, when only the first set of

13
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Figure 7: Phase 4 diagrams. System is now at detonation stage. Flame and shock are
coupled, and travel at the same velocity, Uss. (a), z-t diagram of system; (b), P-v
diagram of system.
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equations was programmed, we expected some sort of singularity to occur when the Mach
number M; passed the phase 2 point. We expected a non-solveable set of equations or
some other pathology that would indicate the passing of phase 2. However, when we ran
the program, it continuously provided solutions for as high a shock Mach number as we
put in. Thus, we had to use the method of comparing V; to c3 to see when the flame
could no longer detect the closed end of the tube. At that point, the program switched
to the second set of equations, as mentioned above. While the equations seemed to be
mathematically correct, we knew that the answers were not physically correct, so we had
to watch that part independently.

Likewise, when the second set of equations was added to the program, we expected
some mathematical problem to crop up when the system hit the C-J detonation phase.
Again, the program went on cranking out solutions well beyond the C-J point, although
it did come up with a square root of a negative number further on. Looking at the
solutions, we saw that the computed V; began to exceed the velocity of the shock wave!
Since the flame is what produces the shock wave in the first place, this makes no sense
physically, and the program was stopped when V; = V,. This point was taken to be
phase 4, the C-J point.

All of the temperatures and pressures were normalized with respect to their initial
values for plotting, and were plotted against the flame speed normalized to initial sound-
speed (Vy/c1). Figure 8 shows the temperature behind the shock. This is standard shock
relation stuff.

Figure 9 shows the temperature immediately following the flame. This is seen to rise
slightly and level off before the phase 2 point. At that point, there is a discontinuous
change in slope, which is caused by the change in propagation mechanism. Fortunately,
the function itself is still continuous at that point, indicating that we have the correct
mechanisms on either side. More importantly, left-end temperature 7} is totally contin-
uous, even at the change in mechanism. This plot is shown in figure 10.

Figures 9 and 10 are both identical from My; = 0 to My; = 2.5, since there is no
expansion fan for these Mach numbers and regions 3 and 4 are effectively the same.

The pressures are shown in figures 11-13. Figure 11 shows the pressure after the shock
wave; once again, this is standard shock stuff. Figure 12 shows the pressure immediately
behind the flame, P;. As in the temperature plot for state 3, there is a discontinuity in
slope at My; = 2.5. This is again due to the change in mechanism. We see that the
pressure sharply increases at that point, since the flame itself no longer has to expand
the flow to zero velocity. Figure 13 shows the pressure after the expansion fan, P;. This
plot, as the plot for T, appears to be fully continuous, showing that we have used the
correct mechanism in all phases. Finally, figures 12 and 13 are identical up to My; = 2.5,
since there is no expansion fan there and states 3 and 4 are effectively the same.

4 Conclusion

This report documents the computational simulation of a flame traveling at speeds rang-
ing from zero to the C-J detonation velocity. The simulation was one-dimensional and
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inviscid, and perfect gas laws and assumptions were used throughout. We found that the
structure of the system changes continuously from the slow-flame phase to the detona-
tion phase, with an expansion fan beginning to exist at some intermediate speed. For the
conditions used for our example computations, the expansion fan appears when the flame
Mach number (based on the undisturbed sound speed) increases above 2.5. This appear-
ance of an expansion fan was expected, since the ZND model for a detonation includes
an expansion fan after the detonation, and the slow flame model has no expansion.

Our results are very relevant to the problem of flame acceleration and particularly
the phenomena of DDT, in which the flame speeds become large enough to produce the
fluid motion that causes the expansion fan. Existing models of flame acceleration are
extrapolations of the simple low—speed model in which the velocity behind the flame is
zero. Our present results indicate that these models will certainly fail when the flame
speed reaches the magnitude associated with DDT.
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Table 1: Flame speed, V;, and burning velocity, Sy, for the full range of shock Mach
numbers.

M, V,/cl S!/cl

1.0 0.0000 0.0000
1.1 0.2025 0.0328
1.2 0.3902 0.0643
1.3 0.5657 0.0939
1.4 0.7311 0.1216
1.5 0.8879 0.1472
1.6 1.0376 0.1709
1.7 1.1812 0.1929
1.8 13196 0.2134
1.9 14535 0.2325
2.0 1.5837 0.2504
2.1 1.7106 0.2672
2.2 1.8347 0.2832
2.3 19563 0.2983
24 20758 0.3128
2.5 21934 0.3268
2.6 23094 0.3402
2.7 24240 0.3532
2.8 25373 0.3659
2.9 2.6497 0.3785
3.0 27618 0.3914
3.1 2.8736 0.4048
3.2 29851 0.4184
3.3 3.0964 0.4325
3.4 3.2076 0.4468
3.5 3.3187 0.4616
3.6 3.4297 0.4766
3.7 3.5407 0.4920
3.8 3.6516 0.5077
3.9 3.7625 0.5238
4.0 3.8735 0.5402
4.1 3.9845 0.5569
4.2 4.0956 0.5739
4.3 4.2067 0.5912
4.4 43179 0.6088
4.5 4.4292 0.6267
4.6 4.5406 0.6449
4.7 4.6521 0.6634
4.8 4.7637 0.6822
49 48754 0.7013
5.0 4.9872 0.7206
5.1 5.0992 0.7402
5.2 5.2113 0.7600

17



Table 2: Temperatures T3, T3, and Ty for the full range of shock Mach numbers.

