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The spherically expanding flame is a useful configuration for experimentally measuring laminar flame
speeds and Markstein lengths. Although these parameters are often fitted to the data linearly, for highly
stretched flames it can be necessary to employ a fitting procedure that accounts for nonlinearity of
the relationship between flame speed and stretch rate. This paper assesses the performance of such
methods by generating sets of synthetic data and then attempting to recover the laminar flame speed and
Markstein length using a nonlinear fit. The method used in this paper fits the laminar flame properties by
minimizing the difference between the data points and a simulated flame trajectory, using a non-linear
least squares method to accomplish the minimization. It is found that the least squares error, which is to
be minimized, is a weak function of the Markstein length and exhibits a shallow minimum, especially
for noisy data. This can lead to substantial error in the fitted value of the Markstein length; for instance,
2% noise in the flame radius data produces about 20% relative error in the fitted Markstein length. The
initial and final flame radii as well as the number of points in the experimental data set are found to
have only a small influence on the results. However, the results are sensitive to the initial guesses that
are used to start the least squares minimization. Finally we observe that for positive Markstein length
there is an upper limit to the nonlinear relationship between flame speed and stretch, and fitting can
become inaccurate near this limit. Despite these difficulties, the nonlinear fitting approach performs
considerably better than linear ones for highly stretched flames.

1 Introduction

Laminar flame properties such as the laminar burning speed and the Markstein length are important
fundamental parameters for a wide number of combustion applications including spark ignition
engines [1] and gas turbines [2]. Knowledge of the laminar burning speed is also important in
modeling turbulent combustion since the turbulent burning speed is often modeled as a function of
the laminar burning speed [3,4]. The laminar burning speed is defined as the normal propagation
velocity of fresh gas relative to a fixed, planar flame front; it is frequently measured experimentally
using spherically expanding flames [5—7]. Figure 1 shows examples of spherical flame propagation
in hydrogen-based mixtures. The presence of flame stretch in such experiments precludes direct
measurement of the laminar burning velocity [9]. Instead, the measured flame velocity must be
extrapolated to conditions of zero stretch. Markstein first proposed this correction to the burning
speed by introducing a parameter now known as the Markstein length [10], which characterizes
the response of the flame to stretch. Asymptotic theoretical analysis [11-13] performed in the limit
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Figure 1: Examples of flame propagation sequences in a H,-air mixture (top) and a H,-N,O mixture
[8] (bottom) obtained with schlieren visualization. Initial conditions: H,-air mixture: ©=1.5 ; P,=100
kPa; T,=295 K. H>-N,O mixture: ®=0.6 ; P;=20 kPa; T,=295 K.

of high activation energy and low stretch rate have related the stretched and unstretched burning
speeds through a linear relationship. This approach has been applied extensively during the past 20
years to extract the laminar burning speed from experimental data [8, 14—17]. Further theoretical
work by Ronney and Sivashinsky [18] has led to a non-linear relationship between the stretched
and the unstretched burning speed which has been used by a number of groups in the past few years
to account for non-linear effects of stretch on the flame propagation [19-23]. Comparison of the
results obtained through linear and non-linear extrapolations demonstrated that both the burning
speed and Markstein length can be poorly estimated by the linear method for mixtures that are away
from the stoichiometry [19,20]. In order to account for the non-linear effects of stretch without
performing numerical differentiation of the experimental data, Kelley and Law [19] analytically
integrated the expression of Ronney and Sivashinsky [18]. Halter et al. [20] also evaluated this
latter methodology for methane-air burning speed measurements and reported a strong sensitivity
to the initial guesses required to obtained the flame parameters.

This study seeks to evaluate the performance of nonlinear fitting methods by extracting the laminar
flame properties from synthetic data sets. We investigate the sensitivity of the results to experimen-
tal parameters like initial and final flame radius, the number of points in the data set, and measure-
ment noise, as well as numerical parameters like the initial guess that is used to start the nonlinear
fit. First, the linear and non-linear approaches are reviewed and the limits of applicability of the
relationship between flame speed and stretch rate are discussed. Then the present nonlinear fitting
procedure is described and the performance of the method is evaluated.
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2 Methodologies to extract flame properties

2.1 Linear methodology

Asymptotic theoretical analysis by Sivashinsky [11], Matalon and Matkowsky [12] and Clavin
[13], performed in the limit of high activation energy, reveals a linear relation between the stretched
and unstretched burning speeds in the low stretch rate regime

