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The role of unsteadiness in direct initiation
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An analytical model is presented for the direct initiation of gaseous detonations by a
blast wave. For stable or weakly unstable mixtures, numerical simulations of the spher-
ical direct initiation event and local analysis of the one-dimensional unsteady reaction
zone structure identify a competition between heat release, wave front curvature and
unsteadiness. The primary failure mechanism is found to be unsteadiness in the induc-
tion zone arising from the deceleration of the wave front. The quasi-steady assumption is
thus shown to be incorrect for direct initiation. The numerical simulations also suggest
a non-uniqueness of critical energy in some cases, and the model developed here is an
attempt to explain the lower critical energy only. A critical shock decay rate is deter-
mined in terms of the other fundamental dynamic parameters of the detonation wave,
and hence this model is referred to as the critical decay rate (CDR) model. The local
analysis is validated by integration of reaction zone structure equations with real gas
kinetics and prescribed unsteadiness. The CDR model is then applied to the global initi-
ation problem to produce an analytical equation for the critical energy. Unlike previous
phenomenological models of the critical energy, this equation is not dependent on other
experimentally determined parameters and for evaluation requires only an appropriate
reaction mechanism for the given gas mixture. For different fuel–oxidiser mixtures, it is
found to give agreement with experimental data to within an order of magnitude.

1. Introduction
When a large amount of energy is released in a small region of an unconfined com-

bustible gas mixture, a strong spherical blast wave ensues from the initial point. As the
blast expands and decays, two possible outcomes have been observed experimentally.
Firstly, the blast wave velocity may decay to an approximately constant value near the
Chapman–Jouget (CJ) velocity of the mixture, in which case a self-supported spheri-
cal detonation has been successfully initiated in the gas. The other possibility is that
the blast continues to decelerate below the CJ velocity and eventually decays away to
an acoustic wave in the manner of a blast in a non-reacting gas. In this failed initia-
tion event, the reaction zone decouples from the shock front and lags behind the shock,
becoming a low speed flame.

This method of detonation initiation by an overdriven shock wave has been coined
direct initiation, as opposed to the other main form of initiation known as deflagration to
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detonation transition (DDT). The main variable believed to control the success or failure
of direct initiation is the magnitude of the initial energy release, provided the energy
deposition is sufficiently fast and the igniter sufficiently small. Experiments suggest that
for a given combustible gas mixture at given uniform premixed initial conditions, the
energy release must be above a certain level, known as the critical energy, to successfully
initiate a detonation.

The same arguments apply for direct initiation of cylindrical detonations and planar
detonations, except that the source is a line or plane respectively, and the critical energy
is an energy per unit length or per unit area respectively. Most previous work has focused
on the spherically symmetric direct initiation as this is the most fundamental geometry
and the spherical critical energy is considered one of the best indicators of detonabil-
ity or detonation sensitivity of combustible gas mixtures. It typically varies by several
orders of magnitude between different mixtures allowing for simple ranking of mixture
detonabilities without the need for highly accurate experiments.

Various attempts have been made to model the spherical critical energy in the past. An
extensive review is given in Lee & Higgins (1999). Zel’dovich, Kogarko & Simonov (1956)
were the first to present a theoretical discussion of the critical energy. They argued on
the basis of the energy released inside a given spherical volume, the existence of a critical
energy Ec, proportional to the cube of the reaction zone thickness. Although that paper
did not give a satisfactory theory for the quantitative prediction of critical energies, it
introduced the concept that the critical energy is a dynamic parameter of detonation and
depends on the reaction kinetics of the combustible gas mixture.

Following Zel’dovich’s findings, various workers produced phenomenological models
that correlated the critical energy with other experimentally determined dynamic pa-
rameters of detonation, such as the cell width λ, the critical tube diameter dc and the
hydrodynamic thickness ∆H . In all cases, the spherical critical energy was found to be
proportional to the cube of the other dynamic parameter, consistent with Zel’dovich’s
theory. These models were reviewed by Lee (1977, 1984) and Benedick et al. (1986).
This last work also compared the predictions of several models with experimental data
for various fuel–air mixtures. These phenomenological models are based on experimen-
tal observations and the resulting equations merely correlate the critical energy to some
other experimentally determined parameter. Admittedly, a parameter such as the cell
width λ is considerably easier to measure than the critical energy, so there is merit to
such theories. However, it would be desirable to have a model that gives more insight to
the underlying physical processes governing direct initiation, and provides an expression
for the critical energy that can be evaluated without the need for experimental data.

The first attempt at such a rigorous theoretical model was made by He & Clavin
(1994). They assumed the point blast direct initiation problem could be adequately
described by a quasi-steady analysis. The nonlinear curvature effect of the detonation
front then provides the mechanism of failure. Excessive curvature prevents a sonic point
from appearing at the rear of the reaction zone, and the decaying blast wave fails to
evolve into the quasi-steady velocity–curvature relationship. We will refer to this model
as the critical curvature model.

The dominant balance in He & Clavin’s model is competition between chemical heat
release and front curvature. Such a quasi-steady model is popularly referred to as a Dn–
κ model (Stewart & Bdzil 1988), where Dn is the normal shock velocity and κ is the
local front curvature. These models are typically only applicable in a regime near the
CJ velocity. The Dn–κ concept was extended by Yao & Stewart (1996) to a Ḋn–Dn–κ
model as well as a D̈n–Ḋn–Dn–κ–κ̇ model, where the dots refer to differentiation with
respect to time. These time dependent models still assume that the dominant balance is
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between heat release and curvature, and that the detonation structure is characterised
by a sonic point at the rear of the reaction zone. The unsteady terms are assumed to
be small compared to the quasi-steady terms, restricting application of the models to
slightly unsteady flow. There are a number of interesting consequences of these models,
including cellular detonations (Stewart, Aslam & Yao 1996).

In this paper we present an alternative model for direct initiation that arises from
a detailed analysis of the unsteady reaction zone structure. Our analytical approach
is somewhat similar to Yao and Stewart’s in writing the governing equations with the
unsteady terms as a perturbation on the steady flow. However, we make no assumptions
regarding the size of different terms in the equations until they have been examined
via numerical simulation results. As we shall demonstrate later in this paper, direct
initiation cannot be described as slightly unsteady, and a more general treatment of the
unsteady terms must be made, where they are not assumed to be a small perturbation.
The unsteadiness of the decelerating leading shock wave is found to be the dominant
mechanism causing failure in direct initiation.

The governing equations for flow along a particle path in the reaction zone are de-
veloped in §2. Numerical simulations of the spherical direct initiation problem with a
one-step Arrhenius reaction rate law are outlined in §3, and used to examine the details
of the flow in the reaction zone. Then in §4, analysis of the one-dimensional reaction
zone structure leads to the development of a local initiation model. A quasi-unsteady
computation of real gas reaction zones is used to validate the local model in §5. In §6,
the local initiation model is applied to the global initiation event to produce an analyt-
ical equation for the critical energy. Finally, this equation is compared with the critical
curvature model and experimental data in §7.

2. Reaction zone structure equations
Ignoring viscosity, heat transfer, diffusion and body forces, the governing equations

are the reactive Euler equations. If the multi-dimensional nature of detonations is also
ignored then a one-dimensional description is valid. In a fixed reference frame, the reactive
Euler equations for flows with slab, cylindrical or spherical symmetry are given by

Dρ

Dt
+ ρ

∂u

∂r
+

j

r
ρu = 0,

Du

Dt
+

1
ρ

∂P

∂r
= 0, (2.1a,b)

De

Dt
− P

ρ2

Dρ

Dt
= 0,

Dyk

Dt
= Ωk, (2.1c,d)

where u, ρ, P and e are the velocity, density, pressure and specific internal energy, r is the
distance from the coordinate origin, t is the time, j = 0 for planar flow, 1 for cylindrically
symmetric flow and 2 for spherically symmetric flow, yk is the mass fraction of species
k, and Ωk is the production rate of species k, given by some kinetic rate law.

Using simple thermodynamic relations, the energy equation (2.1c) may be replaced by
the adiabatic change equation from Fickett & Davis (1979),

DP

Dt
= c2 Dρ

Dt
+ ρc2σ̇, (2.2)

where c is the frozen sound speed, σ̇ =
∑

σkΩk is the total thermicity with the sum over
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all species, and σk is the thermicity coefficient of species k, given by

σk =
1

ρc2

∂P

∂yk

∣∣∣∣
e,ρ,yj 6=k

= − 1
ρc2

∂e

∂yk

∣∣∣∣
P,ρ,yj 6=k

∂e

∂P

∣∣∣∣
ρ,y

. (2.3)

The equations of motion can be rewritten in a reference frame attached to the shock
using the following transformation:

x = R(t) − r, w(x, t) = U(t) − u(r, t),

where R and U are the position and velocity of the shock in the fixed reference frame,
and w is the flow velocity in the shock-attached reference frame. For the remainder of
this section, partial derivatives with respect to t will indicate differentiation at constant
x as opposed to constant r. Then (2.1a,b), (2.2) and (2.1d) become

Dρ

Dt
+ ρ

∂w

∂x
+

j

R − x
ρ(U − w) = 0,

Dw

Dt
+

1
ρ

∂P

∂x
=

dU

dt
, (2.4a,b)

DP

Dt
= c2 Dρ

Dt
+ ρc2σ̇,

Dyk

Dt
= Ωk. (2.4c,d)

Equations (2.4a,b) can be written as

Dρ

Dt
= − ρ

w

Dw

Dt
+

ρ

w

∂w

∂t
− j

R − x
ρ(U − w), (2.5a)

DP

Dt
= − ρw

Dw

Dt
+

∂P

∂t
+ ρw

dU

dt
. (2.5b)

Substituting (2.5) into (2.4c) gives

η
Dw

Dt
= wσ̇ − j

R − x
w(U − w) − M2 dU

dt
+

∂w

∂t
− w

ρc2

∂P

∂t
. (2.6a)

where the flow Mach number M and sonic parameter η are given by

M =
w

c
, η = 1 − M2.

