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Ya. B. Zel’dovich (1914-1987) made numerous contributions1 to the theory of detonation

beginning with his very well known and widely translated article2 on detonation structure

that first introduced the standard “ZND” model of shock-induced combustion. Even at

that early stage of detonation research, Zel’dovich was also considering the application of

detonations to propulsion and power engineering. He published these ideas in another paper3

that has been virtually unknown in the West and has apparently remained untranslated until

now. We are indebted to Sergey Frolov of the N.N. Semenov Institute of Chemical Physics

RAS for first bringing this article to our attention. We believe that the focus of this paper,

which is the application of detonation waves to power generation and propulsion, is very

relevant to the current activity on pulse detonation engines. In particular, Zel’dovich was

apparently the first researcher to consider the questions of the relative efficiency of various

combustion modes, the role of entropy production in jet propulsion, and the distinction

between unsteady and steady modes of detonation in power engineering and propulsion

applications. Even 60 years later, we believe that his results are relevant and can be of value

in modern discussions on thermodynamic cycle analysis of detonation waves for propulsion.4

For these reasons, we have arranged for the paper to be translated and suggested that it be

published by the Journal of Propulsion and Power.

The paper is clearly written and there is no need for extensive commentary so we only

sketch some connections with contemporary work. Sections 1-3 are concerned with the cor-

rect computation of the energy budget in an unsteady cyclic process and the thermodynamic
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efficiency. Zel’dovich recognizes that one has to account for the work necessary to sustain

the detonation wave (through a piston, for example) when calculating the work that can be

done by the products. This idea was also independently developed by Jacobs5 and later Fick-

ett6 although they were concerned primarily with high explosives. More recently, we have

revisited this idea7 and carried out computations for mixtures and conditions relevant to

pulse detonation engine operation. To our knowledge, Zel’dovich was the first researcher to

conduct a thermodynamic analysis of a cycle involving a detonation. His conclusion that the

efficiency of this cycle is always somewhat larger than that of a cycle using constant-volume

combustion (Humphrey cycle) has been confirmed many times since.8–10 Zel’dovich’s formal

results for the thermal efficiency are identical to the results of recent studies.7,9 The specific

numerical values given in the main body are, as Zel’dovich recognized, rough estimates and

deviate substantially from detailed computations based on realistic thermodynamic prop-

erties. Despite the incorrect values for thermodynamic states, his final results regarding

the differences in cycle efficiency are quantitatively correct. Repeating7 his computations

with realistic thermodynamic properties gives a value of η′
B = 0.26 and ηD = 0.30 for the

C2H4-air example discussed in Section 3, which yields the same 13% increase in the efficiency

of the detonation cycle over constant volume as Zel’dovich estimated. Clearly, Zel’dovich

knew that his results could be open to criticism due to the roughness of his estimates and

he addressed this with his late addition of the final section “Note Added in Proof”. Those

results are within 1% of values computed with modern values of thermodynamic properties

and numerical solution of the equilibrium states.

In Section 5, Zel’dovich considered using a detonation wave in a steady-flow air-breathing

engine. Looking at a detonation wave as a shock wave followed by a reaction zone, he quali-

tatively argued that this process generates more entropy than a deflagration and showed that

using a steady detonation instead of a deflagration resulted in a lower thrust, in agreement

with many later studies.11–14 He gives a numeric example for a very simplified situation

(ramjet traveling at the CJ velocity), for which the thrust of a detonation-based ramjet is a

factor of two lower than that of an ideal isentropic inlet with constant-pressure combustion.

As in the cycle analysis, his numerical values of the exhaust velocity are only rough estimates,

and results using realistic thermochemistry yield values of ∆u that are approximately a fac-

tor of two higher than Zel’dovich estimated. Reevaluation using realistic thermodynamic

properties gives a value corresponding to Fig. 4 of ∆u = 438 m/s, and that corresponding

to Fig. 5 is ∆u = 950 m/s. The ratio of the thrust for the constant-pressure case to the

detonation case is 2.2, exactly the same as Zel’dovich found so that his final conclusions are

not only qualitatively but also quantitatively correct.

