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1. INTRODUCTION

Focused laser differential interferometry is a promising tech-
nique for measuring density disturbances in supersonic and
hypersonic flows, particularly in measuring boundary-layer in-
stabilities. Focused laser differential interferometry is a subset
of laser differential interferometry, a field with many examples
in the literature, e.g. [1–3] and others. Texts that describe the
general principles of interferometry and describe several types
of interferometers are abundant, e.g. [4]. The focused laser dif-
ferential interferometer (FLDI) was first described by Smeets
[5] where it was used to measure density fluctuations in wind
tunnel flows and turbulent jets in a desktop-type experiment.
The technique was limited in its usefulness at that time because
of limitations on photodetectors and data acquisition systems
as well as the availability of suitable lasers. Parziale revitalized
the technique in 2013 [6–8] to measure instabilities in a hyperve-
locity boundary layer on a slender body in the T5 hypervelocity
tunnel at Caltech and to make measurements of the free stream
environment in T5 [9]. This paper will develop some general
results for the FLDI but will concentrate on the application of
measuring second-mode (Mack) waves in hypersonic boundary
layers [10].

The FLDI is a very attractive instrument for making such
measurements for several reasons. It has high frequency re-
sponse of greater than 10 MHz, spatial resolution on the order
of hundreds of microns in the streamwise direction, and a high
signal-to-noise ratio. Additionally, because of the focusing abil-
ity of the FLDI, it rejects much of the unwanted signal away
from the flow feature of interest near the instrument’s best focus.
A key advantage then is that for many flows the FLDI is largely
immune to large-amplitude density disturbances created by the
shear layers of a wind tunnel with a free jet inside the test section.

Preliminary qualitative evidence of this property of the FLDI 
has been observed in experiments involving translating a small 
turbulent jet, e.g. Section 3.2.3 of [11]. The effect was examined 
in detail by Fulghum in Section 3.10.2 of [12] and is also studied 
in this paper.

As more researchers use the technique, it is critical to better
understand how the FLDI signal is produced and how to prop-
erly analyze experimental results to extract meaningful quan-
titative information about the fluctuating density field in the
flow. Fulghum presents a very thorough description of the FLDI
technique from an aero-optical point of view and derives system
transfer functions for the instrument for a few simple flow ge-
ometries [12]. This paper presents a computational method for
simulating the response of the FLDI to arbitrary density fields
in order to determine the sensitivity of the instrument to more
complicated flows with a special emphasis on measurements in
hypersonic boundary layers.

2. FLDI THEORY

The essential operating principles of the FLDI are presented
here; for a more complete explanation the reader is referred to
Section 3.6 of the Ph.D. thesis by Fulghum [12]. The FLDI is a
non-imaging shearing interferometer. A sketch of the instrument
layout is shown in Figure 1. The linearly-polarized laser beam
is expanded and sheared by a prism by a small angle σ which
is placed at the focal point of a converging lens. This fixes the
shear distance between the beams to ∆x. The two beams have
mutually-orthogonal polarization. Wollaston prisms are the
most common choice of prism in the literature, but Fulghum
demonstrates great success with Sanderson prisms [13], where
the divergence angle can be adjusted and the aperture can be
larger so as not to truncate the expanded beam. Sanderson
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prisms are also generally less expensive than Wollaston prisms
with small divergence angles. The choice of prism does not affect
the analysis presented here [14]. An illustration of the operation
of a prism is shown in Figure 2.

Fig. 1. Schematic of an FLDI setup. The two beams are shown
as blue and green. Regions where the beams overlap are
shown as striped. The coordinate system shown will be the
one used throughout this paper.

After the prism, the focusing lens brings the beams to a sharp
focus. The system is symmetric about the focus so that the
beams can be recombined by means of a second polarizer and
the interference signal is measured by a change in intensity on
a photodetector. Inhomogeneities are spatially filtered by the
beams, with a much stronger filtering effect where the beam di-
ameter is large, which makes the instrument most sensitive near
the point of best focus and least sensitive close to the focusing
lenses on either side of the focus, which in a free-jet wind tunnel
would be close to the turbulent shear layers at the edges of the
test flow. This spatial filtering effect allows the FLDI to “see
through" the strong turbulence at the edges of a wind tunnel
flow and measure density fluctuations of much lower intensity
in the region of interest in the core of the tunnel.

Fig. 2. Illustration of a prism (here, a Wollaston prism). The
incident beam of aribtrary polarization is split into two beams
by an angle σ, and the two beams at the exit have mutually
orthogonal polarization. The ordinary ray is linearly polarized
in the direction of beam separation and the extraordinary ray
is polarized 90 degrees from the direction of separation.

