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Abstract

A hybrid weighted essentially non-oscillatory (WENO)/centered-difference numerical method, with low nu-
merical dissipation, high-order shock-capturing, and structured adaptive mesh refinement (SAMR), has been
developed for the direct numerical simulation of the multicomponent, compressive, reactive Navier-Stokes
equations. The method enables accurate resolution of diffusive processes within reaction zones. The approach
combines time-split reactive source terms with a high-order, shock-capturing scheme specifically designed
for diffusive flows. A description of the order-optimized, symmetric, finite difference, flux-based, hybrid
WENO/centered-difference scheme is given, along with its implementation in a high-order SAMR frame-
work. The implementation of new techniques for discontinuity flagging, scheme-switching, and high-order
prolongation and restriction is described. In particular, the refined methodology does not require upwinded
WENO at grid refinement interfaces for stability, allowing high-order prolongation and thereby eliminating
a significant source of numerical diffusion within the overall code performance. A series of one- and two-
dimensional test problems is used to verify the implementation, specifically the high-order accuracy of the
diffusion terms. One-dimensional benchmarks include a viscous shock wave and a laminar flame. In two
space dimensions, a Lamb-Oseen vortex and an unstable diffusive detonation are considered, for which quan-
titative convergence is demonstrated. Further, a two-dimensional high-resolution simulation of a reactive
Mach reflection phenomenon with diffusive multi-species mixing is presented.
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1 Introduction

The compressible, reactive Navier-Stokes equations are a mixed-type set of partial differential equations
(PDEs) with stiff source terms, presenting a significant challenge for numerical simulation. The result is
a multiscale problem containing sharp gradients whose discretized solution is highly sensitive to numerical
dissipation. The hyperbolic part of the equations (the inviscid terms as modeled by the Euler equations)
is often solved numerically by using a shock-capturing method specifically designed to be stable when dis-
continuities are present. However, these robust methods introduce numerical dissipation that pollutes the
diffusive part of the equations. For a convective-diffusive equation, owing to the physical viscosity, there are
no discontinuities in a fully resolved solution, yet shock-capturing is still necessary to handle sharp gradients
without spurious oscillations.

Aside from works such as Pantano et al. (2006), Lombardini and Pullin (2009), Ward and Pullin (2010),
Matheou et al. (2010), which utilize the AMROC (Adaptive Mesh Refinement in Object-oriented C++)
SAMR framework, hybrid WENO methods have mainly been applied on uniform or graded meshes. Recent
examples include Adams and Sharif (1996), Pirozzoli (2002), Martin et al. (2006), Costa and Don (2007),
Larsson and Gustafsson (2008), Chao et al. (2009). There has been much work in proving numerically and
theoretically the stability of hybrid schemes. Adams et al. Adams and Sharif (1996) addressed this problem
and Larsson & Gustafsson Larsson and Gustafsson (2008) give a detailed analysis, particularly proving the
stability for a hybrid match between finite difference WENO and centered stencils. Their proof, using Kreiss
or GKS theory Gustafsson et al. (1995), directly applies to our scheme’s framework in the uniform case,
yet, is difficult to extend to the SAMR case with overlapping grids. A brief discussion is provided in §13.4
of Gustafsson et al. (1995), where the stability of overlapping grids is theorized to be stable when viewed as
an over-specified boundary value problem and deemed provable at least in the one-dimensional case.

Another high-order (in fact fourth-order accurate) method for use with SAMR has been developed for
the Chombo SAMR software Colella et al. (2009) based on a globally conservative finite volume formulation.
This approach, while well adapted to inviscid simulations, can suffer from numerical dissipation in smooth
flow regions, impeding its suitability for small-scale diffusive and viscous phenomena. The problem is shared
by the classical second-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation
Laws) methods and by most pure WENO schemes, thereby motivating the present work.

Diffusive effects in reacting flows have become a topic of recent research interest. Day et al. Day et al.
(July 2009), using the BoxLib software, have reported lower-order accurate, SAMR-based, finite volume
simulations for subsonic turbulent flames that model detailed chemistry and diffusive mixing. For their
flows, the compressibility is small and this allows use of a low-Mach-number formulation. A hybrid essentially
non-oscillatory (ENO)/centered-difference method with third-order Runge-Kutta (RK) time integration was
used by Fedkiw Fedkiw et al. (1997) for the simulation of reacting flow. Uniform grids were employed.
Related simulations of diffusive compressible reacting flow with detailed chemistry have been conducted by
Massa et al. Massa et al. (2007). They utilized a third-order in time, fourth-order in space Rusanov, Kutler,
Lomax, and Warming (RKLW) scheme as described by Kennedy & Carpenter Kennedy and Carpenter
(1994). This method is not monotone or total variation diminishing (TVD) and a numerical filter, which is
not appropriate for shock-capturing and SAMR, was used to damp spurious oscillations. Neglecting shock
waves, a two-dimensional simulation of an equivalent shear layer behind triple points in detonations was
conducted. Double Mach reflection (DMR) simulations with viscosity and thermal conduction have been
reported by Vas Ilev et al. Tlev et al. (2004). No-slip boundary conditions were used, which applies to shock-
solid surface interactions rather than shock-shock interactions. Similar work has also been done for two-
and three-dimensional, turbulent, compressible, reacting flow by Poludnenko et al. Poludnenko and Oran
(2010), using the fixed-grid massively parallel framework Athena-RFX. Their numerical method is based on
a fully unsplit corner transport upwind (CTU) algorithm and an integration scheme using Colella-Woodward
(PPM) spatial reconstruction in conjunction with an approximate nonlinear HLLC Riemann solver to achieve
3rd-order accuracy in space and 2nd-order accuracy in time.

The outline of this paper is as follows. In § 7?7 WENO methods are briefly introduced and then ex-
tended to describe the symmetric variant and its hybridization with centered differences. Then in § 3, the
implementation of the scheme with time-split integration, discontinuity flagging, and flux-based SAMR is
developed. One- and two-dimensional non-reactive and reactive verification problems are presented in § 4.
A brief introduction to compressible, reacting, diffusive flow is presented in § 5. Finally, results are pre-



sented in § 6 for a fully resolved reactive, diffusive DMR with one-step chemistry, along with preliminary
unresolved results for multicomponent flow with detailed transport and chemistry. The present simulations
can be viewed as extension and application of the hybrid approach to detonation-driven, diffusive-reactive
flows within an SAMR framework, with a focus on the accurate resolution of reactive-diffusive effects.

2 Reactive multicomponent Navier-Stokes equations

To conduct direct numerical simulations (DNS) of detonation waves, the compressible Navier-Stokes equa-
tions are extended to model multidimensional, multicomponent, chemically reacting gas flows. The model
assumes an ideal gas mixture with zero bulk viscosity. Soret and Dufour effects of mass diffusion, external
body forces, and radiant heat transfer are neglected. This forms a large system of nonlinear conservation
laws containing stiff source terms Fedkiw et al. (1997) and with both first- and second-order derivative terms
from convective and diffusive transport. Mizture averaged transport is also assumed. In this approximation,
“cross diffusion” terms are neglected and the solution of a matrix equation at each time step is avoided. Note
that in this case, there are still separate temperature and pressure dependent diffusivities for each species.
For the derivation, see Williams (1985).

2.1 Formulation

The problem is formulated for a mixture of N species as

8tq + 6:Cf-conv + 6yhconv _ 6$fdiff _ 6yhdiff — Schcm (1)
with vector of state q = (pu, pv, pet, pYi, ..., pYN)T and the convective fluxes
fconv:uq+p(170’u)07"'70)T7 hconv:Uq+p(0717v707"'70)T7 (2)
the diffusive fluxes
N T
piff _ (Tm Toys UTox + UTay + kO, T + p Y hiD;0:Yi, pD10:YA, . .., pDNaxYN> (3)
i=1
and
N T
haiff _ (Tw, Tyys WTay + 0Ty + kO, T + p Y hiD;0,Y;, pD10, Y1, . .. ,pDNayYN> , (4)
i=1

and the reactive source term
sehem — (0,0,0,0,01 (T, p, Y1, . YN ), - on (Typ, Y, . YO '\ (5)

where 7 denotes the stress tensor (defined in Appendix A). The mass fraction of the i-th species is computed
from the partial and total density as Y; = p;/p. The enthalpy of the gas mixture is denoted by h; w; is
the mass production rate of the i-th species, u the mixture viscosity, k& the mixture thermal conductivity,
and D; the mass diffusivity of the i-th species into the mixture. The mass production rates are specified
by Arrhenius rate equations, determined by the particular reaction mechanism. The contribution of each
species to the total energy is obtained by using a mass-fraction-averaged enthalpy, i.e.,

a P u? +v?
h=Y Yih;, where h=e += — " (6)
p

i=1

To close the system of equations, we have the ideal gas law for the average mixture properties, as derived
from the partial pressure equation for each species, that reads

N N N
p=> pi=Y pYiRT =pRT with R=> Y;R; R;=
=1

i=1 i=1

(7)

£
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where R is the universal gas constant and W, the molar mass of each species. The mass production rates
are computed by summing the contributions from each chemical reaction. The reactions are all formulated
with an Arrhenius rate equation, cf. Williams (1985). The sound speed, a, a parameter that is calculated
throughout the simulation, must be derived for a mixture, of thermally perfect, ideal gases. The frozen
sound speed is defined as the derivative of the pressure with respect to the density at constant entropy and
species concentrations and reads

N
a’ = <) =~RT = 'yg =~Y YT (8)
Ip s,Y1,...,.Yn p Z

=1

Using a representation of each species’ specific heat at constant pressure and constant volume, denoted by
cpi(T) and ¢,;(T'), respectively, as a function of T, the specific heat ratio for each species is

%i(T) = ZZZ g; )

Cyi = Cpi(T) — ]%z (9)

A mixture value for v — 1 is found using the mole fraction, X;, as

N -1 N -1 N
Xi pi YW Y;
¥(T)=1+ T — , X =—= with W = — = X W;. 10
= (X5 )W, 2w) T "

fCOIlV

For the canonical eigendecomposition, for instance, of the Jacobian of the flux function , see Appendix C.

