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Abstract

Hot surface ignition is relevant in the context of industrial safety. In the present

work, two-dimensional simulations with detailed chemistry, and study of the reaction

pathways of the buoyancy-driven flow and ignition of a stoichiometric hydrogen-air

mixture by a rapidly heated surface (glowplug) are reported. Experimentally, igni-

tion is observed to occur regularly at the top of the glowplug; numerical results for

hydrogen-air reproduce this trend, and shed light on this behavior. The simulations

show the importance of flow separation in creating zones where convective losses are

minimized and heat diffusion is maximized, resulting in the critical conditions for

ignition to take place.
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1. Introduction

Ignition of combustible atmospheres by hot surfaces is a common issue in in-

dustrial safety. Determining critical conditions for ignition in terms of surface size

and temperature are essential in order to evaluate the potential of an ignition hazard.

Classical experimental work on hot surface ignition includes that of Coward and

Guest [1], and Kutcha [2]. The former investigated the effect of material (e.g cat-

alytic and non-catalytic surfaces) on ignition thresholds, whereas the latter extended

this work to study the effect of variations in size and geometry. The impact of their

results was limited by their inability to measure flow velocity and composition during

the ignition event. An extensive review of more recent studies is given by Brabauskas

[3]. Experimental work done by Boettcher [4] using a glow plug found the ignition

temperature for n-Hexane to be essentially insensitive to composition away from

flammability limits. Analytical studies have been performed by Gray [5] who inves-

tigated the effect of surface to volume ratio, and more recently Laurendeau [6] in

which a simple model is proposed to estimate the minimum ignition temperature.

Some numerical efforts in this area are due to Kumar [7] who developed a one-

dimensional model to study hydrogen ignition, and the two-dimensional steady sim-

ulations of Adler [8] in which the problem of a circular hot spot in contact with

reactive mixture was analyzed. Boettcher [4] carried out simulations to examine

predicting lower flammability limits with tabulated chemistry as well as studying

the effect of hot surface area on ignition temperature using one-step and detailed

chemical reactive models [9].

None of the previous work has been concerned with analyzing in detail the flow

field in the vicinity of the hot surface. For an accurate numerical prediction of this

flow, it is necessary to solve the conservation equations together with transport of

chemical species on a mesh small enough to capture the thermal and hydrodynamic

boundary layer surrounding the hot surface. The wide range of temporal and spa-

tial scales involved, as well as the size of detailed chemical kinetic mechanisms pose
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significant computational challenges. Hydrogen is one of the fuels for which the

chemistry is reliably known -all reaction rates have been experimentally measured-,

and the detailed kinetic mechanism is of a reasonable size to simulate realistic ge-

ometries. A two-dimensional numerical simulation of the transient viscous flow and

reaction of combustible atmospheres using a detailed hydrogen oxidation mechanism

is presented. Special attention is given to the near-wall induced buoyancy flow, and

flow separation to gain insight on the dynamics, time and location of the ignition

event.

2. Physical model and computational methodology

2.1. Governing equations

The motion, transport and chemical reaction in the gas surrounding the glow-

plug are modeled using the variable-density reactive Navier-Stokes equations with

temperature-dependent transport properties.

∂t(ρ) +∇ · (ρu) = 0 (1)

∂t(ρu) +∇ · (ρuu) = −∇p+∇ · τ + ρg (2)

∂t(ρYi) +∇ · (ρuYi) = −∇ · ji + ω̇i (3)

∂t(ρhs) +∇ · (ρuhs) = −∇ · jq + q̇chem (4)

p = ρR̄T, τ = µ[∇u + (∇u)T ]− 2

3
µ(∇ · u)I (5)

In Eqs. (1)-(5), ρ, p and T are the gas density, pressure and temperature, u is the ve-

locity vector, hs is the mixture sensible enthalpy, g is the gravitational acceleration,

Yi is the mass fraction of species, ji is the species diffusion flux, ω̇i represents the rate

of production/consumption of species, jq is the heat flux, q̇chem = −∑N
i=1 ∆hof,iω̇i

is the rate of conversion of chemical into thermal energy, ∆hof,i is the enthalpy of

formation of species, R̄ is the specific gas constant, µ is the mixture viscosity, and I

is the identity matrix. Radiation is neglected in the current numerical model.
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The species diffusion term, ji, uses Fick’s law for binary mixtures. For multi-

component mixtures where one component is present in large amounts (i.e. N2 for

combustion in air) all other species may be treated as trace species. Writing the

binary diffusion coefficient with respect to N2 yields:

ji = −ρDi∇Yi, with Di = Dj,N2 (6)

where Di is the effective diffusion coefficient. In Eq. 6, thermodiffusion or Soret

effect has been neglected.

