
Under consideration for publication in J. Fluid Mech. 1

A numerical study of detonation diffraction

By MARCO ARIENTI1 AND J. E. SHEPHERD2

1United Technology Research Center, East Hartford, CT 06108, USA,

1Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125,

USA2

(Received March 7, 2003 and in revised form Oct. 14, 2003)

An investigation of detonation diffraction through an abrupt area change has been carried

out via a set of two-dimensional numerical simulations parametrized by the activation

energy of the reactant. Our analysis is specialized to a reactive mixture with a perfect gas

equation of state and a single-step reaction in the Arrhenius form. Lagrangian particles

are injected into the flow as a diagnostic tool for identifying the dominant terms in the

equation that describes the temperature rate of change of a fluid element, expressed

in the shock-based reference system. When simplified, this equation provides insight

into the competition between the energy release rate and the expansion rate behind the

diffracting front. The mechanism of spontaneous generation of transverse waves along the

diffracting front is carefully analyzed and related to the sensitivity of the reaction rate

to temperature. We study in detail three highly resolved cases of detonation diffraction

that illustrate different types of behavior, super-, sub- and near-critical diffraction.
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1. Introduction

Detonations are supersonic combustion waves with a strong lead shock front. The shock

wave ignites the reactive material, and the exothermic stage of the reactions creates

volume expansion that pushes the shock into fresh reactants. Detonations diffracting

from a planar to a cylindrical (or spherical) geometry through an abrupt area change

experience expansion waves that propagate into the partially burnt reactants behind the

wavefront.

One of the key features of this process is the propagation of the signal generated by the

expansion waves emanating at the corner. As shown in figure 1 (a), the disturbance is

propagating at the local acoustic speed c while being convected downstream at a speed u.

The undisturbed front moves at a constant speed D. The angle between the disturbance

trajectory and the normal of the undiffracted shock, α, can be found by carrying out a

Huygen’s construction for the wavefront of a sound wave. As discussed in Skews (1967),

the wavefront is a circle, of radius c∆ t, whose origin is at point O translated downstream

from the corner a distance u ∆ t. From the geometric construction, we have

tan α =
v

D
=

√
c2 − (D − u)2

D
. (1.1)

In the nonreactive case, the values u and c are evaluated from the post-shock state behind

the undisturbed shock. In the reactive case, a finite transverse signal speed is observed

in corner-turning experiments with Chapman-Jouguet (CJ) detonations (Schultz 2000).

This indicates that acoustic disturbances must propagate in the reaction zone, between

the sonic plane (where D−u = c by definition) and the lead shock. Disturbance angles α

were measured by Schultz (2000) from a sequence of schlieren images in sub-critical det-

onation diffraction of hydrocarbon mixtures and hydrogen mixtures. When these results

were compared with values computed from the corresponding Zel’dovich-von Neumann-
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Doering (ZND) profiles (see, for instance, figure 1 (b)), the angles corresponding to the

maximum disturbance velocity were found to be in good agreement with the experimental

measurements.

The sensitivity of chemical reactions to post-shock conditions is the second key feature

in detonation diffraction. For a single-step reaction model of order nr, the rate of reaction

of a fluid particle can be described by

DZ

Dt
= k ρnr−1 (1 − Z) e−θ TvN / T , (1.2)

where Z monitors the reaction progress (from 0 to 1), ρ is the density, TvN is the von

Neumann temperature in the ZND profile, and k is a proportionality parameter setting

the length scale of energy release. The sensitivity of the chemical kinetics is expressed in

the nonlinear term by the reduced activation energy θ, the key parameter in the work

presented here.

Since the shock is weakened by the interaction with expansion waves from the corner,

the post-shock temperature can be significantly smaller along the diffracting front than

in the reference ZND profile, and the reaction process can be quenched or substantially

delayed. If the reaction does not take place or else happens far behind the shock front,

the reduced amount of energy released into the flow results in a further decay of the

detonation speed. As the shock strength diminishes, incoming reactants are less com-

pressed, and this, in turn, increases the ignition delay. Depending on the sensitivity of

the reactions to temperature and density changes and on the strength of the rarefaction,

the detonation will eventually either be re-established (super-critical diffraction) or cease

to propagate (sub-critical diffraction). The conditions that control the transition from

super-critical to sub-critical diffraction identify the near-critical state. With all other

conditions held constant, the detonation fails for a tube diameter smaller than a critical

value (Zel’dovich, Kogarko & Simonov 1956).
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There is an empirical correlation between critical diameter and detonation cell width,

λ. This is discussed in Mitrofanov & Soloukhin (1965); Edwards, Thomas & Nettleton

(1979); Knystautas, Lee & Guirao (1982); Moen, Murray, Bjerketvedt, Rinnan, Knystau-

tas & Lee (1982); Shepherd, Moen, Murray & Thibault (1986); and Desbordes (1988).

The survey by Guirao, Knystautas & Lee (1987) for hydrogen-air mixtures indicates that

detonation is re-established if the tube diameter is greater than 13λ. For rectangular ori-

fices with large aspect ratio, the detonation is re-established if the smallest side of the

orifice is larger than 3λ. A recent review of the available detonation diffraction litera-

ture can be found in Schultz (2000). Despite the large amount of experimental data, a

quantitative theory to predict the critical tube diameter is still lacking.

In two dimensions, an extensive series of simulations with two-step reaction kinetics

was performed by Jones, Sichel, Oran & Guirguis (1990); Jones, Sichel, Guirguis & Oran

(1991); Oran, Jones & Sichel (1992); Oran, Boris, Jones & Sichel (1993); and Jones,

Sichel & Oran (1995). Their aim was to reproduce the diffracting patterns in detonation

transmission experiments by Liu et al. (1987, 1988). The role of detonation cellular

structure in detonation diffraction was further investigated by Jones, Kemister, Oran

& Sichel (1996); Jones et al. (2000); and Li & Kailasanath (2000), through simulations

that were found in agreement with the 3λ rule. In three dimensions, computations with

single-step Arrhenius kinetics were carried out by Williams, Bauwens & Oran (1996).

Their results suggest that vorticity, providing a strong coupling mechanism between

perpendicular transverse modes, can be a trigger mechanism for the production of new

transverse waves.

In the problem we investigated, detonation diffraction takes place around a sharp

corner with an interior angle of 90◦ (figure 2). An instance of this situation is encountered

when a detonation tube or channel opens into a larger volume. If we assume an unbounded
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volume, then the only geometric parameter is the exit diameter of the tube, or, in two

dimensions, the channel half-width, H. Dimensional analysis for the single-step reaction

model in the Arrhenius form leads to the following dependence for the critical channel

half-width,

Hc

∆1/2
= g

(
Q

RgT0
, γp, γr, f, θ, nr

)
, (1.3)

where Q is the heat of reaction, γr and γp are the reactant and product specific heat

ratios, and f = D/DCJ is the overdrive of the detonation in the channel. Rg is the

mixture gas constant and T0 is the uniform temperature ahead of the shock. The reaction

characteristic length, ∆1/2, is defined as the distance, in the reference ZND wave, between

the shock (Z = 0) and the point where Z = 1/2. Our study is further specialized by

setting f = 1, γp = γr, and nr = 2. The reference reduced activation energy θ is

normalized by the von Neumann temperature at CJ conditions and is labeled θCJ .

The concept of shock decoupling from the reaction zone is the simplest idea used to

explain the behavior of a diffracting detonation front. In § 2, we extend to an arbitrary

wavefront the equation framework used in the study of direct initiation of spherically

symmetric detonations by Eckett, Quirk & Shepherd (2000). The numerical implemen-

tation of the equations of fluid motion, and the algorithms used for flow diagnostics,

are described in § 3. In § 4, we examine three cases of detonation diffraction that illus-

trate different types of behavior, super-, sub- and near-critical diffraction. The results

are discussed in § 5.

2. Reaction zone structure equations

2.1. Governing equations

Ignoring viscosity, heat transfer, diffusion, radiation, and body forces, the governing

equations for a compressible reacting flow are the reactive Euler equations completed by



6 M. Arienti and J. E. Shepherd

a thermal equation of state (see, for instance, Fickett & Davis 1979). The equation of

state for a mixture of perfect gases is written in nondimensional form as

P = ρ T. (2.1)

Variables are nondimensionalized by taking the uniform conditions upstream of the shock

as a reference. From this point onward, dimensional variables are indicated by a tilde.