2.2 Temperature evaluation

Thermally perfect gases require the computation of the temperature from the conserved quantities by solving
an implicit equation. Consider the pressure as the sum of partial pressures,

YR
i=1 Wi

and also as related to the enthalpy and internal energy of the mixture,

u“ +ov
p=H-FE= ;:1 pihi(T) + per, p= ;leihi(T) —per+p—g— (12)
The pressure in (11) and (12) must be equal, giving the equation
u +v R
0=S"p;hi(T) — BN 13
igzlp (T) = per + p=— ;:1'0 W (13)

In the following section, WENQO schemes are briefly described and the extension to a symmetric WENO
method is elaborated. Also, the time-split approach for reactive source terms, when using a Runge-Kutta
integrator, is detailed.

2.3 ENO and WENO schemes for conservation laws

ENO and WENO discretizations Shu (1997) have revolutionized the solution of nonlinear hyperbolic con-
servation laws, particularly for the multidimensional Euler equations, which are often used as an inviscid,
hyperbolic, non-diffusive approximation of the mixed-type Navier-Stokes equations. This approximation is
suited for the simulation of shock waves, contact discontinuities, and other non-smooth flow features. ENO
and WENO schemes have been specifically developed for problems containing both piecewise smooth solu-
tions and discontinuities. They are designed to obtain arbitrarily high order of accuracy in smooth solution
regions while minimizing the propagation of first-order errors obtained along discontinuities. WENO schemes

7



are an extension of ENO. Instead of choosing from a group of stencils, the WENO approach uses a convex
combination of all stencils. Smoother stencils are given larger weight, yet, at discontinuities, WENO per-
forms exactly as ENO. In the limit of smooth regions, however, the WENO approach obtains a much higher
order of accuracy. ENO and WENO schemes can either be finite difference or finite volume, yet, the finite
difference variant is commonly chosen for reasons of efficiency Shu (1997). For the finite difference schemes,
the wider the interpolation stencil, the higher the order of accuracy obtained; however, this is only true
provided the solution is smooth. Using centered stencils at discontinuities causes undesirable oscillations in
the numerical solution. These oscillations propagate through the domain and can create instabilities in the
numerical solution.

When discontinuities are present, the global order of accuracy is always reduced to one Greenough and
Rider (2004). ENO, WENO, and, for example, discontinuous Galerkin finite volume methods will not by
themselves obtain high order of accuracy near discontinuities. Therefore, these schemes are often referred
to as high-resolution rather than high-order methods. In fluid mechanics, whenever shocks are captured
(rather than resolved as possible with the Navier-Stokes equations), first-order accuracy is obtained. Note
that high-resolution schemes are nonetheless useful because complex structures, not resolved by low-order
methods, can be studied in greater detail. High order of accuracy can be achieved in some cases, for instance,
when a shock-fitting method is used Henrick et al. (2006). Here, the discontinuity’s velocity and shape is
tracked, and at each time step the Rankine-Hugoniot equations for the shock are solved exactly. This is easily
implemented for one-dimensional problems, yet too expensive in two and three space dimensions. Difficulties
also arise on how to track complex multidimensional structures, cf. De-Kang (2007). Thus, for all but the
simplest problems, shock-capturing methods are currently still needed.

2.3.1 WENO reconstruction

For each interpolated flux, the smoothest stencil is chosen among the group of neighboring stencils. In
a k-th-order ENO scheme, k£ candidate stencils are considered over a range of 2k — 1 cells, but only one
stencil is used in the reconstruction. The basis of WENO is to take advantage of this by using a convex
combination of all of them. Two properties are desired: ENO-like performance at discontinuities and the
usage of all k stencils in the limit of a smoothly varying solution, yielding O(Ax2*~1) convergence. The
convex combination is a linear combination of fluxes, where all coefficients (smoothness-biased weights), w,.,
are non-negative and sum up to one, i.e., w, > 0 for r =0,...,k — 1 and ZI:;S wy = 1. The results from
each stencil, S, = {mj,r, ...,xj,Hk,l}, are combined with the weights w, to obtain the approximation of
the boundary fluxes f . The combination yields

k—1

fj+1/2 = Zwrcrnfj—r—Q—R- (14)

r=0

Since we are using a structured non-graded mesh, the same set of coefficients, ¢, is used for each point
value. This leads to an approximation of the derivative at the cell center in terms of point fluxes at the cell
boundaries. The weights are designed for the limit of smoothly varying flow. In this limit, all smoothness
measures are equal and the weights become the predetermined values such that all k stencils together, act as
one large stencil that interpolates the 2k — 1 cells, hence obtaining (2k — 1)-th order of accuracy. The weights
w, approach the coefficients d,., which, when multiplied appropriately by each stencil’s coefficients ¢, and
summed, become exactly those coefficients for a polynomial with 2k — 1 interpolation points. Hence, in the
limit of smooth solutions, the weights are equal to d,., while for a discontinuity, some or all weights become
zero, depending on if the discontinuity is located within or at the boundary of a cell. With a smoothness
measure [, for the r-th stencil defined, the weights are

W, = ———— with « 4 (15)

D S " (e+B)Y

where € > 0 is an arbitrary problem- and mesh-size-dependent parameter which can range from 1072 to
103, Shu Shu (1997) recommends 10~¢. Depending on the type of derivative approximation (for example,
with centered differences), numerous formulas for 3, are possible. Thus, measures reported in the literature
are varied. Note that in deriving a smoothness measure, it is still required that the 3, become zero when

8



a constant solution is encountered in order to ensure convergence to (2k — 1)-th order in smooth solution
regions.

2.3.2 Characteristic form

For the finite difference scheme, aside from solving the exact Riemann problem at the cell boundaries, the
highest accuracy is obtained if a characteristic decomposition is adopted. Here, the system of equations are
diagonalized using a local approximation of the Jacobian at each cell boundary. The state q; and flux f(q)
are transformed into the characteristic state v; and flux g(q;), as detailed by Shu Shu (1997). The exact
transformation is determined by the local eigenvectors at the cell boundary. It is unknown and must be
approximated. The simplest way of doing this is to use the average state at the right and left cells. For fluid
mechanics, an expensive but more accurate method is to use the Roe average, which is suitable for shock
waves,

fipr — £ = £ 1 (a1 + a) (a1 — @), (16)

from which the eigenvectors of the Jacobian, fJ’. can be determined. Note that the canonical eigendecom-

+3°
position of the inertial fluxes of the Navier-Stokes equations is provided for completeness in Appendix C.
One important step remains before transforming the fluxes back from the characteristic space. A flux split
is conducted, which separates the left- and right-moving contributions, based on the negative and positive
characteristics. The most commonly used flux split is the Lax-Friedrichs flux splitting, where for the m-th
component of the flux
1

gi(v) = i(gm(v) £ Am V) (17)
is used. The coefficient «, is taken as the maximum of the range of the m-th eigenvalue in the solution over
the whole domain, i.e.,

Q= m?XP\m,j(qy‘)l- (18)

With the positive and negative characteristic fluxes found, the finite-difference reconstruction procedure
is used twice to derive the positive and negative fluxes at the cell boundaries. As shown in Figure 1(a),
two different sets of stencils and optimal stencils are used. In two space dimensions, the final form of the

gt—>»
ji2
s2
|
So
1
2 g [ T T
172
- gt
gjﬂ/z jHi2
Y s3
S1 I—l S2
So St — 1
S0 —————
2o i M2 3 B2 j o2 3
172 #1172
(a) 5th-order Shu stencil (b) 6th-order Weirs stencil

Figure 1: Set of candidate stencils for two differente finite difference WENO methods using flux splitting.
The positive and negative characteristic fluxes, g7 and g—, respectively, are calculated at the cell boundary
located at Tii1.

approximation of the point-wise time derivative for the (j,1)-th cell is

dq;i L (3 f = (i h
it :_E(fﬁ;z—fj—%,z)_Ky(hﬂ+%— it )
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2.4 Enhanced WENO schemes

WENO schemes perform well for purely hyperbolic PDEs, yet, for mixed equations with physical diffusion,
they introduce too much numerical dissipation that tends to artificially remove energy from the highest
resolved wave numbers Weirs and Candler (1997). This numerical damping arises from the upwinded,
optimal stencils and the smoothness measures. Traditionally, finite difference approximations have been
designed to maximize the order of accuracy. However, contemporary research interest in turbulent flow has
expressed the need for minimizing the approximation error of the small turbulent scales. The resulting finite
difference schemes are based on bandwidth-optimized stencils (see Lele (1992)).

2.4.1 WENO-SYM

Weirs Weirs and Candler (1997) used bandwidth optimization techniques to develop symmetric optimal
stencils with reduced dissipation and greater resolving efficiency. Using Fourier analysis, the coefficients are
chosen to resolve the high frequencies of interest instead of tailoring them for maximal order of accuracy. In
this particular case, the optimal 5th-order 5-point stencil, originally constructed with three 3-point stencils,
is changed to a symmetric 6th-order, 6-point stencil that is constructed with four 3-point stencils, as shown
in Figure 1(b). Then by bandwidth (rather than order) optimizing the coefficients, a 4th-order accurate
optimal stencil is found with the desired spectral properties.