Although Zel’dovich correctly concludes that the performance of steady detonation-based
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engines is inferior because of the irreversible entropy generation in the shock wave, he makes

no attempt to reconcile this with the minimum entropy character of the CJ state that he

discussed in Section 3 and subsequent authors have taken as the formal basis for the supe-

riority of detonation-based power generation or propulsion. Recently, we have re-examined7

this issue and shown that the difference between the constraints in upstream states for

steady (fixed stagnation conditions) and unsteady applications (fixed static states) is key in

resolving this apparent contradiction.

The notation and units used by Zel’dovich are reasonably clear. The energy units are

given in cal/mol for heat of combustion and enthalpy; the heat capacity units are cal/mol·K;

the pressure units are kgf/cm2, 1 kgf/cm2 = 0.980665 bar. In accord with the practice in

chemical physics literature of that era, an explicit conversion factor between thermal and

mechanical units is not used. Most symbols are defined in the text and have the usual modern

meanings, the symbol J is used to denote the “heat content”, which present-day readers will

recognize as the specific enthalpy. Although the reaction formula given in Section 4 does

not include nitrogen, the numerical values and setting of the problem make it clear that

Zel’dovich is considering the explosive mixture to be stoichiometric C2H4-air and his initial

conditions are 1 kgf/cm2 and 300 K. The figures have been redrawn and translated for clarity

but are strictly faithful to the originals with the exception of the addition of axes labels to

Fig. 3.
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To the Question of Energy Use of Detonation Combustion

Ya. B. Zeldovich
Translation of article originally published in Russian in

Zhurnal tekhnicheskoi fiziki (Journal of Technical Physics) 10 (17), 1940
pp. 1453–1461

During detonation combustion1 of explosive gas mixtures, immediately
after the passing of detonation wavefront (completion of chemical reaction),
the products of combustion are in a state (call it state D) that is quite rich
in both heat and kinetic energy (i.e., the energy of translational motion).

Assuming no losses, the state D of combustion products can be calculated
using the classical thermodynamic theory of Jouguet. The propagation speed
of detonation obtained in this calculation agrees well with experiment, which
confirms the correctness of the thermodynamic theory as the limiting case
with no losses.

For the combustion products in the detonation wave, such a calculation
gives: density is 2–1.7 times greater than that of the initial mixture (ap-
proximately (k + 1)/k times greater, where k is the adiabatic exponent, pvk

= const, for the combustion products); pressure is approximately 2 times
greater than the pressure achieved in a closed-volume explosion; tempera-
ture is 10-20% higher than the temperature of a closed-volume explosion
(approximately 2k/(k + 1) times higher); speed of translational motion is
about 0.4–0.5 times that of detonation propagation, which means that ki-
netic energy of translational motion reaches 17% of the total energy of the
mixture.

It is interesting to consider to what extent detonation combustion of
fuel allows more efficient energy use. One often comes across proposals for
detonation regime of combustion in machines such as a gas turbine. Below we
present a thermodynamic analysis of the efficiency of cycles with detonation.
We will consider here the essential aspects and only briefly comment about
technical viability of cycles, losses that reduce the efficiency as compared to
the calculated values, etc.

1References to the literature are presented in the detailed work Ya.B. Zeldovich Journal
of Experimental and Theoretical Physics, v. 10, no. 5, 1940.

1



1 Energy balance in detonation

We will establish that the cycle calculation that is based on the state (D)
right after combustion (the state to which the above numbers refer) would
be incorrect. In fact, consider a process in which the detonation combustion
products in state D first decelerate, loosing their kinetic energy, and then
expand from pressure pD ' 2pexplosion to the atmospheric pressure, doing
work. We then arrive at a contradiction to the energy conservation law.

As a matter of fact, the total energy of working fluid in this calculation
method is always greater than the energy (thermal and chemical) of the
initial mixture. Obviously the combined thermal and chemical energy of the
quiescent initial mixture is equal to the energy of products, also at rest, of
a closed-volume explosion in which no work has been done. However, right
behind the detonation wave front, the combustion products are both at a
higher temperature than in a closed-volume explosion (i.e. they have greater
thermal energy) and also moving with substantial kinetic energy.

