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While a detailed mechanism represents the state-of-the-art of what 
is known about a reaction network, its direct implementation in a  
fully resolved CFD simulation is all but impossible (except for the 
simplest systems) with the computational power available today. 
This paper discusses the concept of Intrinsic Low Dimensional 
Manifold (ILDM), a technique that systematically reduces the 
complexity of detailed mechanisms. The method, originally devel-
oped for combustion systems, has been successfully extended and 
applied to gaseous detonation simulations2,3,4. Unfortunately, while 
a one-dimensional ILDM is reasonably easy to compute, manifolds 
of higher dimensions are notoriously difficult. Moreover, the selec-
tion of the manifold dimension has been largely arbitrary, with a 
one-dimensional ILDM being the most popular if for no other rea-
son than that it is easiest to compute and store.  

In this paper, we will present a technique that enables us to quanti-
tatively determine the dimensionality of the ILDM needed, as well 
as a robust and embarrassingly parallel algorithm for computing 
high-dimensional ILDMs. Finally, these techniques are demon-
strated in the context of a one-dimensional ZND detonation with 
detailed chemistry. 
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INTRODUCTION 
Intrinsic Low Dimensional Manifold (ILDM) is 
a technique for systematically identifying low-
dimensional attracting submanifolds of the 
original state space of chemical reaction mecha-
nisms1. The method, originally developed for 
low-speed combustion systems, has been suc-
cessfully extended and applied to two-
dimensional gaseous detonation simulations 
with the Hydrogen-Oxygen reaction mecha-
nism2, and gaseous detonation3 and gas phase 
RDX combustion4. While detailed reaction 
mechanisms are now mature for many hydro-
carbon fuels and in a developmental stage for 
nitramine explosives such as RDX and HMX, a 
number of issues remain to be addressed before 
they can be used in conjunction with the ILDM 
method for detonation simulation.  

First, the ILDM algorithm is computationally 
expensive to apply, and the computed manifold 
presents difficult tabulation, storage, and inter-
polation problems. While a one-dimensional 
ILDM can be computed reasonably easily and 
has been shown to work well for simple reaction 
systems such as the Hydrogen-Oxygen reaction 
mechanism, it is not reasonable to expect such 
drastic amount of reduction to remain faithful to 
even moderately complex hydrocarbon mecha-
nisms. We will present an algorithm that allows 
us to determine, quantitatively, the number of 
dimensions needed. The reason for using 
ILDMs in detonation simulation is simple; we 
want to extract as much information from the 
detailed mechanism as we can afford, and as 
little as we need. The ILDM technique allows us 
to follow (if not reach) this goal systematically. 
Unfortunately, algorithms for computing 
ILDMs, the most popular being continuation 
methods, are far from robust. In this paper, a 
new algorithm for the computation of ILDMs 
that is more efficient, embarrassingly parallel, 
and far more robust than continuation methods 
is presented.  

Finally, these techniques are applied to a one-
dimensional ZND detonation, giving us valuable 
insights as well as demonstrating clearly a 
“stepping-down”  of dimensions as we move 
away from the leading shock front. In other 
words, the closer to the front we need to capture 
the reaction dynamics, the higher the dimension 
we need. Finally, remarks concerning the appli-
cation of this technique, as well as ramifications 
of some of the underlying assumptions, are dis-
cussed. 

INTRINSIC LOW DIMENSIONAL 
MANIFOLDS 
By using an operator split scheme to the reactive 
Euler equations2, each of the finite volume in 
the discretized domain during the reaction 
source step is a constant-volume adiabatic com-
bustor. The governing equation is a system of 
ODE, which can be written as, 
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kφ  is the specific mole number of species k 

(with units [mol/kg]). The density ρ  and spe-
cific internal energy e appear as parameters to 
the governing ODE.  The total number of spe-
cies in the reaction mechanism is denoted by n , 
which is also the dimensionality of the chemical 
state-space. 

The definition of the ILDM is given below. 
Given a vector field f , the Jacobian matrix is 
defined below. 
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The Jacobian can then be transformed into a ba-
sis consisting of a direct sum of two subspaces5, 
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where sZ  is a column partitioning of vectors 

spanning the slow subspace, defined to be the 
invariant eigenspace of J associated with the 
least negative eigenvalues. A different basis, in 
particular an orthonormal one, can be used in-
stead.

 fZ  is defined analogously, being spanned 

by the remaining eigenvectors of J. 