We solve the mass conservation equation, Eq. 1, and only for N − 1 species

equations, Eq. 3. The last species mass fraction, N2, is obtained by writing YN2 =

1−∑N−1
i=1 Yi and absorbs all inconsistencies introduced by Fick’s law. This error is

negligible when the last species, YN2 , is in a high concentration as is the case for

combustion in air [10].

The heat flux jq includes the effect of sensible enthalpy transport by diffusion

jq = − κ
cp
∇hs +

N−1∑
i=1

hs,i

(
ji +

κ

cp
∇Yi

)
(7)

where κ and cp are the mixture averaged thermal conductivity and specific heat,

respectively. In Eq. 7, the Dufour effect (i.e. energy flux due to a concentration

gradient) has not been taken into account [11]. Substituting Eq. 6 into 7 yields:

jq = − κ
cp
∇hs +

N−1∑
i=1

hs,i

(
1− 1

Lei

)
κ

cp
∇Yi (8)

where Lei = κ/(cpρDi) is the Lewis number of species i. The second term on the

right hand side of Eq. 8 vanishes if the Lewis numbers of all species are assumed to

be unity. This approximation is common in combustion codes but is not justified in

the present case [10].

The equations above are integrated in two dimensions using the Open source

Field Operation And Manipulation (OpenFOAM) toolbox [12]. The spatial dis-

cretization of the solution domain is performed using finite volumes. Specifically, the

convective terms were discretized using a second order, bounded TVD scheme; the

mass fractions were discretized using a linear centered scheme for scalars bounded
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between zero and one. The diffusion terms were discretized using the linear cen-

tered scheme together with a second order, conservative scheme for the evaluation

of the surface normal gradients. The linear systems that result from the discretiza-

tion of the governing equations are solved through iterative techniques [13]. The

PBiCG (Preconditioned Biconjugate Gradient) method is used for all linear systems

including the chemical source terms preconditioned through the DILU (Diagonal

Incomplete-LU) technique, whereas the Poisson equation for pressure is solved us-

ing the PCG (Preconditioned Conjugate Gradient) preconditioned by the DIC (Di-

agonal Incomplete Cholesky). The pressure-velocity coupling is achieved using the

PIMPLE (PISO+SIMPLE) algorithm [14]. Finally, the time-step is dynamically

adapted during the course of the computation based on a specified Courant number

to ensure stability of the numerical scheme [15]. In the current study the Courant

number used is 0.2.

2.2. Chemical and transport models

The chemistry is modeled using Mével’s detailed mechanism for hydrogen oxida-

tion which includes 9 species and 21 reactions. This mechanism has been extensively

validated, and reproduces flame speeds and ignition delay times to a reasonable de-

gree of accuracy over a wide range of concentrations [16, 17]. Among the available

alternatives, Mével’s model provides a sound middle ground. It is not the fastest

nor the slowest regarding ignition delay time predictions, which is the quantity of

interest in the current study. The Sutherland Law, modified Eucken relation and

JANAF polynomials are used to account for the functional temperature dependence

of mixture viscosity (µ), thermal conductivity (κ) and specific heat (cp), respectively.

Species diffusivities are computed using Cantera [18]; a constant non-unity Lewis

number, Lei, is specified for each species. This is a convenient approximation since

Lei values are essentially constant and vary in small amounts across flame fronts

[10].

2.3. Domain, initial and boundary conditions

The geometry simulated corresponds a combustion vessel of 11.43 cm x 16.51 cm

with a glowplug of height 9.3 mm, and diameter 5.1 mm located in the center of the
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bottom plane. There are approximately 200,000 cells in the 2D-axisymmetric com-

putational domain. Cells are compressed near the wall of the glow plug, with a mini-

mum cell size of 80µm to properly resolve the thermal and hydrodynamic boundary

layers. The initial conditions are po = 101 kPa, To = 300 K, uo = (0, 0, 0) m/s,

and mass fractions corresponding to a stoichiometric mixture (YH2 = 0.0283, YO2

= 0.2264, YN2 = 0.7453). No-slip boundary condition and constant temperature

Twall = To is imposed on the vessel walls, and on the glowplug surface, a prescribed

temperature ramp given by T (t) = To + rt with r = 220 K/s.