Distance is scaled by ∆̃1/2, and velocity is scaled by the reference particle velocity ũ0 =

(R̃g T̃0)1/2. The mixture gas constant is

R̃g =
R̃
W̃

= R̃
∑ yK

W̃K

. (2.2)

W̃K and yK are the molar mass and the mass fraction of species K, R̃ is the universal

gas constant, and W̃ is the mixture molar mass. The nondimensional activation energy

is Ea = θ TvN .

In two dimensions, the analysis of the Euler equations can be carried out by using

intrinsic, shock-based coordinates as independent variables. While more cumbersome

than the Cartesian description, this approach allows for the study of the reaction zone

structure in terms of local flow features, such as shock curvature. The description of

the reactive Euler equations in intrinsic coordinates is essential to this work, and it is,

therefore, developed in some length in this section.

In intrinsic coordinates (figure 3), the variable ξ measures the arc length of the lead

shock from a reference point. This point has coordinates (x0, y0) in the x-y fixed Cartesian

reference system. Along the shock, the second coordinate η is constant and equal to zero.

Lines of constant η are the loci of points with the same distance from the shock. The angle

φ between the normal to the front and a reference axis, is a dependent variable, φ (ξ, t).

The two-dimensional curvature of the front, κ, is, by definition, κ = (∂φ/∂ξ)η, t. Dn is

the detonation velocity normal to the front. As an example of an intrinsic coordinate
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system, figure 3 (b) shows the particular case of a cylindrical front with radius R (t). In

this simple situation, the relation between ξ and η and the cylindrical coordinates (r and

φ) is given by ξ = (φ − φ0) R and η = R − r, and the trivial result κ = 1/R is found.

Conservation of mass, momentum, and total energy can be written in intrinsic coordi-

nates as (Bdzil & Aslam 2000),

L(ρ) + [(Dn − uη) ρ],η + ρ
uηκ + uξ,ξ

1 − η κ
= 0, (2.3a)

L(uη) + (Dn − uη) uη,η =
P,η

ρ
− uξ (Dn,ξ − uξκ)

1 − η κ
, (2.3b)

L(uξ) + (Dn − uη) uξ,η = −P,ξ + ρuη (uξκ − Dn,ξ)
ρ (1 − η κ)

, (2.3c)

L(e) + (Dn − uη) e,η =
P

ρ2
[L(ρ) + (Dn − uη) ρη], (2.3d)

where t is time and P and e are pressure and specific internal energy. The variables uη,

uξ are the particle velocity components in the shock normal and transverse direction.

We use the notation , ξ and , η to indicate a partial derivative with respect to ξ and η,

in this order. The operator L is defined as

L =
∂

∂t

∣∣∣∣
ξ, η

+
(

B +
uξ − ηDn,ξ

1 − η κ

)
∂

∂ξ

∣∣∣∣
t, η

. (2.4)

Note that, since the intrinsic reference system is time varying, the shock-based partial

time derivative differs from the partial time derivative evaluated in a fixed reference. In

(2.4), B is the rate of change in arc length with respect to a fixed axis of reference as

measured by an observer that is always moving in the shock normal direction (Bdzil &

Stewart 1989). The Lagrangian derivative, computed along the path of a fluid element,

can be expressed as

D/Dt = L + (Dn − uη) ∂/∂η. (2.5)

For N species, the rate of change of species K of a fluid element is

DyK

Dt
= ΩK , (2.6)
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with the index K varying between 1 and N . Using simple thermodynamic relations, the

energy equation (2.3d) may be replaced by the adiabatic change equation (Fickett &

Davis 1979),

DP

Dt
= c2 Dρ

Dt
+ ρc2

∑
K

σKΩK , (2.7)

where c is the frozen sound speed. The sum of the thermicity coefficients σK in (2.7)

expresses the total pressure change due to chemical reaction at constant volume, and is

called the thermicity product σ̇,

σ̇ =
∑
K

σKΩK . (2.8)

In this work, we specialize the reaction model to a one-step irreversible reaction, A →

B, where the upstream fluid is undiluted species A. The reactant and product are taken

to have the same specific heat ratio γ. The specific internal energies of species A and B

are

eA = CvT, eB = CvT − Q, (2.9)

where Cv is the gas specific heat at constant volume. The caloric equation of state is

e =
1

γ − 1
T − Z Q. (2.10)

The progress variable Z is defined as the mass fraction of product B, Z = yB = 1 − yA,

the thermicity is

σ̇ = (γ − 1)
Q

c2

DZ

Dt
, (2.11)

and the reaction rate is given by Equation (1.2).

2.2. The Lagrangian derivative of temperature

Since realistic reaction rates are strongly temperature dependent, the Lagrangian deriva-

tive of temperature, DT/Dt, is of particular interest when considering the possibility of

detonation failure. By taking the Lagrangian derivative of (2.1), and using the adiabatic
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change equation (2.7) together with the mass and momentum equations in (2.3), we find

the temperature reaction zone structure equation(
1 − w2

η

c2

)
Cp

DT

Dt
=

1
γ − 1

(
c2 − γ w2

η

)
σ̇ + w2

η

κ (Dn − wη)
1 − η κ

(2.12)

+wη (Dn − wη),t +
P,t

ρ
+ w2

η

wξ,ξ

1 − η κ
− wη

w2
ξ κ

1 − η κ

+
wξ

1 − η κ
(−wηwη,ξ +

P,ξ

ρ
) + B (wη (Dn − wη),ξ +

P,ξ

ρ
)

− ηDn,ξ

1 − η κ
(wη (Dn − wη),ξ +

P,ξ

ρ
) + wξ wη

2Dn,ξ

1 − η κ

with wη = Dn − uη and wξ = uξ. Cp is the mixture specific heat at constant pressure,

Cp = γ/(γ − 1). Equation 2.12 has the dimension of energy density per unit time. The

right-hand side has terms depending on the thermicity product, the shock curvature,

the partial time derivatives of the flow, the transverse divergence wξ,ξ, and a term in

w2
ξ κ that has the appearance of work associated with centripetal motion. The remaining

terms in the last two rows (2.12) are more difficult to interpret.

The two terms containing a partial time derivative in the intrinsic reference frame can

be grouped together, and, for the remainder of this work, they will be referred to as

‘unsteady terms’ or ‘unsteadiness’ of the fluid particle. Note that in a decelerating wave,

such as it occurs in detonation diffraction, the unsteady terms are always negative. Thus,

the reaction may quench if the wave is decelerating too rapidly.

If the plane of reference is also a plane of symmetry for the flow field, several terms

disappear at ξ = 0. The transverse derivatives vanish, with the exception of wξ,ξ, and we

obtain (
1 − w2

η

c2

)
Cp

DT

Dt
=

1
γ − 1

(
c2 − γ w2

η

)
σ̇ + w2

η

κs (Ds − wη)
1 − η κs

(2.13)

+ wη (Ds − wη),t +
P,t

ρ
+ w2

η

wξ,ξ

1 − η κs
.

In (2.13), κs (t) and Ds (t) are the front curvature and shock speed evaluated on the
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plane of symmetry. The result is the same found for a cylindrically symmetric flow with

the addition of a transverse divergence term (Eckett et al. 2000). This term is always

positive since wξ is anti-symmetric and no mass flux is allowed at the plane of symmetry.

Note that, when the wavefront is convex-upstream, the curvature term is also positive in

(2.13) and so it cannot possibly be a source of reaction quenching without the additional

presence of unsteadiness.

The relative size and behavior of the terms in the temperature reaction zone structure

equation will be examined numerically by following the path of massless particles injected

into the flow. We will refer to these particles as Lagrangian. The goal is to identify

the dominant balance in a Lagrangian particle close to ignition failure and to find any

simplifying assumption regarding the behavior of terms in (2.12) or (2.13).

3. Numerical implementation

The reactive Euler equations are integrated via operator splitting as an alternated

sequence of convective and reaction source steps (Strang 1968). In the convective step,

numerical fluxes are computed with Roe’s approximate solution of the Riemann problem

(Roe 1986). Formal second-order spatial accuracy is obtained via min-mod flux limiting,

and the scheme is made entropy-satisfying with Harten’s entropy fix (Harten 1983). In

the reaction source step, at ρ and e constant, the ordinary differential equation

dZ

dt
= k ρ (1 − Z) e−Ea/T (3.1)

is integrated by a second-order, time-accurate, predictor–corrector scheme. Verification

results and the detailed description of the one-dimensional solver can be found in Eckett

(2001). The scheme is extended to two dimensions via standard dimension-by-dimension

integration, and is marched in time with the forward Euler integration scheme.