Where does the extra energy come from? In reality, the total energy
after detonation of a gas volume cannot differ from the initial energy, but
can only be redistributed to some extent. If a part of the matter attains
a more energetic state D, it may happen only at the expense of reduced
energy of some other part of the detonation combustion products. In fact,
the excess of energy of newly burned substance in state D is just due to
the expansion and deceleration of the part of the substance that has been
burned earlier. Therefore, not all the energy of deceleration and expansion
of the product in state D can be used to perform external work because a
part of this energy must be used to reproduce state D in subsequent portions
of gas. We need other methods to determine maximum external work—see
Section 2. The necessity for the reaction products to expand and decelerate
after state D follows obviously from the fact that the density in state D
is higher than the initial density and the velocity is in the direction of the
detonation propagation. The spatial distribution of density, shown in Figure
1, and the corresponding distributions of pressure, temperature, and velocity
(the latter is zero at segment AB) follow—in absence of any losses, such
as heat transfer or hydraulic resistance of the tube—from the equations of
rarefaction waves2 and the Jouguet condition, which states that the sum

2See, for example, Zeldovich and Shchelkin, Journal of Experimental and Theoretical
Physics, v. 10, no. 5, 1940.
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Figure 1:

of the speed of sound and the speed of the fluid’s motion in state D is
equal to the propagation speed of the detonation. Point B divides the entire
distance AC traveled by detonation approximately in the proportion AB :
BC = 4:6. As the process develops (detonation propagates) to the right,
each specific elementary mass goes through the entire sequence of states
shown in Figure 1, from the the initial state shown in the segment from C
to ∞ to the post-expansion state in segment AB. The density distribution
derived by Langweiler3 contradicts Zemplen’s theorem, according to which
the rarefaction wave cannot propagate as a strong discontinuity, and therefore
is incorrect.

A B C

A ρD

ρ0

Figure 2:

If we wanted to keep all the burned matter in state D, we would have
to move a piston with the speed equal to the speed of motion of reaction

3Langweiler ZS. f. techn. Phys. 19, 277, 1938.
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products in state D, i.e., approximately 0.43–0.47 times the propagation
speed of detonation. In Figure 2 depicting such a thought experiment, AB :
AC = 0.45. We should subtract the work done by the piston from the
work, calculated above, that could be done by a unit mass of combustion
products in state D. In the experiment of Figure 2, it is the work done by
the piston (rather than the work of expansion and deceleration of reaction
products behind the wave, as in the experiment of Figure 1) that is the
source of excess energy in state D as compared to the energy of the initial
mixture. On the contary, in the system of coordinates moving together with
the detonation wave4, the piston (that moves slower) moves to the left of the
wave and gains the work performed by the combustion products. The source
of excessive energy in a state in this system of coordinates is the enormous
kinetic energy of fresh mixture that moves in this system towards the wave
with the speed of propagation of the detonation. Therefore, in order to clearly
understand the relations in the detonation wave, we need to know the laws
of transformation of the energy equations to a moving system of coordinates.
These laws are well illustrated by a known problem: A passenger in a train
moving with speed v0 imparts a speed v1 (relative to the train) to mass m.
In the passenger’s opinion, he has done work mv2

1/2, whereas according to a
stationary observer, the work is equal to

m(v0 + v1)
2

2
− m(v0)

2

2
=

m(v1)
2

2
+ mv1v0.

Where does the extra energy mv1v0 come from?

2 Efficiency of cycle with detonation combus-

tion

We could calculate the efficiency of such a cycle as a whole considering either
the distribution of Fig. 1 or the thought experiment of Fig. 2, taking into
account the work done by the piston.

However, we will choose here a somewhat different approach, which re-
flects the limiting values of the numbers derived below (in the absence of any
losses) in terms of no possibility to surpass them using various engineering

4It is convenient to derive equations in the moving system of coordinates where the
process is stationary.
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tricks. In the final state, after performing work, the combustion products
attain the pressure p0 = 1 kgf/cm2. After subtracting the work p0(v − v0)
done against the force of the external pressure, the available work is equal to
the difference between the initial heat content J0 (heat content is defined as
J = E+ pv0 and includes the chemical energy of the mixture, J0 = J ′

0 + Q)
and the heat content of the reaction products J :

A = J0 − J = J ′
0 + Q− J.

