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ABSTRACT

We experimentally studied the propagation of coupled fluid stress waves and tube flexural waves

generated through projectile impact along the axis of a water-filled tube. We tested mild steel tubes, 38-

40 mm inner diameter and wall thickness of 0.8, 6.4, and 12.7 mm. A steel impactor was accelerated

using an air cannon and struck a polycarbonate buffer placed on top of the water surface within the

tube. Elastic flexural waves were observed for impact speeds of 5-10 m/s and plastic waves appeared for

impact speeds approaching 20 m/s for a 0.8 mm thickness tube. We observed primary wave speeds of

1100 m/s in a 0.8 mm thickness tube, increasing to the water sound speed with 6.4 and 12.7 mm thickness

tubes. Comparison of our measurements in the 0.8 mm thickness tube with Skalak’s water hammer theory

indicates reasonable agreement between predicted and measured peak strains as a function of the impact

buffer speed. For thick-walled tubes, the correlation between experimentally determined peak pressures
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and strains reveals the importance of corrections for the through-wall stress distribution.

Nomenclature

a Radius of pipe

c Velocity of sound in water

c0 Velocity of sound in tube wall

c1,c2 Skalak’s phase velocities

cK Korteweg’s phase velocity

E Young’s modulus of tube material

h Thickness of tube wall

K Bulk modulus of fluid

m Mass of tube per unit surface area

PD Driver (reservoir) pressure

VB Buffer velocity immediately after impact

VP Projectile impact velocity

ρ Density of steel

ρ0 Density of water

ν Poisson’s ratio

INTRODUCTION

Impulsive loading and the resulting fluid-structure interaction (FSI) has been extensively studied since WWII

[1, 2]. The classical configuration in these experiments is a flat plate with loading created by the underwater

detonation of high explosives at some distance from the plate surface, which results in the normal impact of a
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shock wave followed by a rapid pressure decay [3]. However, in water hammer events, the FSI is due to the

coupling of flexural waves in shells with the pressure (shock) waves in the fluid propagating perpendicular to the

surface of the shell. To investigate this type of coupling, we are using projectile impact and water-filled tubes (as

shown in Fig. 1).

steel projectile

water

specimen tube

strain gage
stress
waves

Vp

pressure gage

plastic buf fer

cavitation

Fig. 1. Schematic diagram of axi-symmetric water-in-tube configuration for generation of flexural waves in a shell coupling with stress waves

propagating in water.

This configuration is similar to that used by Trevena [4] and more recently by Skews et al. [5], and indepen-

dently proposed as an underwater shock simulator by Despande et al. [6] and Espinosa et al [7]. With a piston

velocity of 250 m/s, it is possible to create peak shock pressures of 480 MPa if the tube is considered to be rigid.

The actual shock pressure may be significantly lower, depending on the extent of fluid-solid coupling for this

configuration. The problem of stress waves propagating in a water-filled tube have been considered extensively

in the context of water hammer beginning with Korteweg [8], Joukowsky [9], and recently reviewed by Wiggert

and Tijsseling [10]. There are four axisymmetric modes of deformation for low-amplitude waves [11–13] and

the most significant of these for the present study is the Korteweg mode which is a radial oscillation of the tube

coupled to longitudinal motion of the liquid. The extent of fluid-solid coupling in this geometry is determined

by the parameter Ka/(Eh), which unlike the case of normal impact of a shock wave, is independent of the flow

following the shock and only depends on the fluid and solid properties and geometry.