3. Validation and comparison with experiments during heating

To test the heat transfer and fluid mechanics in the numerical model, an ex-

perimental temperature field (obtained via interferometry) of the heating of a sto-

ichiometric H2-air mixture was compared with a simulated field. Details on the

experimental setup, and diagnostics used can be found in Melguizo-Gavilanes et

al. [19]. Experimentally, two heating rates were used 18 K/s and 190 K/s, as it

was observed that imposing a slow heating rate resulted in more uniform heating of

the glowplug. Numerically, as explained in the previous section, a uniform heating

ramp of 220 K/s is used. Imposing a fast heating ramp results in a less expensive

computation as it takes less time to reach the critical temperature for ignition to

occur. In principle, the rate at which the gas is heated may affect the flow field, as

well as the time at which the ignition event takes place. The effect of using slow

and fast heating ramps experimentally, and their influence in the resulting flow field

is quantified in this section. The instantaneous experimental fields were taken ∼
32 s and 3 s after heating corresponding to a glowplug surface temperature of 876

K ± 42 K and 870 K ± 42 K, for 18 K/s and 190 K/s, respectively. The surface

temperature was determined experimentally using pyrometry. The numerical fields

were taken after 2.6 s of heating, or Tsurf = 872 K, in order to match as closely as

possible the experimental values for both heating ramps.

Figure 1 shows the experimental, simulated and a side-to-side comparison of

the temperature fields, together with temperature samples at different heights in
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Figure 1: Fast heating - 190 K/s. Top: comparison of experimental and numerical temperature

fields during heating - glowplug surface temperature 870 K. Bottom: comparison of experimental

(solid lines) and numerical (dashed lines) temperature profiles at different heights in the flow field:

y = 8, 10, 12, 14, 18 mm.

the flow field for a heating rate of 190 K/s. Good agreement is observed in the

thickness of the thermal plume and the temperature samples at all heights examined,

except for an artifact present in the experimental traces at the centerline, and the

underprediction of the wall temperature in the experimental trace at y = 8 mm.

These discrepancies could be attributed to an incipient asymmetry in the thermal

plume caused by non-uniformities in the heating of the glowplug, and the known

limitations of the postprocessing of the experimental optical phase difference fields

obtained using interferometry. Errors are accumulated from the outer edges of the

image towards the axis of symmetry, and near solid boundaries while performing

the inversion of the Abel transform [20]; a crucial and necessary step to obtain the

experimental temperature field.

Figure 2 shows the same fields and traces described in Fig. 1 but for a heating

rate of 18 K/s. The artifact at the centerline is not as pronounced in the temperature
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Figure 2: Slow heating - 18 K/s. Top: comparison of experimental and numerical temperature

fields during heating - glowplug surface temperature 870 K. Bottom: comparison of experimental

(solid lines) and numerical (dashed lines) temperature profiles at different heights in the flow field:

y = 8, 10, 12, 14, 18 mm.

traces and the temperature fields seem to be smoother, however the wall temperature

continues to be underpredicted. Once again, very good agreement is obtained when

comparing both temperature fields, and the samples taken at different heights.
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Figure 3: Error between experimental and predicted fields at different heights in the flow field: y

= 8, 10, 12, 14, 18 mm, for fast and slow heating.

To quantify the discrepancy between the simulated and the experimental fields,

the percentage of error was computed taking the simulated fields as a reference

(see Fig. 3). Negative values of error correspond to higher predicted temperatures,
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whereas positive values correspond to lower temperature predictions. Errors of less

than 5% were obtained across the viewing window/numerical domain for both heat-

ing rates. Notably, even in the regions where the experimental postprocessing tech-

niques are known to perform worst, i.e. centerline and near walls, the maximum

error is of only 10%. These results validate the numerical methodology used, and

provide evidence of the minor role played by the heating rate in the evolution of the

thermal plume and flow field.

