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ABSTRACT

We consider the problem of slightly-curved, quasi-steady diverging

detonation waves. For sufficiently small curvature, the reaction zone struc-

ture equations can be formulated as a two point boundary value problem

for solutions containing a sonic point. Analytical solutions to this bound-

ary value problem are obtained for the case of a one-step Arrhenius reac-

tion in the limit of high activation energy. The analytic solution results

in a nonlinear relationship between detonation velocity and curvature.

For extremely small curvature, this relationship is consistent with previ-

ous linear analyses, whereas in the nonlinear regime it predicts a critical

maximum curvature, beyond which no quasi-steady solutions with a sonic

point can be found. We also analyse the curved detonation structure for

the gaseous fuel-oxidizer combination of H2 and O2 with various dilu-

ents. Using a standard shooting method we generate numerical solutions

of the two-point boundary value problem based on realistic thermochem-

istry and a detailed chemical reaction mechanism. Similar to the large

activation energy results, the numerical solutions reveal a nonlinear deto-

nation speed-curvature relation and a critical maximum curvature for the

existence of quasi-steady solutions. The relation of this critical curvature

to the critical scales of multi-dimensional detonation is discussed.

PACS numbers: 47.40-x, 47.70.Fw
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I. INTRODUCTION

Detonation waves are observed to be curved in a variety of situations. Initiation by spheri-

cal or cylindrical sources, diffraction around a convex corner and the local fronts of unstable

detonations are some of the common examples of this phenomenon (see Fig. 1). Detona-

tion waves propagating axially in cylinders of high explosives are curved due to the lateral

expansion of the products. Extensive investigations, starting with Wood and Kirkwood,1

of this problem indicate that under certain conditions, there exists a relationship between

a minimum detonation velocity Ds and the wave curvature κ.

This velocity is physically significant since it is only for this value that the steady

reaction zone solution can smoothly pass through a sonic point. This can be considered

the generalization of the usual Chapman-Jouguet point for planar detonation waves. The

physical significance is apparently that stable, self-sustaining waves appear to asymptot-

ically propagate at a velocity close to Ds in many situations. Heuristically, it is argued

that for detonation velocities D > Ds, there is no sonic point in the reaction zone and

flow disturbances traveling upstream from the region behind the detonation can affect the

detonation propagation. In most situations, these disturbances are rarefactions and cause

the wave to attenuate so that D → Ds. The rate of attenuation decreases as this occurs

(see the discussion of the shock change equation on p. 101 of Fickett and Davis2) until ulti-

mately a quasi-steady reaction zone containing a sonic point results. The sonic point then

effectively isolates the wave from the following flow and the detonation locally propagates

with a normal velocity Ds(κ), usually just written D(κ).

We emphasize that this argument holds as is only for diverging waves, while it fails for
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converging ones. A detailed asymptotic analysis of the curvature-induced wave acceleration

of converging detonations, which inhibits the establishment of a quasi-steady detonation

structure, has been reported by Klein.3

Attractive as this picture appears, there is a key difficulty in applying it to detonations

as realized in nature. It is well known that for a wide range of reaction mechanisms and rate

laws characteristic of gaseous reaction that planar detonation waves are unstable to trans-

verse disturbances for all velocities sufficiently close to the CJ value. This was observed

first in the laboratory by White,4 extensively studied in subsequent experiments,5 and

demonstrated by linear stability analyses6,7 and a combination of linear stability analysis

and numerical simulation.8 We expect that small amounts of curvature will not suppress

this instability and this will be a key obstacle to applications involving gaseous or unstable

solid explosives. It may in fact be possible to develop a “renormalized” D(κ) relationship

that incorporates the effect of the instability but this is merely speculation at the present

time.

If we accept the existence of a D(κ) relation, then geometrical considerations of the

wave front evolution enable the computation of the front position and shape as a function

of time without the need to solve for the rest of the flow field. Bdzil and others9,10 have

carried out extensive studies on this notion, which they term detonation shock dynamics.

This theory utilizes either a measured11 or computed D(κ) relationship to numerically

predict12,13 the detonation front shape evolution. For some high explosives, this appears

to be an exceedingly useful approach that reproduces measured wave shapes of diffracting

detonations and provides very useful insight into the diameter effect in rate stick experi-
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ments.

A particularly significant feature of the rate stick experiment is that the detonation

wave “fails” when the stick diameter is below some critical value. Failure in this instance

means that the wave velocity decays and the chemical reactions effectively cease to sustain

the wave over a long distance of propagation. This has the wider significance that under

many situations diffracting detonation waves and curved waves produced by yielding con-

finement will fail when the curvature exceeds a critical value. In terms of the D(κ) model

for propagation, this indicates that there is a limiting value of curvature κmax, beyond

which a sonic point does not appear in the flow for any detonation velocity. However, the

relationship between the critical rate stick diameter and the critical wave curvature is not

straightforward. Furthermore, it is observed that in diffraction situations, portions of a

wave may exceed the critical curvature for some time but ultimately the wave will continue

to propagate as a self-sustaining detonation. The prediction of the success or failure of

detonation wave initiation and diffraction in general situations is still a largely unsolved

problem that requires experimental resolution at the present time. The connection of the

general situation to the special case of quasi-steady, slightly-curved waves is tenuous but

the appearance of a critical curvature is an hopeful sign and suggests that further analysis

is worthwhile.

To date, the D(κ) relationships have been based on relatively simple reaction rate laws

or determined experimentally for high explosives. For small values of curvature, Klein and

Stewart14 have shown that the most common sort of reaction rate models appropriate to

gas phase combustion will lead to a linear relationship between normal detonation velocity
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and the curvature, with logarithmic corrections in the case of first-order reactions. These

calculations do not predict a limiting critical curvature although this is anticipated on the

basis of the critical effects observed in detonation experiments. In fact, in this previous

work, Klein and Stewart do consider the same large activation energy Arrhenius kinetics

that we use here in Sec. III, yet they perform a sequential asymptotic limit where the

activation energy becomes large only after the small curvature limit has been obtained.

This approach is inherently different from the present distinguished limit between the

orders of magnitude of curvature and activation energy. This very distinguished limit has

independently been considered by Yao and Stewart15 and, with the additional assumption

of a specific heat ratio close to unity, by He and Clavin.16

In the present study we analyse the problem of D(κ) relationships for systems de-

scribed by either one-step Arrhenius kinetics or a detailed chemical reaction mechanism

for hydrogen-oxygen-diluent mixtures. We also perform a large activation energy limit

analysis, but the key new aspect in the asymptotic analysis is a particular distinguished

limit, in which curvature effects are large enough to interact nontrivially with the highly

sensitive ignition chemistry in the induction zone. It is this interaction which introduced

the nonlinearity of the D(κ) relation. A limiting curvature is found in both cases and

the D(κ) relationship is found to be multivalued. Previous studies17 of related quasi-one

dimensional detonation structure have found a similar multivalued solution. We compare

the features of the solutions for detailed kinetics with the results of the asymptotic analysis

and find useful insights. Some speculations about the significance of the critical curvature

to gaseous detonation phenomenology are given.
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II. QUASI-STEADY, QUASI-ONE DIMENSIONAL REACTION ZONES

Consider a portion of a curved detonation wave with a local radius of curvature R and

a characteristic thickness Δ, as shown in Fig. 2. For both propagating and stationary

waves, it is possible to show that the reaction zone structure can be described by a simple

set of ordinary differential equations if: a) the reaction zone is thin, R � Δ; and, b) the

characteristic time scale for the change in the shock speed is much longer than the passage

time of fluid elements through the reaction zone, τ = Δ/w � D/(dD/dt). These equations

are simply the conservation laws of quasi-one-dimensional gas dynamics with area change

and chemical reaction. They are the logical extension of the standard ZND model2 for

planar waves.