Substituting (2.6a) into (2.5) gives

η
Dρ

Dt
= − ρσ̇ +

j

R − x
ρM2(U − w) +

ρw

c2

dU

dt
− ρw

c2

∂w

∂t
+

1
c2

∂P

∂t
, (2.6b)

η
DP

Dt
= − ρw2σ̇ +

j

R − x
ρw2(U − w) + ρw

dU

dt
− ρw

∂w

∂t
+

∂P

∂t
. (2.6c)

Equations (2.6) are the solutions for the velocity, density and pressure gradients along
a Lagrangian particle path behind the shock. We will refer to them as the reaction
zone structure equations. In each equation, the first term on the right hand side is the
contribution from the chemical heat release, the second is that due to wave curvature, and
the remaining terms represent the purely unsteady contribution. Retaining only the heat
release term, the equations reduce to the Zel’dovich–Neumann–Doering (ZND) model of
steady planar reacting flow (Fickett & Davis 1979).

The simplest concept of detonation failure is a decoupling of the reaction zone from
the shock front, or equivalently, the failure of particles to rapidly undergo reaction after
they cross the shock. Since most reaction rate laws are strongly temperature dependent,
the region of predominant reaction will be accompanied by a sharp temperature increase.
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Hence, the Lagrangian gradient of temperature will be of most interest when considering
possible failure of the detonation. To compute the temperature gradient we need to invoke
an equation of state.

Consider a system of ideal gases. The thermal equation of state is

P = ρRgT, (2.7)

where T is the temperature. Rg is the mixture gas constant, given by

Rg =
R
W

= R
∑ yk

Wk
, (2.8)

where R is the universal gas constant, W is the mean molar mass of the mixture, and
Wk is the molar mass of species k. The frozen sound speed is

c =
(

γP

ρ

)1/2

, (2.9)

where γ is the ratio of mixture specific heats. Equation (2.3) can be used to show that
the thermicity coefficients are

σk =
1
γ

(
W

Wk
− ek

CvT

)
, (2.10)

where ek is the specific internal energy of species k, and Cv is the mixture specific heat
at constant volume. Taking the substantial derivative of (2.7) and using (2.6b,c), (2.8) –
(2.10) gives

ηCP
DT

Dt
= −(1−γM2)

∑
ekΩk− c2

γ

∑ W

Wk
Ωk+

j

R − x
w2(U−w)+w

dU

dt
−w

∂w

∂t
+

1
ρ

∂P

∂t
,

(2.11)
where CP is the mixture specific heat at constant pressure.

To enable analytical solution, we will now simplify the chemistry. Consider the one-step
irreversible reaction, A → B, where the upstream fluid is totally species A, undiluted.
The reactant and product are taken to be perfect gases (constant specific heat) and to
have the same specific heats. So the specific internal energies of species A and B are

eA = CvT, eB = CvT − Q,

where Q is the heat of reaction. Define the progress variable Z as the mass fraction of
product B, Z = yB = 1 − yA. Then, (2.11) becomes

ηCP
DT

Dt
= (1 − γM2)Q

DZ

Dt
+

j

R − x
w2(U − w) + w

dU

dt
− w

∂w

∂t
+

1
ρ

∂P

∂t
. (2.12)

The kinetics are assumed to be governed by a first-order Arrhenius rate law with linear
depletion,

DZ

Dt
= k(1 − Z) exp

(
− Ea

RgT

)
,

where Ea is the activation energy per unit mass and k is the pre-exponential rate multi-
plier. Then, (2.12) becomes

(1 − M2)CP
DT

Dt
= (1 − γM2)Qk(1 − Z) exp

(
− Ea

RgT

)
+

j

R − x
w2(U − w)

+ w
dU

dt
− w

∂w

∂t
+

1
ρ

∂P

∂t
. (2.13)
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Equation (2.13) is the temperature reaction zone structure equation for the one-step
reaction model, and has the form of an energy equation. As before, the first term on the
right hand side is the contribution from heat release, the second term is that from wave
curvature and the remaining terms are due to unsteadiness. We should emphasise that
in this equation and the earlier reaction zone structure equations (2.6), the left hand
side contains a Lagrangian derivative. This could be divided into time and space partial
derivatives, and one could argue that the term arising from the partial time derivative
should be moved to the right hand side and grouped with the other unsteady derivatives.
This would ensure that all unsteadiness appears in the group of unsteady terms on the
right hand side and would permit direct comparison with the quasi-steady equations. In
fact, such a comparison has been made and is discussed in the following section. However,
for the purpose of analysis, we choose to write the equations in the Lagrangian reference
frame, where the unsteady terms on the right hand side are only the unsteadiness that a
particle sees, not the unsteadiness we traditionally think of in an Eulerian reference frame.
The Lagrangian reference frame is a more natural choice when considering the reaction
in a detonation as a convected adiabatic chain–thermal explosion. For the remainder of
the paper, we shall use the terminology “unsteady terms” or “unsteadiness” to denote
only the unsteady terms on the right hand side of the reaction zone structure equations
(2.6) and (2.13). Note that the unsteady terms in (2.13) are proportional to the unsteady
terms in the dilatational rate equation, (2.6b), so they may be interpreted as arising from
the dilatational rate in the absence of heat release and curvature.

For a decelerating wave such as the blast wave in a direct initiation event, the un-
steadiness expression in the energy equation (2.13) is of opposite sign to the heat release
term. Thus the reaction may quench if the wave is decelerating too rapidly. For a convex-
upstream wavefront such as the blast wave in a cylindrical or spherical direct initiation,
the steady curvature term in (2.13) is of the same sign as the heat release term and
so cannot possibly quench the reaction without the additional presence of unsteadiness.
Note that a cylindrical or spherical blast wave flow will always be unsteady, even if the
blast is propagating at constant velocity, since it’s curvature is changing with time. The
time dependence of curvature can be an important effect, but it is important to realize
that it appears in the unsteadiness expression in (2.6), not in the curvature term. For
a slab symmetry direct initiation, there is no curvature term at all, so again, curvature
cannot quench the reaction. Note that the opposite trends occur in the velocity, density
and pressure reaction zone structure equations (2.6), namely, for the direct initiation
problem, the unsteadiness is of the same sign as the heat release while the curvature is of
opposite sign. However the strong nonlinear temperature dependence of the reaction rate
makes temperature the critical variable. The relative sizes and behaviour of the terms in
(2.13) will be examined directly via numerical simulations in the next section. The goal
is to identify the dominant balance in the direct initiation problem and any simplifying
assumptions regarding the behaviour of the terms in (2.13) that would permit further
analytical work.

3. Numerical simulations
3.1. Computational details

Numerical simulations of the spherical blast wave initiation problem have been computed,
using the one-step irreversible reaction described in §2. For this reaction model, the
reactive Euler equations for flows with spherical symmetry, in a fixed reference frame
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and in non-dimensional conservative form, are

∂W

∂t̃
+

∂F

∂r̃
= G + S,

where

W =




ρ̃
ρ̃ũ

Ẽt

ρ̃Z


 , F =




ρ̃ũ

ρ̃ũ2 + P̃

(Ẽt + P̃ )ũ
ρ̃ũZ


 , G = − 2

r̃




ρ̃ũ
ρ̃ũ2

(Ẽt + P̃ )ũ
ρ̃ũZ


 ,

S =




0
0
0

k̃ρ̃(1 − Z)e−Ẽ/T̃


 .

W is the conservative solution vector, F is the convective flux, G and S are the geometry
and reaction source terms respectively, and Et = ρ(e + u2/2) is the total energy per unit
volume. The dimensional flow variables have been made non-dimensional as follows:

uref ≡ (RgT0)1/2, ũ ≡ u

uref
, ρ̃ ≡ ρ

ρ0
, P̃ ≡ P

P0
,

T̃ ≡ T

T0
, ẽ ≡ e

RgT0
, Ẽt ≡ Et

P0
, Ẽa ≡ Ea

RgT0
,

where subscript 0 denotes the uniform conditions upstream of the shock. In the numerical
simulations, k̃ is an arbitrary parameter that merely defines the spatial and temporal
scales. It has been chosen such that for a planar CJ wave, the half-reaction length ∆1/2

is scaled to unit length, that is,

r̃ ≡ r

∆1/2
, tref ≡ ∆1/2

uref
, t̃ ≡ t

tref
, k̃ ≡ ktref .

The non-dimensional equations of state are

P̃ = ρ̃T̃ , ẽ =
1

γ − 1
T̃ − ZQ̃, (3.1a,b)

where Q̃ ≡ Q/RgT0.
The numerical integration was performed using operator splitting, with the algorithm

W n+1 = LSLFGW n,

where the superscript indicates the number of timesteps. When integrated in a uniform
grid with a cell-centred, finite difference formulation, the convective and geometry source
operator LFG can be written as

W n+1
i = W n

i − ∆t̃

∆r̃

(
F n

i+1/2 − F n
i−1/2

)
+ ∆t̃ Gn

i ,

where ∆t̃ is the timestep and ∆r̃ is the cell size. The subscript indicates the spatial cell
number. F n

i+1/2 is the flux at the interface between cells i and i + 1, and should be some
conservative upwinding flux. In this work, we employed Roe’s approximate Riemann
solver (Roe 1986) for the convective flux, using Glaister’s (1988) implementation for
a general equation of state. Second-order temporal and spatial accuracy was obtained
via min–mod flux limiting, and the scheme was made entropy-satisfying with Harten’s
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entropy fix. The integration of the geometry term was only first-order time accurate.
The benefit in making this second-order would be minimal given the small effect of these
terms (see §3.2).

Finally, the reaction source operator LS involves the integration of the equation,

dW

dt̃
= S,

which reduces to
dZ

dt̃
= k̃(1 − Z)e−Ẽa/T̃ , (3.2)

with ρ̃, ũ and ẽ constant. If the temperature was constant for this step, (3.2) could be
integrated exactly. In this work, we performed the integration using a nominally second-
order time accurate predictor–corrector scheme. Equation (3.2) was firstly integrated for
a half-timestep, with the temperature held constant. This gave an estimate for the average
mass fraction in the timestep, Zn+1/2. The temperature T̃n+1/2 was then computed from
the caloric equation of state (3.1b), noting that ẽ is fixed for this step. Finally, (3.2) was
integrated for the whole timestep, using the average temperature T̃n+1/2.