Sp=8)—Ls K. (1)

Here Sy, and S? are the stretched and the unstretched laminar burning speeds, L’ is the unburnt
gas Markstein length and K is the stretch rate. Karlovitz et al. [24] expressed the stretch rate in
terms of the normalized rate of change of an elementary flame front area as

1 dA
K=—.— 2
where A the flame front area. In the case of a spherical flame, the flame surface is given by
A=4.7- R, 3)
which leads to the following expression for the stretch rate [7,9, 14, 17]:
Vs
K=2 — 4
R, “)

given that the stretched spatial velocity, or the flame speed, Vg, corresponds to the flame radius

increase rate IR
Ve = —4 5
S = )
In the case of a large volume vessel and for measurements limited to the initial period of prop-
agation where the flame radius is small, the pressure increase can be neglected [25], so that the
burning speed and the spatial velocity are linked only through the expansion ratio across the flame

front

v
Sp =2, (6)
g
where o is the expansion ratio defined as
o= )
Pb

and p, and p;, are the unburnt and burnt gas densities, respectively. Combining Equation 1 and
Equation 6, the stretched and unstretched flame speed can be linked

Vo=Vg —Lp-K, ®)

where Lp=L7 /0. Using the experimental evolution of the flame radius as a function of time, the
local flame velocity as well as the local stretch rate can be derived and the unstretched flame speed
obtained by linearly extrapolating to zero stretch. As a part of this procedure one must fit the
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Ry = f(t) data, usually with a high order polynomial, and differentiate the fitted curve in order to
obtain a smooth evolution of the flame speed as a function of stretch. The main limitation of this
procedure arises from the differentiation which introduce artificial noise that can lead to misleading
results.

Another way to proceed is to substitute Equation 4 and Equation 6 into Equation 1, and integrate
with respect to time, which produces an expression for the unstretched spatial flame velocity as a
function of time and flame radius

vg-(ti—t):R;;—Rf+2-LB-1n(%)+Cst )
f

Here the superscript 7 designates the i data point in a set of experimental measurements, and C'st
is an integration constant. Using Equation 9, a least square fitting procedure can be applied to an
experimental set of Ry = f(t) data provided that Ry < D.,,, where D.,, is the characteristic
dimension of the experimental set-up. The unstretched flame velocity and the Markstein length are
determined from this procedure as the coefficients of the linear fit.

2.2 Non-linear methodology

By removing the assumption of a linear relationship between the stretched and the unstretched
flame speeds, Ronney and Sivashinsky [11] obtained the nonlinear result:

Ve\®, [ Vs)? oLpK
) In|—=) =-—2—"— 10
(72) (3 Ve o
This expression can be used directly to derive both the flame speed and the Markstein length, but

in doing so one must fit the Ry = f(t) data with polynomials and differentiate to determine V, as
was done by Halter et al. [20] and Bouvet et al. [22].

In order to avoid differentiating the experimental data, Kelley and Law [19] proposed an integral
form of Equation 10

1
t=A|E (1n§2)—521116 +C (11)
where ool
oLp
A=""2 12
Vo (12)
. 20'LB
B (z) = / i, (14)

and C'is a constant of integration. The parameter £, which is the ratio of the stretched to unstretched
flame speed, falls in the range [6*1, 1) for Lg > 0 and [1,00) for L < 0. The parameters, A, L,
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and C can be determined using non-linear least-squares fitting, that is, minimizing the expression

1/2

1 N i ) 1 2
Ep =~ Z(t —A[El (In&?) —m] —0) (15)

1=0

where the summation on 7 is taken over all measured values of flame radius and time. The un-
stretched flame speed can then be deduced from the values of A and L 5 that minimize Equation 15.

3 Analysis of the Ronney-Sivashinsky non-linear equation

The nonlinear method of flame speed extraction described in section 2 relies on the quasi-steady
relationship between flame speed and stretch rate given by Equation 10. However, this equation
has solutions only for certain values of the ratio 0 Lz /R;. To demonstrate this, one can combine
Equation 4 with Equation 10 and simplify the logarithmic term to obtain the relation

VS VS ULB
2 .lnl=2) =922 16
Vs (v) R, 1o

Since the burning velocity is positive, the term on the left hand side may take on values only within
the range [—e ™!, 00). For L < 0 there is one solution for all positive values of Ry, but for Ly > 0
there are solutions only if

Ry
> L 1
20LB_€ (Lg > 0) 17)

Thus for positive Markstein length there exists a minimum flame radius below which the quasi-
steady relationship between flame speed and stretch rate is not valid, and hence the laminar flame
speed cannot be extracted using Equation 10. This constraint can also be viewed as a maximum
Markstein length, L 4., for fixed flame radius. The fact that no solutions exist for small flame
radii is a consequence of the neglected unsteady term, which is important in the early flame dy-
namics [11].