The equation that defines the ILDM is, finally, 

 ( )ˆ 0fZ f φ =  (3) 

Or more formally, to seek a k-dimensional 
ILDM, denoted by k

M  ,we have:  

 ( ){ }ˆ: 0k
fZ fφ φ= =M  (4) 

where 

 ˆ : n n k
fZ f −→R R  (5) 

This definition is numerically awkward for the 
following reasons. The ILDM is defined as the 
zero level-set of a complicated nonlinear sys-
tem. One-dimensional level-sets are not difficult 
to find by continuation methods, but higher di-
mensional level-surfaces are tricky, to put it 
mildly. 

Next, we have an additional complication from 
mass conservation. Each (independent) elemen-
tal constraint increases the multiplicity of the 
zero eigenvalue by one. Given m (independent) 
elemental constraint and assume we are seeking 
a k-dimensional ILDM, a remedy is to solve for  

 k l o
ij j ij iN Nφ φ+ ∩ =M  (6) 

where ijN  is the (m by n) species-element ma-

trix, and o
iφ  denotes some initial composition. 

This is discussed in some detail by Eckett2. 

Finally, and perhaps most importantly, the de-

fining function ˆ
fZ f

 
is highly nonlinear. Being 

a composite function where ˆ
fZ comes possibly 

from matrix inversion, the null space of ˆ
fZ f , 

needed for continuation procedures, is difficult 
to find accurately and needs to be approximated. 

THE ILDM RECASTED 
The disadvantages above notwithstanding, the 
ILDM as formulated originally does have an 
advantage: it suggests a direct method of solv-
ing for k

M , as long as we can compute level-
surfaces. 

By examining Eq. (4), we see that a point φ  in 

chemical state space is in k
M  when ( )f φ , 

transformed to the new basis ( )s fZ Z , has no 

components in the fast subspace. In other words, 
we have 

 { }spank
sZφ φ∈ ⇔ ∈M  (7) 

Eq. (7) has a very desirable property: only right 
eigenvectors are needed to compute a basis for 

sZ . Although not a constructive definition of 
k

M , Eq. (7) poses, as well as provides an an-
swer to, the important inverse question: What is 
the ILDM-dimensionality of  φ ? We will de-

fine the ILDM-dimension of φ , denoted by 

( )ILDM-dim φ , by 

 ( )ILDM-dim min( ) : kkφ φ= ∈M  (8) 

The ILDM-dimension is well-defined because 
of the (trivial) inclusion property: 

 0 1 n⊆ ⊆ ⊆…M M M  (9) 

We will see how this ILDM-dimension can be 
computed in the next section. 



ILDM-DIMENSIONALITY AND THE 
GRAMMIAN PROCEDURE 
We can use the original definition of the ILDM 

to compute ( )ILDM-dim φ  by writing ( )f φ  in 

a sorted eigenbasis and counting the number of 
zeros, but this is numerically ill-posed, in part 
because of numerical imprecision and round-off 
errors, and more importantly, because k

M  is 
not an invariant manifold (see the concluding 
remarks for more details). 

Eq. (8) does provide us with a viable, and direct, 

algorithm for estimating ( )ILDM-dim φ . We 

define the k-dimensional Gram determinant (or 

Grammian6) of φ , denoted by ( )k φΓ , by 

 ( ) det( )k TA AφΓ =  (10) 

where A is an ( 1)n k× + matrix consisting of a 
column partitioning of the k slowest eigenvec-
tor, augmented by an arc-length normalized 

( )f φ , 

 ( )( )1 2, , , ,nA v v v g φ= …  (11) 

where  

 ( ) ( ) ( )g f fφ φ φ=  (12) 

This definition of ( )k φΓ  satisfies the inclusion 

relation of Eq. (9): 

 

 ( ) ( ) ,i j i jφ φΓ ≤ Γ ∀ >  (13) 

Additionally, the Gram determinant is non-
negative and bounded above by one, 

 ( )1 0,i iφ≥ Γ ≥ ∀  (14) 

Furthermore, ( )k φΓ , viewed as a scalar valued 

function on ( 1)k +  vectors, is continuous.  

Finally, we have a method of computing 

( )ILDM-dim φ , as follows 

 ( )ILDM-dim min( ) : kkφ ε= Γ <  (15) 

Note that the ( )ILDM-dim φ  in Eq. (15) de-

pends on a parameter ε , exactly analogous to 
the concept of the numerical rank7 ( rankε − ) 
for matrices. 

We will illustrate this technique by computing 
the ILDM-dimension along a constant-volume 
reaction trajectory. Given an ODE of the form 
Eq. (1), subject to some initial conditions oφ , 

the reaction trajectory ( )tφ  satisfies, 
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Figure 1. Constant-volume trajectory for  Hydrogen-
Air  Combustion. 