In a reference frame attached to the shock wave moving with velocity D(t) = dR/dt

into stationary reactants, see Fig. 2, the transformed distance and velocity variables are

x = R(t) − r

w = D(t) − u

(1)

and the equations of motion are

d
dx

(ρw) = −ρw
1
A

dA

dx

ρw
dw

dx
= −dP

dx

d
dx

(h +
w2

2
) = 0

w
dyk

dx
=

Wkω̇k

ρ
(k = 1, . . . , K)

(2)

where the net molar rate of creation of species k has been denoted ω̇k, which can be

computed once a chemical reaction mechanism and set of reaction rates for the K species

have been specified. Other symbols are: yk, mass fraction of species k; Wk, molar mass of

species k; ρ, mass density; h, specific enthalpy; P , pressure.
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The stream tube area change dA/dx is determined from the expression for the loga-

rithmic derivative that is obtained from the small-curvature, quasi-steady limit (see Bdzil

and Stewart9 and the discussion in the Appendix)

α =
1
A

dA

dx
= κ(

D

w
− 1) (3)

where κ is the curvature of the wave front

κ =

⎧⎪⎪⎨
⎪⎪⎩

2
R

spherical waves

1
R

cylindrical waves
(4)

Note that this implies that the stream tube area A(x) increases with downstream distance

just behind the shock front.

A more convenient form2 for computation is

dP

dt
= −ρw2 (σ̇ − wα)

η

dρ

dt
= −ρ

(σ̇ − wM2α)
η

dw

dt
= w

(σ̇ − wα)
η

dyk

dt
=

Wkω̇k

ρ
(k = 1, . . . , K)

(5)

in which the thermicity parameter σ̇ has been used to denote the nondimensional chemical

energy release rate.

σ̇ =
K∑

k=1

(
W

Wk
− hk

cpT

)
dyk

dt

where W is the mean molar mass of the mixture, cp is the mixture specific heat at constant

pressure, and hk is the specific enthalpy of species k. The sonic parameter η is defined

using the Mach number M of the flow relative to the shock wave

η = 1 − M2 M =
w

c
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A key issue is the boundary conditions for these equations. The flow properties at the be-

ginning of the reaction zone are those computed from the shock jump conditions evaluated

at fixed composition.
ρ1w1 = ρ2w2

P1 + ρ1w
2
1 = P2 + ρ2w

2
2

h1 +
1
2
w2

1 = h2 +
1
2
w2

2

(6)

In these equations, states 1 are the reactant conditions upstream of the shock and w1 =

D. States 2 are those just downstream of the shock, or the von Neumann (vN) conditions,

at the beginning of the reaction zone. In general, these equations must be numerically

solved for state 2, given state 1 and D. In the analytical solution discussed subsequently,

the strong shock approximate solution to these equations is employed.

Downstream, the flow must be nonsingular and eventually becomes supersonic in

the wave frame. Since the flow starts off just behind the shock as subsonic, the sonic

parameter η must pass through zero within the reaction zone. Inspection of the structure

equations indicates that the only way in which this can occur and still have a nonsingular

solution is for the numerator σ̇ − αw to vanish at the same time as η, i.e., at the sonic

point M = 1. This will occur only for particular values of the shock velocity Ds for each

value of the curvature κ. The appearance of a sonic point in this flow can be attributed

to the competing effects of chemical energy release σ̇ and area change −wα creating an

effective throat or converging-diverging nozzle in the flow. The area function is actually

monotonically increasing, dA/dx > 0, and tends to decelerate the initially subsonic flow

behind the shock, driving it away from the sonic point. The thermicity σ̇ > 0 is positive

in the main energy release region of the reaction zone and tends to accelerate the flow,
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driving it toward the sonic point. The appearance of a sonic point at other than a physical

area minimum and the eigenvalue nature of the flow is well-known in the context of the

ideal dissociating gas18 through a nozzle.

We conclude that we have a two-point boundary value problem with a regularity

condition at one endpoint that determines the eigenvalue solutions D(κ). For general

reaction mechanisms and realistic thermodynamics, this problem will have to be solved

numerically. In the following section, we show that it is possible to obtain an analytical

solution for a perfect gas with a one-step irreversible reaction described by a first-order

Arrhenius rate law with a large activation energy. Numerical solutions for this problem

have also been obtained by a simple shooting procedure and the results are described in a

later section.
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III. NONLINEAR D-κ RELATION FOR LARGE ACTIVATION ENERGY

A common model used to examine issues in combustion modeling is a one-step, Arrhenius

reaction with a perfect gas equation of state. The reactants and the products are assumed

to have the same molar mass and the reaction is assumed to be first order. The reaction

progress variable is λ, λ = 0 for pure reactant and λ =1 for pure product. The model

reaction rate equation is of the form

dλ

dt
= ṙ(λ, T )

The enthalpy of the reactant-product mixture is

h = cpT − λq

where q is the heat of reaction and cp is the specific heat cp = γR/(γ − 1) = constant. In

this approximation, the reaction structure equations reduce to a single ordinary differential

equation

du2

dλ
=

2(c2σ)u2

c2 − u2

(
1 − κc2(u + D)

(c2σ)ṙ

)
(7)

for the particle velocity, u = −w, in a lead-shock attached frame as a function of the

reaction progress variable, λ, which varies from λ = 0 in the unburnt gases to λ = 1 in the

burnt gas.2,9,14 In Eq. (7), c is the local speed of sound, related to u by the energy equation

(the third expression of Eq. 6), which for an ideal gas with constant ratio of specific heats,

γ, becomes

c2 =
γ − 1

2

(
D2 − u2 +

D2
CJ

γ2 − 1
λ

)
. (8)

The quantity c2σ is a constant in the model considered here and proportional to the

chemical energy q per unit gas mass: c2σ = (γ − 1) q (σṙ = σ̇ of the previous section). D
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is the actual detonation speed, assumed to be close to the Chapman-Jouguet speed DCJ

and κ is the lead shock curvature which is assumed to be small compared to the inverse

of a characteristic reaction zone thickness, Δ.

The detonation structure has to satisfy the lead shock jump conditions at λ = 0. In

the strong shock approximation, these read

c2 =
2γ(γ − 1)
(γ + 1)2

D2

u2 =
(

γ − 1
γ + 1

)2

D2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

at (λ = 0) . (9)

In addition, the solution must satisfy the generalized CJ-condition

(c2 − u2 = 0) ⇔ κc2(u + D)
c2σṙ

= 1 , (10)

to allow passage through the critical sonic point c2 − u2 = 0. Equations (7)–(10) pose an

Eigenvalue-problem for the detonation speed D, given a reaction rate law and the front

curvature, κ. Here we consider a one-step irreversible Arrhenius reaction,

ṙ = (1 − λ)B exp
(
− Ea

RT

)

where Ea is the activation energy, R the gas constant and T = c2/γR the temperature.

We assume a large activation energy, such that

θ =
γEa

(c2
vN)(0)

� 1 .

In this limit we expect the detonation speed eigenvalue to have an expansion

D

DCJ

= (1 + θ−1d∗(κ∗, γ))
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where κ∗ = κ/κref is a suitably scaled nondimensional curvature. We will define the

reference curvature later in the analysis by the requirement that for κ∗ = 1 the reaction /

curvature term in Eq. (7) equals unity at post-shock conditions in the induction zone.

The solution strategy is as follows: First we analyze the induction zone by a pertur-

bation expansion about von Neumann conditions of a plane wave. The induction zone

solution diverges towards the main reaction region and in a next step we a derive separate

main reaction layer solution, including a first order perturbation analysis and a discussion

of the generalized CJ-condition. We finally match the induction and main reaction layer

solutions and in this process find the desired D(κ) relation.

A. INDUCTION ZONE ANALYSIS

For the induction zone analysis it is convenient to solve for the temperature, or c2, instead

of the velocity u. Combining Eqs. (7) and (8) we find

dc2

dλ
= −γ − 1

2
du2

dλ
+

D2
CJ

2(γ + 1)
. (11)

Next we expand the solution as

D = DCJ(1 + θ−1d∗)

λ = θ−1Λ

c2 = (c2)(0)vN (1 + θ−1C(Λ)) ,

(12)

and we introduce a reference curvature κref such that

κref

[
c2(u + D)

](0)
vN

(c2σṙ)(0)vN

= 1 .

