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The present study investigated hot surface ignition of C2H4-air mixtures. The ignition thresholds from
a stationary commercial glow plug (active heated area is 9.3 mm in height and 5.1 mm in diameter)
were characterized using two-color pyrometry and high-speed interferometry. The minimum ignition
temperature decreases from 1180 K to 1110 K as the equivalence ratio increases from Φ=0.4 to Φ=4.
The performance of eight reaction models have been quantitatively evaluated using a comprehensive
database on auto-ignition. The reaction model of Mével C1-C3 and the GRI-mech 3.0 were reduced
for inclusion in two-dimensional numerical simulations. Simulations performed with the GRI-mech
demonstrate better quantitative agreement for rich mixtures but predicts an opposite trend with Φ as
compared to experiments. Simulations with Mével’s model demonstrate quantitative agreement for
lean conditions, and decreasing performance for Φ ≤1. However, it reproduces the correct evolution of
ignition threshold as a function of Φ.

1 Introduction

The risk of accidental ignition of flammable mixtures by a hot surface and subsequent flame prop-
agation is of particular importance for industry. Such a scenario is relevant to commercial aviation,
chemical processes, nuclear energy production, and mining, among other industrial activities. For
example, considering typical jet fuels and operating conditions, the fuel tank of an aircraft will con-
tain a flammable mixture during parts of the flight envelope. A scientific understanding of the hot
surface ignition process is needed which requires accurate measurements and detailed modeling
of chemical reaction kinetics and fluid dynamics. In previous studies from our laboratory [1–3],
ignition of n-hexane- and hydrogen-based mixtures has been examined and in this study we are
using similar techniques for C2H4-air mixtures. Recent studies of C2H4-air thermal ignition have
also been performed by Beyer and Markus [4] and Roth et al. [5].
The goal of the present study is obtain high quality data on hot surface ignition thresholds for
ethylene-air mixtures and quantify the predictive capability of two-dimensional numerical simu-
lations at reproducing the experimental ignition threshold using current chemical kinetic mecha-
nisms.

2 Materials and methods

2.1 Experimental setup and diagnostics

Ignition experiments were performed in a 2.2L vessel. The hot surface, a cylindrical Autolite 1110
glow plug made of stainless steel 316, was mounted vertically in the lower section of the vessel.
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The active surface area of the glow plug is 9.3 mm in height and 5.1 mm in diameter. The setup has
been described previously in [2,3]. The vessel was filled with ethylene, oxygen and nitrogen using
the method of partial pressures with a 10 Pa accuracy. The gases were mixed using a circulation
pump and left to settle and reach quiescent conditions. Initial conditions were Po = 101.3kPa and
To = 296K. The glow plug was heated by electric current until ignition occurred.
Ignition was characterized in terms of surface temperature at ignition (ignition threshold), and gas
temperature field in the glow plug vicinity. Surface temperature was measured by two-color py-
rometry (uncertainty +50K/-75K). Gas temperature fields (uncertainty <10%) and ignition dynam-
ics were captured by Mach-Zehnder interferometry using a Spectra-Physics Excelsior-532-200-
CDRM 532 nm laser and a Phantom V7-11 high speed camera. Further details on the diagnostics
will be given in future publications.

2.2 Reaction models and validation database

Eight reaction models from the literature which include C2H4 chemistry were selected: Caltech-
Mech (1106 Reactions (R); 169 Species (S)) [6], Dagaut (925 R, 128 S) [7], Galway (689 R, 120
S) [8], GRI-mech 3.0 (325 R, 53 S) [9], JetSurf (2163 R, 348 S) [10], Konnov (1200 R, 127 S) [11],
Mevel C1-C3 (920 R, 115 S) [12, 13], Mével C1-C6 (2628 R, 531 S) [14].
To test the predictive capability of the different reactions models, a comprehensive database on
C2H4-O2-diluent mixtures auto-ignition has been assembled from the literature as summarized by
Schultz and Shepherd [15] and Cymbalist [16]. We also considered the data from the Stanford
shock-tube database [17]. The database, which includes 964 shock-tube experiments, covers the
following ranges: Φ=0.125-4; XDiluent=0.685-0.99; P=20-4130 kPa; T=882-2339 K. The kinetic
targets are: OH*, CH*, C2*, OH, C2H4, [O]x[CO], [CO]+[CO2], pressure, and temperature. Data
of Suzuki et al. [18] obtained below 1080 K were removed due to apparent non-idealities in their
experiments (strong decrease of activation energy typically seen when pre-ignition compression is
taking place during shock-tube experiment [19]).