The flow solver was incorporated into the Amrita CFD programming system (Quirk
1998), making use of Amrita’s adaptive mesh refinement (AMR) algorithm. The simula-
tions presented in this paper used four levels of grid refinement, with refinement ratios
of four in each case. Refinement was performed around the shock, where the pressure
gradient exceeded a specified threshold, and in the reaction zone, where the species gra-
dient exceeded another threshold. The refinement criteria were chosen to produce a finely
resolved shock and a reaction zone with at least 50 mesh cells per half-reaction length.

The choice of computational cases to study was made on the basis of the following
argument. Throughout the analysis in this paper, it is implicitly assumed that the deto-
nation wave is hydrodynamically stable. Previous computations by He (1996) on spherical
detonation initiation with Arrhenius reaction rate demonstrated that instability provides
a secondary means of detonation quenching. To isolate the purely gasdynamic quench-
ing mechanism, we chose to perform computations only with stable or slightly unstable
mixtures. When slightly unstable, the instability growth rate is sufficiently slow that
the gasdynamic quenching still dominates in the short times involved. Using the normal
mode stability analysis method of Lee & Stewart (1990), the neutral stability curves for
one-dimensional planar CJ detonations have been computed for various ratios of specific
heat and are plotted in figure 1. Throughout this paper, the subscript CJ will be used
to denote flow variables for a detonation travelling at CJ velocity, so M0CJ

denotes the
freestream Mach number M0 for a CJ wave. θ is the activation energy normalised by the
post-shock temperature Ts,

θ ≡ Ea

RgTs
, (3.3)

so θCJ denotes the value of θ for a wave travelling at CJ velocity. When plotted in the
Q̃–Ẽa plane as originally done by Lee & Stewart (1990), the neutral stability curves for
each value of γ are different, but when plotted in the θCJ–M0CJ

plane as in figure 1,
they essentially collapse to a single curve. Furthermore, for strong detonations with large
values of M0CJ

, the neutral stability curve asymptotes to a constant value of θCJ ≈ 4.74.
In this regime, the stability of the wave is then a function of θCJ only, an example of
the dominant effect of θ for the Arrhenius reaction rate model. A further effect of θ is
in the shape of the ZND reaction zone profile; the larger θ, the more the ZND profile
approaches that of a square-wave, with a near constant state induction zone followed by
a rapid energy release. This type of reaction zone structure is typical of that observed
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Figure 1. Neutral stability curve for planar CJ detonations with one-step Arrhenius rate law.

Case A B

Independent γ 1.2 1.4

quantities Q̃ 22.5 12

Ẽa 17 25

Dependent k̃ 70.8 108.3

quantities ŨCJ 4.70 5.08
M0CJ 4.29 4.29
θCJ 6.05 5.54

P̃ vN 20.0 21.3

P̃ CJ 10.5 11.2

T̃ vN 2.81 4.52

T̃ CJ 6.00 6.76

Table 1. Input fluid and chemical parameters for the numerical simulations.

in computations of real hydrocarbon mixtures. Hence it would be desirable to use a
mixture with such a ZND profile in these computations. The need to maximise θ for
a suitable ZND profile yet still remain stable or near stable resulted in the choice to
examine near-critically stable mixtures. With this restriction and figure 1 in mind, the
range of behaviour for the Arrhenius reaction rate model can be represented by just a
single choice of M0CJ

and θCJ . However, ZND calculations also indicate that for the same
value of M0CJ

and θCJ , lower values of γ produce reaction zone profiles slightly closer to
a square-wave. The dependence upon γ is weak, but cannot be ignored given the desire
to achieve a square-wave like profile.

Considering the arguments presented in the previous paragraph, two parameter sets
were chosen for computational investigation. They are listed in table 1. The subscript
vN denotes the post-shock state (von Neumann conditions) for a wave travelling at CJ
velocity, while the subscript CJ on the state variables P̃ and T̃ denotes the equilibrium
state at the rear of the reaction zone for a wave travelling at CJ velocity. The two cases
have the same value of M0CJ

and close to the same value of θ, but have different values
of γ. Both cases are marginally unstable.

At early times in the flow, the blast wave will be a very strong shock, and the chemical
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energy released into the flow will be negligible compared to the blast source energy.
Therefore, the flow will be closely approximated by the similarity solution for a non-
reacting strong point blast with zero back-pressure (Taylor 1950; Sedov 1959). For a
constant γ perfect gas, this point blast theory (PBT) similarity solution is given by,

R =
(

Esource

A2 ρ0

)1/5

t2/5, U =
dR

dt
=

2
5

(
Esource

A2 ρ0

)1/2

R−3/2,

us =
2

γ + 1
U, ρs =

γ + 1
γ − 1

ρ0, Ps =
2

γ + 1
ρ0U

2,

u

us
= f

( r

R

)
,

ρ

ρs
= g

( r

R

)
,

P

Ps
= h

( r

R

)
,

where subscript s denotes conditions immediately after the shock, Esource is the initial
energy release, and A2 is the energy integral constant, which is a function of γ. Ko-
robeinikov (1991) lists the functions f(r/R), g(r/R) and h(r/R), as well as a correlation
for A2, accurate to 0.31% in the range 1.2 6 γ 6 2.0,

A2 = 0.31246(γ − 1)−1.1409−0.11735 log10(γ−1). (3.4)

The initial condition used in the numerical simulations was the PBT similarity solution,
applied at an initial shock radius Rsource much less than the shock radius of the critical
flow regime later in the simulation. Numerical difficulties associated with the strong shock
wave and the singularity at the origin in the PBT similarity solution placed a lower bound
on the choice of the initial shock radius. However, in all computational cases presented
here, the chemical energy inside the initial source region,

Echem =
4
3
πR3

sourceρ0Q,

was less than 3% of the source energy Esource, so the application of the non-reacting
PBT was valid.

Consistent with the earlier normalisations, the non-dimensional source energy Ẽsource

is defined by,

Ẽsource ≡ Esource

P0∆3
1/2

.

3.2. Computational results
Spatial pressure profiles are plotted in figure 2 for case A from table 1, with two different
source energies. The first computation, with Ẽsource = 166 × 106, fails to initiate, so
this represents a subcritical initiation energy. As the wave decays to the CJ state, where
Ps = PvN , the von Neumann spike immediately behind the shock decreases in size and
the reaction zone lengthens. The post-shock pressure continues to decay to well below
the von Neumann pressure, and the von Neumann spike disappears, signifying failure to
initiate a detonation. In figure 2(b), where Ẽsource = 169× 106, the early profiles closely
match those in figure 2(a). But at around R̃ = 300, the post-shock pressure begins to
rise, overshooting PvN , before settling back down to around PvN . It then remains close
to steady, indicating a spherical detonation has been successfully initiated. Hence this
source energy is a supercritical initiation energy. The mechanism causing the re-initiation
explosion in figure 2(b) appears to be the formation and amplification of a pressure pulse
at the rear of the reaction zone. This mechanism has also been observed in previous
numerical simulations (Clarke, Kassoy & Riley 1986; Clarke et al. 1990; Mazaheri 1997).

The location and velocity of the leading shock were determined as follows. The shock
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Figure 2. Spatial pressure profiles for case A, at roughly equal timesteps.
(a) Ẽsource = 166 × 106; (b) Ẽsource = 169 × 106.
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Figure 3. Leading shock velocity versus position for case A, with several different source
energies. Ẽsource = 130 × 106, 166 × 106, 169 × 106, 250 × 106, 400 × 106.

pressure P̃ s was first evaluated approximately as the instantaneous local maximum in
the pressure profile just behind the shock. This local maximum exists because the pres-
sure behind the shock decreases as a result of the exothermic reaction and/or geometric
expansion. The shock location R̃ was then determined as the interpolated position in the
spatial pressure profile for which the pressure was (P̃ 0 + P̃ s)/2, roughly the midpoint
of the numerically smeared shock. Having computed this at many timesteps in the com-
putation, the shock velocity was finally determined in a postprocessing operation by a
second-order differentiation of the data points R̃(t̃).

Figure 3 shows the velocity of the leading shock plotted against the shock radius, for
case A with several different source energies. In the successfully initiated cases, the mild
instability of the detonation wave is evident. However, the instability takes a sufficiently
long time to develop that it only appears after the detonation has successfully initiated.
Hence, the instability does not seem to influence the gasdynamic initiation process sig-
nificantly. The two near-critical curves, Ẽsource = 166 × 106 and 169 × 106, begin to
deviate significantly at about R̃ = 225, where U/UCJ = 0.75. This point is the critical
point of interest for these near-critical initiations, for it is here that failure or success
is determined in the detonation initiation process. Everything after this, including the
re-initiation mechanism for the super-critical case, is irrelevant if we are only concerned
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Figure 4. Leading shock position, reaction loci and sonic point location versus time, for case A.
—— shock; – · – · 5% reaction; – – – 95% reaction; · · · · · · sonic point. (a) Ẽsource = 166 × 106;

(b) Ẽsource = 169 × 106.

with the critical energy. This is in contrast to the proposition of Lee & Higgins (1999)
that any model of initiation criteria must address the mechanism of reacceleration of the
decaying shock and transition to detonation. Our simulations indicate that it is possible
to form an estimate of the critical initiation energy by examining the simpler problem of
the failure mechanism involved in decoupling the reaction zone from the decaying blast
wave. It is interesting to note that the critical point occurs well before the formation of
the pressure pulse in figure 2(b). This suggests that the pressure pulse and the associated
“quasi-steady” (Lee & Higgins 1999) portion of the velocity profile are not the underly-
ing factors controlling initiation determination, but are merely the mechanisms by which
successful initiation proceeds.