Defining κ∗ = κ/κref and inserting the ansatz from (12) in (11) we find, after some lengthy

calculations that

dC

dΛ
= α + βκ∗e−C(Λ) , (13)

13



where

α =
1

(c2
vN)(0)

(
D2

CJ

2(γ + 1)
− 2

γ − 1
2

[
c2σu2

c2 − u2

](0)

vN

)

and

β = 2
γ − 1

2

(
c2σu2

c2(c2 − u2)

)(0)

vN

.

Equivalently with the present ideal gas equation of state,

α = α(γ) =
3 − γ

4(γ − 1)
, β = β(γ) =

γ − 1
4γ

.

An initial condition for (13) is obtained by expanding the lead shock jump conditions (9).

We find that

C(0) = 2d∗ . (14)

and the exact solution to Eq. (13) is

C(Λ) = ln
[
(e2d∗

+
β

α
κ∗)eαΛ − β

α
κ∗

]
. (15)

Obviously, C(Λ) diverges as Λ → ∞ and one has to match the induction zone solution to

the main reaction zone where c2 − (c2
vN)(0) = O(1).

B.THE MAIN INDUCTION REGION

The key observation here is that the curvature-reaction rate ratio (the last term in Eq. 7)

becomes exponentially small as soon as O(1) deviations of the temperature from post-

shock conditions occur. Therefore one has

(
dc2

dλ

)
MRL

=
D2

CJ

2(γ + 1)
− 2

γ − 1
2

(c2σ)u2

c2 − u2
+ exp. small terms , (16)
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and the main reaction zone has a plane wave structure except for exponential corrections.

The correct initial condition for (16) is derived from the generalized CJ-condition:

As the solution passes through the critical point, the curvature-reaction rate ratio

term in Eq. (7) must approach unity. Due to the exponentially large rate coefficient this

can happen only for (1 − λ) being exponentially small. One can see this more clearly by

writing

κ
c2(u + D)

c2σṙ
= κ∗ c2(u + D)

[c2(u + d)](0)vN

1
1 − λ

exp

(
θ

[
c
2 (0)
vN

c2
− 1

])

and observing that κ∗ and the second factor on the right hand side are O(1), so that the

last term, too, must be O(1) and hence (1 − λ) must be exponentially small.

On the other hand one can show that the slope dc2/dλ in the c2-λ-plane remains of

order O(1) throughout on the correct path that passes through the critical point. As a

consequence, the solution must be exponentially close to sonic conditions when the thin

transonic region where curvature and reaction effects can again compete is entered.

It follows that the correct boundary condition for (16) to all orders in θ−1 is:

(c2 − u2) = 0 at λ = 1 . (17)

Together with (8) this gives a value for c2 or u2.

The solution in the main reaction layer will be computed here for convenience in terms

of the velocity

u =
(
− γ − 


γ + 1
+ θ−1U ′(
)

)
DCJ ,

where


 =
√

1 − λ ,
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and where the leading term corresponds to the plane wave ZND- CJ-solution.14 We use u

instead of c2, because it turns out that the first order perturbation of the velocity in the

main reaction region is almost trivial and easy to compute.

The first order perturbation U ′(
) satisfies the equation

dU ′

d

+

γ


(γ − 
)
U ′ = − γ − 1


(γ − 
)
d∗ .

The generalized CJ-condition (17), together with (8) yields

U ′(0) = −γ − 1
γ

d∗ ,

and the exact solution is

U ′ ≡ −γ − 1
γ

d∗ = const . (18)

In the next subsection we match the induction zone solution (15) to the present solution

(18) of the main reaction layer and obtain the desired D(κ) relation.

C. MATCHING AND THE D(κ) RELATION

We have to connect the main reaction layer solution for


 = 1 − θ−1 Λ
2

+ · · · → 1 ,

i.e.

u

DCJ

∣∣∣∣
MRL

= −γ − 1
γ + 1

− θ−1

(
Λ

2(γ + 1)
+

γ − 1
γ

d∗
)

+ O(θ−2) (19)

to the induction zone solution for Λ → ∞. In Sec. III.A we derived the induction zone

solution in terms of the dimensionless c2-perturbation C(Λ). Using (8) we can translate

this result into an expression for the velocity perturbation Ũ defined by

u

DCJ

∣∣∣∣
ind

= −γ − 1
γ + 1

+ θ−1Ũ(Λ) + · · · . (20)
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The large-Λ representation for Ũ becomes

Ũ(Λ)
∣∣
Λ→∞ ≡ − Λ

2(γ + 1)
+

2γ

γ2 − 1
ln

(
e2d∗

+
β

α
κ∗

)
− γ + 1

γ − 1
d∗ . (21)

Comparison of Eqs. (20) and (21) with (19) yields the matching condition

−γ − 1
γ

d∗ =
2γ

γ2 − 1
ln

(
e2d∗

+
β

α
κ∗

)
− γ + 1

γ − 1
d∗ ,

which we rewrite in a more lucid form as

eχd∗ − e2d∗
= β̃κ∗ . (22)

Here

χ(γ) =
(γ + 1)(3γ − 1)

2γ2
,

β̃(γ) =
β

α
(γ) =

(γ − 1)2

γ(3 − γ)
.

Figure 3 shows the resulting double-branched curve in a d∗ vs. κ∗ diagram. The upper

branch of the curve corresponds to the continuous extension of the plane Chapman- Jouguet

detonation.

A quasi-steady solution of this type fails to exist once the scaled curvature exceeds

κ∗
max =

(χ

2

) χ
2−χ

(
2 − χ

2β̃

)
.

At this point, the detonation speed defect is

d∗max = −
ln 2

χ

2 − χ
.

The value of the quantities κ∗
max and d∗max depends only on the ratio of specific heats γ.

Numerical evaluation of these functions indicate that for realistic values, 5/3 ≥ γ ≥ 1,
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the detonation speed defect d∗max ≈ −0.50, essentially independent of γ. The maximum

curvature κ∗
max varies by a factor of two over this same range, 0.0758 ≤ κ∗

max ≤ 0.1839.

To compare these results to numerical solutions, we use the reaction zone length Δ◦

= Δ(κ = 0) rather than κref as the scaling parameter. In the limit of large activation

energy, the reaction zone length practically coincides with the induction length and, using

the strong shock assumption, this length can be estimated to be

Δ◦ =
4(γ − 1)2

(γ + 1)(3 − γ)
DCJe

θ

Bθ
.

Then the reference curvature can be written as

κref =
A(γ)
θΔ◦

A(γ) =
(γ2 − 1)
2γ(3 − γ)

(23)

and we find that the critical parameters can be written as

Dmax

DCJ

≈ 1 − 1
2θ

κmax =
φ(γ)
Δ◦θ

(24)

where φ = κ∗
maxA(γ). For small values of γ−1, the function φ ∼ (γ−1)/4e + O(γ−1)2 and

the maximum value of φ = 0.030 for γ = 5/3. The scaling with Δ◦ and the dependence

of Dmax on θ is observed in the numerical simulations for H2-O2-diluent mixtures, as

discussed subsequently.

Comparison to the previous work of Klein and Stewart14 is possible for small values of

Δ◦κ and large values of θ. Expansion of the results obtained in the present computation

yields

D

DCJ

∼ 1 − 4γ2

γ2 − 1
Δ◦κ . (25)
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Correcting an algebra error in Klein and Stewart, we find an identical expression for large θ.

Referring to Klein and Stewart, this requires taking the limit as z∗ vanishes in their Eq. (75)

and evaluating their Eq. (68) for large θ. This form of the D(κ) relation is also confirmed

by the numerical studies on H2-O2-diluent detonations, as described subsequently.