M, )TV T3/Ty T4Th

1.0 1.0000 6.3589 6.3589
1.1 1.0431 6.3970 6.3970
1.2 1.0845 6.4249 6.4249
1.3 1.1255 6.4455 6.4455
14 1.1669 6.4608 6.4608
1.5 1.2092 6.4722 6.4722
1.6 1.2528 6.4807 6.4807
1.7 1.2979 6.4871 6.4871
1.8 1.3448 6.4917 6.4917
1.9 1.3936 6.4952 6.4952
2.0 1.4444 6.4977 6.4977
2.1 14974 6.4994 6.4994
2.2 1.5524 6.5006 6.5006
2.3 1.6097 6.5013 6.5013
24 16693 6.5018 6.5018
25 17311 6.5019 6.5019
26 17953 6.5019 6.5019
2.7 1.8618 6.5018 6.5018
28 19306 6.5015 6.5015
2.9 20018 6.5588 6.5021
3.0 2.0754 6.6253 6.5050
3.1 21515 6.6941 6.5102
3.2 22299 6.7650 6.5175
3.3 23107 6.8382 6.5271
34 23939 6.9136 6.5387
3.5 24796 6.9912 6.5524
3.6 25677 7.0711 6.5681
3.7 26582 7.1532 6.5858
3.8 27512 7.2376 6.6055
3.9 2.8466 7.3242 6.6271
4.0 2.9444 74132 6.6505
4.1 3.0447 7.5043 6.6759
4.2 3.1475 7.5978 6.7030
43 3.2527 7.6936 6.7320
44 33603 7.7916 6.7627
45 3.4704 T7.8919 6.7952
46 3.5830 7.9945 6.8295
4.7 3.6980 8.0995 6.8654
48 3.81556 8.2067 6.9030
49 3.9354 8.3162 6.9423
5.0 4.0578 8.4281 6.9833
5.1 4.1826 8.5422 7.0259
5.2 4.3099 8.6587 7.0701
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Table 3: Pressures P,, P;, and Py for the full range of shock Mach numbers.

My, P/P, P3/P, P4/P

1.0 1.0000 1.0000 1.0000
1.1 1.2333 1.2251 1.2251
1.2 1.4889  1.4529 1.4529
1.3 17667 1.6797 1.6797
1.4 2.0667 1.9026 1.9026
1.5 23889 2.1196 2.1196
1.6 27333 23293 23203
1.7 3.1000 2.5308 2.5308
1.8 3.4889 2.7234 27234
1.9 3.9000 2.9070 2.9070
2.0 43333 3.0815 3.0815
2.1 4.7889  3.2470 3.2470
2.2  5.2667 3.4036 3.4036
2.3 5.7667  3.5517  3.5517
24 6.2889 3.6916 3.6916
2.5 6.8333 3.8236 3.8236
26 T7.4000 3.9481 3.9481
2.7 7.9889  4.0655 4.0655
2.8 8.6000 4.1762 4.1762
2.9 9.2333 44708 4.2809
3.0 9.8889  4.8007 4.3803
3.1 10.5667 5.1433 4.4746
3.2 11.2667 5.4989 4.5640
3.3 11.9889 5.8675 4.6488
3.4 127333 6.2493 4.7290
3.5 13.5000 6.6444 4.8050
3.6 142889 7.0529 4.8769
3.7 15.1000 7.4751 4.9449
3.8 15.9333 7.9110 5.0093
3.9 16.7889 8.3607 5.0703
40 17.6667 8.8245 5.1281
4.1 18.5667 9.3024 5.1828
42 19.4889 9.7946  5.2347
4.3 20.4333 10.3013 5.2841
44 21.4000 10.8225 5.3309
45 223889 11.3584 5.3755
46 23.4000 11.9091 5.4180
4.7 244333 12.4748 5.4586
4.8 25.4889 13.0556 5.4974
49 26.5667 13.6517 5.5346
5.0 27.6667 14.2631 5.5704
5.1 28.7889 14.89000 5.6047
5.2 29.9333 15.5325 5.6379

19



10.0

7.5

T2/T1
5.0

0.0 20 4.0 8.0
V§/C1

0.0

Figure 8: Post-shock temperature T, vs. normalized flame speed My ;.
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Figure 9: Post-flame temperature T3 vs. normalized flame speed My ;.
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Figure 10: Post-expansion temperature T4 vs. normalized flame speed M ;.

30.0

P2/P1
20.0

10.0
I

0.0 2.0 40 8.0
V§/C1

Figure 11: Post-shock pressure P; vs. normalized flame speed M| ;.
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Figure 12: Post-flame pressure P; vs. normalized flame speed Mjy ;.
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Figure 13: Post-expansion pressure P4 vs. normalized flame speed Mj ;.
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