Figure 1 shows a constant-volume trajectory for 
the stoichiometric combustion of Hydrogen-Air 
(2H2+O2+3.76N2) with a density of 4.58 kg/m3 
and a specific internal energy 1.27 MJ/kg. These 
conditions correspond to an initial temperature 
of 1543.4 K and an initial pressure of 2.8104 
MPa. These conditions are taken from Eckett2 
and correspond approximately to the von Neu-
mann state of a CJ detonation of the mixture. 

The first three Gram determinants along the tra-

jectory, i.e.  ( )( ) , 1,2,3m t mφΓ =  are shown in 

Figure 2. This figure has two interesting inter-
pretations. 
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Figure 2: The first three Gram Determinants along the 
CV trajectory of  Figure 1 are plotted as a function of 
time. 

It can be seen, for example at 1 microsecond, 
the only non-zero Gram determinant is 1Γ . This 
follows from Eq. (15) that the ILDM-
dimensionality of the trajectory at that instant is 
2. It means that when 2 εΓ ≤  and 1 εΓ > , the 
two slowest eigenvectors are necessary and suf-

ficient to span ( )f φ . 

The alternate point of view is the concept of the 
time of arrival, introduced below. We will de-
fine the time of arrival kt  of a trajectory ( )tφ  to 

k
M  by 

 ( ) ( )min : ( )k
k kt t t tφ εΓ ≤ ∀ >  (17) 

It can be seen from Figure 2, with the definition 
provided by Eq. (17), that the time of arrival to 

3 2 1, ,M M M  is, approximately, 0.4, 0.5 and 1.5 
microseconds, respectively. 

Figure 3 decorates the reaction trajectory from 
Figure 1 with the ILDM-dimension estimated by 
the Grammian procedure. As will be seen 
shortly, this ability to compute the ILDM-
dimension of any point φ  in chemical state-
space forms the basis of our proposed embar-
rassingly parallel algorithm for ILDM computa-
tions.  
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Figure 3:  The ILDM  dimension is shown along the 
CV trajectory of Figure 1. 

ILDM VIA CONGRUENCES 
The definition of ILDM through Eq. (4)  pro-
vides, by rewriting it in explicit form, a direct 
method of computing 

� �
, 

 ( ) ( )1ˆ 0k
fZ f

−
=M  (18) 

It is important to note what is meant by a (nu-
merical) solution of Eq. (18). Generally, a solu-
tion is comprised of a set of points S , perhaps 
tabulated with some predetermined parameteri-
zations, in the original n-dimensional chemical 
state space, with each point satisfying Eq. (3) to 
within some tolerance: 

 ( )ˆ ,fZ f Sφ ε φ≤ ∀ ∈  (19) 

Numerical schemes based on continuation 
methods are typically used to solve Eq. (18), 
which becomes very difficult for 1k > . 

On the other hand, armed with the tools from 
the previous sections for computing the ILDM-
dimension, it is possible to take an indirect ap-
proach. We will redefine the set S  as: 

 ( ) ,k Sφ ε φΓ ≤ ∀ ∈  (20) 

Given a trajectory ( )tφ  satisfying Eq. (1) sub-

ject to some initial condition oφ , we compute 

the time of arrival of ( )tφ  to kt  to k
M , as de-



fined in Eq.  (17). Together with Eq. (20), we 
see that  

 ( ) , kt S t tφ ∈ ∀ ≥  (21) 

In other words, we can solve k
M  (populate the 

set S ) by solving Eq. (1)  subjected to different 
initial conditions.  This “ filling of a manifold”  
by curves is called a congruence8. 

EXAMPLE: CONSTRUCTION OF A 
ONE-DIMENSIONAL ILDM  
We will use our procedure described above  to 
compute the one-dimensional ILDM for the 
detonation problem studied in Rastigejev et al9. 
We will represent the system by Eq. (1), re-
peated below, 

 ( ); ,
d

f e
dt

φ φ ρ=  (22) 

We will proceed as follows. A one-dimensional 
ILDM 1

M  is, roughly speaking, a line through 
the equilibrium point in chemical state-space.  
Using any point 1oφ ∈M  as initial data to Eq. 
(22), the trajectory that results will be a part of 

1
M , starting at oφ  and ending at equilibrium. 

The equilibrium point therefore divides 1
M  into 

two pieces. Our procedure that follows will de-
termine, in the linear approximation, the two 
initial data (one on each side of the equilibrium) 
that maximize the extent of our solution to 1

M . 

We first compute the one-dimensional slow ei-
genspace of the system, which is an affine linear 
space centered at the equilibrium point spanned 
by the slowest eigenvector. This is shown in 
Figure 4. 