When extracting laminar flame properties from experimental data, one can apply the methods of
section 2 only for data points having large enough flame radii to satisfy Equation 17. Data points
which do not satisfy this criterion do not conform to the model equation, Equation 10, and thus may
lead to a poor quality of fit (large residuals) or erroneous fitted values of V2 and L. Unfortunately,
the limitation given by Equation 17 depends on the Markstein length, which is itself one of the
unknowns being sought. In practice one must initially select the experimental data points based on
an estimate of Lz and confirm after fitting the data that Equation 17 was indeed satisfied, revising
the set of included data points if necessary.

4 Description of the present approach

The majority of previous studies [20,26] that have studied the accuracy of the linear and nonlinear
methods for flame parameters extraction have used experimental data. A difficulty of this approach
is that the exact flame speed and Markstein length are not known a priori and depend on the
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method used to obtain them. Another approach is to use synthetic data, as was done by Chen [27].
However, Chen generated his reference data using detailed numerical simulations which limits the
number of synthetic samples that can be generated because of the high computational cost of such
simulations. In this paper, synthetic data is generated instead by numerically integrating the flame
radius as a function of time, evaluating the flame speed at each time step using Equation 16.

The present method for extracting L and V¢ uses non-linear least squares regression to determine
the values of Lp and V{ that minimize the difference between the experimentally measured flame
radius, R}, and an ideal flame spherical flame radius, R?CQ[C, which represents the evolution of
spherical flame in the absence of noise and measurement error for a flame that obeys Equation 16.
The values of Lz and VSQ are extracted by minimizing the residual function,

o7 1/2

1 al R} - ;,calc
Ep = ;( 7 ) (18)
The first step in the process is to generate an idealized set of data points, ' vs. R?,calc’ by inte-
grating Equation 16. The initial conditions, ° and R‘}, are determined from the data set to be
fitted. The values of Ly and V{ are then iteratively refined until Equation 18 is minimized. The
numerical integration of Equation 16 is carried out using the Matlab ODE solver ode15i and the
nonlinear least squares minimization is accomplished using the Levenberg-Marquardt algorithm
as implemented in the Matlab function Isqnonlin.

5 Results and discussion

5.1 Objective Function

The proposed nonlinear fitting method involves the minimization of an objective function given
by Equation 18. The rate of convergence, sensitivity to noise, and robustness of this procedure
all depend on the behavior of the objective function for which the minimum is being sought. An
example of the objective function is shown in Figure 2; the plot was created by generating synthetic
data points of flame radius vs. time for Lz = —1 mm and V? = 300 mm/s and then evaluating the
residual, Equation 18, for other values of the Markstein length and burning velocity. This residual
(on a logarithmic scale) is indicated by the contours in Figure 2, and it is seen that the residual is
minimized at the correct solution point. However the minimum in the objective function is rather
elongated, that is, the solution point is much less sensitive to the Markstein length than to the
unstretched burning velocity. Note that the apparent multiple local minima on the contour plot are
artifacts of the contouring algorithm; the surface does in fact smoothly approach a single solution
point.

Slices through the contour plot in Figure 2(a) for three values of the Markstein length are shown
in Figure 2(b). In addition, noise in the experimental measurement of the flame radius has been
simulated by adding random perturbations to each value of the flame radius; the magnitude of the
added noise was take to be 0%, 1%, 2%, or 5% of the instantaneous flame radius. The objective
function does exhibit a local minimum at the correct solution, but the depth of the minimum and
the slope in its vicinity are reduced somewhat when noise is added. For the higher noise levels
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Figure 2: a) Contour plot of the objective function (Equation 18) for various values of Markstein
length and unstretched burning velocity. The actual solution is Lz = —1 mm, V? = 300 mm/s. Con-
tours levels are the base 10 logarithm of the objective function. b) Slices through the contour plot
for Markstein lengths of -2, -1, and 0 mm. Random noise has been included by adding 0%, 1%, 2%,
or 5% relative error to each flame radius data point.
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the minimum is quite shallow; however, the nonlinear fitting method is still able to converge to
the correct solution. Other noise models have also been employed including noise of uniform
magnitude and noise that decreases with increasing flame radius; the results from those models
were nearly indistinguishable from those shown in Figure 2(b).