The position of the leading shock, the loci of 5% and 95% reaction, and the sonic
surface are plotted against time in figure 4, for the two near-critical cases of the previous
figure. In figure 4(a), the reaction zone is initially closely coupled to the shock wave
when the shock is very strong, but it later detaches, indicating the detonation has failed
and the reaction has quenched. By contrast, the reaction zone remains closely coupled
to the shock wave in figure 4(b), indicating the successful initiation of a quasi-steady
detonation.

The sonic surfaces in figures 4 have been defined as the loci of points for which the
flow is sonic with respect to the shock front at a given instant in time. The physically
significant sonic point occurs when the flow is sonic with respect to the rear of the
reaction zone, the limiting condition for which small disturbances can propagate into
the reaction zone from the trailing expansion wave. However there is no simple way to
determine the location of the rear of the reaction zone. In steady flow, the rear of the
reaction zone travels at the same velocity as the shock front, and these two sonic point
definitions are equivalent, but they may differ in unsteady flow. For this reason, the sonic
surface plotted in the r–t diagrams cannot be regarded as the critical factor determining
detonation initiation or failure. Its relevance is simply that it must eventually appear at
the rear of the reaction zone if a quasi-steady, quasi-planar detonation is formed.

The reaction zone structure equations in §2 described the evolution of quantities along
particle paths. To examine the behaviour of these equations in the numerical simulations
of the direct initiation problem, it was necessary to extract Lagrangian particle path
data from the Eulerian flow solution. This was done by specifying some initial particle
locations and then in a non-intrusive fractional step of the flow integration, interpolating
the particles’ paths through the r–t solution field, using the local flow velocity. The
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Figure 5. Particle paths for ten sample particles in case A, with Ẽsource = 160 × 106. Shock
(dashed line); 5% to 95% reaction (shaded region); particle paths (solid lines).
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Figure 6. Temperature histories along the same ten particle paths as in figure 5, for case A
with Ẽsource = 160 × 106.

particle positions and flow variables at those locations were then output as functions of
time.

For case A with Ẽsource = 160 × 106, a slightly subcritical energy, figure 5 shows the
paths of ten sample particles that cross the leading shock around the time of detonation
failure. The plot also shows the shock and partial reaction region, as in the previous r–t
diagrams of figure 4. The earlier particles traverse the reaction zone rapidly, indicating
that the flow is still detonating at this stage. By about particle 6, the reaction time has
grown significantly, suggesting that the wave is failing here. The last particles never reach
the reaction zone in the time plotted. Note that the partial reaction lines are essentially
parallel to the streamlines at the late times, indicating that the reaction has completely
quenched by then.

Figure 6 shows the temperature as a function of time along the same ten particle
paths. The first few reach thermal runaway quickly, but by the sixth or seventh particle
path, the explosion time has grown significantly. The last particles merely cool gradually
and never react. The slight negative temperature gradient along the later particle paths
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immediately after the shock is the forcing of the unsteadiness, as discussed in §2. It is
this gradient that prevents the particles from undergoing thermal runaway.

The magnitude of the various competing terms in the temperature reaction zone struc-
ture equation was next examined in the numerical simulations. In the non-dimensional
notation of §3.1, the temperature equation (2.13) for spherical flow (j = 2) becomes

(1 − M2)
γ

γ − 1
DT̃

Dt̃︸ ︷︷ ︸
total

= (1 − γM2)Q̃k̃(1 − Z) exp

(
− Ẽa

T̃

)
︸ ︷︷ ︸

heat release

+
2
r̃
w̃2(Ũ − w̃)

︸ ︷︷ ︸
curvature

+ w̃
dŨ

dt̃
− w̃

∂w̃

∂t̃
+

1
ρ̃

∂P̃

∂t̃︸ ︷︷ ︸
unsteadiness

. (3.5)

The unsteadiness terms were evaluated as the residual of this equation. As a consistency
check, they were also evaluated with the aid of the mass and momentum conservation
equations (2.5), in appropriate non-dimensional form, which gives

w̃
dŨ

dt̃
− w̃

∂w̃

∂t̃
+

1
ρ̃

∂P̃

∂t̃
=

1
ρ̃

(
DP̃

Dt̃
− w̃2 Dρ̃

Dt̃

)
− 2

r̃
w̃2(Ũ − w̃). (3.6)

The right hand side of this equation was evaluated directly from the Lagrangian particle
path data. The Lagrangian derivatives DT̃ /Dt̃, DP̃ /Dt̃ and Dρ̃/Dt̃ in (3.5) and (3.6) were
evaluated in a postprocessing operation by a second order differentiation of the particle
path data points T̃ (t̃), P̃ (t̃) and ρ̃(t̃).

The terms in (3.5) have been computed along the same ten particle paths as in figure 5,
and are plotted in figure 7 for a selection of the particles. The left border of each plot is the
instant in time when the particle crosses the shock. For the particles prior to or at failure
(particles 1, 5 and 6), it is clear that the curvature term makes a negligible contribution
to the temperature gradient when compared with the magnitudes of the other terms on
the right hand side of (3.5). By contrast, the contribution from unsteadiness is significant.
Along particle paths 1 and 5, the unsteadiness is a negative forcing that reduces the total
temperature gradient below that due to heat release, although it is not strong enough to
prevent reaction. For particle path 6, the unsteadiness is initially about equal to the heat
release, causing the total gradient to be almost zero, and the reaction nearly quenches.
By particle path 10, the unsteadiness dominates the heat release, and the reaction is
completely quenched. A final observation is that the unsteadiness expression is almost
constant along each particle path, within the induction zone. This is true for all particles
before detonation failure, that is, all in figure 7 except particle path 10. These important
observations regarding the contributions of curvature and unsteadiness to the Lagrangian
temperature derivative will be used to develop a local initiation model in the following
section.

In §2, it was noted that the temperature reaction zone structure equation could be
written in a different form, with the partial time derivative from the temperature total
derivative moved to the right hand side and grouped with the other unsteady terms. In
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Figure 7. Terms in reaction zone temperature equation (3.5) along the same particle paths as

in figure 5, for case A with Ẽsource = 160 × 106. · · · · · · total temperature gradient; – · – · heat
release; – – – curvature; – · · · – · · · unsteadiness. (a) Particle 1; (b) Particle 5; (c) Particle 6;
(d) Particle 10.

that case, the non-dimensional equation equivalent to (3.5) would be

(1 − M2)
γ

γ − 1
w

∂T̃

∂x̃︸ ︷︷ ︸
spatial

= (1 − γM2)Q̃k̃(1 − Z) exp

(
− Ẽa

T̃

)
︸ ︷︷ ︸

heat release

+
2
r̃
w̃2(Ũ − w̃)

︸ ︷︷ ︸
curvature

+ w̃
dŨ

dt̃
− w̃

∂w̃

∂t̃
+

1
ρ̃

∂P̃

∂t̃
− (1 − M2)

γ

γ − 1
∂T̃

∂t̃︸ ︷︷ ︸
unsteadiness

. (3.7)

The left hand side is now related to the spatial temperature gradient, rather than the total
temperature gradient. This form allows direct evaluation of the quasi-steady assumption
since omitting the unsteadiness expression gives the standard quasi-steady equation for
the spatial temperature distribution, such as equation (A 2a) in He & Clavin (1994).

In figure 8, the terms in (3.7) are plotted along the same four particle paths that
were shown in figure 7. Several observations can be made. Firstly, the magnitude of the
curvature term in the induction zone is still quite small compared to the unsteady terms.
It is certainly not greater than the unsteady terms and hence a quasi-steady assumption
is clearly erroneous for this flow. Secondly, all the terms on the right hand side of the
equation, including the unsteady terms, are actually of the same sign as the heat release
in the induction zone. This makes a physical interpretation of the failure mechanism
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Figure 8. Terms in equation (3.7) along the same particle paths as in figure 5, for case A with

Ẽsource = 160 × 106. · · · · · · spatial temperature gradient; – · – · heat release; – – – curvature;
– · · · – · · · unsteadiness. (a) Particle 1; (b) Particle 5; (c) Particle 6; (d) Particle 10.

more difficult than with the reaction zone structure equation (3.5). Finally, the unsteady
terms show a steep variation through the induction zone, and no simplifying assumption
regarding their behaviour is apparent. Contrast this with figure 7 where the unsteady
terms were approximately constant in the induction zone, prior to failure. As will be seen
in the next section, writing the equations in a form for which the unsteady terms are
approximately constant is essential to our analysis as it reduces the governing PDE to an
ODE. It is largely for this reason that we have chosen to use (3.5) in the analysis rather
than (3.7).

It could also be argued that since equation (3.7) describes the spatial temperature
gradient, it’s spatial variation should be examined, rather than the variation along a
particle path. That is, it should be plotted in an Eulerian reference frame rather than
a Lagrangian frame. In figure 9, the terms in this equation are plotted against x̃, the
distance behind the leading shock, at several instants in time around the time of deto-
nation failure. The results are qualitatively similar to figure 8. The main differences are
at the late times in figures 9(c) and (d), where the unsteady terms are negative in the
early part of the induction zone, and are of comparable magnitude to the curvature term.
They are still not small compared to the curvature term, so even at these late times, the
quasi-steady assumption is invalid. Other than this, all the conclusions of the previous
paragraph apply.

