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Abstract. We propose a two-dimensional problem involving fluid-solid coupling where a
solution is given in closed form. The upper half of the domain is modeled as an isotropic solid;
the lower part as a compressible gas. The loading of the solid at the fluid-solid boundary is
called superseismic when its speed is larger than the speed of propagation of disturbances in
the bulk of the material. The loading is modeled by a shock coupled to the deformation of the
boundary. The problem is relevant to high explosive applications, since it is very similar to
the interaction between an explosive and the casing in a cylinder test experiment. Within
this framework, we show the existence of self-similar solutions in the reference frame moving
with the shock wave.

INTRODUCTION

We consider wave interactions between a
solid and a compressible fluid. The two-
dimensional domain is divided into two parts, see
Fig. 1. The contact discontinuity at the division
is labeled the fluid-solid interface.

A compressible fluid occupies the bottom half
of the domain (regions 1, 2, 3 and 4). Its flow is
described by the inviscid Euler equations. Here,
the perfect gas Equation of State (EoS) is used
for simplicity.

A deformable solid occupies the upper half
of the domain (regions 0, 5, 6 and 7). A closed
form solution describing the effect of a step-load
over a half plane is provided by Bleich [1] when
the boundary load travels faster than any bulk
disturbances in the solid (superseismic loading).

We will consider the system of waves gen-
erated by a shock advancing in a fluid at rest
(region 1 in Fig. 1) and at an angle with the in-
terface. When the deformation produced by the
shock load on the solid does not generate an ap-

preciable feedback in the fluid, the interface can
be treated as rigid. This case has been exten-
sively studied, see for instance [2].

Conversely, the solid material can be treated
as a fluid by neglecting the deviatoric compo-
nents of the stress tensor. This approximation is
typically adopted in high explosives applications
[3] where the explosive confinement undergoes
extremely high compressions.

Here, we propose a model for a fluid-solid in-
teraction that is somewhat intermediate between
the two indicated above. The interface deforma-
tion has a significant effect on the fluid, but the
solid confinement retains its shear strength. As
in the previous cases, self-similar solutions exist
in a shock-attached reference frame.

SUPERSEISMIC LOADING

In this paper, superseismic loading is applied
in the case of plane strain (εz = 0) in an isotropic
homogeneous material. The load is applied in
the undeformed configuration to be consistent
with the hypothesis of small strains.
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FIGURE 1. Mach reflection for fluid-solid interaction.

Stress waves propagate into a semi-infinite
medium that supports shear at two different
speeds corresponding to the propagation of di-
latational and distortional disturbances

cP =
√

(λ + 2µ) /ρ , (1)

cS =
√

µ/ρ . (2)

The parameters λ and µ are the Lamé constants,
and ρ is the density of the medium. We will re-
fer to these waves as dilatational (p) and distor-
tional (s) waves, respectively.

When a boundary load travels with a speed
D larger than cP , two plane waves are produced.
They form characteristic angles with the bound-
ary of the half space

tan αP =
√

D2/c2
P − 1 , (3)

tan αS =
√

D2/c2
S − 1 . (4)

If region 0 is undeformed, the wedge area be-
tween the p and s waves is in a state of uniaxial
strain, whereas the distortional wave introduces
a discontinuity in shear. In the linear elastic
case, there is no discontinuity between regions
6 and 7 and the separation at angle α is imma-
terial. Following Bleich, the stress tensor is a

function of the parameter N

N =
1
2

(cos 2αS + (1 − 2ν) cos 2 (αS − αP )) (5)

where ν is the Poisson ratio of the material.
In linearized elasticity we can sum the effects

due to the s and p fronts. The expression for the
Lagrangian velocities at the interface (x-y refer-
ence) is derived in [4]

u =
D (1 − 2ν) P

4µN
(cos 2αS − cos 2 (αP − αS)) ,

v =
D (1 − 2ν) P

4µN
(sin 2αP ) . (6)

When the confinement undergoes plastic de-
formation, the above relations are no longer
valid. To describe the behavior of an elastic-
plastic material the yield function is introduced

F = J ′
2 − k2 F ≤ 0 (7)

where J ′
2 is the second stress invariant

J ′
2 =

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

6

and k > 0 is the yield stress in shear (Von Mises
criterion for yielding). The range of the possi-
ble superseismic solutions for an arbitrary load
intensity and arbitrary ν can be treated only nu-
merically [1].

A simplification arises from the observation
that in practical HE applications

P/k À 1 . (8)

Bleich shows that, as P/k increases, the bulk of
the energy dissipation due to plastic deformation
tends to occur in a very narrow wedge area. This
area is asymptotically close to a critical angle α
for which the basic differential equations of the
elastic-plastic material present a singularity. In
Von Mises materials, the critical angle is

tan α =
√

D2/ c 2 − 1 , (9)

c being the speed of propagation of plastic waves,

c =

√
2 (1 + ν)
3 (1 − 2ν)

µ

ρ
. (10)



Bleich suggests that an approximate solution
can be obtained by lumping all the plastic ef-
fects in a “shock front” and treating the ma-
terial elsewhere as entirely elastic. This model
is developed here for ν > 1/8. Behind the s
front the yield condition could be violated, and
eY = max(

√
J ′

2 / k − 1, 0) indicates the corre-
sponding error. After the stress tensor is com-
puted, it is necessary to verify that the magni-
tude of eY is acceptable.