D
E

H
G

0 D' E'

P

V

Figure 3:

The heat content of the reaction products becomes fully determined if
one specifies the entropy of the fluid S in addition to its pressure p = p0 = 1
kgf/cm2. If the process of doing work is ideal, the entropy remains constant
after combustion (chemical reaction). Any increase in the entropy implies an
increase in the heat content J(p0, S) and a decrease in the amount of work
performed.

The thermodynamic theory of detonation considers all states that sat-
isfy three conservation laws—of matter, momentum, and energy—for various
propagation speeds of this regime (see curve H on the p–v plane of Fig. 3).
It turns out that minimal entropy is attained exactly at point D (state D),
which corresponds to the stationary propagation of the detonation satisfying
the Jouguet condition mentioned above.

It is well known that a line from point O, which represents the initial
mixture, to point D touches the Hugoniot adiabatic curve H at point D
and also touches the isentropic curve (Poisson adiabatic curve) that passes
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through the same point D, as shown by the dash-dot line in Fig. 3. To the
right of point D, the slope of curve H is less than that of the curve of constant
entropy.

3 Entropy at point D is less than entropy

of products of constant-volume combustion

(point E)

Correspondingly, the reaction products that have done work after detonation
(point D′ in Fig. 3) have less energy than the reaction products that have
expanded and done work after a closed-volume explosion. Point E on curve
H in Fig. 3 represents the state of products of a closed-volume explosion.
The point E ′, which represents the state of these products after they have
done work, is the intersection of the curve of constant entropy, drawn from
point E, with the line p = p0 = 1 kgf/cm2. Point E ′ lies to the right of point
D′, and therefore has a higher energy content. Finally, point G represents
the results of combustion under constant pressure that is obtained without
external work other than the work against the atmospheric pressure. At
point G, we have A = 0; JG = J0 = J ′

0 + Q. Using JG, the efficiency of the
cycle can easily be written as

η =
A

Q
=

J0 − J

JG − J ′
0

=
JG − J

JG − J ′
0

.

Here is the simplest numeric example to illustrate these relations. An
explosive mixture reacts with no change in the number of molecules (e.g.,
for ethylene, C2H4+3O2 = 2CO2 + 2H2O). The specific heats of the reaction
products are cp = 7 and cv = 5; the adiabatic exponent is then 1.4. The heat
of the reaction is 10500 cal/mol. The initial temperature is 300 K. During
the combustion at constant pressure, the temperature reaches 300 + 10500/7
= 1800 K. The constant volume explosion of such a mixture results in a final
temperature of 300 + 10500/5 = 2400 K. The pressure is 1 · 2400/300 = 8
kgf/cm2. During the constant-entropy expansion from 8 to 1 kgf/cm2, the
temperature drops to 2400 · 8−0.286 = 1330 K. Ideally, the cycle in which
the mixture explodes in a closed volume without pre-compression and the
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explosion products then expand to 1 kgf/cm2, has an efficiency of

η′B =
(1800− 1330)7

(1800− 300)7
=

470

1500
= 0.313 .

During detonation combustion (in state D), the pressure reaches 15.55
kgf/cm2. The specific volume decreases to 0.6 of the initial value. Tempera-
ture reaches 2800 K. The kinetic energy of the combustion products is 0.167
times the reaction heat of the mixture5. During the isentropic expansion to
1 kgf/cm2, the temperature drops to 2800 · 15.55−0.286 = 1270 K. According
to the argument above, the efficiency of a lossless detonation combustion
appears to be equal to

ηD =
1800− 1270

1800− 300
= 0.354.

Therefore, detonation combustion can in principle result in somewhat
more efficient use of fuel energy compared to the explosion in closed volume:
ηD = 0.354 versus ηB = 0.313, i.e., with improvement of 13%. Of course, pre-
compressing the explosive mixture increases the efficiency of both processes;
at the same time, the difference ηD - ηB decreases.

Note, finally, that a näıve calculation of work that could be done by gases
in state D (neglecting the work necessary to sustain the detonation wave)
would yield an efficiency of 0.689. This number is the sum of the kinetic
energy of the combustion products, 0.167 Q, and the work done during their
expansion (from the state with T = 2800 K, p = 15.55 kgf/cm2 to the state
with T = 1270 K, p = 1 kgf/cm2), equal to 0.522 Q.

Then, the thermal energy of the end reaction products at temperature
1270 K will be equal to 0.642 times the reaction heat of the initial mixture.