Note the differences between the WENO-SYM stencil and that of the original WENO as depicted in
Figure 1(a). The optimal WENO-SYM stencil is centered at the point at which the flux is being evaluated
while the optimal WENO stencil is upwinded in order to mimic the flux in the characteristic directions. The
latter is advantageous for correctly modeling the flow of information but introduces numerical dissipation
which is undesirable for convergence when resolving small turbulent scales and diffusive mixing. In contrast
to Shu’s upwinded counterparts Shu (1997) only the smoothness measurement introduces dissipation into
the WENO-SYM approach, cf. Weirs and Candler (1997). Now with an extra stencil present and all stencils
shifted as shown in Figure 1(b), the WENO-SYM construction is performed with the unchanged stencils S,
but uses w, > 0 for r =0,...,k with Ef:o w, = 1 and thereby reads

k
fj+1/2 = Zwrcrnfjfr+n' (20)
r=0

In the limit of smooth flow all & + 1 stencils together act as one large stencil, which interpolates 2k cells
obtaining (2k)-th order of accuracy. For the formally 6th-order accurate WENO-SYM scheme, four 3rd-order-
accurate ENO stencils are used. In this order-optimized implementation for k = 3, the optimal weights, d..,
and the ENO stencils, as specified by ¢,., are

d 19 9 1 2 =7 11 -15 2 25 —1 1 -7 2
T T S e A e R Gl e b

(21)
The evaluation of the smoothness measure for the WENO-SYM scheme is complicated by the fact that
a discontinuity could be located exactly at the center of the stencil. This problem is effectively avoided

by forcing the right most stencil to have a smoothness parameter, B, equal to zero when calculating the

positive characteristic flux, g]trl, and similarly forcing the left most stencil to have 3y, equal to zero for the
2

negative characteristic flux, gj_Jr , . For the positive characteristic flux with £ = 3 and (83 = 0, the remaining
2

smoothness measures for r = 0,...,2 are defined as

2 3 2
ﬁr = Z ( dr,n,lf(qjk+1+r+l)> 5 (22)

n=1 \Il=1

where the smoothness coefficients, d.. ., are given by

1 —4 3 —1 1 3 -4 1 -5 8 -3
dl,l,l:{27272}7 d2,1,l:{2a052}7 d3,1,l:{27252}7 d4,1,l:{2a2a2}7 (23)
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and

13 13 13
20 =9\ =2\ 5.\ = =0,...,3. 24
dT,Q,l { 127 127 12} ) r 07 73 ( )
2.42 WENO/CD

Hill et al. Hill and Pullin (2004) and Pantano et al. Pantano et al. (2006) developed a robust hybrid
WENO /tuned centered difference (TCD) method, which combines the TCD stencil with the WENO-SYM
scheme. The centered difference stencil was bandwidth-optimized, specifically for weakly compressible de-
caying turbulence Pantano et al. (2006). The optimal WENO weights are chosen to match those of the TCD
scheme thereby minimizing oscillations at the matching boundaries. The location of the scheme-switching
boundary is defined by a problem dependent switch. By using the relatively inexpensive TCD stencil pre-
dominantly in regions where the solution is smooth and WENO-SYM at and around discontinuities, the
overall resulting WENO/TCD scheme performs faster and additionally has the spectral resolution desired
in turbulence simulations. For DNS, however, where all scales are resolved, a symmetric order-optimized
stencil is ideal. Therefore, for our application a WENO/CD rather than WENO/TCD method is used.

For schemes based on centered stencils, no numerical viscosity is present, yet care is needed to avoid
nonlinear instabilities that may develop Pantano et al. (2006). Such instabilities can be alleviated by using
a skew-symmetric formulation that conserves the kinetic energy Honein and Moin (2004) and prevents the
convective terms of the momentum and energy equations from artificially producing or dissipating global
kinetic energy. Without this, it has been found that in unstable flow simulations, the entropy of the system
decreases with time, a clear violation of the second law of thermodynamics.

2.5 Time discretization

The commonly chosen time discretization for hyperbolic problems is the method of lines. The most popular
methods used with the Euler equations are explicit TVD or strong stability preserving Runge-Kutta (SSPRK)
methods, where each of these is designed for a specific n-th order of time accuracy, O(At™). Also, note that
each TVD scheme has a critical Courant-Friedrichs-Lewy (CFL) number, v, above which the method is not
guaranteed to be stable. A typical definition (for the inviscid case only) would be v := %|)\max| < 1, where
Amax 18 the maximal eigenvalue encountered in the domain at a particular time, ¢, Leveque (2002). For
PDEs with diffusion and convection, the latter relation needs to adjusted (see Appendix B for the case of
two-dimensional reactive Navier-Stokes equations). The typical third-order, three-step SSPRK(3,3) scheme,
integrating from time step n to n + 1, is

3 1 1 1 2 o 2
¢V =q(n)+AtL(g(n), ¢ = Ja(n)+7¢V+3ALGEY),  g(n+1) = Sa(n)+30P +SALL(A®) . (25)

4 3 3
In the last equation, L(g) is the numerical approximation of the spatial differential operator of the hyperbolic
equation. For smooth solutions approximated with a three-step Runge-Kutta method (RK3) and sixth-order
accurate WENO, we therefore have

@ = L(q) + O(Az%) + O(A#) . (26)

When viscous scales are also being resolved, we must consider how numerical viscosity from the spatial
discretization scales with the CFL number. Using the advection-diffusion equation as an example, if one uses
first-order Euler time integration, upwinding on the advection term and a centered difference approximation
of the diffusive term, one finds that the numerical viscosity from the space discretization (which scales with
Az* in this case) approaches zero as the CFL number approaches one. Therefore, for mixed-type PDEs with
advection and diffusion terms, the highest possible stable time step should be used.

For the reactive simulations, owing to the large difference in time scales between the fluid dynamics and
the reactive source terms, a time-splitting method is used in combination with the SSPRK(3,3) method
of Ketchenson et al. Gottlieb et al. (2009). The stiff source terms are integrated separately in each cell
utilizing the 4th-order accurate semi-implicit GRK4A method of Kaps and Rentrop Kaps and Rentrop
(1979), which avoids a globally coupled implicit problem. Using the Strang splitting approach, the maximal
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temporal order of accuracy is limited to two Leveque (2002). An easily neglected detail for Runge-Kutta
schemes is the proper time update within the sub-steps, which is vital to ensure the correctness of time-
dependent boundary conditions, as used, for instance, at SAMR-level boundaries when hierarchical time step
refinement is employed. Therefore, we sketch the application of Strang splitting with SSPRK(3,3) below.
With sg4ep, = (1, —%, %) the algorithm reads:

Integrate chemistry from ¢ to t + %
fort=1,2,3:
Update ghost cells at ¢ + At - s5tep,
Integrate fluid to ¢ + At - sgep,
Integrate chemistry from ¢ + % tot + At

Also, for the non-reactive preliminary simulations, a 10-step, 4th-order Runge-Kutta scheme, SSPRK(10,4) Got-
tlieb et al. (2009), is used. Here, the stable region is for v = 6. This scheme is more efficient than SSPRK(3,3),
however, is more difficult to integrate with a time-splitting scheme owing to its 10 as compared to 3 sub-steps.

The 4th-order scheme is stable for the collective 10 steps with a CFL number six times larger than that of
the 3rd-order scheme with its collective 3 steps, leading to a scheme that is almost twice as efficient. The
SSPRK(10,4) scheme reads:

fore=1,...,10:
: W e Aty
it (1 #10): ¢ =gq + ?L(q )

. At ; 1, 9 .

=5 @ =g+ TLED), 0 = kg, g =150 5
6 At

if (1 =10): q(n+1) =154 + 75 L) + ¢

3 SAMR implementation

We utilize the fluid-solver framework AMROC, version 2.0, integrated into the Virtual Test Facility Deiterd-
ing et al., 2006, 2007), which is based on the block-structured adaptive mesh refinement algorithm pioneered
by Berger & Oliger Berger and Oliger (1984) and refined by Berger & Colella Berger and Colella (1988).
This algorithm is designed especially for the solution of hyperbolic partial differential equations with SAMR,
where the computational grid is implemented as a collection of rectangular grid components. Finite-difference
methods are limited to either uniform grids or SAMR, while the finite-volume approach can also be used
with unstructured meshes. The SAMR method follows a patch-wise refinement strategy. Cells are flagged by
error indicators and clustered into rectangular boxes of appropriate size. Refined grids are derived recursively
from the coarser level and a hierarchy of successively embedded grid patches is constructed. With its parallel
distribution strategy, described in detail in Deiterding (2005a) and Deiterding (2003), AMROC synchronizes
the overlapping ghost cell regions of neighboring patches user-transparently over processor borders whenever
boundary conditions are applied. An efficient partitioning strategy for distributed memory machines is used
for high-performance simulations with MPI-library, cf. Deiterding (2005a).

Typically, a second-order accurate Cartesian finite volume method (commonly of the MUSCL type) is
used with SAMR implementations. AMROC has been employed very successively with such schemes to
efficiently simulate shock-induced combustion, particularly detonation waves, with simplified Browne et al.
(2007) and detailed chemical kinetics Deiterding (2005b, 2010). From the standpoint of DNS, however,
the low numerical dissipation of the 6th-order hybrid WENO/CD scheme should provide faster grid-wise
convergence than a second-order scheme. Also, it is predicted that for three-dimensional simulations, owing
to the multiscale nature of the problem, it will be very expensive to obtain the desired resolution needed in
the diffusive mixing and reaction zones. In the case where the simulation is memory rather than compute
time limited (i.e., the available memory determines the highest possible resolution), the 6th-order accurate
method yields superior results.