We now turn our attention to the other computational case listed in table 1, case B.
Figure 10 shows the velocity of the leading shock plotted against the shock radius, with
several different source energies. The behaviour is more complex than in case A. For
Ẽsource 6 199 × 106, the detonation fails to initiate, with a monotonically decreasing



The role of unsteadiness in direct initiation of gaseous detonations 17

0 5 10 15 20 25
x

−0.1

0.0

0.1

0.2
(a)

0 10 20 30
x

−0.05

0.00

0.05

0.10
(b)

0 10 20 30 40
x

−0.02

0.00

0.02

0.04

0.06
(c)

0 10 20 30 40 50
x

−0.02

0.00

0.02

0.04

0.06
(d)

Figure 9. Spatial distribution of terms in equation (3.7), for case A with Ẽsource = 160 × 106.
· · · · · · spatial temperature gradient; – · – · heat release; – – – curvature; – · · · – · · · unsteadiness.
(a) t̃ = 70.5; (b) t̃ = 80.3; (c) t̃ = 90.2; (d) t̃ = 100.2.
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Figure 10. Leading shock velocity versus position for case B, with several different source ener-
gies. Ẽsource = 150×106, 199×106, 200×106, 205×106, 206×106, 305×106, 306×106, 400×106.

shock strength. At Ẽsource = 200 × 106, the detonation initiates, with a re-initiation
explosion similar to that observed for the marginally supercritical source energy in case A.
However, for 206 × 106 6 Ẽsource 6 305 × 106, the detonation actually fails again, this
time not with a monotonically decreasing shock strength, but with a single hump in the
velocity profile. For Ẽsource > 306 × 106, the detonation initiates again, in a manner
similar to that in case A. The complex behaviour means we cannot identify a unique
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Figure 11. Location of first two local maxima in shock velocity profile for case B, as a
function of source energy.

critical energy for this case. The behaviour can be summarised by plotting the location
of the first two local maxima in the velocity profiles for several different source energies,
as shown in figure 11. There are thus two critical energies, which we designate as Ec1

and Ec2, where Ec1 < Ec2. An extensive scan of source energies in case A did not reveal
the presence of a second critical energy, and we conclude that case A does have a unique
critical energy.

A non-unique critical energy was also observed by Mazaheri (1997), although this
study was only performed at γ = 1.2, where a second critical energy was found to exist
for large activation energies. Our work shows that at larger γ, a second critical energy
can exist even for lower activation energies near the neutral stability limit. This is an
interesting result that challenges the very notion of critical energy, or at least, the ability
of the one-step reaction model to capture a critical energy. However, it is the subject
of a whole other research project in itself, and we will not pursue it further here. The
velocity profiles around the first critical energy in case B appear to be very similar to
those around the critical energy in case A. This suggests a universal behaviour at the
lowest critical energy. For the remainder of this paper, including the development of a
critical energy model equation, we will consider only this lower bound to the critical
energy, where failure occurs with a monotonically decreasing shock strength. Hence, our
model will at best give a lower bound estimate of the critical energy. In figure 10, the
two curves near the first critical energy, Ẽsource = 199 × 106 and 200 × 106, begin to
deviate significantly at about R̃ = 280, where U/UCJ = 0.8. This is the critical point for
the first critical energy, and it occurs at a similar shock velocity to that in case A.

The Lagrangian particle path information from figures 5 to 7 has been repeated in
figures 12 to 14 for case B, with Ẽsource = 199×106, a slightly subcritical source energy.
Figure 12 shows the r–t diagram with the paths of ten sample particles that cross the
shock around the time of failure. The first few react rapidly while the last couple do not
reach the reaction zone at all. The plot is similar to the earlier r–t diagram for case A.

Figure 13 shows the evolution of the temperature along the same ten particle paths.
Failure occurs more sharply than was observed in case A, with the reaction time grow-
ing rapidly around particle path 7, and the post-shock temperature gradient decreasing
quickly. Along the last few particle paths, there is a strong negative temperature gradient
behind the shock and the reaction quenches, indicating detonation failure.

The terms in the temperature reaction zone structure equation (3.5) are plotted along
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Figure 12. Particle paths for ten sample particles in case B, with Ẽsource = 199 × 106. Shock
(dashed line); 5% to 95% reaction (shaded region); particle paths (solid lines).
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Figure 13. Temperature histories along the same ten particle paths as in figure 12, for case B
with Ẽsource = 199 × 106.

four of the particle paths in figure 14. As before, the curvature term is small compared to
the contributions from heat release and unsteadiness, at least prior to failure. For particles
3 and 5, both before failure, the unsteadiness is a negative forcing on the heat release
term but is insufficient to prevent the reaction from proceeding. By particle path 7, the
magnitude of the unsteadiness is as great as the heat release term, and it significantly
delays the reaction. It completely quenches the reaction by particle 9. As in figure 7, the
unsteadiness expression is almost constant in the induction zone, for the particles prior
to failure (particles 3 and 5).

4. Local initiation model
In the previous section, the terms in the temperature reaction zone structure equation

(2.13) were investigated along particle paths in the induction zones of near-critical blast
initiations. It was found that the curvature term was negligible compared to the other
terms. This same conclusion is obtained from an analytical consideration of the terms of
the equation (see the Appendix). Additionally, the numerical simulations demonstrated
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Figure 14. Terms in reaction zone temperature equation (3.5) along the same particle paths as

in figure 12, for case B with Ẽsource = 199 × 106. · · · · · · total temperature gradient; – · – · heat
release; – – – curvature; – · · · – · · · unsteadiness. (a) Particle 3; (b) Particle 5; (c) Particle 7;
(d) Particle 9.

that the unsteadiness expression was approximately constant. Thus, the unsteadiness
expression can be approximated by its initial value on the particle path, that is, its value
immediately after the shock at the time when the particle crosses the shock. Neglecting
the curvature term, and setting the unsteadiness expression equal to its initial value
immediately after the shock, (2.13) becomes,

(1−M2)CP
DT

Dt
= (1− γM2)Qk(1−Z) exp

(
− Ea

RgT

)
+

(
ws

dU

dt
− ws

dws

dt
+

1
ρs

dPs

dt

)
i

,

(4.1)
where subscript s refers to conditions immediately after the shock, and subscript i refers
to the time ti when the particle under consideration initially crosses the shock. Note
the unsteadiness is now a constant forcing for a given particle, and we have reduced the
equation from a PDE to an ODE.

Recall the definition of the non-dimensional activation energy θ from (3.3). In partic-
ular,

θi =
Ea

RgTs,i
,

where Ts,i is the post-shock temperature at time ti. Note that Ts,i and θi are functions
only of the time ti. Since ti is a constant for a given particle, then when applied along
a particular particle path in (4.1), Ts,i and θi will be constants. If the unsteadiness
expression in (4.1) is of no greater magnitude than the heat release term, as was the
case in the numerical simulations, then we can invoke standard large activation energy
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asymptotic expansions used to compute analytical induction times in the ZND model.
Following this approach, we assume θi À 1 and the temperature perturbation in the
induction zone is small, δT/Ts,i = O(1/θi). Then the following asymptotic expansion
applies in the induction zone:

T

Ts,i
= 1 +

1
θi

T̂ 1 + O

(
1
θ2

i

)
,

where T̂ 1 is dimensionless and O(1). Similarly, asymptotic expansions in Mach number
and progress variable give

M

Ms,i
= 1 + O

(
1
θi

)
, Z = O

(
1
θi

)
.

Using the above asymptotic expansions in (4.1) and retaining only the leading order
terms gives

(1−M2
s,i)CP Ts,i

1
θi

DT̂ 1

Dt
= (1−γM2

s,i)QkeT̂ 1−θi +
(

ws
dU

dt
− ws

dws

dt
+

1
ρs

dPs

dt

)
i

. (4.2)

Define a non-dimensional time by

ζ ≡ t − ti
τi

,

where

τ =
1
k

1 − M2
s

1 − γM2
s

1
θ

CP Ts

Q
eθ, (4.3)

and τi is τ evaluated at time ti. Then (4.2) reduces to

DT̂ 1

Dζ
= eT̂ 1 − αi, (4.4)

where

α = − θτ

(1 − M2
s )CP Ts

(
ws

dU

dt
− ws

dws

dt
+

1
ρs

dPs

dt

)
, (4.5)

and αi is α evaluated at time ti.
If αi = 0, then (4.4) is identical to Frank-Kamenetskii’s (1969) adiabatic homogeneous

thermal explosion equation, under the approximation of large activation energy. With
initial condition T̂ 1 = 0 when ζ = 0, it has solution

T̂ 1 = ln
(

1
1 − ζ

)
.

This “explodes” (T̂ 1 → ∞) at ζexp = 1, so τ is the asymptotic induction time for a ZND
detonation. If instead we consider αi > 0, then (4.4) has solution

T̂ 1 = ln
{

αi

1 − eαiζ(1 − αi)

}
,

and now,

ζexp =
1
αi

ln
(

1
1 − αi

)
.

Note that ζexp → ∞ as αi → 1, so in this model, a particle will undergo reaction in finite
time provided αi < 1 for that particle. We will refer to α as the initiation parameter, so
the critical value of the initiation parameter is 1.
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The shock conditions are given by the perfect gas jump conditions. Using the strong
shock approximation for simplicity, these are

Ps =
2

γ + 1
ρ0U

2, ρs =
γ + 1
γ − 1

ρ0, ws =
γ − 1
γ + 1

U, (4.6a,b,c)

Ts =
Ps

ρsRg
=

2(γ − 1)
(γ + 1)2

U2

Rg
, M2

s =
γ − 1
2γ

, (4.6d,e)

where subscript 0 denotes the uniform conditions upstream of the shock. Substitution of
(4.6) into (4.5) gives,

α = 6
γ − 1
γ + 1

θ
τ

td
, (4.7)

where td is the characteristic shock decay time, defined by

1
td

≡ − 1
U

dU

dt
. (4.8)

Then setting α = 1 in (4.7), the critical shock decay time is

td,c = 6
γ − 1
γ + 1

θτ. (4.9)

This equation is a local failure criterion as it predicts detonation success or failure based
on a local analysis of the wave structure along a single particle path. In §6, the criterion
will be utilised in a global analysis of the overall detonation initiation event in order to
derive an equation for the critical energy. We refer to the model presented here as the
critical decay rate (CDR) model.

Equation (4.9) indicates the critical shock decay time is proportional to the detonation
induction time, as expected from dimensional analysis. Since 6(γ − 1)/(γ + 1) ∼ O(1)
for typical values of γ, and θ À 1, the equation also demonstrates that td,c À τ . Failure
occurs for any td 6 td,c, so unsteadiness can be important even when td À τ , that
is, when the characteristic time of evolution is much greater than the induction time.
Contrast this with the statement of He & Clavin (1994): “When the characteristic time
of evolution is much longer than the reaction time, unsteady terms may be neglected”.
The authors used this statement as the basis for eliminating the unsteady terms in the
governing equations at the outset of their analysis. The results of our simulations and
the argument presented above show that their assumption is incorrect. It is only when
tdÀθτ that unsteadiness can be neglected and the flow considered quasi-steady.