4. Ignition Results

4.1. Experimental Results

A total of six experiments were performed at stoichiometric conditions, with

three repetitions for each heating rate. The results are summarized in Fig. 4. An

ignition threshold of 1052 K ± 52 K, and 1028 K ± 53 K was obtained for 18 K/s

and 190 K/s respectively. Sources of uncertainty in the ignition surface temperature

reported in the experiments include wavelength dependence on emmisivity, noise and

calibration errors, and glowplug surface temperature non-uniformities. The observed

shift in ignition threshold between the fast and slow heating rate cases is likely due

to pyrometer field of view. There are regions on the surface of the heated element

where the temperature is higher (this is more pronounced when the fast heating is

used) than in the location recorded by the pyrometer. One could also argue that the

24 K difference in ignition thresholds between heating rates simply means that for

stoichiometric hydrogen-air the heating rate plays a minor role in determining the

ignition threshold of the mixture. This is in contrast with hydrocarbons (n-hexane)

where the rate at which the mixture is heated can influence the ignition threshold

due to low temperature pathways as shown by Menon et al. [21]. Such effects may

be important for very lean hydrogen-air mixtures at low heating rates, however we

did not examine these situations in the present study.

Figure 5 shows a time sequence of a typical ignition event. The time interval

between frames is 100 µs. The formation of an ignition kernel at the top of the

glowplug is clearly visualized, which subsequently turns into a flame that propagates

radially outwards preferentially along the hotter thermal plume. Note that some
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Figure 4: Experimental ignition threshold obtained for stoichiometric hydrogen-air mixture at po

= 101 kPa and To = 300 K using slow and fast heating rates.
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Figure 5: Experimental temperature fields for ignition experiments at po = 101 kPa, To = 300

K and stoichiometric hydrogen-air mixture using a slow heating rate. The time interval between

frames is 100 µs.

of the technical difficulties discussed in section 3 become more apparent with the

presence of a flame, namely, increased noise at the axis of symmetry, near sharp

gradients and solid boundaries. Additionally, at this point, our postprocessing is

further affected by the abrupt expansion and high flame speeds characteristic of

stoichiometric hydrogen-air mixtures. Pressure waves emanating from the initial

ignition/flame kernel, affect the thermodynamic state of fresh unburnt reactants

present in the vessel. The end result is the presence of substantial uncertainty in the

computed temperature field as the postprocessing relies on a fixed initial pressure
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and the use of the ideal gas law to compute the temperature. We are therefore

only using this visualization qualitatively to show the ignition event, flame kernel

formation and early stages of flame propagation. In the next subsection, we examine

ignition in detail by means of numerical simulations.

4.2. Numerical Results

4.2.1. Flow structure

A detailed analysis of the flow field during the ignition event has been performed

to identify important features in the flow such as thermal and hydrodynamic bound-

ary layers, flow separation, thermal plume temperature, velocity distributions and

chemical activity.

Figure 6 (Top) shows the temperature (T) and velocity magnitude (umag) fields

obtained 83µs before ignition, or alternatively, 2.899575 s after the start of heating.

Temperature filled contours taken every 30 K from 400 K ≤ T ≤ 938 K, and velocity

vectors showing clearly the buoyancy driven flow induced by the glowplug. Figure 6

(Bottom) shows plots of the spatial distribution of velocity (ux, uy, and umag), and

temperature at two locations from the surface of the glowplug. The left plot displays

the vertical spatial distribution starting at (x = 0 mm, y = 9.3 mm)-immediately

above the hot surface, whereas the right plot displays the horizontal spatial distri-

bution starting at (x = 2.55 mm, y = 5 mm) -on the side of the glowplug. The

origin of the coordinate system (x = 0 mm, y = 0 mm) is located at the bottom on

the vertical centerline of the glowplug. In the vicinity of the hot surface a thermal

boundary layer can be observed, the buoyancy of the heated gas induces a flow in the

gas surrounding the glowplug, and a thermal plume is created above the glowplug.

Note that in the separated region (top of the glowplug) there is a thicker thermal

layer (shown in more detail in section 3). The thermal plume is outlined by the

outermost temperature contour at T = 400 K. The velocity magnitude field and

velocity vectors show the flow structure near the glowplug. Parcels of fresh cold

gas enter the thermal boundary layer from below and heat up slowly as they travel

upward in close proximity to the wall. Once the parcels of gas reach the upper

right/left corner of the glowplug, the flow separates, creating a region at the top of
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Figure 6: Top: temperature and velocity magnitude field in the vicinity of the glowplug, temper-

ature isocontours and velocity vectors. Bottom: spatial distribution of velocity and temperature

at top -from (xo = 0 mm, yo = 9.3 mm) to (xf = 0 mm, yf = 15.3 mm), and side -from

(xo = 2.55 mm, yo = 5 mm) to (xf = 8.55 mm, yf = 5 mm).

the glow plug where the gas is practically at rest. The gas continues to rise to the

top of the combustion vessel, turns and creates a rather complex vortical flow field

(not visible on the velocity field). Further details of this flow field, and a thorough

study of the ignition dynamics for n-hexane-air mixtures using simplified chemistry

was performed by Melguizo-Gavilanes et al. [19].