In order to prescribe non-rectangular domains in § 6 we utilize a level-set-based embedded boundary
method, that has been demonstrated and verified in detail for chemically reactive flows in Deiterding (2009).
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3.1 Centered differences in flux-based form

WENO schemes themselves are naturally flux-based formulations, but a flux-based formulation of the
centered-difference method is also required in order to enforce conservation at the WENO-SYM/CD scheme-
matching points. For the j-th point at the cell center, the flux in the z-direction can be approximated with
a 7-point centered stencil as

1
5a], = B @Urss — Fims) +8lIysa = f5-2) ¥ (S = fi-a), (27)
where a = 1/60, 8 = —3/20, and v = 3/4 are constants selected for the 6th-order accurate stencil. However,
in order to enforce conservation, we must consider the fluxes at the cell boundaries f; +1 and f;_1. For the
inertial fluxes, the local f; at the cell centers are explicitly known. However, the local cell-centered diffusive
fluxes must be calculated with a stencil similar to that of (27) as discussed in § 3.2. These together are used
to obtain the fluxes at the cell walls, obtaining the final desired conservative approximation of the flux at
the cell center, i.e.,
of

oz

o Aix (Frs = Fms). (28)

_1 are calculated using

where fj+% and f.

Fivs = (@(fja + fim2) + B(fir2 + fi—1) + (i + fi+1)) (29)

with @ = 1/60, 3 = —2/15, and 5 = 37/60. However, directly using this is not advised. Presently, we utilize
the skew-symmetric form on each piece of the decomposed flux (see Pantano et al. Pantano et al. (2006) for
details). The derivative of the flux at the cell center is obtained by adding the contributions from the cell
boundaries in (28).

3.2 Diffusive-flux approximation

The approximation of the diffusive fluxes shares the previously encountered problem that the numerical
fluxes must be calculated at the cell walls in a conservative fashion. For orders of accuracy greater than two,
it is difficult to obtain derivatives (nonlinear combinations of first and second derivatives) at the cell walls
without allowing for stencil widening.

ov 1

8_y z = A_y (a(vigs —vi—3) + B(vig2 — vi—2) + Y(Vi41 — vi—1)) , (30)

3.3 Hybrid method boundary flagging

(a) Shock Detection (b) Density pseudo-color plot

Figure 2: Shock detection applied to the viscous double Mach reflection problem of Section 6.1.
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The technique uses an approximate Riemann solver to detect the existence and orientation of strong
shock waves, while ignoring weak ones. The approximate solution to the Riemann problem is computed
using Roe-averaged quantities from the given left (L) and right (R) state. Liu’s entropy condition allows for
characterizing the type of the wave encountered at the characteristic associated with the eigenvalues u + a
(shock or rarefaction wave). A shock is produced if and only if the central state satisfies the condition

lur £ ag| < |ux £a.] <|ur £ agl. (31)

Here, ay, g is computed by evaluating the speed of sound, a = /p/p, at the left or right cell faces, and the
central state (u,a.) corresponds to the Roe averages,

= L s \/ (e = 1) (e = 502), (32)

*

where

_ Vprhy ++prhr . VPLCp L + \/PRCp R L Cp R — VpLRL +VprRr

h* - ) Sk ) V= ) * T
VPL+ /PR P VPL + /PR Cpx — Ry VPL + /PR )
33

and h., V«, ¢p «, and R, are the Roe-averaged specific enthalpy, heat ratio, specific heat for constant pressure,
and gas constant, respectively. When testing the validity of the inequalities (31), a threshold value ay;,/a
is considered to eliminate weak acoustic waves that could be easily handled by the CD scheme. For better
efficiency and flexibility, this criterion is combined with a geometrical test based on a mapping of the
normalized pressure gradient, 6;, that reads Lombardini (2008)

20,
(140;)
If Equation (31) is satisfied for a cell wall bounded by cells j and j + 1 with values different by at least
arq/a and also ¢(0;) > aarap holds true, then WENO is set to be used at the cell wall. This algorithm is

applied independently in each spatial direction and we additionally employ it in multiple rotated frames of
reference. The latter allows us to efficiently detect shocks that are not grid aligned.

with g, — [Pr+1=Pil (34)

0.) = = .
#(8;) Py 7 1]

3.4 Higher-order accurate hybrid prolongation and restriction

Prolongation involves the interpolation of cell-centered vector of state variables at a coarse level to the next
finest level’s ghost or newly refined interior cells. Restriction involves the interpolation (for finite difference
methods) or just simple averaging (for finite volume methods) of the fine level states onto the underlying
coarse level mesh. We have extended the prolongation and restriction operators commonly used (cf. Berger
and Colella (1988)) from first-order to 5th-order accuracy. In order to construct the interpolation stencils,
the , based on Lagrange interpolation, is used sequentially in each spatial direction. The coefficients are
calculated recursively allowing for different refinement factors, for example 2, 4, or 8 times finer grids.
Wherever possible, centered stencils are selected as shown in Figures 3(a) and 3(b). Exactly centered or
slightly upwinded (by half a cell width) stencils are used in most cases. For coarse cells adjacent to mesh
boundaries, as in Figure 3(c), a stencil upwinded by one cell is required, which is a result of having 6-
point 5th-order accurate stencils when 6 ghost cells are available. With our implementation, owing to the
treatment of the time step stability criterion as described in the Appendix B, WENO is not needed at
coarse/fine SAMR boundaries for stability. The hybrid prolongation and restriction operators have been
applied successfully both with reactive and non-reactive simulations using the WENO/CD method and the
shock-based discontinuity detection. With the 5th-order accurate operators, overall 6th-order convergence
was found in the two-dimensional verification problems which had smooth flow. At present, these operators
are unconstrained and permit local conservation errors within the order of accuracy of the used interpolation.
We note that where a discontinuity is flagged, for example with the shock-based detection, the operator
defaults to the stable first-order accurate interpolation. One can view this method as a simplified version
of mesh interface “WENQ” interpolation. In this respect, by making the WENO smoothness measures
accessible to the prolongation and restriction functions, 5th-order fully upwinded stencils could be used at the
shocks. However, in our case the option of defaulting to first-order accurate interpolation at discontinuities
is chosen for simplicity.
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Fine grid
ghost cells

Fine grid cells
used by y-stencil

Interpolation points

i Feeeee]
used by x-stencil

Coarse grid °
interpolated value

(c) Restriction: upwinded case

Figure 3: Fifth-order accurate stencils used by the hybrid-order prolongation and restriction. These stencils
are used when non-discontinuous flow is encountered. Note, that all stencils are centered except for the
boundary coarse grid cells set in the restriction operation.

3.5 Multicomponent chemistry solver

The detailed multicomponent chemistry and transport are implemented through the use of the CHEMKIN-II
library Kee et al. (1989). This chemical kinetics package is utilized to evaluate the reaction rates, enthalpies,
specific heats, and transport coeflicients according to a particular reaction mechanism and thermodynamic
model. The temperature is found by applying a standard Newton method to an implicit temperature
equation. If the Newton method does not converge in a reasonable number of iterations, a standard bisection
technique is applied. The bisection method is always guaranteed to converge Deiterding (2003). In order
to speed up the evaluation of temperature-dependent specific heats and enthalpies, two constant tables are
constructed for each species during the start-up of the computational code Deiterding and Bader (2005).
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4 Verification

A systematic verification study of the described hybrid WENO/CD method within an SAMR framework
has been conducted. The presentation starts with non-reacting and reacting diffusive perfect gas flows in
one space dimensions, and considers some two-dimensional benchmarks subsequently.

4.1 One-dimensional viscous shock

An analytical one-dimensional solution of a stationary viscous shock profile was used to verify the implemen-
tation separately in the z- and y-direction. The analytical solution is formulated in nondimensional form,
where the upstream density, pressure, and velocity (indexed with 0) in addition to an equivalent perfect gas
mean free path are used as scaling parameters. See Kramer Kramer et al. (2007) for the implicit solution
(with Prandt]l number of 3 and v = 1.4), which is expressed as a function of the Mach number and specific

heat ratio, and relates the nondimensional velocity and position. The specific mean free path, if only used

as a length scale, can be arbitrary. For the adopted solution it is A\g = %” Wpipo. The density, pressure,

and hence the total energy are found with the relations,

u=poue, = P —MQ((v—l)Tﬂ_—(v—l)))—% (35)
Uo Po 2u

By using the analytical solution as an initial condition, the Navier-Stokes equations were marched forward
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Figure 4: Analytical and numerical solution for the one-dimensional steady shock wave (visually no differ-
ence).

in time until the computation reached a stationary state. Typical shock profiles are shown in Figure 4, where
exact and numerical solutions are indistinguishable. The Li-error norm of the difference between the exact
and the numerical solution was then used to verify 6th-order convergence of WENO and CD solvers, with
viscous and heat conduction terms, for a perfect gas. Since this test case has a smooth solution, the WENO
and CD methods were tested separately.

4.2 One-dimensional steady laminar flame

As a multicomponent verification of flows with chemistry, we compared our solution for a 4-species one-step
model of hydrogen-air combustion using CHEMKIN-II and the full one-dimensional reactive multicomponent
Navier-Stokes equation to the approximate FreeFlame model of CANTERA! using the same mixture trans-
port and kinetic model. The flame velocity and temperature were matched to that of a typical hydrogen-air
flame by changing the heat release and one-step Arrhenius reaction rate and activation energy. Physical
transport properties were used for the HoO, No, Ho, O mixture.

The small discrepancies in the compared solutions are expected and interpreted as the result of CAN-
TERA using a constant pressure assumption in its solution. Since the CANTERA solution is not exact for

Thttp://www.cantera.org
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Cells Density rate Momentum rate Total energy rate

L1-error L1-error L1-error
Pure CD

256 2.31E-6 1.71E-5 1.62E-5

512 7.08E-7 1.71 2.73E-7 5.97 3.36E-6 2.27

1024 1.14E-8 5.96 4.38E-9 5.96 5.44E-8 5.95

2048 1.81E-10 5.98 6.94E-11 5.98 8.59E-10 5.99

Pure WENO

256 2.78E-5 4.01E-5 1.41E-4

512 1.03E-5 1.43 8.49E-6 2.24 4.45E-5 1.66

1024 2.36E-7 5.45 2.09E-7 5.34 1.03E-6 5.43

2048 5.19E-9 5.51 1.75E-8 3.58 2.52E-8 5.35

Table 1: Li-error norms for the three state variables of the viscous shock test problem. For the pure WENO

method the e value, cf. Equation (15), was set to 107%.
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Figure 5: Multicomponent laminar flame with detailed transport. Comparison is with the steady solution
of CANTERA.

the momentum equation, there are slight differences in the steady state results to the full diffusive Navier-
Stokes equations of AMROC. For our AMROC solution, the CANTERA result is used as the initial condition
and the solution undergoes a transient process (as the pressure adjusts) to reach a slightly different steady
state.