To accelerate the program execution time, the solver is embedded in the Grid Hierarchy



A numerical study of detonation diffraction 11

Adaptive Computational Engine library, or GrACE (Parashar & Browne 1997, 2000).

This parallel library operates on partitions of the computational domain that are assigned

to different CPUs of a multi-processor computer. Communication between processors is

based on the Message Passing Interface (MPI) protocol (see, for instance, Snir et al.

(1996)).

A schematic of the computational domain is shown in figure 2. For simplicity, a zero

gradient condition is imposed on the flow variables at the inlet (left boundary), even if the

flow, initially at CJ conditions, becomes subsonic when the rarefaction signal from the

corner moves upstream. The length of the channel is 0.9H so that the corner expansion

is protected from perturbations coming from the inlet in the early phases of detonation

diffraction. Reflective boundary conditions are implemented at the plane of symmetry

(top boundary) and the simulation is terminated before the detonation front exits the

domain at the right and bottom boundaries.

To remove the singularity introduced in an Euler (inviscid) flow around a sharp cor-

ner, the vertex is described by 128 segments as a polygonal boundary, approximating

a rounded corner with radius of curvature rc = 1. The ghost-fluid coupling scheme is

used to model the correct reflective boundary conditions at the wall, solving the issue

of Cartesian cells that are cut by the polygonal boundary. An extensive description of

this level-set based technique can be found in Arienti et al. (2003) in the context of the

solution of dynamic fluid-solid coupling problems with complex interfaces. The details of

the actual corner shape are, however, unimportant since it is found that, for a sufficiently

small radius (compared to the reference reaction length), the flow field is affected only

within a distance of a few multiples of rc from the corner (Arienti 2002).

At time t = 0, the initial solution is a planar ZND-CJ wave traveling from left to

right in the inlet channel. The reference state ahead of the shock is P̃ 0 = 24 kPa and
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θCJ : 0. 1. 2. 2.5 3. 3.5 3.75 4.15

k : 0.2013 0.3931 0.7757 1.077 1.551 2.204 2.632 3.509

Table 1. Normalized activation energy and proportionality factor.

T̃ 0 = 298 K. The specific heat ratio, γ = 1.22, and gas constant, R̃g = 274.4 J/Kg/K, are

estimated for stoichiometric oxyacetylene. These properties and the CJ detonation speed,

D̃CJ = 2346.1 m/s (corresponding to the Mach number 7.422 and the nondimensional

value DCJ = 8.204), were evaluated with the program STANJAN (Reynolds 1986). The

nondimensional energy release is Q = 65.81. To consistently compare the wave profiles

computed for different values of θCJ , the proportionality parameter k in the reaction rate

formula (3.1) is adjusted so that ∆̃1/2 is the same in all the simulations (see table 1 for

a list of values).

An important part of the numerical results that are presented in this work depends

on the correct tracking of the detonation front, and the interested reader is referred to

Appendix A for more details. Particular care is required to control the error associated

with time and space derivatives of the estimated lead shock position. This error is due to

the necessary use of interpolation in the shock-tracking procedure and to high-frequency

solution oscillations that occur when the wavefront crosses the interface between compu-

tational cells.

A second analysis tool is provided by the massless particles that are injected into the

flow to register the thermodynamic state and velocity of the surrounding fluid. At each

time step, these particles are first advected by the flow field solution and then used to

interpolate the flow field variables and gradients at their current location. Each particle
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data stream is separately stored to be post-processed at the end of the simulation. More

details on this procedure can be found in Appendix B.

4. Activation energy studies

The reduced activation energy θCJ is the key parameter determining the dynamics of

a combustion system described by a one-step Arrhenius rate model. Large values of θCJ

result in a chemical reaction rate that is very sensitive to changes in the thermodynamic

state. Small values of θCJ result in a chemical reaction rate that is almost independent

of changes in the thermodynamic state. As a consequence, the diffraction behavior of

detonations modeled with an Arrhenius rate law can vary widely depending on the mag-

nitude of the activation energy. In the present study, a range of values has been examined

in order to map out the possible types of diffraction behavior that can occur with a fixed

ratio of reaction zone length to channel height.

Two types of studies were carried out. First, a set of coarse-resolution simulations was

performed for eight values of θCJ between 0 and 4.15. Second, a set of high-resolution

simulations was carried out for three selected cases with reduced activation energies

of 1, 3.5, and 4.15. All of these simulations were performed with an initially planar

ZND wave traveling at the CJ speed before diffracting around the corner. Normal mode

stability analysis (Lee & Stewart 1990) indicates that the neutral stability curve for one-

dimensional CJ detonations asymptotes to a constant value θCJ
∼= 4.74 for sufficiently

large Mach numbers (MCJ > 6). Our simulations lie entirely within the range of one-

dimensional hydrodynamic stability, allowing the study of purely gasdynamic quenching

mechanisms in detonation diffraction.

Computations were carried out over a sufficiently long time to determine the ultimate
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fate of the detonation wave. The half-width H of the channel in these simulations was

fixed at 36.67 reaction half-lengths.

The coarse-resolution studies were performed with 16 grid points per half-reaction

zone length, N1/2 = 16. This resolution level was convenient since it enabled a complete

simulation (on a 4824 by 3752 grid) to be performed in less than 36 wall-clock hours on

48 processors (Pentium III, 1 GHz with 1 GB of RAM) of the ASAP Linux cluster in

the Center for Advanced Computing Research (CACR) at Caltech.

4.1. Coarse-resolution studies

The histories of the shock detonation speeds, Da and Dw (shown in figure 2), are plotted

as a function of position in figures 4 and 5. In figure 4, the shock speed on the plane

of symmetry remains constant until the first expansion wave reaches the center of the

channel at about 90 half-reaction lengths from the corner vertex location. The expansion

causes the shock speed to decay in all cases, but the long-time behavior is different

depending on the values of reduced activation energy.

In figure 5, the shock speed at the wall drops instantly, since the flow around the corner

immediately affects the shock front. The very low pressure in the corner region causes

the shock to propagate at much lower velocity along the wall than along the plane of

symmetry. Overall, in this initial phase of corner diffraction, the behavior of diffracting

detonations is very similar to that observed with nonreacting shock waves.

For longer times, two extreme types of behavior can be noted for low activation energy

and high activation energy. These behaviors resemble the super-critical (low activation

energy) and sub-critical (high activation energy) diffraction cases observed in experi-

mental studies of diffraction from tubes. In addition, the cases of intermediate activation

energy appear to be similar to the critical case of diffraction from tubes. It is important

to keep in mind two key differences between experiments and the present simulations.
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First, the reduced activation energy is between 4 and 7 for most fuel-oxidizer combina-

tions (Schultz 2000). Second, there are always transverse waves present on the detonation

prior to reaching the corner so the correspondence between experiment and present sim-

ulations is necessarily inexact. More realistic computations are needed in future studies

to examine the influence of these two factors.

4.1.1. Low activation energy

For 0 6 θCJ 6 1, the reaction rate is essentially independent from the thermodynamic

state so that the reaction zone length is unaffected by the shock velocity. Since the

reaction rate is nearly constant, the detonation will always accelerate after diffraction,

reaching the CJ velocity far from the corner. This is similar to the case of super-critical

diffraction that is observed in diffraction experiments (Schultz 2000) where the tube is

larger than the critical size needed for successful detonation transmission.

Upon examination of figures 4 and 5, a simple picture of the low activation energy

case emerges. The detonation velocity initially decreases due to the expansion waves

created by the flow around the corner, yet, after the initial decay, the wave accelerates

and eventually approaches the CJ velocity at a large distance from the corner. The

velocity on the plane of symmetry drops slowly to about 88% of the CJ velocity and

then begins to recover after propagating to 200 half-reaction lengths along the plane of

symmetry (figure 4). The velocity on the wall drops immediately to 40% of the CJ value

and recovers to about 80% of CJ by the time the shock has propagated 200 half-reaction

lengths along the wall (figure 5). The magnitude of the drop in the shock velocity and

the rate of acceleration are associated with the competition between the gasdynamic

expansion created by corner flow and the energy release immediately behind the shock.
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4.1.2. High activation energy

For 3.75 6 θCJ 6 4.15, the reaction rate is strongly dependent on the thermodynamic

state so that the reaction zone length increases rapidly when the shock speed decreases.