The authors are aware of recent independent work of Yao and Stewart15 that has

led them to the same nonlinear curvature-detonation speed relation in the limit of large

activation energy that we discussed in this section. An ad hoc analysis of the same problem

by He and Clavin16 has also been recently independently carried out. Their analysis yields

qualitatively similar results, although it is not based on activation energy asymptotics, but

rather on the square wave model for the detonation structure.
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IV. NUMERICAL SOLUTIONS

The full reaction zone equations (5) and jump conditions (6) have been numerically

solved to obtain solutions D(κ) for H2-O2-diluent mixtures. A detailed chemical reac-

tion mechanism19 and realistic thermochemistry20 have been used in these computations.

The solution procedure used was the standard method of “shooting” for determining the

correct value of D for a given value of κ. First, an initial guess for the detonation velocity

was determined by carrying out a standard CJ calculation. Second, an estimate for the

critical curvature was obtained using the reaction zone length ΔCJ and the asymptotic

result (23) with an estimated value of θ. A series of computations were then carried out

for curvatures between zero and the estimated maximum value.

For each curvature and putative value of D, the jump conditions (6) were solved

using the root finder ZEROIN21 to obtain the initial conditions (vN point) for the reaction

zone structure equations. Then a stiff solver based on Hindmarsh’s LSODE package22

and CHEMKIN23 was used to integrate from the vN point toward the sonic point. A

corrected value of the detonation velocity D was then estimated based on the outcome of

this computation. This correction was based on wether the endpoint was sonic or subsonic.

The distinction between the two types of solutions was made by simply observing the

behavior of the Mach number during the integration. Solutions with a sonic endpoint have

Mach numbers that monotonically increase toward one near the end of the computation.

Solutions with a subsonic endpoint exhibit a maximum of the Mach number (< 1), then the

Mach number approaches zero at a finite location downstream. By bracketing the location

of the change between sonic and subsonic termination to a specified degree of accuracy,
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an approximation (good to within 0.5 m/s) to the eigenvalue D(κ) was obtained. In the

vicinity of the critical curvature κmax, the iteration is most readily carried out with κ using

fixed values of D. Just as in the asymptotic analysis, a double-valued D(κ) function was

obtained with both upper and lower branches. The solution for 30% hydrogen in air is

shown in Fig. 4.

A. THE ZERO-CURVATURE EIGENVALUE SOLUTION

Surprisingly, in some cases with κ = 0, a sonic point was found in our numerical solution

of the reaction zone problem. This results in an eigenvalue solution D(0) which is different

from the usual CJ velocity. The possibility of this has been known for some time and is

extensively discussed in Fickett and Davis. However, aside from some speculations24,25

about exotic chemical systems such as the H2-Cl2 reaction, the appearance of this feature

in a common system such as hydrogen-air has not been previously documented. It is

worthwhile to explore this feature of the solution since it is a rather subtle effect.

The standard introductory textbook presentations on detonation determine the min-

imum detonation velocity for the κ = 0 case from the jump conditions, considering the

downstream state to be in equilibrium. This minimum velocity obtained from the jump

conditions is known as the Chapman-Jouguet (CJ) velocity. However, computations of the

ZND reaction zone structure with realistic reaction mechanisms lead to eigenvalue solu-

tions D(0) that are sometimes slightly higher than DCJ. Only in the special situation that

the reactions are irreversible and are all exothermic will the two velocities be equal. The

reaction used in our large activation energy analysis is of this type.

The difference between the results of the two approaches to minimum detonation
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velocity has been known since Zeldovich26 but not widely appreciated in the general com-

bustion literature. In fact, Zeldovich developed the reaction zone structure analysis as a

mechanistic explanation of why a minimum detonation velocity was physically significant.

The significance for practical applications is diminished due to all the other nonideal as-

pects of detonations such as instability, yielding confinement and boundary layer effects

that create a substantial velocity deficit.

The difference between the usual CJ velocity and Ds(0) can be understood in terms

of the role of kinetics and reverse reactions in the approach to equilibrium at the end

of the reaction zone. The computed spatial distributions of the flow variables, selected

species and the thermicity parameter are shown in Figs. 5-8 for a stoichiometric hydrogen-

air detonation (κ = 0). The branching chain reactions produce an exponential buildup of

radicals H, O and OH during the induction period located from just behind the shock up to

0.2 mm. During this period the thermicity is very small, see Fig. 7. In the enlargement of

Fig. 8, it is apparent that σ̇ is initially slightly negative due to the endothermic dissociation

processes at the start of the reaction.

At a distance of about 0.2 mm, a large positive excursion in the thermicity (see Fig. 7)

occurs due to the recombination of radicals into water

H + OH + M −→ H2O

Following this excursion, there is a period of adjustment in which the transient high con-

centrations of radical species approach the equilibrium values. This process results in a

gradual reduction of σ̇ that produces the long tail seen in Fig. 7. The final stage in this

equilibration process is a slower dissociation process that converts some of the water into
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OH and H2. This causes the thermicity to become slightly negative for the final portion

of the reaction zone. The sonic point is indicated on Fig. 5 and occurs at the point where

σ̇ = 0, at x = 22.5 mm. This effect is quite small in magnitude (see Fig. 8) but significant

to the eigenvalue nature of the solution for κ. The effect is more pronounced for some

mixtures than others, see Tables I to III.

Three aspects of these equilibration processes are significant for producing the eigen-

value nature of the solution a) multiple species b) endothermic reactions c) reversible

reactions. As discussed in Fickett and Davis,2 all of these lead to the possibility of an

eigenvalue detonation. The key factor is the dissociation resulting in the negative σ̇ at the

very end of the reaction zone. This produces a location of zero thermicity in the reaction

zone where a sonic point can exist. The enthalpy at the sonic point, which determines the

wave speed, is larger than the equilibrium enthalpy at the end of the reaction zone and so

the wave speed is higher. An alternative, but really equivalent, explanation can be given

in terms of the difference between frozen and equilibrium sound speeds.

It is proven in all elementary texts on combustion that the CJ solution is equivalent

to selecting the situation in which the flow velocity w is equal to the equilibrium sound

speed ce (computed with the species in equilibrium) at the end of the reaction zone. On

the other hand, the detonation structure computation determines the minimum speed

Ds(0) as that state in which the flow velocity w is equal to the frozen sound speed cf = c

(computed with a fixed composition) at the sonic point, the effective end of the reaction

zone. For a realistic reaction mechanism containing reversible reactions, the frozen and the

equilibrium sound speeds are unequal, with the frozen sound speed being slightly higher
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than the equilibrium.18 As a consequence the minimum speed D(0) can be slightly higher

(0.1 to 0.5%) than the CJ speed. See Klein27 for a discussion of equilibrium effects in the

structure of weakly curved detonations.

B. REACTION ZONE STRUCTURES FOR CURVED WAVES

As the curvature is increased, the reaction zone structure gradually changes. Since the

critical value of curvature is quite small, the effect of curvature on the structure of the

initial portion of the reaction zone is very modest. The reaction zone structures for three

different curvatures are shown in Figs. 9-12. From these solutions is it clear that only a

very small change in area occurs in the region between the shock x = 0 and the sonic

point for values of κ comparable or less than the critical value κmax. Initially, since the

thermicity is nearly zero just behind the shock, the flow is nearly isentropic and the area

variation is approximately

A/A◦ ∼ 1 +
2

γ − 1
κx + O(κx)2 .

The flow in this region is subsonic, so the velocity decreases while pressure, temperature and

density increase with distance due to essentially isentropic compression in the diverging

stream tube. These variations are barely observable trends in the induction region of

Figs. 9-12. The extent of the induction region increases as the shock velocity decreases,

for κ = 0, the induction region extends to about 0.15 mm, for κ = 0.07 mm−1, .2 mm and

for κ = .1325 mm−1, 0.5 mm. This is due to the very strong dependence of the reaction

rate on the post-shock temperature, which in turn depends on the shock velocity D.