4.3 One-dimensional unsteady detonation

An unsteady reactive one-dimensional problem was used to verify the interaction of the time-split chemistry
terms with the reactive fluid solver. A standard unsteady detonation problem with specific heat v = 1.2,
heat release ¢ = 50, activation energy E = 50, gas constant R = 1, reaction rate coefficient A = 230.75, and
overdrive f = 1.6 is adopted to compare to the single mode period solutions found in Hwang et al. (2000)
and Deiterding (2003). The initial condition is the same as that used by Hwang et al. Hwang et al. (2000),
using a discontinuous ambient and post-detonation state. Deiterding Deiterding (2003) used the steady
Zel’dovich, von Neumann, and Doering (ZND) solution as the initial condition, yet, it was found that for the
WENO method, the post-detonation solution is better suited as the initial non-periodic solution decays faster.
The shock pressure was determined two ways, first using a local maximum, and alternatively by detecting
the shock position. Because shock-capturing, rather than shock-fitting, is used, there are oscillations in the
shock pressure owing to the unavoidable errors of the shock moving back and forth across the grid (when the
reference frame is determined by the known average shock velocity). The best results were found by detecting
the time-dependent shock position and using this to calculate the pressure, which depends analytically on
the shock velocity. This shock velocity was found by using second-order differentiation of the data points
corresponding to the position of the local shock pressure peaks. Using this indirect extrapolation of the
velocity leads to smoother data in Figure 7 Eckett et al. (2000). This procedure has typically not be used
by previous sources.
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Figure 6: Maximum shock pressure versus time. Uniform grid: Compares the WENO/CD solutions on a
grid of 1600 and 6400 cells to a MUSCL solution with 16000 cells. 4 levels: Comparing a WENO solution
with 4 refinement levels (2,2,2,2) and a base grid of 1600 cells to the highly resolved MUSCL solution with
16000 cells. In each case the domain size is 80 and the final time is 40.

As shown in Figure 6(a), after the initial transient relaxation, a periodic solution is reached. For a
fairly coarse uniform grid, 20 and 80 cells per half-reaction-zone length, L 1 the WENO /centered difference
hybrid scheme is fairly close and converges to a highly resolved MUSCL solution with 200 cells per L 1 In
these tests a domain of size 80 was used. In Figure 6(b), the dynamic mesh adaptation is tested by using
a WENO solution with a base grid of 20 cells per L 1 along with 4 refinement levels, which corresponds to
320 cells per L 1 near the shock front.

Cell Size L, | Cells MUSCL WENO WENOCD
(half reaction widths) 3 Max Pressure Max Pressure Max Pressure

1.00E-001 10 160 - 93.3 92.6
5.00E-002 20 800 80.9 96.3 96.2
2.50E-002 40 1600 92.0 97.4 97.4
1.25E-002 80 3200 95.1 98.2 98.2
6.25E-003 160 | 6400 97.0 99.0 99.0
2.50E-003 400 | 16000 98.4 - 99.05
1.56E-003 641 | 25600 98.5 - -

Table 2: Convergence of the maximum pressure peak for the one-dimensional, unstable two-species detona-
tion problem. Values are shown for the MUSCL, WENO, and WENO/CD methods. The solution accepted
by the detonation research community is ~ 99 Deiterding (2003).
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Figure 7: Convergence of the maximum pressure peak of ~ 99 for the WENO/CD, WENO, and MUSCL
methods.
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Figure 8: One-dimensional inviscid exact solution for the manufactured Lamb-Oseen vortex problem.

In Figure 7 and Table 2, the convergence of the WENO/CD and pure WENO was compared in the uniform
grid case to the convergence of the widely accepted MUSCL method as used by Deiterding Deiterding (2003).
The method of Hwang et al. Hwang et al. (2000), a 3rd-order WENO scheme, also converges to a pressure of
approximately 99. Here it is found that the WENO and WENO/CD solutions converge at similar rates to
the maximum shock pressure. As expected, this is substantially higher than that of the 2nd-order MUSCL
solution at the same resolution. Note that at least 10 cells per L 1 are required to have an acceptable maximal
pressure amplitude and period.

4.4 Two-dimensional manufactured and decaying Lamb-Oseen vortex

For verification of the convergence properties of both the inviscid and viscous fluxes, a two-dimensional
“manufactured solution” of the convecting Lamb-Oseen vortex Saffman et al. (2006) was constructed. Radial
profiles for this exact solution, shown in Figure 8, were obtained for a steady, inviscid vortex problem. An
exact viscous, steady solution was then constructed by adding viscous fluxes together with analytically known
source terms in both the momentum and energy equations to cancel them exactly. Fourth- and sixth-order,
conservative (in each SAMR level) viscous fluxes were constructed and verified.

Further, a separate verification problem was constructed using a highly accurate, but approximate so-
lution of the convecting, viscous, decaying Lamb-Oseen vortex. Here, the expected 6th-order convergence
rate using the 5th-order prolongation and restriction was verified using the full compressible Navier-Stokes
equations. For these test cases, a highly resolved 4096 x 4096 mesh was used as reference result, and was
compared to base meshes of 64 x 64 to 512 x 512 cells. This convergence test was carried out using two levels,
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Figure 9: Convergence plot (log-log scale) for the manufactured Lamb-Oseen vortex solution (a) and the
viscous decaying vortex (b). The convergence plots show the decrease of the Li-error norm of the total
energy as the resolution is doubled.

MUSCL WENO/CD WENO/CD WENO/CD
2nd order 2nd order 4th order 6th order
Cells . rate . rate . rate . rate
viscous viscous viscous viscous
Li-error Li-error Lq-error L1-error
502 0.0355 0.0143 0.00442 0.00162
1002 0.00839 2.08 0.00359 1.99 0.000284 3.96 5.65E-05 4.84
2002 0.00194 2.11 0.000899 2.00 1.76E-05 4.01 6.43E-07 6.46

Table 3: Convergence on uniform grids using the manufactured solution for the two-dimensional Lamb-Oseen
vortex test, showing the error values of the Li-norm of the total energy and the corresponding convergence

rates for different methods with differing viscous flux stencils.

. . WENO/CD WENO/CD MUSCL WENO/CD
Finest grid 2 levels L
; 2 levels rate . rate 2 levels rate unigrid rate
resolution higher order SAMR
Li-error L1-error L1-error
Lq-error
0.1875 0.000282 0.000101 1.60 0.000102
0.09375 5.80E-05 2.28 2.18E-06 5.53 0.409 1.97 2.19E-06 5.54
0.046875 1.40E-05 2.05 4.72E-08 5.53 0.103 1.99 4.75E-08 5.53
0.0234375 3.82E-06 1.87 1.31E-09 5.17 0.0248 2.05 1.01E-9 5.56

Table 4: Convergence results for the decaying (viscous) two-dimensional Lamb-Oseen vortex benchmark,
showing the error values of the Li-norm of the total energy and the corresponding convergence rates. Except
for the MUSCL method, each WENO/CD test case uses 6th-order accurate viscous flux stencils, yet only
the uniform grid and the multi-level test case using higher-order prolongation and restriction yields close to
6th-order convergence.

a base grid with a static 2 x 2 refinement mesh, centered in the vortex. In Figure 9(b) and Table 4, with 2
levels, 2nd-order convergence is found for all methods using the standard 1st-order accurate prolongation and
restriction operators. With a uniform grid, 6th-order convergence is confirmed for WENO/CD. Lastly, with
the new 5th-order accurate hybrid prolongation and restriction, overall 6th-order convergence is achieved
even for the SAMR results. Note that in the SAMR case, the error is evaluated as the sum of the Lq-error
norms on the domain €2 of level A\ without higher refinement. Denoting by A the highest level available, the
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norm calculation reads

A—1
Li(q) = L§(Aza, Aya, Q0) + D Li(Azy, Ayx, Qx\ Qa41), (36)
A=0
where
Li(Az, Ay, Q) = lgji — ¢ji| AzAy (37)

gl
is the Li-error norm on the domain €2, and where 4 denotes the averaging projection of the reference
solution from the 4096 x 4096 uniform mesh down to the desired mesh with step sizes Az, Ay.

5 Shock-driven combustion

5.1 The model problem

in flow

out flow

slip, adiabatic

Figure 11: Boundary conditions for the reactive dou-
(a) Initial State (b) t>0 ble Mach reflection problem. For the non-reactive
problem, the top ghost-fluid-method (GFM) region

Figure 10: The model problem of two interacting planar shockis not needed and the exact shock solution is used at
waves. the upper boundary.