This causes the reaction zone to decouple from the shock wave, and the reaction rate to

essentially drop to zero, after a short distance from the corner vertex. The detonation fails

completely and the resulting flow is essentially a nonreactive shock wave. This is similar

to the case of sub-critical diffraction that is observed in diffraction experiments where

the tube is smaller than the critical size needed for successful detonation transmission

(Schultz 2000).

Examining figures 4 and 5, we find that there is also a simple pattern of behavior

for this case. The wave velocity on both the plane of symmetry and the wall decreases

continuously and reaches very low values, less than 50% of the CJ value at 200-250

half-reaction lengths from the corner vertex. The dynamics of the wave propagation are

essentially those of a nonreactive shock, and the approximate method of Whitham (1974)

can be used to find the evolution of the front.

4.1.3. Intermediate activation energy

For 2.5 6 θCJ 6 3.5, the reaction rate is moderately dependent on the thermodynamic

state. The reaction zone length increases as the shock decays, but the accelerating effects

of energy release are sufficient to cause the reaction zone length to ultimately decrease in

an abrupt fashion. This gives the appearance of a re-ignition event near the wall (figure 5)

that propagates back to the center of the channel. This is similar to the case of critical

diffraction that is observed in diffraction experiments where the tube is comparable to

the critical size needed for successful detonation transmission (Schultz 2000).

The axial and wall velocities show an initial decay to a velocity higher than that

observed in the high activation energy cases, followed by an acceleration back to velocities
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similar to the low activation energy cases. The acceleration is abrupt at the wall, but

more gradual on the plane of symmetry. This is related to the mechanism of transition,

discussed in more detail below.

Another way to analyze the flow near channel center is to plot wave speed vs. curvature

(figure 6). A unique Dn–κ relationship should result if the flow is quasi-steady in nature

(Bdzil & Stewart 1989; Yao & Stewart 1995; Stewart & Yao 1998). Although the curves

of figure 6 have a backward C-shape, their numerical values can be very different than

in the corresponding Dn–κ curves. These differences are reported in detail in Arienti

(2002).

4.2. High-resolution studies

Following the results of the coarse-resolution studies, more detailed simulations were per-

formed for selected cases at high resolution. The need for highly resolved computations is

crucial in the study of detonation diffraction. When the reaction zone is underresolved,

direct numerical simulations tend to overestimate the wavefront curvature (Menikoff,

Lackner & Bukiet 1996), and poor predictions of detonation wave structure can be ex-

pected (Sharpe 2001). The following three simulations were computed with N1/2 = 22.5

on a 6570 x 5858 grid for θCJ = 1 and 3.5, and on a 6750 x 5100 grid for θCJ = 4.15.

Results of a convergence study with varying N1/2, presented in Arienti (2002), show that

the main wave features are essentially converged in these examples when N1/2 = 22.5.

The height of the computational domain (top-to-bottom) is approximately 250∆1/2.

The time-step is 1.1 · 10−3, corresponding to an average CFL number of 0.5 or smaller;

given a final time between 40 and 60 for the detonation front to reach the bottom of

the computational domain, at least 40, 000 iterations are needed to reach simulation

completion.
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4.3. Case θCJ = 1

Two numerical schlieren images are displayed in figure 7. Numerical schlieren visual-

ization amounts to displaying the magnitude of the density gradient as a gray-scale.

A nonlinear mapping, or gray-scale shading function, is used so that density gradients

varying through several orders of magnitude are still visible. In this work, the gray-scale

shading function is

ν = 0.8 exp
(
−µ

|∇ρ |
|∇ρ |max

)
(4.1)

with µ a strictly positive amplification parameter. The gray-scale ranges from black for

ν = 0 to white for ν = 1. Larger values of µ give darker images and accentuate weak

features of the flow. To provide a consistent gray-scale reference, frames in a sequence of

schlieren images, such as the one in figure 7, have the same amplification and normaliza-

tion factors.

In addition to the density gradient, figure 7 also displays the locus of points where

the product mass fraction is equal to 0.95. This contour is displayed as a solid line. The

corner, on the left-hand side of each plot, is shown as a rectangular shape with a small

(not visible to the eye) rounded vertex of radius rc = 1. In each frame, only the last

portion of the inlet channel (one fifth of the total length) is shown.

As mentioned in the previous section, a value θCJ = 1 corresponds to a reaction rate

model that is essentially insensitive to the shock velocity changes in the expansion from

the channel half-width H = 36.67. Figure 8 is a plot of density, temperature, pressure

and progress variable for five ‘slices’ of the computational domain at time t = 35.79.

Slices 1 and 5 are extracted along the plane of symmetry and the corner wall, respec-

tively. The remaining data are taken in the shock normal direction and are evenly spaced

along the detonation front (see figure 7 (a)). In all the slices, the post-shock pressure is

almost exactly 75% of the von Neumann value, corresponding to a detonation velocity
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0.86DCJ = 7.010. This estimate is consistent with the diagram in figure 4. Overall, the

profiles in the two frames show the same dependence from η, with the exceptions of slice 3

(dashed line) and slice 4 (dotted line) both passing through a system of transverse shocks.

No residual effects of the transverse gradient due to the corner rarefaction are observed,

and, by the shock-change equation (Fickett & Davis 1979, page 101), we conclude that

the front is propagating as an almost cylindrical detonation.

The receding 0.95 reaction locus in the first frame of figure 7 indicates that the most se-

vere reduction of reaction rate is found along the corner wall. The trajectories of particles

injected along this boundary (see figure 9 (a)) are displayed in the space-time diagram of

figure 10 (a). The temperature profiles in figure 10 (b) show that all particles ignite, even

those very close to the corner. From their trajectories, it appears that these particles are

eventually pulled upward into the colder fluid at the corner vortex. At this time, however,

the fluid element has almost completely reacted, and the decrease in temperature has no

feedback to the main reaction zone.

We conclude the analysis of the case θCJ = 1 with a comment on the group of transverse

shocks shown in figure 7 (b). The first of these waves, moving from the corner to the

center of the channel, is due to reflection of the curved detonation front at the corner

wall in the initial phase of corner turning. The reflection causes a triple point to form

at the detonation front with a contact discontinuity embedded in the reaction zone. We

found that the discontinuity in the sonic parameter acts as a channel for the propagation

of high-frequency acoustic disturbances, which are amplified by the energy release due

to chemical reaction and steepen to form new transverse shocks. To each new shock

at the detonation front corresponds a contact discontinuity, which, in turn, acts as a

propagation guide. The mechanism described here is consistent with the propagation

and amplification of high-frequency acoustic waves in a planar ZND-CJ reaction zone
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described by Strehlow & Fernandes (1965) and Barthel & Strehlow (1966). A complete

discussion on this topic can be found in Arienti (2002).

4.4. Case θCJ = 4.15

Two snapshots of the simulation, computed for θCJ = 4.15, are displayed in figure 11.

The decoupling occurs just behind the head of the corner signal that sweeps across the

wave from the corner to the center of the channel. The detonation fails completely and

there is no local re-ignition so the main flow features appear to evolve in time very similar

to a nonreacting shock.

Moving along the wavefront from the channel center, we see that the wave curvature

increases up to the point where the no-flow boundary condition, generated by the wall,

causes a straight shock perpendicular to it. The transition from curved to straight front

is smooth, since the shock is immediately followed by an unsteady expansion wave. This

structure is qualitatively predicted by Whitham’s geometrical shock dynamics applied to

a nonreacting shock diffracting at a sharp corner (Whitham 1974, page 297). It is also

observed in direct numerical simulations by Xu, Aslam & Stewart (1997) and Helzel,

Leveque & Warnecke (2000). At the junction of the curved front and the stem adjacent

to the wall, the schlieren images in figure 11 indicate a discontinuous change of density

gradient.

The steep density gradient in figure 11 marks the separation between the burnt gases,

produced before reaction quenching, and the shock-compressed (but unburnt) reactants.