5. Validation of local initiation model with detailed kinetics
Before considering the overall direct initiation event, an approximate numerical study

of the local analysis can be made. Following a similar, although slightly different, rea-
soning as the previous section, imagine a hypothetical planar shock wave–reaction zone
complex where the unsteady derivatives dU/dt, ∂w/∂t and ∂P/∂t can be approximated
as constant along a particle path as the particle traverses the induction zone. The reaction
zone structure equations (2.6) then become

η
Dw

Dt
= wσ̇ − M2

(
dU

dt

)
i

+
(

dws

dt

)
i

− w

ρc2

(
dPs

dt

)
i

, (5.1a)

η
Dρ

Dt
= − ρσ̇ +

ρw

c2

(
dU

dt

)
i

− ρw

c2

(
dws

dt

)
i

+
1
c2

(
dPs

dt

)
i

, (5.1b)
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η
DP

Dt
= − ρw2σ̇ + ρw

(
dU

dt

)
i

− ρw

(
dws

dt

)
i

+
(

dPs

dt

)
i

. (5.1c)

We refer to these equations as the quasi-unsteady planar reaction zone structure equa-
tions. The term quasi-unsteady indicates that the unsteadiness is dealt with in an ap-
proximate manner which reduces the equations to ODEs.

For a system of ideal gases the derivatives dws/dt and dPs/dt can be expressed in
terms of dU/dt as follows. The shock jump conditions are

ρ0U = ρsws, P0 + ρ0U
2 = Ps + ρsw

2
s , h0 + 1

2U2 = hs + 1
2w2

s ,

where h is the enthalpy. Differentiating these equations with respect to U and using the
ideal gas caloric equation of state dh = CP dT , the derivatives dρs/dU , dws/dU and
dPs/dU can be solved. In particular,

dws

dU
=

ρ0

ρs
+

M2
s

1 − M2
s

{
(γs + 1)

ρ0

ρs
− 2γs + (γs − 1)

ρs

ρ0

}
,

dPs

dU
= ρ0U

(
2 − ρ0

ρs
− dws

dU

)
.

Then the unsteady derivatives in (5.1) can be determined by(
dws

dt

)
i

=
(

dws

dU

)
i

(
dU

dt

)
i

,

(
dPs

dt

)
i

=
(

dPs

dU

)
i

(
dU

dt

)
i

.

This reduces the unsteady derivatives in the reaction zone structure equations to a single
parameter (dU/dt)i, which can be specified in the form of a characteristic shock decay
time td as in (4.8).

Since the reaction zone structure equations have been reduced to simple ODEs, it
is numerically inexpensive to integrate them for real gas systems. This has been done
for H2–air, H2–O2 and C2H4–air systems for various equivalence ratios, with detonation
waves at CJ velocity. The detailed reaction mechanism used was the hydrocarbon mecha-
nism from Appendix A of Miller & Bowman (1989), with nitrogen chemistry removed and
carbon chemistry also removed for the H2 systems. Realistic thermochemistry was at-
tained from the CHEMKIN package (Kee, Rupley & Miller 1989). The solution procedure
first involved computing the CJ velocity using the chemical equilibrium code STANJAN
(Reynolds 1986). The root finder ZEROIN (Shampine & Watts 1970) was then used to
find the post-shock state, the initial conditions for the reaction zone structure equations.
For a given first guess of the critical shock decay time, the equations were integrated
forward in time using the backward differencing stiff ODE solver DEBDF (Shampine &
Watts 1979). An indication of whether or not the reaction was quenched by the applied
degree of unsteadiness td could be gaged from the total thermicity σ̇. Figure 15 shows
the variation of total thermicity through the reaction zone for 15% by volume H2 in air,
with various values of the shock decay time. It is clear from this plot that at quenching
the thermicity fails to develop a sharp peak and the maximum greatly decreases. The
variation of maximum thermicity σ̇max with shock decay time is shown in figure 16. A
somewhat arbitrary choice was made to define detonation failure as the point where the
maximum thermicity dropped to 1% of its value at steady flow (1/td = 0). As demon-
strated in figure 16, the determination of the critical shock decay time is not very sensitive
to the cutoff value chosen.

The numerically computed critical shock decay times were compared with the theoret-
ical predictions from (4.9). The parameters used in (4.9) were determined as follows. The
planar ZND induction time τ for the CJ wave was determined by integration of the pla-
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Figure 15. Total thermicity versus distance downstream of the shock, from quasi-unsteady
calculations, for 15% H2 in air and various shock decay times.
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Figure 16. Maximum thermicity versus characteristic shock decay time, from quasi-unsteady
calculations, for 15% H2 in air.

nar steady form of the reaction zone structure equations (2.6a)–(2.6c), using the detailed
reaction mechanism, behind a shock travelling at CJ velocity. The induction time was
identified as the point of maximum temperature gradient dT/dt. The equivalent value
of γ chosen for (4.9) was determined by matching the post-shock temperature in the
detailed reaction system to that in the one-step model, as the temperature is the most
important state quantity to represent correctly in the induction zone. For the constant
γ model, the exact temperature ratio across the shock is given by

Ts

T0
=

{
2γM2

0 − (γ − 1)
} (

γ − 1 + 2
M2

0

)
(γ + 1)2

.

This equation was solved to determine the equivalent constant value of γ for the detailed
reaction system at a specified free stream Mach number and shock temperature ratio.
The estimated value of θ for the detailed reaction system was determined by a method
described in Shepherd (1986). This method proceeds by considering approximating a
system of reactions by a single global rate. The conventional approximation to induction
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Figure 17. Critical shock decay time versus equivalence ratio. Lines: critical decay rate
model, (4.9); symbols: numerical results from quasi-unsteady calculations with (5.1). (a) H2–air;
(b) H2–O2; (c) C2H4–air.

time corresponding to a global rate is

τ = C [fuel] a
i [oxidiser] b

i exp
(

Ea

RgTi

)
,

where C is a pre-exponential constant, the square brackets indicate initial concentrations,
a and b are empirical constants, and Ti is the initial temperature, in our case the post-
shock temperature Ts. If we differentiate this expression with respect to Ti, holding the
initial density and mass fractions constant, then the initial concentrations will remain
constant, and θ will be given by

θ =
Ea

RgTi
= − Ti

τ

∂τ

∂Ti

∣∣∣∣
ρi, yi

.

This enables the determination of the global parameter θ by carrying out constant volume
simulations to find τ , using a detailed reaction mechanism and realistic thermochemistry.
The derivative was computed numerically by perturbing the initial temperature Ti = Ts

while holding the initial density ρi = ρs and the initial mass fractions constant. The
induction time τ was identified as the point of maximum temperature gradient dT/dt.
The same reaction mechanism was used as in the quasi-unsteady and ZND simulations
described previously.

The numerically computed critical shock decay times are plotted with the CDR model
predictions from (4.9) in figure 17. For each fuel–oxidiser mixture shown, the induction
time varies by several orders of magnitude over the range of equivalence ratios. The
critical shock decay time essentially follows the same trend, so to best compare the nu-
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merical and theoretical values this dominant trend has been removed by normalising
the critical shock decay times by the induction times. The theoretical predictions agree
reasonably well with the numerical data in all three cases, although in general the the-
ory underpredicts the critical shock decay time by as much as 40%. We believe this is
quite satisfactory considering the crude approximations made in using (a) the one-step
mechanism to simulate the real chemical system, (b) the large activation energy asymp-
totics, and (c) the strong shock assumption. Note from (4.9) that the theoretical value of
td,c/τ is proportional to θ. The unusual behaviour of θ near the lean and rich ends of the
H2–air system has been previously documented (Shepherd 1986), and is evidenced in the
theoretical curve of figure 17(a). The same trend does not appear in the quasi-unsteady
calculations.

6. Global initiation criterion
In §4, an initiation criterion was developed based on a local analysis of the reaction

zone structure. To convert this criterion into a useful predictive formula for the critical
energy, it must be applied to the global initiation event. An a priori knowledge of the
approximate blast wave velocity profile is required, so that the shock decay rate may be
computed in terms of the controlling parameters of the problem.

The simplest choice, and that used by most previous workers on the blast initiation
problem, is the Taylor–Sedov similarity solution for a non-reacting strong point blast
(Taylor 1950; Sedov 1959). The equations for this point blast theory (PBT) were listed
in §3.1 for the spherical case (j = 2). In more generality, the blast wave profile is given
by,

R =
(

Esource

Aj ρ0

) 1
j+1

(
2

j + 3
1
U

) 2
j+1

=
(

Esource

Aj ρ0

) 1
j+3

t
2

j+3 ,

t =
(

Esource

Aj ρ0

) 1
j+1

(
2

j + 3
1
U

) j+3
j+1

,

where Esource is the initial energy release for spherically symmetric flow, the energy
release per unit length for cylindrically symmetric flow, or the energy release per unit
area for planar flow. Aj is the energy integral constant, and is a function of j and γ. A
correlation for the spherical case (j = 2) was given in (3.4).