The meaning of this eigenspace, which we will 
denote by 1L  for convenience, is well known 
and will not be elaborated. In the neighborhood 
of the equilibrium point, 1

M  is tangent to 1L . 
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Figure 4 CV Reaction trajectory, equilibr ium point 
and the slowest linear  eigenspace. 

Chemical state-space is compact as it is sub-
jected to the positivity constraint 

 0, 1..i i nφ ≥ ∀ =  (23) 

as well as elemental conservation 

 o
ij j ij jN Nφ φ=  (24) 

where, as alluded to earlier, ijN  is the species-

element matrix. Eq. (24) is automatically en-
forced in the solution of Eq. (22) because, when 
each of the reactions in the detailed mechanism 
conserves elements,  

 ( ) ( )Null ijf Nφ ∈  (25) 

The maximum extent of 1L   is a problem in lin-
ear programming. In one-dimension, it is akin to 
extending 1L  until one of the n  inequalities in 
Eq. (23) becomes an equality. The range of va-
lidity for the thermodynamic data imposes an 
additional constraint: at a given value of density 
and internal energy, 

 ( )min max; ,T T e Tφ ρ≤ ≤  (26) 

The maximal linear eigenspace as well as its 
thermodynamic boundary, determined by Eq. 
(26), is illustrated in Figure 5. 
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Figure 5: The dashed line represents the maximal ex-
tent of the slowest linear  eigenspace subjected to posi-
tivity constraints. Aster isks represent the boundary 
with the additional constraint imposed by Eq. (26). 

Each of the two thermodynamic boundary 
points will be used as initial data to Eq. (22). By 
using the time of arrival concept introduced ear-
lier, each resulting trajectory is partitioned into 
two sets, before reaching 1

M  and after.  
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Figure 6: The dotted line represents the numer ical 
solution to the one-dimensional ILDM . The deleted 

por tion of the trajectory, cor responding to ( )1t tφ < , 

is replaced by an ar row from initial data (aster isk) to 
the point of ar r ival.  (No arrow is shown between the 
aster isk to the r ight of the equilibr ium, and the ILDM , 
because of their  close proximity) 

By truncating the initial portion of the trajec-
tory, we are left with the piece that lies entirely 
in 1
M . Our numerical solution of 1

M  is the 
union of the truncated trajectories from the two 
boundary points. This is illustrated in Figure 6.  

Figure 6 demonstrates clearly that the original 
trajectory, also shown in Figure 4 and Figure 5,  
is attracted onto 1

M  well before reaching the 
equilibrium position. 

EXAMPLE: CONSTRUCTION OF 
HIGHER DIMENSIONAL ILDM 
Computations of higher dimensional ILDMs 
proceed in exactly the same manner as in the 
previous section. We first solve the linear pro-
gramming problem of finding the maximal lin-
ear eigenspace. The boundary of which is 
shrunken according to Eq. (26). Points on this 
boundary (denoted as the thermodynamic 
boundary) are evolved and the initial portion of 
each trajectory is truncated leaving behind the 
portion that lies entirely in k

M . This is shown 
in Figure 7. This algorithm can be parallelized 
in the obvious manner by means of domain de-
composition of the thermodynamic boundary. 
Using this method, ILDMs of up to three di-
mensions (in chemical coordinates, not includ-
ing the two trivial dimensions from the parame-
ters of density and internal energy) have been 
computed successfully.  
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Figure 7:  The components involved in the construc-
tion of a two-dimensional ILDM  are shown. 



ZND DETONATIONS AND THE ILDM 
The common interpretation of ILDM as a reduc-
tion technique5 is that it identifies the chemical 
reactions whose timescales are commensurate 
with those from the fluid dynamics and decoup-
les them from the rest. Theoretical foundations 
are not firm as far as we know, but valuable in-
sights have been gained by studying the ILDM 
in the context of singular perturbation meth-
ods10,11. We now know that the aforementioned 
decoupling is only approximate, and the identi-
fication of the slow manifold imprecise. Never-
theless, while the ILDM algorithm is not appli-
cable to dynamical systems in general, it has 
had much success when applied to chemically 
reactive systems. 

Because the fastest processes are explicitly ig-
nored, it is important to get a handle on the error 
that results from this omission. A convergence 
study whereby we systematically increase the 
dimensionality of the ILDM is all but impracti-
cal. 

In this section, we will apply the techniques of 
dimensional estimation to a one-dimensional 
steady (ZND) detonation with detailed chemis-
try12.  

The unsupported (CJ) ZND reaction zone struc-
ture for stoichiometric H2-O2 with 70% Ar dilu-
tion, initially at 6.67 kPa and 298 K is computed 
using an adaptation of the program ZND by 
Shepherd13.  