The simplest theory of the wave propagation in fluid-filled thin-walled tubes is due to Korteweg [8] and was
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experimentally confirmed by Joukowsky [9]. A much more elaborate and complete theory of this situation was

first given by Skalak [14], who treated the tube with shell theory and used an acoustic model to treat the fluid

motion. Recent efforts on the theory of water hammer [10, 16–19] have concentrated on extending or simplifying

Skalak’s theory with some comparison to testing done in piping systems. The main results of Skalak’s theoretical

treatment are that an initial disturbance such as an impact will generate two waves. The primary or slow wave

carries the main disturbance in the fluid pressure and tube strain. The pressure generated by acoustic waves in the

fluid is balanced primarily by the hoop stress from the radial motion of the tube. The tube deformation is a radial

(hoop) mode coupled to an axial bending mode. The primary wave has a dispersive character, which has been

extensively examined by Tijsseling et al. [15].

The precursor or fast wave is a much smaller amplitude (200 times smaller in hoop and 10 times smaller

in longitudinal strain) disturbance than the primary wave. The precursor is an almost purely longitudinal strain

wave induced by Poisson’s effect and the strains associated with the primary wave. Because of the Poisson effect,

the hoop motion of the primary wave creates a longitudinal strain in the tube of opposite sign to the hoop strain

and a factor of 3-4 smaller in absolute amplitude for the primary wave. The tube deformation associated with

the precusor is an axial (bar) wave. The precursor wave was predicted by Skalak [14], taking account of the

longitudinal and bending stresses in the pipe wall. If the primary wave has positive pressure and hoop strain, then

the precursor will be a longitudinal strain tension wave.

The theories of Korteweg [8] and Skalak [14] are linear and predict that the coupled (elastic) stress waves

produced by FSI travel with velocities that are independent of the projectile speed. However, the peak amplitude

of the stress waves is predicted to be a linear function of the projectile speed. We have examined these predictions

by carrying out experiments over a range of projectile speeds for both thin and thick-walled tubes. Our studies

give new data for the regime of plastic deformation and thick-walled tubes.
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EXPERIMENTAL APPARATUS AND TEST PROCEDURE

Gas Gun

Our tests were carried out using a simple gas gun and specimen tubes filled with water. The facility (Fig. 2)

is a low-speed gas gun that is mounted vertically above a specimen tube filled with water. The 0.67 kg steel

projectile is accelerated by a combination of gravity and compressed air using driver (reservoir) pressures, PD,

between 0.14 and 0.66 MPa (Table 1). Prior to installing the specimen tube, the projectile is loaded into the barrel

and using a roughing pump, the projectile is sucked up to the top and held against a rubber seal by the pressure

of the air in the barrel. After the specimen tube is aligned and the instrumentation is connected, the projectile

is launched down the tube. The air reservoir is filled to the desired pressure, the vacuum line is closed, and a

remotely-operated valve connects the air reservoir to the evacuated region above the projectile.

The projectile is not completely ejected from the barrel when it impacts a polycarbonate buffer placed on

the water surface which is just inside the specimen tube. A gland seal is used to prevent water moving through

the clearance space between the buffer and tube. When the buffer is placed in the tube, the resulting air bubble

between the buffer and water free surface is removed through a small hole which is then sealed. In this fashion,

the stress waves are transmitted directly to the water surface inside the specimen tube due to the impact of the

projectile. This prevents the projectile from impacting the specimen tube directly and enables us to measure the

wave velocities without interference from axial waves created by the projectile impact on the tube itself.

The impact generated stress waves in the water cause the tube to deform and the resulting coupled fluid-solid

motion propagates down the tube. The deformation of the tube is measured by strain gages oriented in the hoop

and longitudinal directions and the pressure in the water is measured by piezoelectric transducers. In the thin-

walled tube, a single pressure transducer is mounted in an aluminum fitting glued to the bottom of the tube. In

the thick-walled tube #5, the piezoelectric gages are mounted on the side of the tubes. The bottom of the tube is

fastened to an aluminum bar mounted in a lathe chuck that is placed directly on the floor.
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Fig. 2. Experimental facility with reservoir (compressed gas driver), projectile, specimen tube, and gages.