The elongated shape of the minimum in the objective function is not a property of the new method
alone, but is shared by both the linear method and the nonlinear method of Kelley and Law [19]
(see section 2). These two methods also rely on least squares fitting by minimizing objective
functions derived from Equation 9 and Equation 15, respectively. Contours of these two objective
functions for the same conditions as Figure 2 are shown in Figure 3. Although the amplitudes of the
residuals differ since each method minimizes a slightly different quantity, the qualitative behavior
of all three methods is similar. Note, however, that the minimum for linear method deviates from
the actual solution of Ly = —1 mm, V? = 300 mm/s because the flame is slightly outside of the
linear stretch regime.

5.2 Performance of the present method

In order to evaluate the performance of the Levenberg-Marquardt, synthetic ¢, vs Ry, data
were generated using Equation 16 with Lg and V¢ values in the range Lg € [—5.0, Lg 4] mm
0

where Lp a0 = % and V& € [300, 35000] mm/s, which are representative of typical hydrocarbon-
air and hydrogen-air mixtures. The choice of L ,,,4, 18 based on the limit of Equation 16 described
in section 3. After generating the synthetic data, an attempt was made to recover the laminar flame
parameters from the synthetic data using a random set of initial guesses for Ly and V. The effect
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Figure 3: Contour plots of the objective function for Kelley and Law’s method (left) and the linear
method (right). The actual solution is Lz = —1 mm, V? = 300 mm/s.

of the number of points in the data set, the initial and final radii, and the initial guesses of Lz and
VSO on the performance of the method have been considered. In addition, noise was added to the
synthetic data to assess its effect on the robustness of the method. The performance of the method
is judged in terms of the final value of the residual, F'r, as well as in terms of the error of the fitted
values of L and V. These errors are calculated using Equation 19 and Equation 20.

Vos n Voca c
By = 5, yVSO Sical (19)

,Syn

o LB,syn - LB,calc

Ey (20)

B
LB,syn

Figure 4 shows examples of synthetic data sets characterized by positive Markstein lengths. The
sets are generated using 100 points. In each case, both the correct values of the laminar burning
speed and of the Markstein length were obtained by applying the non-linear least squares fitting
procedure. The quality of the fitting is evident in the graphs presenting the evolution of the burning
speed as a function of stretch rate.

5.2.1 Effect of data set properties

The effect on convergence was studied by varying parameters such as the initial flame radius, RY,
final flame radius, R;mal and the size of the data set, N. To study the effect of /N on convergence,

data sets of ¢, vs Ry, were generated based on the following parameters: R? = 10 mm,
R}cm“l = 58 mm, N = [30,50, 100]. The IV values represent typical data set sizes obtained from
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Figure 4: Examples of synthetic data and non-linear least-square regression curves obtained using
the present numerical method. Both Ry ,,, = f (t5,»,) and V& = f () are presented.

experiments, where the size varies according to the framing rate of camera that is being used to
acquire the flame images, the initial energy deposition used to ignite the mixture, and the type
of mixture used; faster flames lead to less images and vice-versa. The non-linear least squares
solver goes through 10 initial guesses of Lp and 10 initial guesses of V, until the residual, Eg,
is minimized to the preset tolerance. The residual, Er, and errors, Evso and Ep,, are shown in
Figure 5 as filled contours on a base 10 logarithmic scale.

The results shown in Figure 5 suggest that Fpy, Evg, and L7, are insensitive to the size of the
data set, N. The figure also shows that Fy, EVSo, and F,, increase near the region of Lpg g
indicated by the red contours, which is where the limit discussed in section 3 is approached. For
the parameters tested, the results suggest that for the majority of Markstein lengths and flame
speeds the non-linear least squares fitting procedure will perform within the desired tolerances.