The most prominent feature of these plots is the large increase in velocity, temperature

and Mach number with distance and the decrease of pressure with distance as the chemical
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energy is released into the flow. In those cases with κ < κmax, this results in the appearance

of the sonic point in the flow. The location of the sonic point moves upstream, toward the

shock, as the shock velocity decreases. For κ = 0, the sonic point is located at 22.5 mm; for

κ = 0.07 mm−1, at 4.0 mm; for κ = 0.1325 mm−1, at 3.21 mm. The behavior downstream

of the sonic point can be either subsonic or supersonic flow for κ less than κmax. Either

situation can be simulated in numerical solutions by applying a small perturbation to the

solution as it emerges from the sonic point. In Figs. 9 and 10, the supersonic solutions are

shown, while Figs. 11 and 12 are the subsonic solutions.

Supersonic solutions downstream of the sonic point have similar features to the usual

quasi-one-dimensional supersonic isentropic flow. Flow velocity, Mach number and area

all increase with increasing distance and the pressure and temperature decrease. Due to

the form of the area relationship, Eq. (3), the solution asymptotes to a constant state far

downstream since w → D. Subsonic solutions downstream of the sonic point also have

similar features to the usual quasi-one-dimensional subsonic isentropic flow. Flow velocity

and Mach number decrease with increasing distance and the pressure, temperature and

area increase. The solution terminates with infinite area and zero velocity at a finite

distance downstream, again due to the particular form of the area relationship, Eq. (3).

Consideration of a flow for which the Mach number vanishes at a finite point x = xo,

reveals that the area must become singular according to the relation

A

A∗ ∼ co

D

1
κ(xo − x)

.

This can be observed in Fig. 12, the computation of Fig. 11 was stopped before the singu-

larity was approached.
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The reaction zone structure obtained for κ > κmax is very similar to that for κ < κmax,

as shown in Fig. 12, except there is no sonic point. It is very important to recognize that

the reaction is not quenched in such cases, but simply that it is not possible to obtain

sonic flow and therefore the reaction zone is entirely subsonic. Energy release (thermicity)

profiles for the four cases considered in the previous figures are shown in Fig. 13. Note

that κ plays essentially no role except in the vicinity of the sonic point, which is far behind

the point of maximum thermicity Δ◦ in all cases. The differences in the initial portions

of the reaction zone profiles can all be accounted for by the differences in the initial post-

shock state. This is particularly apparent if the two curves representing σ̇ for the κ =

0.1325 mm−1 and the κ = 0.2656 mm−1 cases are compared. These are identical up to

the thermicity peak and only begin to differ appreciably after x = 1 mm.

C. SUMMARY OF NUMERICAL RESULTS

The D(κ) relation computed for 30% hydrogen-air is compared to the results of the asymp-

totic analysis (Eq. 22) in Fig. 4. The parameter γ = 1.318 used in this comparison was

computed from the thermodynamic properties of the shocked reactants and the param-

eter θ = 7.79 was determined by a separate explosion time computation as described in

Shepherd.28 It is clear that the asymptotic analysis captures the essential physics of the

problem despite the enormous simplification of the chemistry and thermodynamics.

To examine the quantitative usefulness of the asymptotic analysis, a series of com-

putations have been carried out for a range of hydrogen concentrations between 10 and

60%. The results are given in Table I and have been shown in scaled form in Fig. 14

for the upper portion of the D(κ) function only. The form of the scaling is suggested by
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basic dimensional considerations and results of the asymptotic analysis given above. The

D/DCJ vs Δ◦κ curves all have a similar shape but there are systematic differences due

to the variation of γ and θ for each mixture. Away from the endpoints, each curve is

approximately linear, in agreement with Eq. (25). The variation in slopes is due to the

variation of γ as a function of composition, see Table I.

There is a systematic variation of the detonation speed defect (D − DCJ)/DCJ at

the critical curvature. Examination of the maximum defects as a function of hydrogen

concentration reveals a nonmonotonic variation with concentration. The asymptotic anal-

ysis would ascribe this as due to differences in the nondimensional activation parameter

θ for these systems (Eq. 23). The hydrogen-air system has been extensively studied and

previous28 computations of θ are available (Fig. 15 and Table I) to test this relationship.

The unusual behavior of activation energy with hydrogen concentration has been noted

previously28 and is due to the competition between various reaction channels. As discussed

subsequently, the asymptotic analysis adequately explains the systematic variations for the

case of hydrogen-air mixtures except in the case of large argon dilution, discussed further

below.

The D(κ) relation was also computed for stoichiometric hydrogen-oxygen-diluent mix-

tures for diluents of nitrogen and argon. The maximum curvature as a function of dilution

is given in Fig. 16 and Tables II and III. The maximum curvature decreases strongly with

increasing nitrogen concentration but displays a shallow maximum for an argon concen-

tration of 30%. The D(κ) curves for the nitrogen-diluted cases are similar to those shown

in Fig. 14. The argon dilution D(κ) curves, shown in Fig. 17, are more unusual in that
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there is a pronounced inflection point for the highly-diluted cases. In part, this is due to

the thermodynamic variations that occur when argon is added. Despite the dilution of

the mixture with increasing argon content, the specific heat of argon is lower than that of

either the reactants or the major products. As a consequence, the shock CJ temperature

increases with increasing argon dilution. This is why the parameter θ decreases with in-

creasing argon concentration up until 70 % argon. On the other hand, the CJ post-shock

temperature decreases monotonically with increasing nitrogen concentration.

The numerical predictions of the maximum velocity deficit and maximum curvature

are compared with the asymptotic analysis in Fig. 18 for all cases. Except for the velocity

deficits in the case of argon concentrations greater than 30%, the asymptotic analysis

and the numerical shooting solutions are in good agreement. The unusual D(κ) curves for

mixtures diluted with argon may be related to the observations29,30,31 on cellular structure

regularity and critical tube diameter dc. Mixtures containing large amounts of argon are

observed to have very regular cellular structures and critical tube diameters that are 25

to 30 cell widths. This is in contrast to mixtures with air or nitrogen dilution which have

irregular cellular structures and critical tube diameters of 10 to 13 cell widths. The failure

of the asymptotic solution to correctly describe the numerically predicted values of κmax

may be another manifestation of the unusual nature of mixtures with large amounts of

argon. The failure of argon-diluted mixtures to scale in the same fashion as the nitrogen-

diluted mixtures indicates that it may not be just a matter of cellular regularity but

an intrinsic thermochemical effect of these mixtures. A similar notion was expressed by

Shepherd et al.30 based on analyses of overdriven detonations.
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V. SIGNIFICANCE TO DETONATION PHENOMENA

A key problem in detonation physics today is the computation of critical conditions5 for

detonation initiation and propagation. Previous efforts in this area have been largely based

on ad hoc models and/or simple dimensional considerations. For example, there is a large

body of work28,32 that proposes correlations of parameters such as detonation cell width

λ, initiation energy Ec and critical tube diameter dc with ΔCJ. While acknowledging the

crude nature of these efforts, they have provided the most practical means of estimating

detonation sensitivity from fundamental chemical considerations.

One of the principal results of these studies is the extreme disparity between the reac-

tion zone length and the scales of the phenomena, indicative of the singular perturbation

character of disturbances to reaction zones. Comparisons between measured33,34 lengths

λ, dc and Rc = (Ec/ρ◦U2
CJ)

1/3 and the reaction zone length Δ◦ are shown in Fig. 19 for

hydrogen-air mixtures. For example, λ is typically between 30 and 90 times the reac-

tion zone length ΔCJ (
 Δ◦) and dc is 200 to 300 times ΔCJ. Similar comparisons35 can

be made for other combinations of fuel and oxidizer which lead to the same conclusions.

Linear stability analyses7 are totally inadequate to explain these large ratios, predicting

instead ratios that are O(1).

An additional major critique of this approach is based on the observation that det-

onation structures typically involve several distinct internal subzones in which different

physical and chemical kinetic processes are active. In most gaseous systems one can iden-

tify, e.g., an induction zone, a zone of major exothermal recombination and a region of

approach to equilibrium.28,36 Each of these sublayers has its own characteristic spatial ex-
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tension and the ratios of these lengths vary from one system to the next as well as with the

unburnt gas conditions for a given fixed system. It follows that a unique identification of

“the reaction zone thickness” is simply meaningless. In addition, assuming such a reaction

length had been assigned, it remains unclear what physical connection would exist between

this scale and the critical scales of detonation propagation.