In Fig. 6 (Bottom), the horizontal (ux) and vertical (uy) components of the veloc-

ity vector, black and red solid lines respectively, magnitude (umag - dashed line), and

temperature (blue dashed-dotted line) confirm that at up to 0.5 mm away from the
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top surface of the glowplug the flow is essentially stagnant. As a result, the gas can

be readily heated by the hot surface because convective losses are minimal in this

region. This plot also shows the temperature distribution of the thermal plume up

to 6 mm away from the glowplug surface. At the side of the glowplug (x = 2.55 mm,

y = 5 mm), right plot on Fig. 6 (Bottom), the temperature and velocity magnitude

plots show the thermal and hydrodynamic boundary layer thickness, 5.5 mm and

4 mm, respectively. The negative values of ux (gas moving left) display how parcels

of fluid are brought into the thermal boundary layer from colder regions away from

the glowplug, slowed as they approach the hot surface, changing direction gradually

(see increase in uy), subsequently reaching a maximum, immediately followed by a

decrease to zero velocity at the wall consistent with the no-slip condition.

4.3. Time to ignition
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Figure 7: Temperature maximum in computational domain during the course of the simulation.

Inset: closeup to ignition event.

To accurately determine the ignition time, τign, the temperature maximum in

the computational domain and glowplug surface temperature are monitored during

the simulation. For the present study, ignition is defined as the time at which the

maximum temperature in the domain reaches 150 K above the glowplug surface

temperature. The rapid change in temperature during the ignition transient makes
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the ignition time insensitive to the choice of threshold temperature. The inset in

Fig. 7 shows a close up of the main heat release event. The time to ignition is

τign = 2.899658 s, and the temperature of the glowplug surface is ∼ 938 K at this

time. The strong dependence of ignition threshold on temperature is consistent with

results from constant volume explosion computations for stoichiometric hydrogen-

air mixtures. These computations show a rapid increase in ignition delay times

for temperatures below 1000 K, indicative of a sharp change in activation energy

in this temperature range. For example, the constant volume ignition delay time

at 900 K is 94 ms decreasing to 2.09 ms at 930 K. Finally, the ignition threshold

predicted numerically is lower than that determined experimentally. The difference

between predicted and observed ignition temperature is 10.83% and 8.75% for slow

and fast heating rates, respectively. Taking into account uncertainties (upper and

lower bounds) the difference is of 15% and 6.2% for 18 K/s, and 13.1% and 4%

for 190 K/s. It has been reported in previous hot surface ignition work [22, 23]

using stationary laser heated spheres, that surface reactions could be responsible

for higher ignition thresholds than those obtained with inert materials. The effect

of material/surface chemistry on ignition thresholds, while important for safety ap-

plications, is beyond the scope of the present study and will be a topic of future

work.

4.3.1. Ignition process

Figure 8 shows velocity, temperature and OH mass fraction fields together with

velocity vectors at four instances during the simulation. At t = τign− 83µs chemical

activity is already taking place at the top of the glowplug where the temperature

is highest, and convective losses are minimal. The temperature maximum in the

domain (T = 938 K) corresponds to that of the glowplug surface until ignition takes

place. At t = τign + 167µs, an ignition center appears on the temperature field as

closed contours at the top surface of the glowplug. The temperature contours are

rescaled to cover the full range of temperature within the computational domain

at each time shown in Fig. 8. This ignition center is accompanied by a localized

increase in OH concentration (by almost 5 orders of magnitude), and gas velocity.
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Figure 8: Temperature (left), velocity magnitude (middle) and OH mass fraction (right) fields

during the ignition sequence. All fields are rescaled at every time shown.