The sum is 0.642 + 0.689 = 1.331 > 1.0. Therefore, the huge efficiency of
0.689 resulting from this näıve calculation, in fact, contradicts conservation
of energy. This calculation is absolutely incorrect as we already pointed out.

5These figures have been calculated exactly. The formulas for the limiting case in
which we neglect the thermal energy of the initial mixture with respect to its reaction
heat would yield p = 16 kgf/cm2, v = 0.584, T = 2800 K, and kinetic energy equal to 1/6
of the chemical energy. These numbers are quite close to the exact.
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4 Notes about potential practical use of det-

onation cycle

The principally achievable efficiency of detonation-combustion cycle is only
slightly larger (by 13% or less) than that of usual closed-volume combustion,
so it is rather unlikely that detonation combustion can be used in practice
for energy production. It is largely an illusion that, due to the enormous
propagation speed of detonation, the burning in detonation combustion is
more intense. During actual detonation in tubes, it is the speed of refueling
rather than the detonation speed that is the determining parameter. Be-
sides, a closed-volume combustion can be arranged quite fast and complete,
especially if using a number of well-known techniques employed in internal
combustion engines, such as swirling the mixture or using a pre-combustion
chamber that shoots in a torch of flame, etc. Also, detonation needs to be
established in a tube in such a way that the kinetic energy of combustion
products can be used because only in this case the mixture moves in the same
definite direction. Note that if the motion of detonation products is stopped
in vain by a collision of detonation wave with a wall, the efficiency becomes
exactly equal to that of a constant-volume explosion.

When detonation is done in a tube or a system of tubes, there will be
unavoidable considerable losses due to heat absorption through and deceler-
ation of combustion products by the side walls of the tube(s). Therefore, we
believe that there are no prospects in searching for detonation-combustion
cycles in a chase after a slightly larger theoretical efficiency. At the same
time, one should keep in mind, on one hand, various losses unavoidably re-
ducing the efficiency achievable in practice and, on the other hand, a trivial
possibility to increase the combustion efficiency by pre-compressing the mix-
ture. It is noteworthy that over the last 20 years, engineers have primarily
studied gas turbines with constant-pressure combustion even though their
efficiency is lower than that of the explosion turbine (given the same initial
pressure).

The decisive factors were the simplicity of implementation and reduction
of losses in a continuously operating machine.
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5 Use of detonation in air-breathing jet en-

gine

Consider a problem of possible continuous (standing) detonation combustion
of the fuel in an air-breathing jet engine that moves with a speed approx-
imately equal to the propagation speed of detonation. Fig. 4 shows an
approximate schematic.

A

B
C

Λ2

Figure 4:

The air entering from the left at a supersonic speed is carbureted with the
fuel entering through tube C. The explosive mixture burns in the detonation
wave whose front is denoted by line AB. Combustion products expand in
Laval nozzle Λ2 to the atmospheric pressure. This scheme should be com-
pared to the usual scheme of an air-breathing jet engine, shown in Fig. 5 for
the motion at a supersonic speed. The air loses virtually all of the dynamic
pressure when its speed decreases from supersonic to subsonic in Laval noz-
zle Λ1 and then decreases further in the diffuser. The air is carbureted with
fuel at the entrance C or later (carburetor position C ′) to prevent premature
spontaneous ignition during compression. The comparatively slow-moving
mixture burns in zone A − B, and combustion products expand in Laval
nozzle Λ2, doing work. It is very easy to compare the two schemes (only
in principle!) based on understanding the mechanism of combustion in a
detonation wave.

In terms of this understanding (for details, see our work loc.cit.), detona-
tion combustion proceeds as a matter of fact in two stages (Fig. 6). The first
stage is an adiabatic, but not isentropic compression of gas in the shock wave;
the propagation speed of the shock wave is equal to the detonation speed,
and point I represents the post-compression state in the p–v plane. Under
the conditions at point I, a fast chemical reaction begins in the explosive
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C
C'