The present computations provide values for the critical (minimum) radius of curva-

ture for the establishment of a quasi-steady detonation. It is tempting to propose that

these are proportional to the critical tube diameter dc or the initiation radius Rc. Even

though it is not clear how to make this correspondence rigorous, there are strong arguments

suggesting that such a relation does exist and can be established by further pointed analy-

ses. The critical radius of curvature is an integral length that defines a global geometrical

failure scale for a given explosive system. Its definition is unique and, in particular, does

not depend on the details of the reaction zone structure. In addition we will find below

that the critical radii of curvature are of the same order of magnitude as the critical scales

of detonation propagation, such as the detonation cell size or the critical tube diameter

(see also He and Clavin16).

For gaseous mixtures, the instability of the reaction zone and the onset of transverse

waves occur simultaneously with detonation initiation so that the value of one-dimensional

analysis appears limited. However, we can demonstrate the plausibility of this notion by

comparison of the computed critical curvatures with measured detonation parameters. For

a spherical wave, the asymptotic analysis indicates that the minimum radius is

Rmin =
2

κmax
=

2Δ◦θ
φ(γ)

.
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For a typical fuel-air mixture, γ ∼ 1.15, φ = 0.011 and θ = 5 so that Rmin ∼ 1000Δ◦! The

present numerical computations for hydrogen-air give values between 400 and 1000 for this

ratio. The minimum radius of curvature varies strongly with the hydrogen concentration

(see Fig. 19) due to the strong dependence of the reaction zone length Δ◦ on the equivalence

ratio. As a scaling or reference length scale, the critical curvature is much more reasonable

than the reaction zone length, as demonstrated by Fig. 19.

A. CRITICAL INITIATION ENERGY

He and Clavin16 have carried this observation even farther and proposed that the quasi-

steady analysis can be used to provide a quantitative estimate of the critical initiation

energy Ec. Their reasoning is as follows: The initial phase of shock initiation in a spherical

geometry is treated by using the strong shock similarity solution for the shock wave radius

Rs(t)

Rs = ηo

(
Ec

ρo

)1/5

t5/2, (26)

where ηo is a constant of O(1) that is determined by the ratio of specific heats γ. Differ-

entiation of this expression enables the shock velocity Us to be expressed as a function of

the shock radius Rs

Us =
2
5
η5/2

o

(
Ec

ρo

)1/2 1

R
3/2
s

. (27)

Their key assumption is that a self-sustained detonation will be produced only if Rs > Rmin

when the shock velocity falls below Dmin where Rmin and Dmin are computed from the

quasi-steady analysis.

This is illustrated in Fig. 20 by plotting the D(κ) relation (22) obtained from the

asymptotic analysis (θ = 15) together with the blast decay relation (27). Shown are three
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blast wave conditions, labeled supercritical, E > Ec; critical, E = Ec; subcritical, E < Ec.

The critical conditions shown graphically in Fig. 20 yield the following estimate for the

critical initiation energy

Ec = ρoU
2
min

(
5
2

)2 1
η5

o

R3
min , (28)

where Rmin is given by (26) and Umin ≈ UCJ as follows from (24) for θ >> 1. Therefore,

the critical energy can be estimated as

Ec ≈ AρoU
2
CJΔ

3
o ,

where A is the combination of parameters

A = θ3

(
5
2

)2 1
η5

o

23

φ3
.

For a typical fuel-air mixture ηo = 1.005, φ = 0.011. The effective activation energy θ is

between 5 and 30 (Tables I to III) for these mixtures, resulting in a value of A between

5 × 109 and 1 × 1012.

The results presented in Fig. 19 and Fig. 21 provide a quantitative evaluation of this

idea. The estimate of (28) can be written as

Rc,predicted = 1.8Rmin (29)

where Rc = (Ec/ρ◦U2
CJ)

1/3 is the initiation length scale. From the evaluation shown in

Fig. 19, the computed values of Rmin are actually larger than the experimental value of

Rc. At stoichiometric, the ratio Rc/Rmin is 0.7. The ratio decreases as the equivalence

ratio either increases or decreases from 1, reaching a minimum value of about 0.2 at the

extreme endpoints of the range shown in Fig. 19. This (29) implies that the critical energy

will be overestimated by one to two orders of magnitude.
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This idea is a variation of the original analysis of Zeldovich et al.37 and the extension

by Lee et al.38 who both used similar considerations but based on minimum energy release

or elapsed time rather than a minimum wave curvature. These ideas also result in a similar

dependence of the initiation energy on the reaction zone parameters:

Ec = A′ρoU
2
CJΔ

3
o (30)

where A′ is a constant of the order of 105. Those models typically underestimate the

critical initiation energy by several orders of magnitude since the experimentally deduced

value of A′ is about 3 × 108.

Lee has proposed5,34 an empirical correlation with the experimentally measured cell

width λ replacing the reaction zone thickness Δ. The original form of his correlation was

written in terms of the blast scaling radius Rb = (Ec/P◦)1/3 but can also be written in

terms of Rc as

Ec = A′′ρoU
2
CJλ

3 ,

where A′′ ≈ 200. This is consistent with (30) if the cell width is proportional to the

reaction zone length with a constant of proportionality of about 100.

Comparison with the experimental data for H2-Air mixtures is shown in Fig. 21 for

the three different estimates for Rc discussed above. We find that the scaling length Rc

can be approximated equally well by any of the following relationships:

Rc ≈ 0.6Rmin

Rc ≈ 6λ

Rc ≈ 650Δ
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Inspection of Fig. 21 reveals systematic deviations from these simple estimates. Investi-

gations with other fuel-oxidizer systems would be useful in understanding the nature of

these deviations better. The results indicate that such estimates are useful but are often

merely rough guides to the magnitude rather than precise relationships.

All of these ideas have an underlying assumption of quasi-steady behavior near the

critical initiation condition. Detailed computations indicate that the time scales associated

with the blast wave decay and quasi-steady evolution of slightly curved waves are incom-

mensurate. Further, as discussed in the next section, the entire notion of quasi-steady

behavior in high-activation systems is questionable.

We conclude that unsteadiness of the reaction zone is an essential component of estab-

lishing a detonation. An alternative model of the critical conditions for initiation can be

developed39 based on purely unsteady considerations. This can be made quantitative by

analyzing the interaction of the reaction zone with the unsteady expansion wave following

the blast wave. Computation of the time scales associated with this expansion indicates

that they are of the order of the reaction time near the critical radius Rc. Competition

between the chemical reaction and the quenching effects of the unsteady expansion can be

used to define an alternative critical condition to (28). A realistic model must incorporate

both the effects of unsteadiness and curvature.

34



VI. IS THE QUASI-STEADY ANALYSIS VALID?

What is the significance of the critical curvature and the large ratio between Rmin and Δ◦?

Clearly, exceedingly small amounts of curvature result in the disappearance of sonic points

at the present level of approximation. While it is tempting to conclude that this indicates

failure of all but the most nearly planar waves, the numerical solutions for supercritical

curvatures (see Fig. 12) clearly indicate that a strong exothermic reaction does occur in

those cases while failure or quenching in the conventional sense does not.

A more logical conclusion is that the role of unsteadiness must be reconsidered in the

analysis. Indeed, detonation waves in gases are overwhelmingly characterized by unsteadi-

ness rather than quasi-steady behavior. It is clear that the quasi-steady approximation

(see the Appendix) used to derive Eqs. (5) fail in the vicinity of the maximum curvature

point. Less obvious is that for state-sensitive rates, unsteadiness appears to play an essen-

tial role even far from the critical region. The role of unsteady effects is considered briefly

in the present section.

It is well known that the ZND detonation structure in the limit of large activation

energy for one-step Arrhenius kinetics approaches a square profile. In this square-wave

limit, the induction zone separating the lead shock and thermal explosion (fire) becomes

extremely temperature sensitive. Stability analyses carried out in this limit6,40 indicate

catastrophic instability with unstable growth at arbitrarily high frequencies. Consider-

ing these results, one may well question the applicability of the quasi–steady, quasi–one–

dimensional analysis of the present paper. We mention here two of the major issues related

to this difficulty. The complete resolution of these issues is clearly a major research project
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so we provide only a qualitative discussion of our proposed solutions and leave the resolu-

tion for future communications.