However, the PBT does not account for the significant effect of chemical energy release,
and to a lesser extent, finite back pressure. Korobeinikov (1968) proposed a method for
including the effect of chemical energy release on the analytical blast wave profile, using
a linearisation of the reacting flow governing equations about the non-reacting PBT
solution. This linearisation results in the following solution,

R =
(

Esource

Aj ρ0

) 1
j+1

(
2

j + 3
1
U

) 2
j+1

exp
{

BjQ

(j + 1)U2

}
, (6.1a)

t =
(

Esource

Aj ρ0

) 1
j+1

(
2

j + 3
1
U

) j+3
j+1

{
1 +

(j + 2)(j + 3)
(j + 1)(3j + 5)

BjQ

U2

}
, (6.1b)

where the last factor in each equation is the reacting flow correction. Bj is another energy
integral constant, and is again a function of j and γ. Korobeinikov (1991) lists values of
Bj for j = 0, 1, 2 and various values of γ. A fit of this data in the spherical case (j = 2)
gives,

B2 = 4.1263(γ − 1)1.2530+0.14936 log10(γ−1),
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Figure 18. Shock velocity profiles for case A with Ẽsource = 166 × 106. —— Taylor–Sedov
non-reacting point blast theory (PBT); · · · · · · PBT with linearised reacting flow correction;
– – – numerical simulation.

accurate to 0.29% in the range 1.2 6 γ 6 2.0.
The linearised solution given by (6.1) should strictly only be valid before the blast

wave has decayed to the CJ velocity. However, in practice, it is a good approximation
for a considerably longer time, at least in the case of initiation failure. This is evidenced
in figure 18 where the numerical blast wave velocity profile of a near-critical initiation
event, case A with Ẽsource = 166× 106, is plotted with the corrected PBT profile. While
there is some discrepancy between the curves, the discrepancy gets no worse at the lower
shock velocities. Hence, the theoretical curve seems to be applicable down to at least
U = 0.7UCJ . For comparison, the standard non-reacting PBT profile is also plotted in
this figure. Clearly, the corrected PBT curve is a much better approximation to the
numerical curve. The corrected PBT curve could be shifted even closer to the numerical
curve by additionally considering the correction due to finite back pressure, but the
correction is very small for the regime shown in figure 18, so the improvement would be
negligible.

The characteristic shock decay time td for the corrected PBT can be found by differ-
entiating (6.1b), giving

td = − U

dU/dt
=

j + 3
j + 1

(
2

j + 3

) j+3
j+1

(
Esource

Aj ρ0

) 1
j+1

(
1 +

j + 2
j + 1

BjQ

U2

)
U− j+3

j+1 . (6.2)

It must now be decided at what point in the blast wave profile to evaluate td and
check against the failure criterion (4.9). The simplest choice is to evaluate the model at
U = UCJ , since failure is likely to occur in that vicinity. However, closer examination of
the numerical simulation results in figures 3 and 10 reveals that failure actually occurs
somewhat below UCJ in the critical initiations. Denote the velocity of the leading shock
at failure as U∗. We will discuss the selection of U∗ later in this section. Define θ∗ and τ∗
as the values of θ and τ when U = U∗. Then setting Esource = Ec when td = td,c, and
combining (6.2) with (4.9), gives the critical energy:

Ec = Aj

(
6

j + 1
j + 3

γ − 1
γ + 1

θ∗

)j+1 (
j + 3

2

)j+3 (
1 +

j + 2
j + 1

BjQ

U2∗

)−(j+1)

ρ0 U j+3
∗ τ j+1

∗ .

(6.3)
This is the final model equation for the critical energy, under the assumptions of the
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critical decay rate (CDR) model. For spherically symmetric flow (j = 2), (6.3) gives

Ec = 4.56 × 103A2

(
γ − 1
γ + 1

θ∗

)3 (
1 +

4
3

B2Q

U2∗

)−3

ρ0 U5
∗ τ3

∗ . (6.4)

Using the non-dimensional notation of §3, (6.4) becomes

Ẽc = 4.56 × 103A2

(
γ − 1
γ + 1

θ∗

)3
(

1 +
4
3

B2Q̃

Ũ2∗

)−3

Ũ5
∗ τ̃3

∗. (6.5)

This equation can be used to predict critical energies for the one-step model used in
the numerical simulations. The selection of Ũ∗ can be made empirically, by examining
the shock velocity profiles in the numerical simulations. The failure point is identified
as the point where the profiles of the marginally subcritical and marginally supercritical
initiation energies start to deviate significantly. This was done in §3.2, where it was
determined that U∗ = 0.75UCJ for case A and U∗ = 0.8UCJ for the first critical energy
in case B. Since U∗ < UCJ there is no steady ZND solution, so the induction time τ∗
must be computed by some method other than a ZND calculation. In this work, we have
used a constant pressure reaction behind a shock travelling at velocity U∗, and identified
the induction time as the point of maximum temperature gradient. A constant pressure
assumption gives induction times in very close agreement with the ZND model. This can
be verified by considering the one-step reaction model. Under the assumption of constant
pressure, the asymptotic induction time is given by

τ =
1
k

1
θ

CP Ts

Q
eθ.

Comparing this with (4.3), the ratio of the asymptotic induction time in the constant
pressure model to that in the ZND model is

1 − γM2
s

1 − M2
s

.

In the strong shock limit, this ratio is

γ(3 − γ)
γ + 1

,

and for γ not much larger than 1, this ratio is very close to 1.
The critical energy predictions of (6.5) are listed in table 2 for the two computational

cases. They are compared with the values determined directly from the numerical simu-
lations, where the first critical energy Ẽc1 is listed for case B. The model underpredicts
the critical energy by a factor of 4 to 5. Some disagreement between the model and
the numerics was expected, as the numerical simulations used a relatively low activation
energy that produced a reaction zone with no clearly identifiable induction zone. The
model assumes an ideal asymptotic induction zone, and this is closer to what is observed
in real gas systems. Hence the numerical simulations were intended mainly for qualitative
validation of the model, rather than quantitative comparison.

For practical application of the critical energy equation (6.3) in real gas detonations,
various parameters need to be determined. The value of θ∗ can be determined by the
method described in §5, with a constant volume reaction behind a shock travelling at
velocity U∗. Similarly, the value of γ is determined by matching the shock temperature
ratio at the shock velocity U∗. The induction times τ∗ are computed from a constant
pressure calculation, as for the one-step model earlier in this section . The heat of reac-
tion Q is defined as the difference between the heats of formation of the reactant and
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Critical energy Ẽc

Case Model Numerical

A 34.6 × 106 166 × 106

B 52.3 × 106 199 × 106

Table 2. Comparison between model predictions and numerical results for critical energy.

product, where the heats of formation are the enthalpies of the reactant mixture and
the equilibrium product mixture, with each at a standard reference temperature of 300
K. The equilibrium product composition is taken from the constant pressure reaction
calculation behind a shock travelling at velocity U∗.

This just leaves the specification of the shock velocity U∗ where the critical decay
rate model will be applied. Without the benefit of numerical results for each real gas
detonation, a theoretical prescription is necessary. For this paper, we have assumed U∗ =
Uc, where Uc is the shock velocity corresponding to the critical radius Rc for a slightly
curved, quasi-steady detonation. Although failure occurs at a shock radius smaller than
the critical radius, as shown in the following section, this quasi-steady solution appears
to be the attractor for successfully initiated detonations with a marginally supercritical
energy (He & Clavin 1994). So Uc will be a reasonable estimate to the shock velocity in
the critical region of the flow. We have taken the following expression for the velocity
Uc, derived from a square-wave detonation model (He & Clavin 1994):

Uc = UCJ

(
1 − 1

2θCJ

)
. (6.6)

Yao & Stewart (1995) give an almost identical expression for Uc, derived from large
activation energy asymptotics. It is worth noting that the high sensitivity of the induction
time τ to the post-shock temperature Ts and hence shock velocity U means the critical
energy predictions of the CDR model will be very sensitive to the choice of U∗. Our choice
here is by no means the definitive one, and this represents an area for future study.

7. Comparison with experiment
The global initiation criterion for spherically symmetric detonations, (6.4), is compared

with various sets of experimental data in figures 19 to 21. In all cases the initial conditions
were approximately 1 bar and 300 K. The values of U∗, τ∗, γ, Q and θ∗ were determined
as outlined in §6. The hydrocarbon reaction mechanism of Miller & Bowman (1989)
was used in the hydrogen and ethylene calculations for figures 19 and 20. A natural gas
reaction mechanism from the Gas Research Institute (Bowman et al. 1995) was used
in the calculations for figure 21, as this is a more recent mechanism which has been
extensively tested for methane and ethane. In figures 19 and 20, the critical energy is
plotted against equivalence ratio φ. The ordinate β in figure 21(a) is the volume ratio of
N2 to O2, where 3.76 corresponds to air.

For comparison, the critical energy predictions of the critical curvature model (He &
Clavin 1994) are also shown in these figures. This model gives the critical energy as

Ec = Aj

(
j + 3

2

)2

ρ0 U2
c Rj+1

c , (7.1)

where Rc is the critical radius and Uc is the corresponding shock velocity. Using the
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Figure 19. Comparison between theory and experiment for critical energy versus equivalence
ratio. —— critical decay rate model, (6.4); – – – critical curvature model (He & Clavin 1994),
(7.3); ◦ experiment (Benedick et al. 1986). (a) H2–air; (b) C2H4–air.
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Figure 20. Comparison between theory and experiment for critical energy versus equivalence
ratio. —— critical decay rate model, (6.4); – – – critical curvature model (He & Clavin 1994),
(7.3); ◦ experiment (Matsui & Lee 1979). (a) H2–O2; (b) C2H4–O2.
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Figure 21. Comparison between theory and experiment for critical energy. —— critical de-
cay rate model, (6.4); – – – critical curvature model (He & Clavin 1994), (7.3); ◦ experiment.
(a) Stoichiometric CH4–O2–N2 (experimental data from Bull et al. (1976)); (b) Stoichiometric
CH4–C2H6–air (experimental data from Bull, Elsworth & Hooper (1979)).

authors’ asymptotic square-wave detonation model, the critical radius is given by

Rc =
8ej θCJ

1 − γ−2
∆CJ , (7.2)
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where ∆CJ is the induction length for a CJ detonation. Uc was given in (6.6). Then (7.1)
becomes

Ec = Aj

(
j + 3

2

)2 (
8ej θCJ

1 − γ−2

)j+1 (
1 − 1

2θCJ

)2

ρ0 U2
CJ ∆j+1

CJ .