The velocity vectors show how the ignition kernel abruptly expands and pushes away

the surrounding gas. Further acceleration of the gas from 4.82 m/s to 13.8 m/s in

50µs can be seen on the velocity fields at t = τign + 217µs. The rapid expansion

is evidenced by the abrupt change in direction of the velocity vectors. A nascent

flame is observed in the temperature contours, and the fuel is nearly completely

consumed within the flame kernel. The mass fraction of H2O is 0.235, close to the
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theoretical value of 0.255 given by complete oxidation of a stoichiometric mixture

(not shown in Fig. 8). The last frame, t = τign + 292µs, shows the early stages of

flame propagation. The surrounding gas is displaced radially outwards due to the

volumetric expansion of the burned products. The shape of the flame is determined

by the preferential propagation of the combustion front along the thermal plume

where the fresh combustible mixture is hottest. The temperature contours show

clearly the high-temperature region in the combustion products. The simulations

reproduce the same behavior observed in the experiments reported in section 4.1 with

the ignition kernel forming at the top of the glowplug followed by flame propagation

(see Fig. 5).

5. Discussion

5.1. Energy equation analysis

To gain additional insight into the processes taking place at the top of the glow-

plug, each of the terms in the energy conservation equation is plotted along the

vertical centerline from the surface of the glowplug (see Fig. 9). The plots are

taken at the same times as in Figure 8 to allow for a direct comparison. The ab-

scissas represent the vertical distance along the axis of symmetry measured from

the top surface of the glowplug, whereas the ordinates show the corresponding en-

ergy density and temperature. The solid lines are the convective and diffusive heat

losses, and the chemical source term given respectively by hConvection = −∇· (ρuhs),
hDiffusion = ∇ · (κ/cp∇hs), and hSource = q̇chem. The dashed line is the sum of

the above terms, hUnsteady, and the dashed-dotted line is the temperature. Shortly

before ignition (Fig. 9 top left), close to the glowplug surface, the source term is

mostly balanced by diffusion. The sum is positive up to 0.5 mm from the glowplug

surface, and the temperature maximum remains at the wall. Further away from the

glowplug’s wall (0.5− 5 mm), convection balances diffusion.

In Fig. 9 top right, 250µs later, the temperature maximum is no longer at the

wall but roughly 0.12 mm away from the surface of the glowplug, hence, the rate

at which heat is diffused back to the wall is not large enough to counteract the
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Figure 9: Ignition process: contributions of each term in energy equation and temperature along

normal distance from top surface of the glowplug. Top Left: at t = τign − 83µs - shortly before

ignition. Top Right: at t = τign+167µs - ignition kernel formation. Bottom Left: at t = τign+217µs

- flame kernel formation. Bottom right: at t = τign + 292µs - early stages of flame propagation.

rate at which heat is released by the chemistry at this location, signaling the birth

of an ignition center. The explosive nature of the ignition event can be visualized

in the increase in the source term from 4 × 106 W/m3 to 22.5 × 109 W/m3 over

250µs. The structure of an incipient ignition center can also be observed. In Fig.

9 bottom left, an expanding flame kernel is captured. Due to the abrupt expansion

of the gas, and associated velocity (13.8 m/s), the chemical source term is balanced

at the flame front mostly by the convective term. At the wall, the balance is main-

tained by diffusion as expected. The plot at the bottom right of Fig. 9, displays very

clearly the structure of the flame propagating away from the surface of the glowplug.
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5.2. Chemical activity above the glowplug, and chemical pathways

Plotting the contributions of each term in the energy equation and temperature

perpendicularly from the top surface of the glowplug was a necessary step to find the

location where ignition takes place, which is centered around the point (x = 0 mm,

y = 9.42 mm), about 0.12 mm above the glowplug. To investigate the chemistry in

more detail, temporal data at the ignition location were collected for temperature,

chemical source term, diffusive and convective losses, together with species profiles.

The plots in Fig. 10, show the start of heat release as early as t = 2.8996 s, at that

time diffusion and convection immediately counteract the source term. The ignition

event is marked simultaneously by the sudden increase in the rate at which energy

is deposited in the gas, a rapid rise in gas temperature, a rapid consumption of fuel

and the production of H2O and radical species, H, OH and O. Before ignition takes

place, at t = 2.8985 s the species H2O2 and HO2 have already started to build up.

At t = 2.8995 s, HO2 increases substantially just before ignition occurs.