First, one may wonder whether the multitude of unstable modes present in the linear

stability analysis would not destroy the quasi-steady wave structure on very short time

scales. We notice, that

i) the catastrophic instability occurs in the limit of large activation energy, i.e., extreme

temperature sensitivity of the induction length, and that

ii) the unstable eigenmodes refer to the unperturbed detonation structure, i.e., to a spe-

cific induction length of the square wave profile.

From i) it follows that a very small perturbation, of order O(1/θ), in shock strength

will produce leading order changes of the induction time of fluid particles that have been

processed by the shock. As a consequence, very small changes of the shock velocity will

immediately cause the induction zone to shrink by a factor of order O(1). Now assume that

this change of the shock strength has been brought about by the growth of an unstable

eigenmode. Then, due to the strong temperature sensitivity of the induction length and

remark ii) above, this eigenmode will drive itself out of resonance and it will not grow any

further.

Every unstable eigenmode that has a characteristic time comparable to the passage

time of a particle through the detonation structure will suffer from this self-detuning mech-

anism and hence will most likely not be observed to grow to large amplitudes. In fact,

numerical simulations of unstable one-dimensional detonations based on Arrhenius kinetics

by Abouseif and Toong41 or Bourlioux and Majda42 show large amplitude nonlinear oscil-
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lations with characteristic periods much longer than the above-mentioned passage time of a

particle. i.e., the induction time. These results strongly support our qualitative arguments,

and they might even find their explanation here. (See also Buckmaster,43 Klein44)

Second, the quasi–steady, quasi-one–dimensional analysis presented above assumes

the fire to be at rest relative to the leading shock wave. This is explicitly used in the

matching procedure in Sec. III.C. We will explain now that this assumption is valid only

for strictly stationary flow configurations, but that the resulting D(κ) relation cannot be

used as an intrinsic front propagation law for evolving weakly curved waves.

Consider an evolving front with characteristic radius of curvature R, a typical induc-

tion length 
I and front normal velocity of order DCJ. The characteristic evolution time

scale for this wave will be

tref =
R

DCJ
(31)

and the wave front curvature will thus evolve on that time scale.

On the other hand, since we assume the distinguished limit

θ

I

R
= O(1)

relating curvature and activation energy, these changes in the wave front curvature will

produce leading order changes of the induction length. As a consequence, the fire moves

relative to the lead shock at a speed


̇I ∼ 
I

tref
=

1
θ

DCJ .

Hence, in the two frames of reference attached to the lead shock and the fire, the flow

velocities will differ by order O(1/θ).
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Next we recall that in the matching calculations of Sec. III.C, these first order velocities

played a major role in determining the D(κ) relation. It follows that the unsteady changes

of the curvature, and hence of the induction length in an evolving front, will nontrivially

modify the quasi-steady detonation speed-curvature relation (22) of this paper. Detailed

computations27 show that an inherently unsteady propagation law replaces the quasi-

steady D(κ) relation for large activation energy, provided the underlying assumption of a

slow time scale evolution with the reference time scale from (31) takes place.

Despite the limited applicability of the present results, our analysis highlights the

key effects of curvature in the presence of highly temperature sensitive induction kinetics.

Further, it shows how to implement in this kind of analysis a detailed chemical kinetic

reaction scheme and it has paved the way for further analyses including unsteady effects

and large deviations from the CJ-speed.27,44
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VII. CONCLUSIONS

We have presented numerical and approximate analytical solutions to the quasi-steady

structure of curved detonation waves. Numerical solutions with a full thermochemical

treatment are in reasonable agreement with the approximate large activation energy anal-

ysis except for mixtures with large amounts of argon dilution.

These solutions demonstrate the existence of a limiting critical curvature. For waves

with a curvature larger than this maximum value it is not possible to find solutions that

contain a sonic point. We propose two conclusions from these observations:

First, the critical radius of curvature appears to be an outstanding candidate for a

characteristic length by which to scale the critical scales of detonation propagation, such

as detonation cell sizes or critical tube diameters. It seems to be much better suited than a

characteristic reaction zone thickness for this purpose, because it is (i) uniquely determined

by the thermodynamic and chemical kinetic properties of the combustible and (ii) its order

of magnitude matches that of the critical scales, while reaction length scales are typically

a few orders of magnitude smaller.

Secondly, the significance of the failure of the quasi-steady theory for detonation

propagation appears to be the onset of unsteadiness in the detonation process. Further

analyses are needed, however, to establish this link in detail and to relate these effects to

detonation quenching or failure.
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APPENDIX: QUASI-STEADY REACTION ZONE EQUATIONS

For completeness, a simple derivation of the quasi-steady reaction zone equations is pre-

sented here. The validity of these equations is also examined in view of the approximate

and numerical solutions that have been obtained in this paper. The key equation that has

to be examined is conservation of mass

∂ρ

∂t
+ ∇ · (ρu) = 0 (A.1)

Applying the transformations of Eq. (1), we obtain

1
ρ

(
∂

∂t
+ (D − u)

∂

∂x

)
ρ =

∂u

∂x
− α

u

R − x
(A.2)

where α = 0 (planar) or 1 (cylindrical) or 2 (spherical) depending on the geometry. The

quasi-steady, slightly-curved approximate form of this equation can be deduced with the

aid of the following order of magnitude estimates

x ∼ Δ ; tslow ∼ D/
∂D

∂t
; τ ∼ D − u

Δ

Estimating the size of each term in Eq. (A.1), we find that in order to obtain the quasi-

steady form of the equations we must have

tslow >> τ (A.3)

so that the evolution of the wave speed is slow compared to the transit time of fluid elements

through the reaction zone. In the limit as τ/tslow → 0, the time derivative vanishes and we

can treat R as a constant so that the equation effectively is time-independent. To further

simplify the equation, we need to suppose that the reaction zone length is small

R >> Δ
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so that the last term in (A.2) can be expanded to yield the approximate expression

(D − u)
∂ρ

∂x
= ρ

∂u

∂x
− αρ

R
u + O(

x

R
)2

which as x/R → 0, yields the first equation of Eq. (2), taking into account the definition

w = D - u and Eqs. (3) and (4). Similar considerations (only involving the unsteady

behavior) can be applied to the momentum, energy and species equations to obtain the

results of Eq. (2).

The validity of the approximations can be a posteriori checked by using the solutions

given in Secs. III and IV. For the regime of interest, the quantity Δκ is of the order of

10−3 (see Fig. 14 and Eq. (24)), verifying that the slightly-curved approximation is valid.

The time scale for the quasi-steady evolution of a spherical or cylindrical wave can be

estimated by using the definition of curvature Eq. (4), the wave speed D = dR/ dt and the

D(κ) relation

dD

dt
= −κ2

2
D

dD

dκ
; tslow =

−2
κ2 dD

dκ

.

Clearly, as κ → κmax, the derivative of the D(κ) relation becomes infinite, the time scale

tslow will approach zero and the quasi-steady approximation will fail. Away from this

point, i.e., for κ < κmax, the approximate relationship (25) can be used to show that the

quasi-steady approximation is valid as long as (A.3) holds.