B

A

Λ1 Λ2

Figure 5:

mixture. It is accompanied by heat release and change of state along the line
I–D. At the end of the reaction, combustion products are in state D (cf. Fig.
3). Comparing now the detonation combustion with the classical scheme of
Fig. 5, we can easily establish that the former (detonation) is accompanied
by a greater increase in entropy. Thus, entropy grows irreversibly during the
shock wave compression, which happens over a distance of the order of the
mean free path of gas molecules. On the contrary, in the Laval nozzle, isen-
tropic compression can in principle be achieved. The entropy growth during
the combustion of the moving gas in the process described by segment ID
(Fig. 6) also exceeds the entropy growth under combustion of isentropically
compressed gas at constant pressure in region AB (Fig. 5) because in the
latter process, the heat of the chemical reaction is released on average at a
higher temperature. It is obvious that all these entropy losses will result in
a greater (in the case of detonation, Fig. 4) thermal energy of the combus-
tion products that are escaping into the atmosphere—which will reduce their
speed, the recoil force, and the efficiency of the jet engine.

Note that for our task it was not necessary to consider the mechanism
of detonation combustion and the state I of the compressed gas because the
classical theory after all fully determines the end state D of the detonation
products. Therefore, we could have also obtained our conclusion about the
smaller efficiency of detonation in this case by a direct general calculation.
We considered this mechanism only to derive the end result quickly and
instructively.

We will illustrate the above by a numerical example for a mixture whose
thermal characteristics were given in the previous section. Assuming the
density of air (mixture) is initially 1.2 kg/m3, the speed of the detonation
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C

H

D

I

V

P

Figure 6:

wave is

D2 = v2
0

p− p0

v0 − v
= RT0

15.55− 1

1− 0.6
= 36.4RT0 ; D = 1730 m/s .

The speed of the air-breathing jet engine should also be 1730 m/s. The
temperature of gases escaping at the atmospheric pressure is again 1270 K.
The Bernoulli equation in the system of coordinates that moves together with
the rocket allows us to find the escape velocity u1:

J0 +
D2

2
= J +

u2
1

2
,

k

k − 1
RT0 + Q +

D2

2
=

k

k − 1
RT +

u2
1

2
.

Substituting Q = 10500 = 17.5RT0, k = 1.4, and T = 1270 = 4.23T0, we
find

3.5RT0+17.5RT0+18.2RT0 = 3.5·4.23RT0+
u2

1

2
; u2

1 = 48.8RT0 ; u1 = 2005 m/s .

The speed of the combustion products relative to the atmosphere is

∆u = u−D = 2005− 1730 = 275 m/s .
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At the same time, according to the Bernoulli theorem (energy conserva-
tion law), the isentropic compression of the cycle in Fig. 5 results in the
following state of the stagnant gas:

J0+
D2

2
= J ; 3.5RT0+18.2RT0 = 3.5RT ; T = 6.2T0 ; p = p0(T/T0)

3.5 = 600p0 (!).

After the combustion at constant pressure p, the temperature reaches

T ′ = T +
10500

7
= T + 5T0 = 11.2T0 .

During the further expansion from 600 (!) kgf/cm2 to 1 kgf/cm2, the
temperature drops to its final value:

Tk = T ′/6.2 = 1.81T0 = 543 K .

Finally, the escape speed of the combustion products is

u2
1 = 65.8RT0 ; u1 = 2325 m/s ; ∆u = 2325− 1730 = 595 m/s .

The losses in the detonation cycle decrease by a factor of two the thrust
of the jet engine compared to the cycle with isentropic compression and
constant-pressure combustion if one considers a rather high rocket speed
equal to the propagation speed of detonation.

6 Summary

1. We have considered the question of achievable efficiency of cycles that
use detonation combustion. The work which can be performed by the
combustion products immediately after the completion of the chemical
reaction (which reached 69% of the reaction heat in the numerical ex-
ample) cannot be used fully. It is necessary to use a fraction of it to
sustain the detonation combustion.

2. Still, the efficiency of a cycle that uses detonation combustion without
any losses is, in principle, always somewhat larger than that of a cycle
that uses closed-volume combustion (in the above numerical example,
35.4 versus 31.3%).
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3. Pre-compressing the explosive mixture increases the efficiencies of both
detonation combustion and slow combustion, but decreases the differ-
ence between the two.

4. The difficulty of carrying out and using the detonation with minimal
losses makes the attempts of practical application of detonation com-
bustion to energy production inadvisable.

5. In a supersonic air-breathing jet engine with continuous combustion,
detonation combustion results (in absence of losses) in a lower thrust
compared to the usual cycle.