The evolution of temperature and pressure for 
the ZND detonation is plotted as a function of 
the distance from the leading shock in Figure 8. 
The spatial profiles of the chemical species O2 
and H are shown in Figure 9. The position of the 
leading shock is located at 0 on the abscissa. It 
can be observed from these figures that the in-
duction zone length for this detonation is ap-
proximately 0.15 cm. 
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Figure 8 The steady ZND profiles for  temperature and 
pressure are shown. Temperature is represented by 
the dashed line and pressure by the solid line. The in-
duction zone length for  the case under  study is ap-
proximately 0.15 cm. 

The detailed reaction mechanism14 used in this 
study consists of 12 species from 4 elements (H, 
O,  N, Ar). Three of these species contain nitro-
gen, which is absent from our system. This 
leaves us with 9 active species and 3 elemental 
constraints for a maximum theoretical ILDM 
dimension of 6. A numerical representation of 
the ILDM is, as discussed before, a set of points 
which samples the ILDM. It is clearly impracti-
cal, loosely speaking, to mesh or tabulate a four- 
(or higher-)dimensional ILDM of any signifi-
cant size.   

Figure 10 gives us, for the first time, a quantita-
tive answer to the question that is often raised 
but mostly unanswered: How many dimensions 
do we need? With this flow configuration, we 
can see, on the one hand, that a three-
dimensional ILDM is sufficient to capture most 
of the flow-field except in a very thin layer be-
hind the leading shock. On the other hand, one 
can argue that by using a one-dimensional 
ILDM, we have only ignored approximately the 
first five microseconds of the transients, justify-
ing what initially seems to be an absurd amount 
of reduction as one-dimensional ILDMs are 
commonly used in the community. 
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Figure 9: The steady ZND profiles for  the specific 
mole numbers of O2 and H are shown. 
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Figure 10: The ILDM  dimension along the ZND tra-
jectory is plotted.  The temperature profile is super-
imposed on the plot as the dashed line. 

The thin layer immediately behind the leading 
shock containing the extremely fast transients 
can be examined more closely in Figure 11. The 
rapid build-up of OH radical in the high-
dimensional induction region is clearly dis-
played. 

CONCLUDING REMARKS 
Because of space limitations, many important 
details have been left out. Some of these are dis-
cussed below.  
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Figure 11: The species evolution and ILDM -dimension 
for  the ZND detonation is shown in log scales. 

The first is the issue concerning the noninvari-
ance of ILDMs. Given a point φ  in k

M , it does 

not follow that the evolution of φ  will remain 

on  k
M . This seems to be a contradiction to Eq. 

(21), but it isn’ t. First, we need to answer the 
question: What does arriving or reaching an 
ILDM mean? For an invariant (inertial15) mani-
fold, trajectories are attracted and get exponen-
tially close and the answer is clear. It is “on the 
manifold”  when it is within some tolerance un-
der some metric. For us, the arrival time has 
been carefully defined in Eq. (17) to be not the 
first time a trajectory reaches � , but the last 
time. In other words, it “arrived”  at the manifold 
as long as it doesn’ t wander afar ever after. 
Nevertheless, invariance is important because 
without it, a trajectory may never “ reach”  our 
manifold as it traverses the manifold ad infini-
tum. Furthermore using an ILDM in a numerical 
simulation implicitly constrains a reaction tra-
jectory on it; any noninvariance leads to error.  
Fortunately, empirical evidence points in our 
favor. Chemical systems, which exhibit large 
separation of timescales, have ILDMs that well 
approximates the inertial slow manifold11, form-
ing the basis for making the invariance assump-
tion. 

How many dimensions should we choose? 
While choosing a high-dimensional manifold is 
theoretically more accurate, it isn’ t true in prac-



tice. Just like one wouldn’ t perform a strictly 
one-dimensional flow problem using a three di-
mensional solver, the problem is one of discreti-
zation: we can get a lot more information from 
one million one-dimensional cells, than looking 
at a one-dimensional slice of a 1003 box.  

As stated in the introduction, our goal is to adapt 
as much information as we can afford, and as 
little as we need. Pragmatic concerns limit our 
ability to manifolds of no more than two chemi-
cal dimensions (plus the two additional dimen-
sions from the two parameters). Theoretically, 
as seen in Figure 10, we need more from the 
high-dimensionality of the induction zone. A 
solution, presented in Eckett2, is to the use a 
technique known as an “ induction manifold”  to 
bridge the gap between a low-dimensional 
ILDM and the missing transient.  
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