This is shown in figure 12, where density, temperature, pressure, and progress variable

profiles of five slices of the computational domain (at time t = 53.22) are plotted. Slices

1 and 5 are extracted along the plane of symmetry and the corner wall, respectively. The

remaining data are taken in the direction normal to the shock and are evenly spaced

along the detonation front (see figure 11 (a)). Behind the lead shock, temperature and
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progress variable do not vary substantially from their post-shock values, whereas density

and pressure decrease similarly to what would be expected in a blast wave. Density drops

abruptly at a distance of 20 to 30∆1/2 from the shock. At the same location, temperature

and progress variable rise very rapidly to the corresponding values of the burnt products.

This distance becomes 60∆1/2 behind the Mach stem at the wall (slice 5).

4.4.1. Particle analysis

We now discuss the results obtained for a selection of particles injected along the chan-

nel plane of symmetry (figure 9 (b)). That is the most convenient location to probe the

flow field, where the corner expansion is initially the weakest. For each particle, data

analysis starts immediately after the passage of the lead shock. Since the shock is normal

to the plane of symmetry, the simplified equation (2.13) can be used. Particle trajectories,

labeled from 1 to 10 in figure 13 (a), become almost parallel to the traces of the con-

stant mass fraction of the product. This is an indication that the reaction is quenched,

with no change in reactant-product composition (see also the contact discontinuity in

figure 11). The temperature history along particle trajectories is plotted in figure 13 (b).

The increase of the particle’s time to ignition as the shock strength decreases is clearly

consistent with the reaction rate dependence on temperature.

The decomposition of DT/Dt is performed for particles 1, 3, 5, and 10 and displayed in

figure 14. The plots show that the (positive) transverse divergence term is always small.

This result, also found in the analysis of the θCJ = 1 and θCJ = 3.5 cases, indicates that

near the plane of symmetry, the flow is nearly cylindrical. From figure 14, we also note

that the contribution made by the curvature term to DT/Dt is negligible for particles

close to failure.

The unsteady term mainly balances curvature and transverse divergence in figure 14

(a), while the temperature variation is produced by heat release alone. Plots similar to
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figure 14 (a) are obtained for the case θCJ = 1. In figure 14 (b) and (c), the unsteady term

becomes a large negative forcing factor that reduces DT/Dt below the value due to heat

release for particles 3 and 5, whose rise in temperature is well separated from the initial

shock. For particle 5, in particular, unsteadiness is initially larger than heat release, so

that immediately after the shock, the temperature decreases instead of increasing. The

large delay in ignition of particle 5 is not found for the case θCJ = 1. This behavior

is more and more evident in the following elements of fluid, until, by particle 10, the

temperature steadily decreases after the shock, due to unsteadiness dominating over

heat release (figure 14 (d)). At this point, the reaction is completely quenched.

4.5. Case θCJ = 3.5

This example shows the most interesting behavior of all the cases examined in this study:

the detonation begins to fail at the wall, but, at some point, a re-ignition event occurs.

Numerical schlieren images (figures 15 and 16) for the case θCJ = 3.5 indicate how

complex the dynamics of the diffraction process are. As shown by figures 4 and 5, the

front evolves differently along the plane of symmetry and the wall. At the channel center,

the shock appears to never completely decouple from the reaction zone. The detonation

speed exhibits a plateau at a speed of about 0.6DCJ , but then climbs toward the CJ

value. Conversely, the shock at the corner wall immediately detaches from the reaction

zone and maintains a speed of about 0.4DCJ until the arrival of a re-ignition transverse

wave.

In figure 15, from (a) to (c), the rarefaction originating at the corner reflects at the

plane of symmetr, and then sweeps downwards along the detonation front. This further

reduces the strength of the lead shock and results in a flattening of the front at the center

of the channel. An observer moving along the wavefront from the channel center to the

corner wall would find the maximum value of pressure at the lead shock to be immediately
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ahead of the reflected expansion front. As the observer moves beyond that peak toward

the corner wall, the pressure decreases again, this time because of the effect of the first

corner expansion. At time t = 17.49, the reflected expansion appears to have lost most

of its strength and, near the wavefront pressure peak, the end reaction zone begins to

approach the shock, which accelerates. At time t = 21.15, the wavefront has acquired

a very peculiar shape. It is almost flat at the plane of symmetry, has a relatively large

curvature in the center, and is completely decoupled at the wall. A fold or kink in the

shock front is starting to form. In the next frame, a transverse shock wave is developing

from this fold and propagating toward the corner wall. The frames of figure 16 display

this further evolution, up to the reflection of the transverse wave at the corner wall.

A close-up of the transverse wave system at t = 28.47 is shown in figure 17. The

incident shock (IS) is essentially nonreactive, while the curved Mach stem (MS) has a

much higher reaction rate. This can be seen by considering the distance of the 95%

reaction locus (solid line in frame (b)) from the shock front. A contact discontinuity

(CD2) separates the partially reacted gas, processed by IS, from the completely burnt

products. The transverse wave (TS) extends between the two triple points, T1 and T2,

as a straight shock, and from T2 to the 95% reaction locus as a curved, strongly reactive

wave. It propagates into the partially reacted region behind the incident shock and quickly

brings the reaction to completion. The maximum value of reactivity is found immediately

behind the short stem connecting point P with T2. In frame (a), this small area is above

the cutoff value of the pressure contours, and it is surrounded by the highest density of

contour lines. The contact discontinuity CD1 separates the gas that has passed through

the MS from the gas processed by the transverse shock. A relatively minor feature, a

kink (K) in the Mach stem, is also visible. The discontinuity associated with the kink

terminates near point P. Grid resolution studies by Sharpe (2001) indicate that this
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feature rapidly disappears in under-resolved simulations, so its presence in the result we

are showing here suggests that the level of resolution is adequate.

It is important to point out that a transverse wave structure analogous to the one

described here can also be observed with higher values of normalized activation energy.

In the case computed with θCJ = 3.75 (not shown here), the mechanism described above

was found to produce a first transverse wave similar to the one in figure 17. This wave

was slower and weaker than the one at θCJ = 3.5 and could not accelerate the lead shock.

This is shown in figure 4, where Da decays monotonically for θCJ = 3.75. It is, therefore,

the acceleration of the shock close to the channel plane of symmetry that appears as the

distinctive feature of a successful near-critical detonation diffraction. This point will be

clarified in the following sections.

4.5.1. Particle analysis

From the previous description, two radically different behaviors can be identified in

the two regions near the channel plane of symmetry and the corner wall. At the wall,

the decoupling of the shock from the reaction zone persists until an external cause, the

reflection of a strong transverse shock, is able to re-ignite the mixture. Near the channel

center, a complex wavefront dynamic results in shock folding and eventually produces an

explosion, followed by a system of transverse waves. In both cases, local flow symmetry

occurs, and the simplified equation (2.13) for the Lagrangian temperature derivative can

be used.

Lagrangian trajectories are displayed in figure 18 (a) for particles that are located on

the plane of symmetry and in figure 19 (a) for particles on the wall. The temperature

readings along these paths are displayed in figure 18 (b) and figure 19 (b), respectively.

Labels indicate particles that will be further analyzed in this section.

For particles moving along the channel plane of symmetry, the post-shock temperature
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decreases, reaches a minimum, and then increases again. Likewise, the time delay between

the shock passage and the peak temperature for particle 10 is larger by about an order

of magnitude than the corresponding time for particle 1, indicating a growth in ignition

time. From particles 10 to 21, the ignition time decreases again. These results indicate

that the detonation slows down, but does not fail. Note that the post-shock slopes of

the temperature never become negative for any of the trajectories shown in figure 18.

This important observation, and the fact that DT/Dt instead passes through zero when

θCJ = 4.15, will be used later in the discussion section.

In particles moving along the corner wall, no ignition occurs until approximately t = 43.

The post-shock temperature steadily decays from particle 1 to particle 7, has a slight

increment from particle 7 to 12, and then decreases again. Overall, the flow field near the

wall can be treated as nonreacting up to the point when ignition is suddenly re-started

by the transverse shock reflection (between frame (j) and (k) in figure 16).