Next the effect of initial radius is studied, keeping the number of points in the data set fixed
at N = 100. Data sets of t,, vs Ry, were generated based on the following parameters:
R? = [10, 15, 25] mm, R}Cm“l = 58 mm. The non-linear least squares solver goes through 10
initial guesses of L and 10 initial guesses of V¢, until the residual, Eg, is minimized to the preset
tolerance. The calculated errors, £y ,, are shown in the left column of Figure 6 as filled contours
on a base 10 logarithmic scale. The scale on the x-axis increases when Rgl increases since L 4z
is directly proportional to the initial flame radius. Visually there are small differences in the mag-
nitude of the contours of £, for the R(} = 10 mm and R? = 15 mm cases; the differences suggest
that smaller errors are obtained for data sets with an initial flame radius of 10 mm than data sets
with an initial flame radius of 15 mm. The 10 mm and 15 mm initial radius contours have a similar
region of concentrated high errors in the vicinity of Lp ,,4,. The 25 mm initial flame radius case
exhibits a larger concentration of high errors in the vicinity of Lp ., than the other two initial
flame radius cases.

To study the effect of R;mal on convergence, data sets of ¢, vs Ry, were generated based on
the following parameters: R? = 10 mm, R;mal = [25,58,80] mm. The non-linear least squares
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solver goes through 10 initial guesses of Ly and 10 initial guesses of V2, until the residual, Eg,
is minimized to the preset tolerance. The calculated errors, £, ,, are shown in the right column of
Figure 6 as filled contours on a base 10 logarithmic scale. The scale on the x-axis remains fixed
since R?c is fixed for the three cases. There appears to be a change in the size of the region of
concentrated high errors throughout the three cases. The size of the region decreases from the 25
mm final flame radius case to the 58 mm final flame radius case, it then increases again to a larger
region of high errors in the 80 mm final flame radius case. Figure 6 suggests that there is an ideal
final flame radius that leads to a decrease in the size of the region of concentrated errors in Lp.
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Figure 5: Contour plots of E, £, and Ey, for N = [30, 50, 100]

10

Log(IE )



2014 WSSCI Meeting — Paper # 087LF-0020 Topic: Laminar Flame

B

Log(IE, )

-5 -4 -3 -2 -1 0 1
LB (mm)

R% = 10 mm, Rgi"‘” = 58 mm

4

x10

3.5

25

0
VS (mm/s)
Log(IEL 1)

0.5

-5 -4 -3 -2 -1 0 1
LE (mm)

R% =10 mm, Rf"al = 58 mm

-5 -4 -3 -2 -1 0 1 2
LB (mm)

RY =15 mm, R}™" = 58 mm

Log(lE,_I)

-5 -4 -3 - -1
-4 -2 0 2 4 Lg (mm)

LB (mm)

RY = 25 mm, R{"" = 58 mm RY =10 mm, R} = 80 mm
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5.2.2 Effect of the initial guess

In this section the sensitivity of the nonlinear least squares fit to the initial guesses of Ly and V2
is explored. Synthetic data sets were generated using initial and final radii of R? = 10 mm and

RI™l — 58 mm. The set of initial guesses was randomly generated for Lp € [—10, 10] mm and
VS{; € [20, 100000] mm/s. For each pair of values of L and VSQ ,either 1, 2, 5, or 10 different initial
guesses were used. The contour plots in Figure 7 indicate that when only 1 initial guess of Lp and
1 initial guess of V& are used, the error goes up as Lp increases until the non-linear least squares
solver can no longer find a solution within a reasonable tolerance, this is indicated by the unfilled
region of the 1 x 1 contour plot.

B
B

Log((E, 1)
Log((E, 1)

B
B

Log(E, D
Log(E, 1)

Figure 7: Contour plots of E,,,, for four sets of initial guessues of L5 and V¢

When the number of initial guesses is increased to 2 initial guesses of Lz and 2 initial guesses
of V&, the solver is able to find a solution within the preset tolerances for the majority of the

12
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domain shown in the 2 x 2 contour plot. As the number of initial guesses is increased further,
the magnitude of Ey, decreases throughout the domain and the region of concentrated high errors
becomes smaller, this is seen in the 5 X 5 and 10 x 10 contour plots in Figure 7. From this analysis,
it is suggested that at least 10 initial guesses of Lp and 10 initial guesses of V be chosen when
using the non-linear least squares solver presented in this paper. If only 1 guess per parameter is
to be used, then it is suggested that each guess be made on the basis of the linear least squares fit,
Equation 9.