Re T, L(t) = dshock Sin O,t. (38)

5.2 Length scales and resolution

5.3 Imitial and boundary conditions

For the non-reactive simulations, the setup involves pre- and post-shock initial conditions throughout the
domain. The boundary conditions include vanishing normal velocity, tangential stress and heat conduction
on the inclined portions of the “wedge”; symmetry boundary conditions on the horizontal boundary with zero
normal velocity, tangential stress and heat conduction on the horizontal boundary, The exact traveling shock
solution is prescribed along the top boundary. For this non-reactive case, the setup is similar geometrically
to the wedge interaction problem studied by Vas Ilev et al. Tlev et al. (2004). We use, however, different
boundary conditions as our present interest is in shock-shock interactions rather than shock-solid boundary
interactions. For the reactive case, the one-dimensional or planar ZND detonation wave solution was used as
initial condition. This admits finite-rate chemical reactions and describes a detonation as an infinitely thin
shock wave followed by a zone of exothermic chemical reaction. The shock travels with a speed given by
the Chapman-Jouguet condition. The initial condition is found by numerically solving the one-dimensional,
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steady, reactive Euler equations using a numerical ordinary differential equation (ODE) solver. Also, in
order to reduce boundary errors, the top boundary was angled and set to a solid slip boundary condition,
as shown in Figure 11.

u2 0.00007 - _—

0.00006 - ——

Shear Thickness

4
s -
g 0.00004 4 -

~0.00003 4 /
u3
0.00002 4
9 0.00001 4

0 T T r )
- 0 0.0005 0.0010 0.0015 0.0020
x (meters)

shear thickness

(a) Vorticity in the mixing layer (b) Mixing thickness growth

Figure 12: Vorticity in the mixing layer and the laminar mixing layer thickness as a function of distance from
the triple point, von Karman momentum-integral technique. The black dot is from our numerical simulation
for the approximate thickness at a distance of 1.35 mm behind the triple point. This thickness is in the
laminar stable regime.

6 Applications

6.1 Non-reactive diffusive double Mach reflection

A fully resolved unsteady DMR simulation in air with v = 1.4 was conducted. The constant viscosity and
conductivity correspond approximately to the average values for the post-shock conditions for the ambient
state with 7' = 300 K and p = 2000 Pa. A nondimensionalization or scaling of the fluid dynamic equations
was used and is detailed in Appendix A. The maximum CFL parameter for automatic time step adjustment
was 0.98 using the ten-step RK4 integration. Refinement criteria that capture the physics of each length
scale in the problem were utilized. The density gradient is used to refine the convective length scale, the z-
and y-velocity gradients are used for the viscous length scale, and the energy gradient for the conduction
lengths. The viscous length scale is estimated by using the average density of the top and bottom flows of
the shear layer pa,g = 0.1496 kg/ m®. The shock speed and speed of sound used to calculate the Reynolds
number are 1,566 and 348 m/s, respectively. Through experience, it has been found that using in (??) the
time value at which the shear layer begins to become unstable is sufficient for calculating a viscous length
scale dyisc. Note this naturally applies only to resolved simulations, in which there are at least 10 to 100 cells
within dyise for our discretization approach.

Table 5 summarizes runs performed for the non-reactive, diffusive double Mach reflection. For the result
shown in Table 5(D) the incident shock thickness (encompassing the high gradient part) is only slightly larger

8 2
than Ashock = ?# T PooPoo

(at finest grid resolution) immediately behind the triple point and some 10 cells across the incident shock.
In the absence of an exact solution and with the necessity of adaptive mesh refinement to resolve the
scales, a standard convergence study is difficult. For the shear-layer portions of the flow, comparisons with
free shear layer theory were used to study solution accuracy. Directly behind the triple point, the flow is
laminar and stable; therefore, for constant viscosity, the thin-layer equations apply. The similarity solution
obeys the Blasius ODE but with boundary conditions for the free-mixing layer. A demonstrative numerical
result is shown in Figure 12(a). Here, the growth and transition to instability (the initial inviscid mode)
of the region dominated by vorticity is shown. The mixing thickness can also be obtained using the von
Karman momentum-integral technique ?. It is assumed that the flows on both sides of the shear layer are
incompressible and that there is no pressure gradient along the layer. As assumed in Bendor ?, the upper and
lower velocities, us and ugz as shown in Figure 12(a), tangential to the interface are assumed to have a laminar

~ 3.2-107%m. This corresponds to approximately 100 cells across the shear layer
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Density pseudo-color

Density contour

Method

Diffusion

Pseudocolor

(A)
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6 levels
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base grid:
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x = [—1,34]

y = [0,6]

Loo = 0.001 m

o=t
5VISC_ Y

P
~4.07-10"°m
AZpin = 1.5625 106 m
t = 5.0 (nondim),
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Preuddocclon
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1024

7061 10

4081

1.00
Mac: 13.32
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WENO/CD-RK4
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x = [—0.8,24]

y =[0,4.3]

Lo =0.001 m

Syise &~ 3.57-10"°m
AZpin = 1.5625 .10~ m
t = 3.48 (nondim),
9.298-10"%s

Re = 4,278

WENO/CD-RK4
6 levels
(2,2,2,2,4)
base grid:

496 x 86

x = [—0.8,24]

y =1[0,4.3]

Loo = 0.001m

Syise = 3.57-10"°m
AZmin = 7.8125-10""m
t = 3.48 (nondim),

9.298 -10 %

Re = 4,278

.5 1.0 5.

1.0

WENO/CD-RK4
7-levels
(2,2,2,2,2,4)
base grid:

496 x 86

x = [—0.8,24]

y =[0,4.3]

Loo = 0.001 m

Svisc & 3.57-10"°m
AZpmin = 3.90625 - 10~ 7 m
t = 3.48 (nondim),

9.298 - 1076

Re = 4,278

Table 5: Non-reactive diffusive double Mach reflection: pseudo-color density and contour plots of the DMR
structure. Figure (A) displays the long-term behavior and Figures (B) to (D) demonstrate the convergence of
the WENO/CD method in resolving the viscous processes in the shear layer, by showing a succesive increase
in resolution by a factor of 2 for three simulations. The approximate viscous scale and minimum cell size
show the required resolution for convergence of the viscous DMR problem. Note: For the electronic version,
be sure to use the zoom tool in the PDF reader to study the details of the high resolution plots.

profile and are approximated with third-order polynomials. The benefit of the von Kdrmén integral method
is that it approximates the effects of the density difference across the layer, unlike the Blasius method, for
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which an average density was used. Of equal importance is that it also allows for a viscosity variation: the
lower fluid is much hotter than the upper fluid, yielding a physically non-negligible change in viscosity. Yet,
for the sake of simplicity, the total displacement thickness was calculated and shown in Figure 12(b). The
dot on Figure 12(b) shows the comparison of the numerical and boundary layer theory results. In addition,
the high-resolution results were compared to a simulation with one less refinement level, which supported
visual convergence.

17.5 18.0 18.5 19.0

Figure 13: SAMR levels for the DMR convergence test. The domain corresponds to those of tests (B)-(D)
of Table 5.

6.1.1 Convergence results

A series of simulations were conducted to investigate the influence of resolution and SAMR level distribution
on the initial roll-up of the shear layer. Pseudo-color and contour plots of the density are presented in
Table 5 (B) to (D) for 3 different SAMR resolutions. Through this investigation, it was found that setting
the refinement thresholds to enable adequate coverage of the shear layer and its surrounding region is vital
for convergence because the interactions of the SAMR levels create grid-level disturbances that can influence
the initially highly sensitive vortical roll-up. The region behind the shock wave close to the second triple
point requires the highest level of refinement (used similarly for the shear layer) because the roll-up first
occurs behind this shock.

Levels Density rate y-velocity rate Total energy rate
Lq-error Lq-error Lj-error
t = 3.48, domain: [17.0,24.0] x [0.0, 3.5]
3 1.05458 - 0.429532 - 31.4198 -
4 0.675551 0.64 0.295575 0.54 20.6763 0.60
5 0.304157 1.15 0.131237 1.17 9.41859 1.13
6 0.223831 0.44 0.090042 0.54 6.35662 0.57
t = 3.60 domain: [17.0,24.0] x [0.0, 3.5]
3 1.11937 - 0.460977 - 33.0184 -
4 0.78734 0.51 0.340686 0.44 23.912 0.47
5 0.389708 1.01 0.164079 1.05 12.1556 0.98
6 0.284423 0.45 0.115549 0.51 8.31585 0.55
t = 3.84 domain: [18.5,24.0] x [0.0, 3.5]
(incident shock at edge of domain)
3 1.24815 - 0.53609 - 37.1056 -
4 1.07438 0.22 0.46187 0.21 32.7679 0.18
5 0.576804 0.90 0.240978 0.94 17.843 0.88
6 0.413381 0.48 0.175842 0.45 12.3752 0.53

Table 6: Li-error norms for some state variables using the 7-level case as the reference solution.
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Base grid Density rate Total energy rate
L1-error Lq-error
= 3.84 domain: [19.2,24.0] x [0.0, 3.23]
(incident shock at edge of domain)
62 x 11 1.17987 - 36.6927 -
124 x 22 0.516237 1.19 15.7583 1.22
248 x 43 0.289879 0.83 8.63115 0.87
7 = 3.84 domain: [19.2,23.55] x [0.0, 1.14]
bottom jet (shocks are not included)
62 x 11 0.946061 - 29.9732 -
124 x 22 0.418507 1.18 13.0559 1.20
248 x 43 0.204751 1.03 6.27181 1.06

Table 7: Lq-error norms for some state variables using the 7-level case (with 496 x 86 base grid) as the
reference solution. Coarser solutions also have 7-levels, but use coarser base grids.

6.2 Double Mach reflection detonation

The Arrhenius rate activation energy and pre-exponential, heat release, and specific heat ratio were chosen
by matching the Chapman-Jouguet speed and the von Neumann (post-shock) pressure at the beginning of
the ZND detonation. For this two-species, calorically perfect model we have

Y= =7,p=pRT, R=R, =Ry and p=p;+p2,p1=pY1,p2=pY. (39)

With the total energy defined by the heat release per unit mass parameter, ¢, the equation of state takes
the explicit form

p Lo 2 p Loy 2
per = ——— + —p(u” +v°)+p1g or e =-—"—+ —(u*+v°)+q¥1. 40
This is equivalent to having product and reactant enthalpies of the form
hi =ho+q+ cpT, hy = hg + ol = hy —hy = hprod — hreact = APreaction = —¢. (41)
The mass fraction production rates are
. E, . E,
W1 = —pY1Aexp <ﬁ> and Wy = pY7 Aexp (ﬁ) . (42)
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(a) Temperature

Figure 14: Temperature (K) pseudo-color plot for ZND initial condition with one-step chemistry.