Test Conditions and Specimens

The three tube configurations tested are listed in Table 2. Shots 17-35 were carried out using thin-walled

mild-steel (C1010) tubes (tube #1-3). The tubes have a wall thickness of 0.77 mm and are about 0.91 m long.

Shots 52-56 (tube #4) and 59-64 (tube #5) were carried out with mild-steel (C1010) tubes with wall thicknesses

of 6.44 mm (0.25 inch) and 12.74 mm (0.5 inch). Each test specimen is instrumented with strain gages at 100

mm increments; these are gages g1 to g7 in Fig. 2. A high-speed video camera (Vision Research Phantom v.7.3)

is used to observe the impact against the buffer and distance-time measurements taken directly from the images

were used to determine the speeds of the projectile immediately prior to impact and the surface position of buffer
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Table 1. Test Matrix.

Shot Tube PD (MPa) VP (m/s) VB (m/s)

17-21 #1 0.14-0.55 7.8-17.6 6.8-14.0

28, 29 #2 0.14, 0.65 9.1, 19.3 7.1, 16.6

30-35 #3 0.14-0.66 6.7-19.1 5.0-13.4

52-56 #4 0.14-0.66 7.1-19.2 6.8-15.2

59-64 #5 0.14-0.66 6.7-18.5 5.7-15.2

during experiments.

The projectile speed at the exit of the barrel was varied by using different pressures in the gas reservoir. Initial

driver gas conditions and measured projectile speeds are given in Table 1. Projectile speeds are determined from

video images over 20 mm of motion. Although there is substantial variability in the exit speed, there is a clear

trend of increased projectile speed as reservoir pressure increases. The projectile exit speed is about 5 m/s without

driver gas and increases with increasing driver pressure; the speed ranges between 6.7 and 19.1 m/s at barrel

exit. Variations in friction, seating of the projectile against the rubber seal, low accuracy of the projectile speed

measurement system, and the timing of the filling and discharge process all contributed to the variability in the

gun performance.

A position history of the buffer surface is also extracted from movies with MATLAB image processing

(Fig. 3). The buffer speed is calculated from the history immediately after the projectile impact. The maxi-

mum buffer speeds are observed to consistently be 2-3 m/s lower than projectile impact speeds. The buffer is
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observed to almost instantly accelerate following projectile impact but then immediately slows down due to the

interaction with water in the tube. Close to the time of arrival of the reflected wave from the tube bottom, the

buffer begins to rise and pushes the projectile back up.
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Fig. 3. Buffer surface history in shot 34 (VP = 16.1 m/s, PD = 0.64 MPa).

RESULTS AND DISCUSSION

Elastic waves in thin tubes

Elastic strain waves are excited in the thin-walled tubes when the driver pressure is sufficiently low, e.g., PD

= 0.14 MPa. Figure 4 shows the hoop-strain histories measured at locations g1 (bottom trace) to g7. The bottom

gage is mounted 21 mm from the end of the specimen, 129 m below g7; the other locations are as given in Fig. 2.

The top trace in Fig. 4 is the pressure history measured at the bottom of the specimen tube. In Fig. 4, the line

labeled 1213 m/s indicates the leading edge of the main stress wave front that is initiated by the impact. The

subsequent reflection of stress waves from the bottom and re-reflection from the buffer can be observed as distinct
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Table 2. Tube data.

Tube Length (mm) ID (mm) h (mm)

#1 915 39.7 0.77

#2 906 39.9 0.77

#3 905 40.0 0.77

#4 908 38.0 6.44

#5 908 38.1 12.74

strain pulses in this figure. The averaged peak strain from all seven hoop gages in shot #28 is 1.19 mstrain (1

mstrain = 10−3), lower than the nominal proportional elastic limit of 2.0 mstrain. The primary wave speed of 1213

m/s is about 1% higher than Skalak’s theoretical phase speed, c1 = 1199 m/s. Theoretical values are calculated by

using the nominal steel properties and experimental geometry listed in Table 3. The speed c1 is 0.4% higher than

the speed cK (=1194 m/s) predicted by the simple Korteweg theory

cK =
c√

1+ 2Ka
Eh

(1)

which is often used in the analysis of water hammer events. In agreement with Skalak’s theory, a very low

amplitude longitudinal precursor in the tube is also observed on the longitudinal strain gages. The speed is 5355

m/s, 2% higher than Skalak’s theoretical phase speed, c2 = 5260 m/s. The speed c2 is 2.9% lower than the

thin-plate longitudinal wave speed in the tube wall c0 (=5416 m/s), given by.