5.2.3 Effect of noise

The next step in this study was to investigate the robustness of the solver when noise was added to
synthetic data of R ,,,. The addition of noise to Ry ,, is more representative of what is obtained
experimentally when extracting flame radii from spherically propagating flame images. Data sets
of tsyn V8 Ry, were generated based on the following parameters: R?c = 10 mm, R}%”al = 58
mm. Noise proportional to the instantaneous flame radius was introduced to Ry, via a noise
vector, €, that was randomly generated with values between -1 and 1. The resulting noisy synthetic
data sets, [y ; are described by

Rfﬂ' == Rf,syn S [1 + 7 % é] s (21)

where ¢ is the noise percentage. The addition of 1% and 2% noise were studied, and example flame
radius plots are shown in Figure 8.

1% noise 2% noise

Figure 8: Exact solutions and solutions with 1% and 2% noise for a case with Lz = 1.8 mm and
V3§ = 35000 mm/s.

The results of noise addition are shown in Figure 9, the figure is presented as synthetic Lp vs
fitted L and the circle markers represent different values of V{. The yellow markers indicate 0%
noise addition, the red markers indicate 1% noise addition, the blue markers indicate 2% noise
addition and the black dashed line indicates synthetic Lz = calculated L. Figure 9 shows that as
the noise percentage is increased, the calculated Lp drifts further away from the synthetic L. In
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addition, the calculated L drifts further away from the synthetic Ly as the value of the synthetic
Lp decreases. However it should be noted that the error £, not shown, is evenly distributed
in Lp € [=5.0, Lpma:) and V& € [300,35000] mm/s for each noise addition case. These results
show show that noisy data can lead to an uncertainty in the fitted Markstein length, especially for
highly stretched flames. Nevertheless, the nonlinear search procedure performs well considering
the shallowness of the least squares error minimum shown in Figure 2.

2T

Calculated LB (mm)

o 2% |
O 1%
0% |1

ORI T [N T T T [T YT S N S S T N T T T T N T o s
-5 -4 -3 -2 -1 0 1 2
Synthetic LB (mm)

Figure 9: Synthetic L vs fitted L with 0%, 1%,and 2% added noise

Several of the cases reported above were repeated using the method of Kelley and Law [26] as
well as the linear method. Typical results are shown in Figure 10, which mirrors the conditions
of Figure 9. As would be expected, the linear method performs well only near conditions of zero
stretch (L/R; < 1) where the linearization is appropriate. The method of Kelley and Law on
the other hand performs reasonably well over the entire range of Markstein lengths tested, with
performance similar to that observed using the present method in Figure 9. In particular, the
maximum deviation of the fitted Markstein length from the correct solution is about the same for
both methods, as is the sensitivity to experimental noise. We have also found that the sensitivity of
the method of Kelley and Law to other factors, such as the number of points in the data set and the
choice of initial guess, is similar to that of the present method.

6 Conclusions

The performance of a nonlinear flame speed extraction method has been analyzed, and the sensitiv-
ity of the results to various experimental and numerical parameters has been explored. The results
were found to be insensitive to the initial and final flame radius and the number of points in the
data set. However, for positive Markstein length there is a minimum flame radius below which the
nonlinear relationship between flame speed and stretch rate has no solutions, and the quality of the
nonlinear fit can be poor as this limit is approached. Additionally, the fitted values of Markstein
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Figure 10: Comparison of synthetic Lz vs fitted Lz for 0, 1, and 2% added noise using the method of
Kelley and Law as well as the linear fit. Initial flame radius is 10 mm, final radius is 58 mm, N = 100.
For each value of L,, the various points plotted correspond to different values of V' in the range
(300,35000) mm/s.

length and laminar flame speed become more sensitive to their initial guesses near this limit. As a
result, care should be taken that all data points used in the fit exceed this minimum radius.

The least squares error, which is minimized during the nonlinear fitting process, is found to exhibit
a shallow minimum that depends only weakly on the Markstein length. When noise is added
to the data, the local minimum becomes shallower and its depth is decreased. This can produce
substantial errors in the fitted Markstein length, especially for highly stretched flames. The method
used in this paper was compared with a similar nonlinear method developed by Kelley and Law
[19], and similar performance was found in all aspects. In spite of the sensitivity to noise and the
shallowness of the least squares minimum, these nonlinear methods performed considerably better
than the linear method for highly stretched conditions.
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