Figure 11 displays the reaction pathway diagram at a location just above the

glowplug. The chain branching reactions, R1: H + O2 = OH + O and R2: O + H2

= OH + H, account only for 15 to 20 % of the reactants consumption. Molecular

hydrogen and oxygen are mostly consumed by R3: H2 + OH = H2O + H and R4:

H + O2(+M) = HO2(+M), respectively. While R3 is highly exothermic and induces

significant release of energy, R4 delays the formation of OH radical. Only 34 % of

OH is formed by R1 and R2, whereas the sequence R4 followed by R5: HO2 + H =

OH + OH represents 66 % of OH formation. Under this low temperature conditions,

indirect formation of OH radicals through linear chain chemical processes dominates

over direct, chain branching reactions.

6. Conclusion

Two-dimensional simulations of ignition by a transiently heated commercial glow-

plug were performed. In agreement with experiments, ignition was observed to occur

at the top of the glowplug. The details of the ignition kernel evolution was explained
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Figure 10: Temporal evolution of each term in energy equation, temperature and species mass

fractions at the ignition location, (x = 0 mm, y = 9.42 mm), 0.12 mm above the glowplug.

using selected velocity, species and temperature fields from the simulations. Addi-

tional insight was achieved by analyzing the individual contributions of the terms in

the energy conservation equation. Close to the wall, diffusion counteracts the heat

release due to the chemistry, whereas far away, convection and diffusion maintain

the balance. Significant chemical activity starts when the mixture temperature in

the separated region above the glowplug rises over 930 K; the parcels of gas in the

stagnation volume have a long enough residence time for reactions to cause expo-

nential growth of radical and intermediate species in this temperature range. At

0.12 mm normal to the top of the glowplug surface, the heat release rate is greater

than the rate at which heat is diffused back to the wall giving birth to an ignition

kernel.

The overall quantitative agreement between the numerical predictions and ex-

periments in terms of surface temperature at ignition, ignition location and flow field

features in the vicinity of the hot surface demonstrate the ability of our numerical
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model to reproduce important aspects of the ignition process. Furthermore, these

results show the importance of flow separation in creating zones that are prone to

ignition: convective transport of energy and species out of the separated region is

minimized, and the build up of intermediate species (HO2 and H2O2 ) can only be

opposed by diffusion, facilitating the fast production of OH and subsequent coupled

branching chain-thermal run away characteristic of ignition events.

Under these thermodynamic conditions, the reaction pathway analysis showed

that ignition is essentially driven by a linear chain chemical process. The chain

branching reactions, H + O2 = OH + O and O + H2 = OH + H constitute minor

pathways in producing reactive radicals. The main sequence leading to hydroxyl
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radical formation is: H + O2(+M) = HO2 + M; HO2 + H = OH + OH.

We conclude that quantitative predictions of ignition thresholds for hot surfaces

are possible using a detailed simulation that includes correct initial and boundary

conditions to capture important features such as boundary layer separation, and

energy transport processes. Including additional physics such as surface chemistry

(i.e. adsorption of reactive species and/or catalytic effects), as well as a systematic

variation of experimental parameters (i.e. hot surface size, material, mixture equiv-

alence ratio, etc.) and their effect on ignition thresholds are potentially important

but were outside of the scope of this study and remain to be investigated in detail.
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[9] Boettcher, P.A., Mével, R., Thomas, V. and Shepherd, J.E., (2012). The effect

of heating rates on low temperature hexane combustion, Fuel, 2012, 96, pp.

392-403

[10] Poinsot, T. and Veynante, D., Theoretical and Numerical Combustion, 2005,

Edwards.

[11] Smooke, M. D., The computation of laminar flames, Proceedings of the Com-

bustion Institute, 2013, 34, pp. 65-98

[12] Weller, H.G., Tabor, G., Jasak, H., and Fureby, C., A tensorial approach to con-

tinuum mechanics using object-oriented techniques, Journal of Computational

Physics, 1998, 12, pp. 620-631

[13] Saad, Y., Iterative methods for sparse linear systems, 2003, Society for Indus-

trial and Applied Mathematics, Philadelphia.

[14] Demirdzic, I., Lilek, Z. and Péric, M. (1993). A collocated finite volume method

for predicting flows at all speeds. Int. J. Numer. Meth. Fl., 16, 1029-1050.

[15] Oran, E.S. and Boris, J.P., Numerical Simulation of Reactive Flow, 2001, Cam-

bridge University Press.

22



[16] Mével, R., Javoy, S., Lafosse, F., Chaumeix, N., Dupré, G. and Paillard, C.E.,
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