c0 =

√
Eh

m(1−ν2)
. (2)
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Fig. 4. Hoop strain and end pressure histories - elastic waves in shot #28, VB = 7.1 m/s (VP = 9.1 m/s, PD = 0.14 MPa).

The longitudinal strains measured at four locations are shown in Fig. 5. The longitudinal strain wave has the

opposite sign as the hoop strain wave but the absolute amplitude varies in a similar fashion with time. Figure 6

is an enlarged view of an initial portion of the hoop strain history for Shot #28 at g5 in Fig. 2 (the fifth history

from the bottom in Fig. 4). In this figure, the longitudinal strain measured at the axial location is also presented.

Average value of the peak hoop and longitudinal strains listed in Table 4 are 1.19 mstrain and -0.449 mstrain.

Skalak’s theory for the hoop strain in the case of sudden stoppage of flow can be applied to the present case and

predicts

εhoop = 0.792
p0a
Eh

(3)

where p0 = ρ0VBc which given εhoop = 1.06 mstrain using the buffer speed, VB. The predicted value of peak

hoop strain is in reasonable (within 20%) agreement with the measured values. Using the projectile speed, VP,

to determine P0 results in a prediction of 1.35 mstrain, which is slightly higher than the experimental results.
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Table 3. Geometrical and material properties (at 295 K and 1 bar).

Water

Bulk modulus K 2.200 GPa

Density of water ρ0 997.7 kg/m3

Velocity of sound in water c 1485 m/s

Mild steel (C1010)

Density of steel ρ 7860 kg/m3

Poisson’s ratio ν 0.280

Mass of tube per unit surface area m 6.01 kg/m2

Radius of pipe a 20.4 mm

Thickness of tube wall h 0.77 mm

Young’s modulus E 211 GPa

Tensile strength 365 MPa

Yield strength 305 MPa

Elongation 20%

11



0 0.5 1 1.5 2 2.5

8

10

12

14

16

18

20

Time (ms)

εε εε 
(m

 s
tr

ai
n

)

Bottom 

g7 

g6

g5

Fig. 5. Longitudinal strain histories - elastic waves in shot #28,

Skalak’s theory for the longitudinal strain predicts that

εlongitudinal =−0.182
p0a
Eh

. (4)

Predicted values are -0.243 mstrain and -0.312 mstrain with VB and VP, respectively. The average measured peak

value is -0.449 mstrain, about 50% larger than the prediction.

Since the buffer speed gradually falls and eventually reverses following the impact, the resulting strain waves

have a sharp rise followed by a rapid decay. The decay continues until the reflected wave returns from the bottom

of the tube. The decay of pressure and strain behind the initial peak is approximately exponential; this is due

to the inertia of the water and the increasing mass of water that must be accelerated by the buffer as the sound

waves propagate away from the buffer into the fluid. For an idealized impact problem, we can predict the pressure

profile by making use of the classical treatments of shock wave generation and decay in solids [20, 21]. For the

simplest case, numerical [5] or analytical [6] models of the buffer-water dynamics predicts an exponential decay

of pressure behind the initial peak. Differences in acoustic impedance between the impactor, buffer and fluid as

12



Table 4. Experimental data of frontal peak strains in shots 28 and 29.

gage shot 28 [mstrain] shot 29 [mstrain]

hoop g1 1.24 3.06

hoop g2 1.13 2.05

hoop g3 1.01 1.59

hoop g4 1.20 1.85

hoop g5 1.29 1.94

hoop g6 1.24 1.83

hoop g7 1.24 1.79

longitudinal g5 -0.443 -0.749

longitudinal g6 -0.472 -0.799

longitudinal g7 -0.432 -0.684

well as the deformation of the thin-walled tubes result in a less ideal situation for the present experiments than

considered by the previous authors; as a consequence, prediction of the pressure pulse is less straightforward.