The decomposition of the terms in the reaction zone temperature according to equation

(2.13) is shown in figure 20 for particles 1, 10, 16, and 21 along the plane of symmetry

of the channel. Results for particles initially located just downstream of the head distur-

bance arrival point are very similar for the cases θCJ = 3.5 and θCJ = 4.15 (see figure 20

(a) and figure 14 (a)). This is expected since the activation energies in these two cases

differ by a relatively small amount. The behavior of the particles that follow is, however,

radically different. Whereas particles 10 and 16 have much longer ignition times, of the

order of 5–10 units of time, particles that are located further downstream again display

an ignition time close to one. This reinforces the observation that for the case θCJ = 3.5,

the detonation re-couples near the channel center, whereas for the case θCJ = 4.15, the

detonation completely decouples.

If we now examine one by one the terms appearing on the right-hand side of (2.13),
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we notice that the unsteady term appears almost everywhere in the form of a negative

forcing factor, as for the case θCJ = 4.15. Overall, curvature and transverse divergence

effects play a relatively unimportant role in determining the Lagrangian derivative of

temperature. Exceptions to this are the paths 10 and 16 (figure 20 (b) and (c)), where a

strong peak in the curvature term can be observed at time t ∼= 40. At this point, however,

the flow has already reacted, and DT/Dt is almost zero.

The analysis of fluid elements along the corner wall (not shown here) leads to results

that are very similar to those observed for the case θCJ = 4.15, with delayed or no

ignition occurring and temperature decrease dictated by the unsteady term. Temperature

variations are much smaller than those observed in particles moving along the plane of

symmetry until the arrival of the re-ignition transverse wave at approximately t = 43.

Further analysis after this point is not possible due to the presence of strong shock waves

processing the unreacted fluid.

5. Discussion

In the previous section, the magnitude of the terms in the reaction zone structure

equation was examined along selected particle paths for sub-, near-, and super-critical

cases. The study focused on particle trajectories running along the plane of symmetry of

the channel and the lower wall of the corner, since these two regions show very different

wavefront dynamics in the case θCJ = 3.5.

A first result of our analysis is that the contribution of the curvature and transverse

divergence terms to the Lagrangian derivative of temperature is negligible in causing

particle ignition delay. This result coincides with the findings of Eckett et al. (2000) for

the closely related case of direct initiation of spherical detonations. Thus, the reaction

zone structure equation simplifies to show the competition between energy release rate
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and unsteadiness,

(
1 − M2

)
Cp

DT

Dt
=

(
1 − γ M2

)
Qk ρ (1 − Z) exp

(−Ea

T

)
(5.1)

+wη (Da − wη),t +
P,t

ρ
.

A second result is that fluid elements that fail to ignite exhibit a negative post-shock

derivative DT/Dt. Two representative cases were shown in the previous section. In the

case θCJ = 4.15, the derivative DT/dt is negative along several Lagrangian paths after

the passage of the shock (figure 13), but when θCJ = 3.5, the derivative remains positive

at post-shock conditions, albeit very close to zero for a few particles (figure 18). To

associate the temperature change immediately after the passage of the lead shock to the

particle ignition delay, we propose the local decoupling condition,

DT/Dt|s = 0, (5.2)

as a criterion for the decoupling of the shock front from the reaction zone. Equation 5.2,

evaluated at the post-shock state, s, intuitively relates the rate of post-shock temperature

increase to the ignition delay of the particle. To satisfy this condition–introduced by

Eckett et al. (2000) in the study of direct detonation initiation and postulated by Schultz

(2000) for detonation diffraction–the following equation needs to be satisfied,

Qk ρs exp
(−Ea

Ts

)
= − 1

(1 − γ M2
s )

[
wη (Dn − wη),t +

P,t

ρ

]
s

. (5.3)

Note that the right-hand side of (5.3) is a function only of γ and the shock deceleration.

A third result is that the global criterion for diffraction failure can be reduced to a test

for detonation front decoupling at the plane of symmetry of the channel, a few reference

reaction lengths downstream of the head expansion arrival point. We call this location the

critical point. The fact that re-ignition starts from the channel center has been regularly
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observed in experimental studies on detonation diffraction (see, for instance, Edwards

et al. (1979) and Moen et al. (1982)).

In the strong shock limit, equation (5.3), evaluated at the plane of symmetry, becomes

Qk exp
(
−D 2

CJ

D 2
ac

θCJ

)
= − 12

3 − γ

(γ − 1)2

(γ + 1)3
Dac

Ḋac
. (5.4)

Equation 5.4 points out the balance between the energy release rate, proportional to Qk,

and a term similar to kinetic energy decay. To characterize the critical detonation speed

Dac
, we take (somewhat arbitrarily) the critical point to be such that

Dac
= 0.75DCJ , (5.5)

and propose that, if (5.4) is verified downstream of this point, the decoupling will continue

until reaction quenching. It is very difficult to relate Dac
to the dynamic and kinetic

properties of the decoupling detonation front, to the point that this term should be

considered more like a free parameter of the model. The same factor 0.75 is derived

by Radulescu, Higgins, Murray & Lee (2003) from experiments on direct detonation

initiation as the critical value marking the onset of detonation.

To derive the critical relation between θCJ and H from (5.4), we still need to model

the critical shock deceleration at the channel center, Ḋac
. Shock deceleration depends on

the initial speed and the width of the channel, and it can be argued to be proportional to

D 2
CJ/H by dimensional arguments. By assuming that, in the sub-critical case, the lead

shock decays (at the plane of symmetry) as a cylindrical blast of initial radius H/ tan α,

the relation between shock speed and curvature is Dac
= κH DCJ/ tan α. The shock

decay at H/ tan α is, therefore,

Ḋac
= −D 2

CJ

H
tanα. (5.6)

The angle α is the maximum disturbance angle from the Skews’ construction (see figure 1

(b)). For this problem, α = 22.6◦. The shock decay computed from the numerical simula-
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tions is plotted in figure 21 as a function of position for the three values of θCJ , together

with the estimated critical shock deceleration deduced from the blast model. An alter-

native formula for Ḋac
can be derived from Whitham’s geometrical shock dynamics (see

Arienti (2002) for details) and is also shown in figure 21.

With relation (5.6), equation (5.4) is reduced to

H k

DCJ

Q

D 2
CJ

= exp (1.78 θCJ )
9 tan α

3 − γ

(γ − 1)2

(γ + 1)3
. (5.7)

As a consistency check, we verify that substitution of the values of α, Q, k, H, DCJ ,

and γ leads to θCJc
= 4.0. This value is close to the actual critical reduced activation

energy. From figure 4, we see that θCJc is between 3.5 (success) and 3.75 (failure) when

H = 36.67.

6. Conclusions

In this work, we have identified modes of detonation diffraction that depend on the

activation energy of a single-step irreversible Arrhenius reaction model. For the fixed

value of gap half-width, H = 36.67, we found three regimes of diffraction that resemble

the super-, sub-, and near-critical diffraction observed in experiments. Then, we extended

the technique used by Eckett et al. (2000) to record the time derivative of temperature

along the paths of particles that are close to ignition failure. We found that large ignition

delays, and ultimately, local decoupling of the shock front from the reaction zone occur

if the Lagrangian derivative of temperature vanishes immediately after the passage of

the shock. We identified this condition, when flow field unsteadiness (as seen by the fluid

particle) balances the rate of the energy release, as the critical condition for a failing

detonation diffraction.

The importance of flow unsteadiness in the reaction zone structure equation is more ap-

parent when comparing measured values of detonation speed and curvature with the Dn–
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κ diagram derived from asymptotic quasi-steady quasi-one-dimensional theory (Stewart

& Bdzil 1988). We found that, in the case θCJ = 1, the measured front curvature and

detonation speed approach the asymptotic Dn–κ values only when the wavefront has

moved past a distance of the order of 6H from the corner. In the case θCJ = 3.5, we

did not observe a quasi-steady-state before simulation termination. An even clearer in-

dication of flow unsteadiness is provided by the maximum measured front curvature at

the channel center in figure 6. In the near-critical case θCJ = 3.5, immediately after the

arrival of the corner disturbance, front curvature rapidly reaches a value ten times larger

than the maximum curvature allowed by a cylindrical steady-state detonation with the

same activation energy. Even with this large value of detonation curvature, we found that

the large-scale features of the wavefront can be considered quasi-one-dimensional. This

can be seen in figure 6, where the minimum measured wavefront radius of curvature (at

the channel center), 1/κa > H/4.1 = 9.1, is sufficiently larger than unity.