6.2.1 One-step chemistry

Results for the whole domain are presented in Figures 14-15(a). For this simulation, the ZND planar steady
detonation wave solution was used as initial condition. Using an average density, p ~ 0.60kg/ m3, of the
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a) Density ) Product Mass Fraction

Figure 15: Pseudo-color plots for a fully-resolved marginally stable detonation with one-step chemistry.

top and bottom portions of the shear layer directly behind the triple point, viscosity of 5.95 - 107° Pas,
thermal conductivity of 0.847 W/(mK), a mass diffusivity of 1.57 - 10~*m? /s for the average temperature
of 2000K, and a pressure of 2atm the diffusive scales were estimated (see Table 8(A)). Observe that the
viscous scale is the smallest, and mass diffusion and heat diffusion scale are approximately 1.5 and 10 times

larger, respectively.

Pseudocolor
var: Levels
Pseudocolor
Var: Leg/%\su -
250 - 450
o 4500 -0,
-Z",’ ] Max: 6.000
Min: 1,000
Vi o’ .
in:
10

) Refinement levels (b) Refinement levels

(¢) WENO usage (red)

Figure 16: SAMR levels and WENO usage for the 8-level reactive DMR convergence test.

6.2.2 Convergence results

Using the nondimensional version of the equations and up to 8-levels of refinement, convergence of the
method for the reactive DMR, was verified as shown in Table 8 (B) to (D). For these simulations, the
National Energy Research Scientific Computing Center machine “Carver” (quad-core Intel 5500 series) was
used with 128 cores. Additionally, in order to increase the efficiency of the simulation and allow for higher
resolution, a time-dependent coarsening region behind the DMR was utilized, as shown in Figure 16(b).
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Table 8: Reactive diffusive double Mach reflection:27lensity, density contour, and mass fraction pseudo-
color plots of the DMR structure. Figure (A) demonstrates the long-term behavior and Figures (B) to (D)
demonstrate the convergence of the WENO/CD method in resolving the viscous processes in the mixing
layer, by showing a 2x increase in resolution for 3 simulations. The approximate viscous scale and minimum
cell size give the required resolution for convergence of the viscous DMR problem. Figures (E) to (F) show
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Three-step RK3 integration was used with a CFL time step parameter of 0.99 in conjunction with the
time-split integration for the chemistry. As expected, it was found that when the induction length is larger
than the viscous scales (as is for realistic physical parameters), a fully resolved simulation is limited by the
viscous length scale. Shown in Figure 16(c) is the use of the WENO scheme only at the strong shocks. At
the highest resolution, the shock coming from the second triple point is not strong enough to activate the
discontinuity flag and the centered difference method captures the shock satisfactorily. At these resolutions,
the weak shocks are nearly resolved, yet the strong shocks remains under-resolved.

Levels Density rate g rate
Lq-error Lq-error
t = 4.300, domain: [23.0,30.0] x [0, 5.0]
4 2.00432 - 0.216785 -
5 1.36915 0.55 0.160973 0.43
6 0.709029 0.95 0.0791281 1.03
7 0.329581 1.11 0.0360734 1.13

t = 4.608 domain: [23.0,30.0] x [0, 5.0]
(Mach stem/incident shock has left the domain)

4 1.83941 - 0.226811 -

5 1.36174 0.44 0.170671 0.41
6 0.810797 0.75 0.104466 0.71
7 0.350756 1.21 0.0429677 1.28

Table 9: Lq-error norms for the state variables using the 8-level case as the reference solution.
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Table 10: Density errors calculated with a comparison to the highest resolved case (8-levels).

Scheme Levels ‘Wall time CPU time
MUSCL 6 6.25-103s = 1.74h 55.6 h
MUSCL 7 2.51-10*s=6.97h 233h
MUSCL 8 8.65-10%s=24.0h 769 h
WENO/CD 6 1.74-10%s = 4.83h 155h
WENO/CD 7 5.28-10%s=14.7h 470h
WENO/CD 8 1.78-10%s = 49.5h 1590 h

Table 11: Comparison of run times for the MUSCL and WENO/CD methods using one-step, two-component
chemistry for the DMR, problem. Intel 5400 series, 32 cores, 320 x 160 SAMR base grid, x = (—10, 30),
y = (0,20), final time ¢ = 4.91498476.

Again, using the highest resolved 8-level case as a reference solution, Li-error norms were calculated
for the density and first species mass fraction to quantify the convergence of the reactive DMR, problem.
Quantitative results are given in Table 9; pseudo-color plots of the absolute value of the cell-wise difference
between current and reference approximation are displayed in Table 10. As previously shown for the nonre-
active case, the solution is converging and accurately resolved. The latter statement is further supported by
the visualization of the local errors in Table 10, showing obvious visual convergence in the shear layer.

6.2.3 Method comparison

Using up to 7-levels refinement, the computation was repeated with the MUSCL method and second-order
accurate finite differences for the diffusive terms. As shown in Table 8 (E) to (F), the overall flow field is
similar, including the position of the shock waves, the jet, and the mixing layer. However, not surprisingly,
is the observed result that the roll-up of the shear layer occurs later, which is surmised to be from the
additional numerical viscosity (from the spatial solver and temporal integrator) and from the second-order
errors from linear interpolation across the SAMR levels. Also for comparison, an inviscid solution is shown
in Table 8(G). In this case, it is the numerical viscosity (which is a function of the resolution used) that
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dictates the roll-up of the mixing layer. This last case stresses the importance of including physical rather
than numerical viscosity when simulating detonations as most detonation simulations us the reactive Euler
equations as an approximation.

Also, as shown in Table 11, is a comparison of the computational expense of the MUSCL and WENO/CD
methods. Results are shown for 32 cores as actual wall time and total CPU hours. The WENO/CD method
is approximately two times more expensive than MUSCL as the number of levels is increased while using
the same base grid. Note that the wall times increase at a rate greater than linear as each level is added.

6.3 Hy-Oy-Ar multicomponent chemistry

(a) A)

e———

2.10 2.20 2.30

1.90 2.00

2.40

(b) B)

Figure 17: A) DMR density pseudo-color results with detailed chemistry and transport of an Hy-Og-Ar
detonation in a mixture of initial mole ratios of 2 : 1 : 7 and at T = 300K and p = 6,700 Pa. The
Chapman-Jouguet detonation speed is 1,627m/s and the induction length 0.01875m. Problem setup:
[—0.010,0.030] m x [0.0,0.022] m, 7 levels (2,2,2,2,2,2), 590 x 369 base grid, Azpyin = 1.06 - 107%m,
t =1.2829-107°s. B) Refinement levels of the DMR at a time of ¢t = 1.05386 - 10~°.

This mechanism consists of 9 species Oo, HoO,H, O, OH, Hy, HO5, HyO5, Ar and 34 Arrhenius rate re-
actions. Due to the larger computational expense required by the additional species and chemistry terms,
presently, the diffusive processes are two times less resolved than the previously presented two-component
flow results.  Also note that, at the current resolution, a nondimensionalization was unnecessary when
avoiding underflow errors.

Results are presented for the whole domain in Figure 17 and for the area spanned by the DMR in
Table 12.
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z=[-1lcm, 7.7-10*s =21h
3cm] =2,700h CPU
y = [0,2.5cm]

—— WENO/CD-

[ T RK3/GRK4A | Az, =4.24-10"%m
asooman 5 levels t=1.05386-10""s
Jyos (2,2,2,2) Re = 2,910

jigpiig base grid: (NERSC Carver)

590 x 369 128 cores:
z=[-lcm, 2.3-10%s = 63h

3cm] = 8,000h CPU
y = [0,2.5cm]

R WENO/CD-

Mo RK3/GRK4A | Azpin =2.12-107%m
otosmse 6 levels t =1.05386-10"°s
o (2,2,2,2,2) Re = 2,910

=i base grid: (NERSC Carver)

590 x 369 256 cores:
z=[-1lcm, 5.2.10%s = 144h

3cm] =37,000h CPU
y = [0,2.5cm]

e WENO/CD- AZpin = 1.06 -107%m
o RK3/GRK4A | ¢=1.05386-10""s
aom0sa9e.s0 T-levels Re = 2,910
i (2,2,2,2,2,2) millikan

i s base grid: local Intel

) Py ) 590 x 369 5400 series
NS — z = [—1lcm, 64 cores:
V( L) / 3c[m] | 7.8-10%s = 2190 h
A\ =Y y=1[0,2.5cm] | =140,000h CPU
eeeee—xo i

Table 12: Reactive diffusive double Mach reflection with detailed chemistry: density, density contour, and

mass fraction pseudo-color plots of the DMR structure.