Figure 7 shows the time history of the ratio of the longitudinal strain to hoop strain from Fig. 6. Skalak’s

theoretical prediction is that this ratio is independent of the peak pressure. For the thin-walled tubes, the ratio is

predicted to be εlongitudinal/εhoop = -0.230, which is also plotted in the figure. The ratio in the experiment strongly
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fluctuates but is comparable to the prediction except right at the wave front. The oscillations in the pressure signals

can arise from a variety of effects, such as, pressure waves generated during the impact process, radial oscillations

of the tube wall and fluid.
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Fig. 6. Hoop and longitudinal strain histories - elastic waves in shot #28, gage location 5 (350 mm from the bottom of specimen tube), VB =

7.1 m/s (VP = 9.1 m/s, PD = 0.14 MPa).

Plastic waves in thin tubes

As the buffer speed is increased, the peak amplitude of the initial strain wave is observed to exceed the nominal

elastic-plastic proportional limit of 2 mstrain. As an example of this, the hoop strain and pressure histories in shot

#29 are shown in Fig. 8) and the longitudinal strains are shown in Fig. 8. The precursor and primary wave

velocities are 5342 and 1237 m/s, respectively. Although Skalak’s phase velocities are obtained by assuming

elastic behavior, the experiments are in reasonable agreement with Skalak’s model: c2 = 5260 m/s and c1 = 1199

m/s.
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Fig. 7. Ratio between hoop and longitudinal strains of Fig. 6.

The strain history at g1 (the nearest location to the surface of the buffer) indicates the peak amplitude of the

hoop strain is larger than 3.0 mstrain and gradually reduces until at g7, the value is less than 2.0 mstrain. Since the

loading is dynamic and the yield strength of mild-steel is a strong function of strain rate, the onset of yielding is

expected to occur at strains higher than 2.0 mstrain. A visible bulge at the bottom of the specimen tube confirmed

that plastic deformation definitely occurred in experiments with higher buffer speeds as shown in Fig. 9. These

bulges are associated with high pressure created by the reflection of the stress waves at the tube bottom. A visible

bulge is also observed near the top of the specimen tube, at the location of the buffer bottom surface. Examination

of the strain traces and measurement of the strain following the test also provides evidence of plastic deformation.

The residual hoop strain at g5 (around the middle of the specimen) is 0.16 mstrain, and at g1 is 1.2 mstrain.

A closeup of hoop and longitudinal strain histories in shot #29 at g5 is shown in Fig. 11. Skalak’s predictions

for hoop and longitudinal strains are 2.47 mstrain and -0.569 mstrain with the buffer speed VB. Since averaged

hoop and longitudinal strains measured at 7 gages are 2.02 mstrain and -0.744 mstrain (see Table 4), the predicted

hoop strain is larger than the experiment while the longitudinal strain is smaller.
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Fig. 8. Hoop strain and end pressure histories - plastic waves in shot #29, VB = 16.6 m/s (VP = 19.3 m/s, PD = 0.65 MPa).

In the plastic case, the magnitude of hoop and longitudinal strains increases and the ratio fluctuates less than

in the elastic case, see Figure 12. The peak hoop strain is larger than the predicted value at g1, and then becomes

much smaller at g5 while the peak longitudinal strain is still close to the predicted value. The dissipation of energy

due to plastic deformation results in the decay of the peak amplitude between g1 and g5. By comparison, in the

purely elastic cases, the wave amplitude remains relatively constant in propagation from g1 and g7.