Appendix

When we compared detonation with a closed-volume explosion (Section 2),
we calculated the state of the explosion products in the simplest way (point
E, Fig. 3). As is well-known, in reality after the propagation of flame in
a closed volume, different volume elements end up in different states upon
combustion (so-called Mache6 effect). The volume element that has burnt
first, afterwards undergoes the adiabatic compression from the initial pres-
sure to the final pressure of the explosion, and its temperature attains the
highest value, etc. The explosion temperature that we have found in state E
turns out to be only the average value. Obviously, the entropy of this tem-
perature distribution M is less than the entropy of the same mass in state
E, considered in Section 3, where the temperature is the same throughout
the volume.

This is obvious because distribution M evolves into state E as the result of
irreversible leveling out of the temperature of the explosion products. Could
the smaller entropy of distribution M lead to a larger achievable efficiency?
It turns out that during an ideal process, the end products still have a tem-
perature distribution (though on a different scale) so that the entropy of the
end products at a given energy is also less than the entropy of state E ′ (Fig.
3). Assuming for simplicity constant heat capacity, no dissociation, and no
deviations from ideal gas behavior, one can easily show that the gas pressure

6Translation note: See the discussion on p. 148 of W. Jost’s textbook “Explosion and
Combustion Processes in Gases”, McGraw-Hill 1948. Jost makes reference to the paper
of Flamm, H. and Mache, E. Wien. Ber. 126, 9, 1917 in his description of the theory of
vessel explosions.
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depends only on gas mass, occupied volume, and the full (or average) energy
of all the gas, but does not depend at all on the energy distribution in the
gas. In particular, with these assumptions the pressures for state E and for
distribution M must be exactly equal to each other. A numerical calculation
that takes into account dissociation, actual specific heats, etc. gives

pM − pE

pE

' −0.01 to − 0.02,

i.e. a very small deviation. Moreover, this deviation is negative and so
reduces the efficiency, as we will see shortly. Let us go back to the method
that Poisson used in 1818 to write down the adiabatic equation long before
the concept of entropy was introduced. The equation

dE = −pdv

is equally valid in an adiabatic process both for the specific energy and spe-
cific volume of a small portion of fluid, whose internal temperature can be
considered uniform, as well as for the full energy and full volume of explosion
products with any temperature distribution. Since a similar equation relates
pressure, energy, and volume (for any ideal gas with constant specific heats),
the work done during expansion will be also the same for a fluid in state E
and the actual distribution M . Therefore, our calculation remains correct
to within 1-2%. The same can be said about the temperature distribution,
different from M , that arises after detonation combustion and subsequent de-
celeration of detonation products through collisions of the wave with vessel
walls.

The decrease in power that occurs at the onset of detonation in internal
combustion engines is due to the increase in heat transfer and other losses
that we do not consider here. The attempts of thermodynamic descriptions
of this decrease in efficiency are wrong.7

Note added in proof

After this article went to press, S.B. Ratner8 did a calculation of state D for
a stoichiometric gasoline-air mixture considering all dissociation reactions

7Brown. Chem. Rev., 22, 27, 1938.
8Ya.B. Zeldovich and S.B. Ratner. Journal of Experimental and Theoretical Physics,

v. 10, no. 12, 1940.
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and temperature dependence of specific heats, and using the E-S diagram
of Hottel et al.9 for the combustion products of octane (C8H18) in air. His
numerical results differ very slightly from the example in this paper: In state
D, the pressure is 17.5 kgf/cm2, temperature is 2780 K, and specific volume
is 0.582v0. Upon the expansion to the atmospheric pressure, the temperature
drops to 1780 K. The efficiency is 32%. During constant-volume combustion
(point E), the pressure reaches 9.6 kgf/cm2, the temperature is 2620 K, and
v = v0. After the work is done, the temperature drops to 1825 K, and the
efficiency is 28.6%.

Changing from closed-volume combustion to detonation therefore increases
the efficiency of an ideal cycle by 12% instead of 13% as in the numerical
example in this paper.

Leningrad. Institute of Chemical Physics. Laboratory of gas combustion.
Received by the Editor on June 15, 1940.

9Hottel and Hershey. SAE Journ., 39, 414, 1936.

15