2.3 Numerical simulations

The motion, transport and chemical reaction in the gas surrounding the glow plug were modeled
using the low Mach number, variable-density reactive Navier-Stokes equations with temperature-
dependent transport properties [20]. A detailed description of the model can be found in [21]. The
governing equations were solved in an axisymmetric 2-D geometry using the OpenFOAM toolbox
[22]. Our implementation of the code is well validated as it has been used succesfully in various
ignition studies comprising different geometries, modes of heat transfer (e.g. forced and natural
convection), and ignition timescales [21, 23–26]. The computational domain was discretized with
200,000 cells, compressed near the wall of the glow plug with a minimum cell size of 60µm, to
resolve the thermal and hydrodynamic boundary layers. The initial conditions were Po = 101kPa,
To = 300K, Uo = (0,0)m/s, and mass fractions Yi corresponding to equivalence ratios, Φ, of 0.4,
0.5, 1.0, and 4.0. No-slip boundary condition and constant temperature Twall = To were imposed
on the vessel walls. On the glow plug surface, a time dependent boundary condition given by Tsurf
(t) = 300 K + α t was imposed with a heating rate of α = 220 K/s.
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3 Results and discussion

3.1 Chemical kinetics modeling

Figure 1 a) to c) show typical examples of experimental and calculated characteristic times of
reaction, referred to as delay-time in the following, for various C2H4-O2-diluent mixtures. The
predictions of the different reaction models vary significantly. This aspect is also illustrated in
Figure 1 d) for a stoichiometric mixture at P=100 kPa and T1=300 K. Above 1200 K, the adiabatic
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Figure 1: Kinetic modeling for C2H4-air mixtures. In a), b), and c) experimental and numerical delay-
times are compared. In a): Φ=2; XN2=0.693; P=100 kPa (◯), P=1 MPa (◯), P=2.5 MPa (◯). In b):
Φ=1; XAr=0.92; P=100 kPa (◯), P=200 kPa (◯), P=400 kPa (◯). In c): P=500-800 kPa ; Φ=0.5 and
XAr=0.951 (◯), Φ=0.75 and XAr=0.965 (◯), Φ=1 and XAr=0.972 (◯). In d), the delay-time (time to OH
peak) predicted by four models are shown for Φ=1 and P=100 kPa. In e), the mean error for all
models is shown for three ranges of initial pressure: full range (red), data at P<500 kPa (blue), and
data at P<150 kPa (black). In f), full (symbols) and reduced Mevel C1-C3 (solid lines) and GRI-mech
3.0 (dashed lines) models are compared for mixtures with Φ=0.3, 1, and 4 at P=100 kPa.

constant pressure (ADCP) delay-times predicted by all the models converge toward close values
with low absolute differences. The range of ADCP delay-time predicted by the different models
below 1200 K is bounded by the GRI-mech 3.0, longest delays, and Galway’s model, shortest
delays. The difference in prediction between these two limiting models can be illustrated by the
difference observed at 1000 K. At this temperature, GRI-mech predicts a delay-time around 230
ms whereas Galway’s model predicts about 7 ms. Such a difference may results in a significant
difference in the predicted hot-surface ignition threshold. The accuracy of the reaction models has
been quantified using the mean relative error with respect to the experimental data, as described
in Chatelain et al. [13]. The error results are presented in Figure 1 e) for three ranges of initial
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pressure: (i) full range, (ii) data at P<500 kPa, and (iii) data at P<150 kPa. The most accurate
models were CaltechMech and Mevel C1-C3 with a mean error of respectively 49% and 46% for
data at P<150 kPa. Note that these two models exhibit similar errors for the three ranges of initial
pressure considered. Given that the Mevel C1-C3 model demonstrates the lowest error, it has been
reduced to 100 reactions and 30 species using the approach detailed in Davidenko et al. [30]. In
order to provide an upper limit for the predicted hot surface ignition threshold, the GRI-mech has
also been reduced to 55 reactions and 32 species. A lower limit for the threshold could be provided
by using Galway’s model and , we plan to reduce this mechanism as well to complete the present
study. The comparison between the full and the reduced models is shown in Figure 1 f) under
ADCP conditions. The reduced models reproduce the ignition delay-time from the full models
within approximately 10% on average for Φ=0.3-7, P=100 kPa and T1=300 K.