Comparison between theory and experiments

Although some plastic deformation is observed for higher buffer speeds, the maximum residual strain is

still smaller than 2.0 mstrain except near the bottom end of the specimen. For this reason, we believe that our

experimental results can be compared to the classical elastic theory although some deviation should be expected

at the higher projectile speeds. Precursor and primary wave speeds in thin-walled tubes (tube #1-3) are plotted

vs. the maximum buffer speeds in Fig. 13. The predicted phase velocities show good agreement with the present

experimental results: c1 = 1199 m/s, c2 = 5260 m/s, independent of the buffer speed.
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Bottom 
bulge

Fig. 9. Bulge near the closed-end bottom created by the reflection of the stress wave.

Averaged peak hoop and longitudinal strains are plotted in Fig. 14. Experimental results show reasonable

agreement with theoretical predictions with the uncertainty range of most points overlapping the predictions. As

discussed in the previous section, the primary wave front strains are oscillatory and this leads to a large uncertainty

in the observed peak strain.

Thick-walled tube results

Watters [22] concluded that the use of the thick-wall equations is important when the ratio of the inner diam-

eter to the wall thickness (2a/h) is less than 40. The ratio 2a/h of the thin-walled specimen tubes discussed in the

previous sections is over 52. In this section, we present the results of tests carried out with h = 6.4 and 12.7 mm

thick-walled specimens. Since the h = 6.4 mm tube gave the same qualitative results as the h = 12.7 mm tube, we

only discuss the latter case. Figure 15 shows hoop strain histories in shot #62 at VB = 15.2 m/s. We previously

observed plastic waves propagating through the thin-walled tube at a similar buffer speed of 16.6 m/s. Since the
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Fig. 10. Longitudinal strain histories - shot #29.

interaction between the tube and water is quite weak in this case, the amplitudes of the elastic waves are a factor

of 10 smaller than for the thin-walled tubes and the primary wave propagates at 1486 m/s, which is very close to

the water sound speed. Figure 16 shows the longitudinal strain histories in the same format as Fig. 15. As the wall

thickness increases, the longitudinal wave behaves more dispersively and has less correlation to the hoop wave.

Pressure transducers were mounted in the wall of tube #5 at locations g1, g4, and g6. The pressure signals

(Fig. 17) show the initial wave generated by the impact of the projectile, propagation through water, and reflection

from the bottom boundary. After the arrival of the reflected wave at the buffer, the buffer moves upward, which

produces a tension wave. This is observed at g1 as a period of nearly constant, negative pressure after 1.5 ms. This

tension wave propagates and appears subsequently at g4 and g6. A reflected wave can be observed propagating

back through the tension region at 2 ms on g4 but by the time it reaches g1 at 2.3 ms, it has been significantly

attenuated. The appearance of negative pressure regions and the association with cavitation is well established by

previous studies [4, 16].
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Fig. 11. Hoop and longitudinal strain histories - plastic waves in shot #29, gage location 5, VB = 16.6 m/s (VP = 19.3 m/s, PD = 0.65 MPa).
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Fig. 12. Ratio between hoop and longitudinal strains of Fig. 11.

We compare measured and predicted primary wave speeds as a function of the wall-thickness in Fig. 18. As

anticipated from Eqn. 1, wave speeds increase as the wall thickness increases. The experimental values show

reasonable agreement with both Korteweg’s approximate thin-wall theory and Tijsseling’s thick-wall [23] theory.
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We can experimentally examine the relationship between peak pressure and peak hoop strain by using the

measured values of both parameters. Substituting a = 25.4 mm and h = 12.7 mm into Skalak’s theoretical expres-

sions [14], we obtain the relationship for hoop strain in terms of the parameter p0

εhoop = 0.962
p0a
Eh

. (5)