As displayed in Fig. 1, we incorporate in our
model a third discontinuity at α, consisting of a
change (or “jump”) of the three principal stresses
by the same amount ∆σ and by an appropriate
change in normal velocity.

The wedge region between the p front and
the plastic shock is in a uniform state at the yield
point with principal stresses

σ1

k
=

1 − ν

ν

σ2,3

k
= −

√
3

1 − ν

1 − 2ν
. (11)

By imposing the continuity of normal and
tangential stresses at the s front, we find the
jump at the plastic front

∆σ

k
= −P

k
+

√
3

2

(
1

1 − 2ν
+

cos 2 (αP − αS)
cos 2αS

)

and the principal stresses after the shear front

σ1

k
= −P

k

σ3

k
= −

√
3

ν

1 − 2ν
+

∆σ

k
, (12)

σ2

k
= −P

k
+
√

3
cos 2 (αP − αS)

cos 2αS
. (13)

The deflection δ can be computed by follow-
ing the steps indicated in [4] for the linear elastic
case. The deformation due to the p and s fronts
is of order O(k/P ) with respect to the term due
to the plastic shock. If the condition of Eq. (8)
holds, the overall deflection is approximated by
a hydrostatic compression P at the critical angle
α

u = D (1 − 2ν)
P

E
sin α 2 ,

v = D (1 − 2ν)
P

E
sin α cos α .

(14)
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FIGURE 2. Shock polars for Regular Reflection. The
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The deflection δ is given by

tan δ =
v

D + u
(15)

with u and v obtained from Eq. (6) or Eq. (14).
Since δ has to be equated to the flow deflec-

tion θ at the wave intersection (or node), δ (P )
can be plotted in a pressure versus θ diagram.
The curve will be referred to as the load polar
for elastic deformations, LP(e) from Eq. (6), and
for plastic deformations, LP(p) from Eq. (14).

FLUID-SOLID INTERACTION
Shock polars are derived from shock jump re-

lations for an inviscid fluid. This standard proce-
dure is described in [2]. The shock polar diagram
for an incident angle β2 = 30◦ (Regular Reflec-
tion, or RR) is shown in Fig. 2. It is computed
with a perfect gas EoS (γ = 3) mimicking a high
explosive with density at rest ρ1 = 2103 kg/m3

at a pressure P1 = 105 Pa.
The confining material is copper, ν = 0.33,

Young modulus E = 110 · 109 Pa and density at
rest ρ0 = 8930 kg/m3. These parameters corre-
spond to a strong confinement, exhibiting a non-
trivial intersection with the incident shock polar
I. The weak confinement case, where the load
polar is below I and connected to it by an ex-
pansion fan, offers less variety of wave patterns
and it is not studied here.

Also, we find eY < 4 · 10−4 for the range
of superseismic speeds D of interest (in Fig. 2,
D = 8 · 103 m/s).



In Fig. 2 the elastic load polar is traced only
as a reference, since the ratio P / k ≈ 100. For
comparison, the shock polar of “fluid” copper is
also traced (MG). It is calculated by using the
Mie-Grüneisen EoS and a linear shock velocity-
particle speed relation, Us = c0 + s up, with
c0 = 3940 m/s and s = 1.489. The curve lies
between the elastic and the plastic load polars.
It should be noted that a rigid interface would
generate a Mach Reflection (MR) instead of a
RR.

We now briefly consider the more complex
case of a MR (not displayed here). It exhibits
a triple point in the fluid (TP) and two contact
discontinuities (Fig. 1). The problem allows a
pseudo-steady solution in the reference moving
with TP at an angle χ with respect to the un-
deformed interface ahead. In the rigid boundary
case, χ can be found by ignoring the variation of
pressure (and, therefore, the effect of curvature)
along the stem (straight Mach stem angle [2]),
α = π/2. This approximation can be extended
to a deformable wall, with α now a function of
the solid deflection δ (and, therefore, a function
of P4 through Eq. (15)).
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FIGURE 3. Transition boundaries for perfect gas γ = 3

and copper.

To conclude, we consider the modification of
a standard transition diagram [2] for a perfect
gas (Fig. 3). The complementary wedge angle
βc

w = 90◦ − β2 is plotted versus D / cP in the
plastic deformation case. The parameters for

the two materials were previously listed. No
transition from RR to Double Mach Reflection
(DMR) could be computed for a perfect gas with
γ > 2.28.

Since the superseismic model applies when
D > cP , a pseudo-steady solution with a de-
formable interface can be found only on the right
of the superseismic limit (broken line sl). Tran-
sition boundaries in this domain are traced with
a thicker line.

In the rigid interface case, the transition be-
tween RR and MR would be essentially a straight
line, with a limit angle at βc

w = 62.9◦ (line r’ ).
Due to the deformation of the interface, the tran-
sition line (r) is appreciably moved downward.

The shock deflection boundary (line sd) cor-
responds to the trivial solution βc

w = π/2 in the
rigid case. Along sd, the wave system degener-
ates to a single shock, with flow deflection equal
to δ. This particular solution was examined in
[4] for the elastic case.

The sd line intersects the RR boundary and
the boundary between Single Mach Reflection
(SMR) and von Neumann Reflection (vNR) at
a unique point, Q, with no reflected shock and
sonic deflected flow.

Finally, the line t separating SMR from
Complex Mach Reflection (CMR) intersects the
boundary RR-SMR at point C. We verified that
for higher values of D/cP (line t’ ), the triple
point angle is negative, a condition that identi-
fies non pseudo-steady Irregular Reflections [2].
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