3.2 Experimental and numerical results

Figure 2 a) shows the typical evolution of the glow plug surface temperature during an ignition
experiment. During the first part of the heating phase, T<700 K, the signal is too weak to enable
the measurement of temperature with the present pyrometry set-up. At t=20 s, a discontinuity
is observed in the temperature signal due to the ignition event. The temperature at this instant,
1165 K, is taken as the temperature threshold. Figure 2 d) shows the profile of the maximum
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Figure 2: Experimental (top) and numerical (bottom) temperature profiles, temperature fields, and
ignition thresholds for hot surface ignition of a stoichiometric C2H4-air mixture initially at T=295-300
K and P=101 kPa. Calculations were performed with the reduced Mevel C1-3 model.

temperature in the computational domain. At t<3.5 s, the maximum temperature equals the surface
temperature. At t=3.5 s, a sharp increase of the temperature is observed due to gas ignition at a
surface temperature of 1057 K. The heating rate is an order of magnitude higher in the simulation

4



10th US Combustion Meeting – Paper # 2RK-0098 Topic: Reaction Kinetics

to limit the computational time. The validity of this approach for the present configuration has
been established in [21]. As ignition is taking place, a flame kernel develops just above the top
surface of the glow plug as shown in Figure 2 b) (experiment) and e) (simulation). The dynamics
of the subsequent flame propagation has been studied in detail by Boettcher [2]. Figure 2 c) shows
the evolution of the ignition threshold with equivalence ratio over the range Φ=0.4-4. Within this
range, the threshold is seen to decrease from 1180 K to 1110 K as Φ is increased. Under similar
conditions, Beyer and Markus [4] and Roth et al. [5] measured ignition thresholds in the range
1400-1850 K for laser-heated ceramic spheres of 750 and 800 µm in diameter, respectively. Given
the large sensitivity of the ignition threshold to surface size and material, the present results seem
consistent with the literature results. The threshold for C2H4-air appears to be in between the
thresholds we previously measured for H2-air (∼1050 K) and n-C6H14-air (∼1275 K) [23] which
is consistent with their respective ADCP ignition delay-time, i.e. shorter ADCP delay times at
a given temperature imply a lower hot surface ignition temperature. Figure 2 f) compares the
experimental thresholds with the predictions of the numerical simulations using the two reduced
models. The simulations made using the reduced Mevel’s model predict a decrease of the ignition
threshold with Φ increase, as observed experimentally, whereas the simulations made with the
reduced GRI-mech 3.0 predict an opposite trend, inconsistent with the experiments. The evolution
of the threshold for the two reduced models is consistent with the ADCP ignition results shown in
Figure 1 f). Quantitatively, the simulations made with the former model reproduce the experimental
results within 25 K for the lean mixtures but demonstrate discrepancies for Φ=1 and 4 with more
than 100 K under-prediction, whereas the simulations made with reduced GRI-mech 3.0 exhibit
opposite trends, i.e. ∼100 K difference in the threshold for Φ <1, ∼60 K for Φ=1, <10 K for Φ=4.

4 Conclusion

Hot surface ignition of ethylene-air mixtures was characterized by measurements of the ignition
threshold using a commercial glow plug over the equivalence ratio range of 0.4 to 4.4. The trends
are consistent with previous results for C2H4-air. The quantitative characterization of eight detailed
reaction models against a large database of auto-ignition delay-time has revealed significant dis-
crepancies between the experimental and the calculated delay-times. Two-dimensional numerical
simulations performed with two reduced models demonstrated agreement only for specific mixture
compositions, whereas none of the models could predict thresholds quantitatively across the entire
investigated range of equivalence ratio.
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