Here a is the average of the inner and outer radius of tube #5. The pressure associated with the primary wave is
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Fig. 15. Hoop strain histories in shot #62 with specimen tube #5 (12.7 mm thick wall), VB = 15.2 m/s (VP = 18.5 m/s, PD = 0.65 MPa).

p = 0.979p0 according to Skalak’s theory. Tijsseling [23] developed a correction for the thick-walled tubes by

assuming a quasi-static stress distribution across the thickness of the pipe wall. He obtained the hoop strain at the

external surface tube to be

εhoop,Ti jsseling =
1
E

(
a
h

1
1+ 1

2
h
a

(p− pout)− (1−ν) pout

)
(6)

where p and pout are the internal and external (ambient) pressure. We compare experimental, and theoretical

results in Fig. 19. The experimental results agree well with the thick-wall approximation of Tijsseling and clearly

disagree with Skalak’s thin-wall model in this case. The correction for wall thickness is clearly more important

for predicting the strain-pressure relationship than the wave speed.

Conclusion

We have used projectile impact and steel tubes filled with water to study the propagation of coupled structural

and pressure waves. We are able to use much smaller test rigs than typically employed in water hammer studies
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through the use of high-speed instrumentation and projectile impact.

The predictions of the classical theory of Skalak agree reasonably well with our observations for the case of

the thin-walled tubes and elastic motions. We find qualitative agreement with the predicted splitting of the wave
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Fig. 19. Primary hoop strain vs side-wall pressure for 12.7 mm thick-walled tube.

into precursor and primary branches with two distinct wave speeds. We obtain quantitative agreement at the level

of 10% maximum discrepancies between theory and experiment for both peak amplitude and wave speeds.

The range of wave amplitudes that can be examined is limited on the upper end by plastic deformation and on

the lower end by the sensitivity of the instrumentation. We have varied the amplitude of the pressure and over a

range of about 3 and strain over a range of 20 in the present study. A significant amount of damping is observed

following the onset of plastic deformation and the amplitude of the peak strain is observed to decay substantially
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as the wave propagates along the tube.

The variation of wave speed and amplitude with wall thickness is in reasonable agreement with the theoret-

ical predictions. For thick-walled tubes, the peak strain is substantially reduced due to through-wall stresses, in

agreement with the approximate thick-wall model of Tijsseling [23].

Achnowledgements

This research was sponsored by the Office of Naval Research, DOD MURI on Mechanics and Mechanisms of

Impulse Loading, Damage and Failure of Marine Structures and Materials (ONR Grant No. N00014-06-1-0730),

program manager Dr. Y. D. S. Rajapakse. We thank Chris Krok for his work on the first generation of experiments

and Tim Curran for his work on data processing and image analysis.

References

[1] Cole, R., 1965. Underwater Explosions. Dover.

[2] UER, 1950. Underwater explosion research: A compendium of the British and American reports, Vol. I-

the shock wave, Vol. II-the gas globe, Vol. III-the damage process. Tech. rep., Office of Naval Research,

Washington, DC.

[3] Kedrinsky, V., 2005. Hydrodynamics of Explosion. Springer.

[4] Trevena, D., 1987. Cavitation and Tension in Liquids. Adam Hilger.

[5] Skews, B., Kosing, E., and Hattingh, R., 2004. “Use of a liquid shock tube as a device for the study

of material deformation under impulsive loading conditions”. Proc. Instn. Mech. Engrs. J. Mechanical

Engineering Science, 218, pp. 39–51.

[6] Deshpande, V. S., Heaver, A., and Fleck, N. A., 2006. “An underwater shock simulator”. Proc. R. Soc. A,

462, pp. 1021–1041.

24



[7] Espinosa, H., Lee, S., and Moldovan, N., 2006. “A novel fluid structure interaction experiment to investigate

deformation of structural elements subjected to impulsive loading”. Experimental Mechanics, 46, p. 805824.
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