Levels density rate total energy rate OH mass fraction rate
L1-error Lq-error Lq-error

A)
3 1.030E-6 - 3.531E+4 - 1.729E-4 -
4 7.445e-07 0.468 2.270E+4 0.637 1.589E-4 0.122
5 6.849e-07 0.124 2.037+4 0.047 1.575E-4 0.013
6 6.723e-07 0.027 2.020E+4 0.004 1.565E-4 0.009
B)
3 1.418E-6 - 4.447TE+4 - 7.802E-5 -
4 1.306E-6 0.119 4.141E+4 0.103 6.899E-5 0.177
5 1.288E-6 0.020 4.013E+4 0.045 6.887E-5 0.003
6 1.276E-6 0.013 3.991E+4 0.008 6.778E-5 0.023

Table 13: Detailed chemistry convergence results: L;-error norms for the state variables using the 7-level case
as the reference solution: A) final time: ¢ = 1.05386 - 1075 s, domain: [1.8,2.4] x [0,0.4] cm, corresponding
to when the mixing layer starts to roll up. B) final time: ¢ = 1.1455 - 10~° s, domain: [2.026,2.47] x [0, 0.32]

cm
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7 Concluding remarks

The present convergence results for the non-reactive and reactive DMR simulations support the case that,
with our implementation and detailed simulations, diffusive processes within chemically reacting zones can
be resolved. The advances that have allowed this are as follows: First, careful use of a hybrid method,
where WENO is activated only at strong shock waves (using an approximate Riemann-problem based shock
detection), allowed the sixth-order accurate centered difference stencils to be uniformly active on shear layers
and surrounding regions. Additionally, away from the shocks, fifth-order accurate prolongation/restriction
operators were utilized on the fine/coarse mesh boundaries and overlaps while first-order operators were
used near the strong shocks in order to provide stability. Second, the detailed inclusion of a reliable diffusive
stability condition for the explicit RK4 and RK3 integration allowed to take maximum time steps. Third,
appropriate nondimensionalization using physically relevant parameters was found to be necessary for the
elimination of underflow errors. Finally, a study of mesh refinement indicated that a minimum coverage, at
the finest refinement level, was required in the region surrounding the shear layers in order to obtain con-
vergence. The results produced using the present implementation, together with advancements in resolving
capability and accuracy, demonstrate possible future directions for converged SAMR simulations.
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A Nondimensionalization
The non-reactive results were for a shock traveling into standard atmospheric conditions (T = 300K and

p = 1.01325 - 10° Pa); however, the preliminary detonation simulations were for a shock propagating into a
lower pressure of 6,700 Pa, for which a nondimensionalization was unnecessary.

A.1 Non-reactive Navier-Stokes equations

In the non-reactive case, using the length and the time scaling * = Loz*,y = Loy* and t = g—“’t*,
respectively, the primitive variables are nondimensionalized as
2 a3
U= oo™, V=000, pP=pcp’, D= poctcp’, T= %Tﬁ (43)
Poo

with the * as nondimensional. The normalized caloric equation and ideal gas law for a single polytropic gas
then read

2
* * * * * * a *

ep(T) = CpooCp (T7), R= B, p=pRT, (Pooaiop ) = (pocp )(CPOOR ) (COOT ) : (44)

Poo
The validity of this nondimensionalization can be verified easily by substituting these variables into the
Navier-Stokes equations and canceling the factors to derive the results below. The nondimensional non-

reactive compressible Navier-Stokes equations in two space dimensions are
dp*  Op*u*  Op*v*

P P P —0, (45)

ot* or* oy*
8,0*’&* ap*u*2+p* N 8p*u*v* _ or* aT;y

= == 46
ot* Ox* Ay* Ox* + oy’ (46)
8p*v* ap*u*U* 6p*’l}*2 +p 87';/ 87';1/
= : & 47
o T o T oy o | oyt (47)
Op'c; | Dpru(er ) | (e k) 0T e | DT o) g 0
ot* or* oy* ox* dy* dr*  Ox*

where the stresses read

. N ou* 2, 0u*  ov* e [OUF Ov* N ov* 2 0u*  Ov*
Tmzuu’)(z 2, >),uy=u<T>( + 50 ) =) (2 Gy

dz* 30z | Oy dy*  Ox* dy* 3 0x* Oy~
(49)
and the heat transfer terms are
aT™ oT™
=k (T")—=—— r=k"(T" 50
6=k T") g5 a4 =F( )8y* (50)
with normalized mixture viscosity and normalized thermal conductivity
B= oo LioopPocit™ (T™), k= poclooLocCp k™ (T™). (51)

A.2 Reactive Navier-Stokes equations for thermally perfect mixtures

For the case of NV thermally perfect species, the normalization of the total and partial densities is po, =
vazl Picos Pi = Poopy and the normalized caloric equations (44) take the form

epi(T) = cpoCpi (T), hi(T) = aZhi, Ri = ¢y R;. (52)

oot )

The normalized mass diffusivities read D;(T") = oo Loo D} (T™) and, in case of chemical reaction, the nor-
malized Arrhenius parameters are
a
Bi=a B, A=22ar (53)
Lo
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A.2.1 Navier-Stokes equations for two callorically perfect gases with one-step reaction
If only two calorically perfect gases with identical adiabatic coefficient, v, are considered, (52) reduces to

VR .
Cp = ST cp=pep", cpx =1, hy =qo+c,T, ha=c,T, qo=aq,, R=c,R", (54)
2
where the normalized temperature is now given as T = %‘JT*. With the single reaction
P

dwn E4 E
= hA =pA =
o = prAexp ( RuT> p1Aexp < RT) (55)
the normalized Arrhenius parameters of (53) read
Ea R 9 Goo
EF=—=FE4,—, E=a FE*, A=—A"
W A Ru ) (0N ) Loo (56)

B Stability criterion

Special care must be taken when defining a stable, explicit, time-step criterion for mixed type nonlinear PDEs.

By considering a straightforward explicit finite difference scheme for the closely related multidimensional but

scalar advection-diffusion equation with constant coefficients
op 9¢  0¢ ¢

2
— tu—+v— =K, +Ka(ZS

ot ' oxr oy o2 TV oy’ (57)

an approximate criterion for explicit methods for the Navier-Stokes equations is constructed. The stability
criterion for a finite difference method for (57) is found by von Neumann stability analysis. Then using this
results as an analogue, a combined stability criterion for explicit schemes for the Navier-Stokes equations is
derived. The parameters resulting from this analysis are

2K, At uAt 2K At v At

Qg = AzZ z = Txa Ay = Ay2 ) Cy = Tya (58)

where o, and C;, are the diffusion parameters and the Courant numbers for (57), respectively. The
stability criterion for a hybrid finite difference method with forward in time, upwinded advection (backward
space) and centered diffusion (FT-BS/CS) scheme in two space dimensions is simply Hindmarsh and Gresho
(1984)

ay+Cp+ay +Cy < 1. (59)

B.1 Non-reactive explicit stability criterion

To determine the stability limit for the used schemes for the non-reactive single-component Navier-Stokes
equations one must look at each of the four conservation equations and determine the corresponding Courant
numbers and diffusion parameters. For all four equations, the Courant number is the typical CFL number
as for the inviscid Euler equations, cf. Section 2.5. The continuity equation for the density has only the
Courant number stability criterion. The two momentum equations have the Courant number and a diffusion
parameter, where the equivalent K, K, values for an advection-diffusion equation analogue are both %ﬂ.
In the equation of the total energy density, the dissipative term from the viscosity does not directly affect
the stability of e; and therefore the diffusion parameter comes from the heat conduction term, where now
the analogous condition is K, , = %, with k£ denoting the heat diffusivity and ¢, the specific heat at
constant volume, ¢, = ¢, — R. Then, one splits the convective and diffusive parts, and the maximum time
steps are constrained by different convective and diffusive scales. The maximum time step is limited by the
combination of the convective CFL number with the diffusion parameters from viscosity and conductivity in
the z- and y-direction. For example, just from the z-direction, there is

Veonv,xz = % max |/\‘7 (60)
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and the diffusive “CFL analogue” parameters are

SuUAL 2k At

VQiff visc,xz = W7 VQiff ,cond,z = W (61)
The complete stability condition encompassing convection, viscous diffusion, and heat diffusion is
v =max( Veony + Vdiffvisc, Veonv + Vdiff,cond ) < 1, (62)
where in the two-dimensional case those quantities take the forms
At At SuAt SuAt 2kAt 2kAtL
Voo = g MRy e, vaitie = g R By e T (A Tetse
63

One must note that in the case of using the SSPRK(10,4) scheme, the complete stability criterion is for
v < 6, rather than v < 1, cf. Section 2.5.

B.2 Reactive multicomponent explicit stability criterion

The stability of the two-dimensional multicomponent, reactive Navier-Stokes equations is found in the same
fashion as for the non-reactive equations. The difference is now that the mass-averaged density, viscosity,
and thermal conductivity are used for the convective, viscous, and thermal criterion. However, the mass
diffusion of each species must be considered separately. In this case, the explicit stability condition is

V= maX( Veonv 1 Vdiff,viscy  Veonv T Vdiff,conds  Veonv + Vdiff,mass ) <1, (64)

With Vi, mass = (ADT")Q + (ADTT‘)Q, where D; is the mass diffusion parameter of the i-th species, cf. Section 2.

C Eigendecomposition

The eigenvalues and eigenvectors of the thermally perfect multicomponent Euler equations can be derived in
a straightforward algebraic computation, cf. Deiterding (2003). For the state vector of conserved variables
qa = (pu, pv, pey, pYi, .., pYN)T the inviscid flux in the z-direction, for instance, satisfies f°°™¥ = A(q)q, with

B=yu v 7 v’ . on —u?
v U 0 —uv o —uv
H—-~yu?> —Juv ~yu u(p; — H) .. u(pn — H)
Y; 0 0 1-Y; —uY] —uY]
A@=| R “n (65)
—uY2 u(l — Yé)
: : : : - —uYn_1
L YN 0 0 —UYN NN —’LLYN ’LL(l — YN) |

denoting the corresponding Jacobian. For the set of eigenvalues A\, = {u — a,u, ..., u,u + a}, the matrix of
right eigenvectors, defined by (A — AgI)ry = 0, reads

[ uw—a u u 0 u+a |
v v v 1 v
H — ua u2—|—v2—@ u? + v? ¢_N v H4+ua
Y Y
0
| YN 0 ... 0 1 0 YN ]
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_ Op

where ¢; = Bpr the partial derivative of the pressure with respect to the i-th species’ density, is given by
2 2
_f({u*+v
bi =% < 5~ hz) +YRT, (67)

with 4 = v — 1 and the total specific enthalpy H = h + #
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