In summary, our simulations indicate that a diffracting detonation wavefront is not

insulated from transverse perturbations due to unsteady rarefaction waves. This appears

in the propagation angle of the head disturbance with respect to the undisturbed front

and, when local re-ignition takes place, in the complex interaction of the reflected expan-

sion front with the partially decoupling detonation structure. In fact, sonic conditions are

not reached at the end of the reaction zone for a relatively long transient, even in cases

where detonation transmission is successful. This limits the applicability of the quasi-

steady model by Stewart & Bdzil (1988) when studying the critical diameter problem for

mixtures whose reaction rate strongly depends on temperature. In the case of sub-critical

diffractions, our simulations do not indicate any direct role played by front curvature.

Rather, unsteadiness, due to deceleration of the lead shock, is found to be the dominant

negative forcing factor that drives the ignition delay. Our conclusions disagree with the
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global failure mechanism proposed by Lee (1996) for mixtures with relatively small ac-

tivation energies, as this mechanism postulates the existence of a critical curvature to

explain detonation failure.

Our work addresses the purely gasdynamic quenching mechanisms, since the detona-

tion cellular structure was not treated in the present simulations. The parameter range

and initial conditions were chosen deliberately so that cellular structure was initially sup-

pressed. The decision to carry out the computations without cellular structure was taken

to facilitate shock tracking and the order-of-magnitude analysis along particle paths.

Clearly, the result obtained from this analysis depends, in part, on this simplification.

Our model is also limited to the description of a system governed by very simple

reaction kinetics. It is an open issue whether the current results provide a lower bound

for critical diffraction conditions in the presence of cellular structure and with a more

detailed reaction mechanism. This is a significant extension of the present study, and

we have left it for future investigation. Since the present parallel computations involved

week-long simulations and stretched to a limit the capability of analyzing large volumes

of data, we anticipate that these investigations will require implementation of parallel

adaptive mesh refinement algorithms and chemical kinetics reduction techniques.

Even if the empirical relationships between cell detonation width and critical tube

diameter (or gap width, in two dimensions) are not applicable in the present case, stud-

ies by Westbrook & Urtiew (1983), Moen et al. (1982, 1984), and Schultz (2000) have

demonstrated that equally reasonable correlations exist between critical tube diameter,

reaction zone length, and activation energy. At present, there are no reliable methods for

computing cell width, except for mixtures with very weak instabilities, but some progress

can be made by considering the role of the reaction zone structure directly. Starting from

similar considerations of the role played by unsteadiness, Schultz was successful in con-
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necting the available experimental data with a critical model of spherical detonation

diffraction leading to an equation similar to (5.7). To contain the length of this paper,

we can only direct the interested reader to his work (Schultz 2000).

This work was carried out at the Caltech ASC ‘Center for Simulation of Dynamic

Response of Materials’ and funded by Contract B341492 under DOE Contract W-7405-

ENG-48.

Appendix A. Shock-tracking algorithm

Detonation speed, shock acceleration, and front curvature of the detonation wave are

reconstructed in a post-processing step from shock-tracking data collected during the

simulation. Shock tracking is performed in a nonintrusive step at each time integration

after updating the flow field. The tracking algorithm consists of a sequence of sweeps of

the current solution in the x and y coordinate directions. For each sweep, the position of

the first peak of density that emerges from the undisturbed flow is searched. The shock

location is taken as the position of the flex point in the numerical representation of the

shock. The flex is defined as the midpoint between the peak value of density and the

undisturbed value. Its position is estimated as a linear interpolation between the two

grid points that bracket this value.

In the post-processing step at the end of the simulation, quantities such as the normal

detonation velocity, Dn, and the local curvature, κ, are evaluated through finite-difference

approximations for spatial and temporal derivatives of the shock position. For instance,

the curvature along the channel plane of symmetry requires the evaluation of a second-

order derivative, which we compute as a centered difference scheme,

κa = 2
x̄m−w − x̄m

w2∆y2
+ C w2∆y2, (A 1)
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where C depends on the truncation error. In the equation above, we skipped w grid

points in both directions from ym, and then used the symmetry condition for the tracked

shock positions x̄m+w = x̄m−w. A similar formula is used for evaluating the curvature

along the corner wall.

Particular care is required to control the error associated with the approximation of

derivatives of the shock position. Errors due to linear interpolation at the flex point in the

shock profile and to high-frequency oscillations of the post-shock state (occurring when

the wavefront crosses the interface between computational cells) appear in the numerator

of equation (A 1). Since these errors can be of the same order of the grid spacing, a naive

implementation of this formula may not converge under grid refinement. Aslam, Bdzil &

Hill (1998) raised the issue and suggested to increase the number of skipped points w with

grid refinement in such a way that the difference in (A 1) is never too small compared

with the position error. In a convergence study in Arienti (2002), different strategies for

choosing the points for differentiation are compared. Following that study, in the present

work, we present results where w = 16 in equation (A 1) for the coarse-resolution study

and w = 21 for the high-resolution study.

Appendix B. Lagrangian particles integration

Integration of the particle trajectory is performed with a predictor-corrector method in

the form of an Adams-Bashforth predictor (P) followed by an Adams-Moulton corrector

(C). Only one PC iteration is performed. The overall scheme is of the PECE type, where

step E indicates the update of the derivative part from the last computed value (in

Numerical recipes, Press et al. 1992, pages 747–751). Step P is computed before advancing

the Euler equations by a time step, and step C is computed after. A master-slave strategy
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(see, for instance, Wilkinson & Allen 1999) is implemented to track particles that are

transported from one processor sub-domain to the next.

Particle data analysis starts only after the first peak value in a particle pressure data.

Lagrangian derivatives are directly computed by finite-difference operations on the par-

ticle data stream, whereas partial time derivatives (in the intrinsic reference frame) are

available only indirectly from the relation

∂/∂t|ξ, η = D/Dt − wη ∂/∂η − wξ ∂/∂ξ. (B 1)

The spatial gradients in η and ξ are obtained by coordinate transformation from the

stored gradients in x and y. When the partial time derivative is small compared to D/Dt

(a limit case is a ZND detonation where ∂/∂t|ξ, η is identically zero), equation (B 1)

is prone to cancellation errors. Since the partial time derivatives are combined in the

unsteady term as

wη (Dn − wη),t +
P,t

ρ
,

an alternative solution is to evaluate this entire term by rearranging momentum and

mass conservation equations. Under conditions of symmetry, the result

wη (Ds − wη),t +
P,t

ρ
=

1
ρ

(
DP

Dt
− w2

η

Dρ

Dt

)
+ w2

η

κs (Ds − wη)
1 − η κs

+ w2
η

wξ,ξ

1 − η κs
(B 2)

is numerically easier to treat and is, therefore, used in equation (2.13) to evaluate the

unsteady terms.
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Figure 1. (a) Schematic of a diffracting shock (Skews’ construction) in nonreactive gas. (b)

Disturbance angle plotted vs. progress variable Z for a ZND-CJ detonation. Z = 0 corresponds

to post-shock conditions, Z = 1 corresponds to the end of the reaction zone.
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Figure 2. Detonation diffraction around a corner. – · – · denotes the plane of symmetry of the

channel, H the channel half-width. Also shown are the distances measured along the plane of

symmetry, xa, and along the corner wall, yw.
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Figure 3. Intrinsic coordinates ξ and η for an arbitrary front, (a), and specialized to a

cylindrical front, (b).
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Figure 4. Detonation velocity at the plane of symmetry, Da, as a function of the distance

measured from the vertex, xa. The labels are values of the reduced activation energy θCJ ,

varying from 0 to 4.15.
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vertex, yw. The labels are values of the reduced activation energy θCJ , varying from 0 to 4.15.
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Figure 7. Numerical schlieren images for the case θCJ = 1. (a) t = 21.15; (b) t = 35.79. The

solid line is the locus of 95% product.
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Figure 8. Density (a), temperature (b), pressure (c) and progress variable (d) profiles for 5

data sets extracted at t = 35.79. Slice 1 and 5 are extracted along the plane of symmetry and

the corner wall, respectively. The remaining data are taken in the shock normal direction and

are evenly spaced along the detonation front.
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Figure 9. Initial location of injected particles along the corner wall (a) and the plane of

symmetry (b).
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Figure 10. Frame(a): particle paths for 10 sample particles injected along the vertical corner

wall for θCJ = 1. Frame (b): temperature profiles along the particle paths.
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Figure 11. Numerical schlieren images for the case θCJ = 4.15 at (a) t = 28.43; (b) t = 53.22.
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Figure 12. Density (a), temperature (b), pressure (c) and progress variable (d) profiles for 5

data sets extracted at t = 53.22.
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Figure 13. Frame (a): particle paths for ten sample particles on the plane of symmetry. Shock

(thick solid line); traces of 5% and 95% of reaction completion (dashed lines); particle paths

(thin solid lines). Frame (b): temperature profiles along the particles paths.
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Figure 14. Terms in the reaction zone temperature (2.13) along the same particle paths as

in figure 13 for θCJ = 4.15. The particles are injected on the channel plane of symmetry.