However, there are many situations in which there is an externally imposed evolu-

tion time scale. Examples are the situation discussed in Sec. V regarding the blast wave

initiation and in Sec. VI regarding the role of instabilities. In these situations, the flow

can no longer be quasi-steady since the detonation wave speed will be changing on a time

scale comparable to or faster than the reaction time. This appears to be the case for many
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physical problems of interest and is the motivation for considering an unsteady version of

the D(κ) relation, alluded to in Sec. VI.
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TABLES

TABLE I. Hydrogen-Air Detonation Parameters

H2 DCJ D(0) D(κmax) Δ◦ θ γvN κmax

% (m/s) (m/s) (m/s) (mm) (mm−1)

10 1287.2 1289.3 1258.4 5.232×10+3 26.4 1.341 3.982×10−7

15 1516.7 1523.8 1481.8 3.210×10+1 25.4 1.329 5.725×10−5

20 1704.7 1715.4 1666.7 6.788×10−1 22.0 1.323 1.450×10−3

25 1860.7 1869.1 1763.9 2.398×10−1 9.42 1.319 7.800×10−3

30 1976.5 1984.6 1836.6 1.705×10−1 7.79 1.318 1.327×10−2

35 2050.7 2054.7 1910.2 1.736×10−1 7.50 1.319 1.319×10−2

40 2099.6 2101.2 1965.2 2.155×10−1 8.57 1.322 9.710×10−3

45 2140.9 2141.5 2030.4 2.999×10−1 9.71 1.326 5.663×10−3

50 2179.5 2179.5 2088.0 4.876×10−1 13.0 1.330 2.625×10−3

55 2216.1 2216.4 2133.9 1.142×10+0 21.8 1.336 9.915×10−4

60 2250.7 2250.7 2168.1 4.669×10+0 25.8 1.342 3.390×10−4

65 2282.7 2282.7 2205.3 2.352×10+1 22.7 1.348 9.687×10−5

70 2311.4 2311.4 2236.0 1.102×10+2 22.0 1.356 2.055×10−5
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TABLE II. H2-O2-N2 Detonation Parameters

N2 DCJ D(0) D(κmax) Δ◦ θ γvN κmax

% (m/s) (m/s) (m/s) (mm) (mm−1)

0 2842.2 2842.5 2589.2 4.230×10−2 5.46 1.316 1.179×10−1

10 2642.1 2648.2 2404.3 4.754×10−2 5.58 1.316 9.940×10−2

20 2473.6 2480.8 2263.3 5.513×10−2 5.86 1.316 7.874×10−2

30 2326.1 2333.5 2130.7 6.752×10−2 6.18 1.315 5.818×10−2

40 2186.9 2194.1 2009.8 8.818×10−2 6.37 1.316 3.851×10−2

50 2050.1 2056.7 1900.4 1.279×10−1 7.09 1.317 2.102×10−2

60 1904.8 1910.1 1790.5 2.336×10−1 8.51 1.319 7.712×10−3

70 1722.7 1724.9 1665.9 8.944×10−1 17.2 1.324 8.255×10−4

80 1468.5 1469.5 1425.9 1.614×10+1 24.1 1.334 1.190×10−5
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TABLE III. H2-O2-Ar Detonation Parameters

Ar DCJ D(0) D(κmax) Δ◦ θ γvN κmax

% (m/s) (m/s) (m/s) (mm) (mm−1)

0 2842.2 2842.5 2589.2 4.230×10−2 5.46 1.316 1.179×10−1

10 2565.5 2565.8 2301.3 3.790×10−2 5.04 1.330 1.396×10−1

20 2355.7 2355.9 2080.1 3.594×10−2 4.40 1.348 1.528×10−1

30 2189.6 2189.8 1904.7 3.573×10−2 3.79 1.368 1.546×10−1

40 2048.7 2048.7 1752.3 3.748×10−2 4.06 1.392 1.450×10−1

50 1925.1 1925.1 1622.9 4.190×10−2 4.09 1.419 1.233×10−1

60 1811.4 1811.2 1503.5 5.103×10−2 3.91 1.452 9.202×10−2

70 1693.8 1693.8 1377.1 7.223×10−2 5.21 1.492 5.642×10−2

80 1544.5 1545.1 1263.4 1.424×10−1 5.41 1.540 2.240×10−2
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FIGURE CAPTIONS

FIG. 1. Examples of curved detonation fronts occurring in diffracting and propagating det-

onations. a) diffraction around a corner. b) yielding confinement. c) blast wave initiation.

d) cellular instability.

FIG. 2. a) Spherical or cylindrical detonation front with a radius of curvature R. b)

Equivalent quasi-one dimensional flow in the wave-fixed frame.

FIG. 3. Nondimensional solution d∗ vs. κ∗ for the large activation energy analysis.

FIG. 4. Detonation velocity D/DCJ vs curvature κ for stoichiometric hydrogen-air at

nominal initial conditions (298 K, 1 atm).

FIG. 5. Reaction zone structure for stoichiometric (30% H2) hydrogen-air detonation with

no curvature κ = 0, D = 1984.6 m/s. Normalized variables vs. distance downstream from

shock. Nominal initial conditions (298 K, 1 atm). Sonic point at 22.5 mm, supersonic

solution downstream.

FIG. 6. Reaction zone structure for stoichiometric (30% H2) hydrogen-air detonation

with no curvature κ = 0, D = 1984.6 m/s. Selected species mol fractions vs. distance

downstream from shock. Nominal initial conditions (298 K, 1 atm).

FIG. 7. Reaction zone structure for stoichiometric (30% H2) hydrogen-air detonation with

no curvature κ = 0, D = 1984.6 m/s. Thermicity σ̇ vs. distance from shock. Nominal

initial conditions (298 K, 1 atm).

FIG. 8. Reaction zone structure for stoichiometric (30% H2) hydrogen-air detonation with

no curvature κ = 0, D = 1984.6 m/s. Thermicity σ̇ vs. distance from shock. This is the
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same data as Fig. 7 but with an enlargement of the ordinate showing the details of the

endothermic regions. Nominal initial conditions (298 K, 1 atm).

FIG. 9. Reaction zone structure for 30% hydrogen-air detonation with a curvature about

one-half the critical value κ = 0.07075 mm−1, D = 1917.03 m/s. Sonic point at 4.00 mm,

supersonic solution downstream. Nominal initial conditions (298 K, 1 atm).

FIG. 10. Reaction zone structure for 30% hydrogen-air detonation with a curvature near

critical κ = 0.1325 mm−1, D = 1836.6 m/s. Sonic point at 3.21 mm, supersonic solution

downstream. Nominal initial conditions (298 K, 1 atm).

FIG. 11. Reaction zone structure for 30% hydrogen-air detonation with a curvature near

critical κ = 0.1325 mm−1, D = 1836.6 m/s. Subsonic solution downstream of sonic point.

Nominal initial conditions (298 K, 1 atm).

FIG. 12. Reaction zone structure for 30% hydrogen-air detonation with supercritical cur-

vature κ = 0.2650 mm−1, D = 1836.6 m/s. Subsonic solution throughout. Nominal initial

conditions (298 K, 1 atm).

FIG. 13. Thermicity vs. distance for the four 30% hydrogen-air detonation cases shown

in Figs. 9-12.

FIG. 14. Detonation velocity D/DCJ vs normalized curvature κΔ◦ for hydrogen-air mix-

tures between 10 and 60% hydrogen at nominal initial conditions (298 K, 1 atm). Only

the upper portion of the D(κ) function is shown.

FIG. 15. Nondimensional activation energy θ = Ea/RTvN for hydrogen-air mixtures at

nominal initial conditions (298 K, 1 atm).
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FIG. 16. Critical curvature vs. diluent concentration for H2-O2-diluent mixtures.

FIG. 17. Minimum detonation velocity D/DCJ vs normalized curvature κΔ◦ for argon

diluted stoichiometric hydrogen-oxygen mixtures. Nominal initial conditions (298 K, 1

atm).

FIG. 18. Comparison between the large activation energy (LAE) asymptotic analysis and

numerical predictions. a) maximum velocity defect; b) maximum curvature.

FIG. 19. Minimum radius of curvature Rmin, reaction zone length Δ◦, cell width λ, critical

tube diameter dc, and critical initiation length scale Rc = (Ec/ρ◦D2
CJ)

1/3 as a function of

hydrogen concentration for hydrogen-air mixtures at nominal initial conditions (298 K, 1

atm).

FIG. 20. Illustration of ideal self-similar blast wave decay vs. quasi-steady D(κ) relation.

FIG. 21. Comparison of three estimates of critical initiation scaling length for the detona-

tion of H2-Air mixtures.
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