For spherically symmetric flow (j = 2),

Ec = 5.14 × 105A2

(
θCJ

1 − γ−2

)3 (
1 − 1

2θCJ

)2

ρ0 U2
CJ ∆3

CJ , (7.3)

and this equation was used to generate the curves in figures 19 to 21.
The figures show that the critical decay rate (CDR) model generally gives critical

energies about three orders of magnitude less than the critical curvature model. The
CDR model also agrees with the experimental data to within an order of magnitude,
except in the case of near-stoichiometric hydrogen–air. The agreement is particularly
good in the hydrocarbon figures. The model slightly overpredicts the critical energy in
most of these cases, but this is a substantial improvement on the large overprediction of
the critical curvature model. Admittedly, the critical curvature model could be applied
more accurately by computing the slightly curved quasi-steady U–R solution using a
real reaction mechanism and locating the critical point Uc–Rc, as described in He (1996).
This would then be substituted into (7.1) rather than the approximate results of the
square-wave model. However, use of the square-wave model to find the critical point is
only slightly different and the critical energy predictions would be similar. Comparison
between the CDR and critical curvature models is less conclusive in the hydrogen figures
where the experimental data generally lies between the two models.

While discussing the critical curvature model of He & Clavin (1994), it is instructive to
compute the critical radius Rc for the two computational cases presented in this paper,
and compare with the computational results in figures 3 and 10. Assuming ∆CJ ≈ ∆1/2,
then R̃c ≈ Rc/∆CJ , which can be computed directly from (7.2). For case A, R̃c = 861,
which is much greater than the shock radius in the critical regime from the numerical
simulations, R̃ ≈ 225. For case B, R̃c = 492, which is also considerably greater than the
shock radius in the critical regime for the first critical energy, R̃ ≈ 285. This supports
our assertion that the critical radius is not the controlling variable for direct initiation.

The experiment U-shaped curve for hydrogen–air in figure 19(a) is a significantly dif-
ferent shape than that of the models. This indicates a more complicated behaviour for
this mixture than is accounted for in the models. Near-stoichiometric hydrogen–air mix-
tures have an unusually long recombination zone relative to the size of the induction zone
(Shepherd 1986), but this property does not exist away from stoichiometry. Models based
purely on analysis of the induction zone will not include the effect of the recombination
zone. This may explain the CDR model’s large discrepancy with the experimental data
for near-stoichiometric hydrogen–air.

The slight deviation of the experimental data from the CDR model for rich ethylene–
air mixtures is due to the fact that the Miller–Bowman hydrocarbon mechanism does not
include any large hydrocarbon molecules. Rich mixtures will involve the recombination of
ethylene molecules early in the induction zone to form large hydrocarbons not included in
the mechanism. Hence the mechanism is not expected to accurately compute the dynamic
parameters in the rich regime.

While the agreement between experiment and the CDR model appears approximate
at best, it must be noted that the error bars on both the experimental data and model
predictions are quite large. The model relies on an accurate reaction mechanism for
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the computation of the induction time τ∗ and global activation energy θ∗. Despite ex-
tensive efforts in the development of these mechanisms in recent decades, there is still
considerable uncertainty in their accuracy, particularly when applied to the high pres-
sures associated with detonations in gases initially at standard pressure. Two seemingly
satisfactory mechanisms for the same mixture often give induction times that differ by
a factor of 2 or more. Since the dynamic parameters τ∗ and θ∗ are each cubed in the
spherically symmetric model equation (6.4), this could give an order of magnitude error
in the predicted critical energy. There are also a number of sources of uncertainty in the
experimental data:

(a) The data sets presented in figures 19 to 21 consist mostly of averages of GO and
NOGO experiments which bracket the critical energy quite coarsely.

(b) There are significant differences in experimental data obtained from various types
of initiation sources. The most common sources are exploding wires, electrical sparks and
solid explosives. It is often unclear exactly how much of the nominal source energy actu-
ally goes into the gas, and also whether the energy is deposited sufficiently rapidly and
compactly to act like an instantaneous point source. These uncertainties are particularly
significant for exploding wires and electrical sparks. For this reason, we have chosen not
to use any experimental data from these two initiation sources. The data in figures 19
and 21 used high explosives as the initiation source.

(c) For very sensitive mixtures with Ec of the order of 1J or less, typical of near
stoichiometric fuel–O2 mixtures, use of even high explosives for the initiation source
becomes difficult. The electrical charge used to initiate the small piece of high explosive
is no longer a negligible energy source. Furthermore, it is unlikely a clean spherical
detonation can be formed in the high explosive before the blast wave travels into the gas.
For this reason, no satisfactory experiments have been performed to date with fuel–O2

mixtures using a high explosive initiation source. Hence, we have chosen not to consider
any fuel–O2 critical energy data determined from point initiation experiments. The data
in figure 20 has been taken from Matsui & Lee (1979) who actually performed critical
tube diameter experiments with planar detonations and converted the data to critical
energies using a phenomenological model known as the work done model (Lee & Matsui
1977). This data is thus subject to errors introduced by the use of the model, which is
at best order of magnitude accurate (Benedick et al. 1986).

(d) It is difficult to perform direct initiation experiments with insensitive mixtures that
have large critical energies. A very large experimental facility is required if the velocity or
pressure profiles are to be conclusive as to whether a detonation is successfully initiated
before wave reflection occurs. The initiator energy must be small compared to the total
energy inside the experiment containment. In the past, several experiments with rich or
lean fuel–air mixtures have suffered from considerable uncertainty due to this factor. The
same can also be said of near stoichiometric fuel–air mixtures with very insensitive fuels
such as methane.

The above arguments demonstrate the large uncertainties in most experimental data
on critical energies. This is particularly true of fuel–oxygen mixtures, for which various
experimental results often differ by orders of magnitude. An example is hydrogen, where
the experiments of Litchfield, Hay & Forshey (1963) with H2–O2 mixtures using exploding
wire and electrical spark initiation sources gave critical energies respectively nearly one
and two orders of magnitude higher than those of Matsui & Lee (1979) shown in figure 20.
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8. Conclusions

The one-dimensional reaction zone structure in gaseous detonations is a competition
between heat release, wave curvature and unsteadiness. In direct initiation by a blast
wave, numerical simulations with a simple one-step reaction model and Arrhenius re-
action rate have demonstrated that the dominant balance is between heat release and
unsteadiness. Hence the primary physical mechanism by which a detonation may fail
to initiate is excessive unsteadiness in the reaction zone arising from the deceleration
of the leading shock. The critical amount of unsteadiness was determined from a large
activation energy asymptotic analysis of the reactive Euler equations with the one-step
reaction model. The local initiation model was validated through quasi-unsteady calcu-
lations with real gas kinetics. It was found that the model agreed with the numerical
calculations to within 40%, for a number of fuel–oxidiser mixtures over a wide range of
stoichiometries.

An analytical equation for the critical energy was developed from the local initiation
model by means of an assumed blast wave velocity profile. Closure can be obtained by ap-
plying the local initiation model at a prescribed critical point in the velocity profile. The
optimal choice of this point remains an unresolved issue, and in this paper we have made
an ad-hoc assumption to use the shock velocity corresponding to the critical radius in the
quasi-steady slightly-curved nonlinear detonation relationship. The analytical equation
thus obtained was found to give order of magnitude agreement with numerical and exper-
imental data. The agreement with experiment is quite satisfactory at present. With large
uncertainties in both experimental data and theoretical reaction mechanisms, we cannot
hope to validate direct initiation models against experiment to more than an order of
magnitude comparison. Improved accuracy in experiments and reaction mechanisms is
required before more detailed validation will be possible.

We propose the CDR model as a model for spherical, cylindrical and planar direct
initiation. However, we have only validated it with numerical and experimental data in
the case of spherical detonations. The application to cylindrical and planar detonations is
speculative and the possible subject of further research. Validation of the planar case with
numerical simulations using the one-step Arrhenius reaction model may be complicated
by the difficulty of distinguishing “Go” and “No Go” initiation events. This complication
was observed by Mazaheri (1997). It is an effect of the slow rate of blast wave decay
in the planar case, coupled with the one-step model’s non-physical properties at low
temperatures and the inevitable completion of reaction at long but finite times. However,
this is a numerical artifact of the one-step model and not something observed in real
detonations, so we do not believe it is a reason for discounting any direct initiation
model in the planar case.

The numerical simulations presented here for case B also identified an interesting phe-
nomenon, that of a non-unique critical energy. Whether this is a physical phenomenon
or another artifact of the one-step model is a question for further study. Simulations
with realistic thermochemistry would be very illuminating in this regard. With this non-
uniqueness in mind, we chose to examine only the lower critical energy since there ap-
peared to be some universality of behaviour between cases A and B. In that case, there
was a clear and sudden distinction between marginally subcritical and marginally super-
critical initiation cases that occurred in the initial blast wave decay. Our model is an
attempt to explain this behaviour. Clearly, our global initiation model cannot hope to
explain the more complicated dynamics associated with the higher critical energy, since
it is based on an assumed monotonically decaying blast wave law. So at best, the model
gives a lower bound estimate to the critical energy.
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Appendix
In section 3.2, the curvature term in the temperature reaction zone structure equation

(2.13) was seen to be much smaller than the unsteadiness term, numerically. Here we
examine the ratio of these terms analytically. Since the numerics suggested each of these
terms were constant in the induction zone, prior to failure, we can approximate their
ratio by their initial ratio just behind the leading shock. Using (2.13), and the strong
shock perfect gas jump conditions (4.6), the ratio of curvature to unsteadiness is

j

3
γ − 1
γ + 1

U2

R

1
dU/dt

.

To compute this ratio, a shock velocity profile is required. As detailed in §6, we adopt
the modified Taylor–Sedov solution for a strong point blast with chemical energy release.
Using (6.1a) and (6.2), the absolute value of the above ratio reduces to

2
3

j

j + 1
γ − 1
γ + 1

(
1 +

j + 2
j + 1

BjQ

U2

)
exp

{
− BjQ

(j + 1)U2

}
.

This expression appears quite complicated, but if we evaluate it in the spherical case
(j = 2) at the failure point U = U∗ for the real gas mixtures studied in figures 19 to 21,
we find it is almost constant at 0.1, with the maximum value for any of the mixtures
or stoichiometries being only 0.12. In the cylindrical case (j = 1), the ratio will be even
less. Hence, from an analytical consideration of the terms in the temperature reaction
zone structure equation, we conclude that the curvature term is at least one order of
magnitude smaller than the unsteadiness term in the critical region of the flow. Thus it
is justifiably omitted from the analysis.
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