· · · · · · Lagrangian temperature; – · – · heat release; – – – curvature; — — transverse divergence;

– ·· – ·· unsteadiness. The solid line is the difference between the left-hand side and the right-hand

side in (2.13), as computed from the terms above. (a) Particle 1; (b) Particle 3; (c) Particle 5;

(d) Particle 10.
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Figure 15. Numerical schlieren images for the case θCJ = 3.5. (a) t = 10.17; (b) t = 13.83; (c)

t = 17.49; (d) t = 21.15. (e) t = 24.81; (f) t = 28.47. The solid line is the locus of 95% product.
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Figure 16. Numerical schlieren images for the case θCJ = 3.5. (g) t = 32.13; (h) t = 35.79; (i)

t = 39.45; (j) t = 43.11. (k) t = 44.94; (l) t = 46.77.
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Figure 17. Structure of the re-ignition transverse wave: contours of pressure, (a), and numerical

schlieren of density, (b), at time t = 28.47. In frame (a), the contour lines are spaced by the

nondimensional value 2.083 with a cutoff limit of 250 marking the pressure peak (at 445) behind

the kink. The segment at the bottom left shows the length ∆1/2 in the plot scale. The solid line

in frame (b) is the 95% reaction completion locus.
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Figure 18. Frame (a): particle paths for 21 sample particles injected along the channel plane

of symmetry (figure 9 (b)) for θCJ = 3.5. The labels 1, 10, 16, 21 indicate particles that are

analyzed in terms of numerical dominant balance. Frame (b): temperature profiles along the

particle paths.
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Figure 19. Frame (a): particle paths for 20 sample particles injected along the vertical corner

wall (figure 9 (a)) for θCJ = 3.5. The labels 1 and 10 indicate the particles that are analyzed

in terms of numerical dominant balance. Frame (b): temperature profiles along particles paths

displayed in figure 19.
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Figure 20. Terms in the reaction zone temperature (2.13) along the same particle paths as in

figure 18 (a) for the case θCJ = 3.5. The particles are injected along the plane of symmetry.

· · · · · · Lagrangian temperature; – · – · heat release; – – – curvature; — — transverse divergence;

– ·· – ·· unsteadiness. The solid line is the difference between the left-hand side and the right-hand

side in (2.13), as computed from the terms above. (a) Particle 1; (b) Particle 10.; (c) Particle

16; (d) Particle 21.
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Captions

1. (a) Schematic of a diffracting shock (Skews’ construction). (b) Disturbance angle

plotted vs. the progress variable Z for a ZND-CJ detonation. Z = 0 corresponds to

post-shock conditions, Z = 1 corresponds to the end of the reaction zone.

3. Detonation diffraction around a corner. – · – · denotes the plane of symmetry of

the channel, H the channel half-width. Also shown are the distances measured along the

plane of symmetry, xa, and along the corner wall, yw.

4. Intrinsic coordinates ξ and η for an arbitrary front, (a), and specialized to a cylin-

drical front, (b).

5. Detonation velocity at the plane of symmetry, Da, as a function of the distance

measured from the vertex, xa. The labels are values of the reduced activation energy θCJ ,

varying from 0 to 4.15. The detonation eventually fails for θCJ = 3.75 and θCJ = 4.15.

6. Detonation velocity at the corner wall, Dw, as a function of the distance from the

vertex, yw. The labels are values of the reduced activation energy θCJ , varying from 0 to

4.15. The detonation eventually fails for θCJ = 3.75 and θCJ = 4.15.

7. Detonation velocity - curvature (Dn–κ) diagram at the plane of symmetry of the

channel. The labels are values of the reduced activation energy θCJ , varying from 0 to

4.15. The detonation eventually fails for θCJ = 3.75 and θCJ = 4.15.

8. Numerical schlieren images for the case θCJ = 1. (a) t = 21.15; (b) t = 35.79. The

solid line is the locus of 95% product.

9. Density (a), temperature (b), pressure (c) and progress variable (d) profiles for 5

data sets extracted at t = 35.79. Slice 1 and 5 are extracted along the plane of symmetry

and the corner wall, respectively. The remaining data are taken in the shock normal

direction and are evenly spaced along the detonation front.
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10. Initial location of injected particles along the corner wall (a) and the plane of

symmetry (b).

11. Frame(a): particle paths for 10 sample particles injected along the vertical corner

wall for θCJ = 1. Frame (b): temperature profiles along the particle paths.

12. Numerical schlieren images for the case θCJ = 4.15 at (a) t = 28.43; (b) t = 53.22.

13. Density (a), temperature (b), pressure (c) and progress variable (d) profiles for 5

data sets extracted at t = 53.22.

14. Frame (a): particle paths for ten sample particles on the plane of symmetry. Shock

(thick solid line); traces of 5% and 95% of reaction completion (dashed lines); particle

paths (thin solid lines). Frame (b): temperature profiles along the particles paths.

15. Terms in the reaction zone temperature (2.13) along the same particle paths as

in figure 13 for θCJ = 4.15. The particles are injected on the channel plane of symme-

try. · · · · · · Lagrangian temperature; – · – · heat release; – – – curvature; — — transverse

divergence; – ·· – ·· unsteadiness. The solid line is the difference between the left-hand

side and the right-hand side in (2.13), as computed from the terms above. (a) Particle 1;

(b) Particle 3; (c) Particle 5; (d) Particle 10.

16. Numerical schlieren images for the case θCJ = 3.5. (a) t = 10.17; (b) t = 13.83;

(c) t = 17.49; (d) t = 21.15. (e) t = 24.81; (f) t = 28.47. The solid line is the locus of

95% product.

17. Numerical schlieren images for the case θCJ = 3.5. (g) t = 32.13; (h) t = 35.79; (i)

t = 39.45; (j) t = 43.11. (k) t = 44.94; (l) t = 46.77.

18. Structure of the re-ignition transverse wave: contours of pressure, (a), and numer-

ical schlieren of density, (b), at time t = 28.47. In frame (a), the contour lines are spaced

by the nondimensional value 2.083 with a cutoff limit of 250 marking the pressure peak
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(at 445) behind the kink. The segment at the bottom left shows the length ∆1/2 in the

plot scale. The solid line in frame (b) is the 95% reaction completion locus.

19. Frame (a): particle paths for 21 sample particles injected along the channel plane

of symmetry (figure 9 (b)) for θCJ = 3.5. The labels 1, 10, 16, 21 indicate particles that

are analyzed in terms of numerical dominant balance. Frame (b): temperature profiles

along the particle paths.

20. Frame (a): particle paths for 20 sample particles injected along the vertical corner

wall (figure 9 (a)) for θCJ = 3.5. The labels 1 and 10 indicate the particles that are

analyzed in terms of numerical dominant balance. Frame (b): temperature profiles along

particles paths displayed in figure 19.

21. Terms in the reaction zone temperature (2.13) along the same particle paths as in

figure 18 (a) for the case θCJ = 3.5. The particles are injected along the plane of symme-

try. · · · · · · Lagrangian temperature; – · – · heat release; – – – curvature; — — transverse

divergence; – ·· – ·· unsteadiness. The solid line is the difference between the left-hand

side and the right-hand side in (2.13), as computed from the terms above. (a) Particle 1;

(b) Particle 10; (c) Particle 16; (d) Particle 21.

22. Shock deceleration as a function of the distance from the corner vertex, parametrized

by θCJ .