As an interferometer, the FLDI is sensitive to phase differ-
ences between the two beams of the instrument. Equations
describing the interference of two superimposed waves are de-
rived in Section 7.2 of [15]. The equations in this section follow
directly by considering a set of rays that are integrated over a
detector. A phase difference is created by a change in the index
of refraction of a transparent medium along the paths of two
rays according to Equation 1.

∆φ =
2π

λ

 D(ξ,η)ˆ

s1

n(x1)ds1 −
D(ξ,η)ˆ

s2

n(x2)ds2

 (1)

Here n is the index of refraction field through which the rays
pass, the vector xi represents the ray path parametrized by si,
i.e. xi = (x(si), y(si), z(si)), D(ξ, η) is the point on the detector
where beams 1 and 2 terminate, and λ is the wavelength of the
laser used. ξ and η are the coordinates on the detector face.
Note that both rays terminate at the same point on the detector.
Corresponding rays are separated in the test region by ∆x in
the x-direction, x1 = x2 + ∆xx̂. If the rays are interfered in an
infinite fringe configuration, as they are in the FLDI, the intensity
of the interfered ray at point (ξ, η) on the photodetector is given
by Equation 2

I(ξ, η) = I1(ξ, η) + I2(ξ, η) + 2
√

I1(ξ, η)I2(ξ, η) cos(∆φ(ξ, η))

(2)

If we assume that the two rays have the same initial intensity,
I1 = I2 = I0

2 , then Equation 2 simplifies to

I(ξ, η)

I0(ξ, η)
= 1 + cos(∆φ(ξ, η)) (3)

where I0(ξ, η) is the normalized intensity profile of the beam. In
practice we adjust the instrument to the middle of an interference
fringe such that there is a constant phase shift of −π/2 between
the two beams so that Equation 3 can be linearized for ∆φ << 1.

I(ξ, η)

I0(ξ, η)
= 1 + sin(∆φ(ξ, η)) ≈ 1 + ∆φ(ξ, η) (4)

The signal output by the detector ∆Φ is proportional to the
integral of Equation 4 over the detector face D which gives the
total weighted average phase change ∆Φ:

∆Φ =

¨

D

(
I(ξ, η)− I0(ξ, η)

)
dξ dη =

¨

D

I0(ξ, η)∆φ(ξ, η)dξ dη

(5)
Or, substituting Equation 1

∆Φ =

¨

D

(
I(ξ, η)− I0(ξ, η)

)
dξ dη

=
2π

λ

¨

D

I0(ξ, η)

 D(ξ,η)ˆ

s1

n(x1)ds1 −
D(ξ,η)ˆ

s2

n(x2)ds2

 dξ dη

(6)

Finally, the index of refraction n in a gas is related to the density
of the gas by the Gladstone-Dale relation:

n = Kρ + 1 (7)

This allows the output of the FLDI to be related to the density
field of the gas being probed.

The photodetector converts the total intensity to a voltage.
Large phase changes (∆Φ > π/2) causes phase ambiguity to oc-
cur, as the interference wraps over several periods of light waves.
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Therefore it is best to keep the phase change small enough such
that the sine function can be linearized. For the FLDI, it is most
useful to interpret the output not as a phase change ∆Φ between
the two closely-spaced beams, but rather as a finite-difference ap-
proximation to the first derivative of the phase change, ∆Φ/∆x.
For small values of ∆x, this approximates the first derivative of
phase change in the direction of beam separation. Smaller values
of ∆x result in more accurate approximations of the derivative
and therefore increased frequency response, but smaller beam
separations result in lower signal magnitudes overall, which
becomes an issue in practice as the electronic noise floor is ap-
proached.

The first prism (Prism 1 in Figure 1) not only splits the light
beams, but the two beams exit the prism polarized orthogonally
to one another. Therefore in order to compute the response of
the instrument at the photodetector after the beams have been
recombined, it is necessary to consider the state of polarization
of the light along the beam paths and perform an analysis like
the one in Section 3.6.1 of [12]. However, if the light is polarized
at 45 degrees relative to the separation angle of the prism before
entering the first prism, the equations governing the polarization
state simplify considerably, as each beam leaving the prism will
have equal amplitude and the beams can be recombined and
mixed on the detector side without explicitly using Jones vectors
to combine the electric fields as long as the polarization is not
rotated by the optical system. This is the configuration used by
Parziale [11].

3. COMPUTATIONAL METHOD

As analytically determining the response of the FLDI instrument
for a given density field is extremely difficult for all but the
simplest flow geometries, a computational model of the FLDI
is developed to numerically evaluate Equation 6 for a given
arbitrary density field that can vary in space and time and sim-
ulate the FLDI output. The software described in this section
is referred to as the FLDI software throughout this paper. The
software replicates the FLDI configuration used at Caltech [6]
but can be modified to suit the dimensions of any FLDI setup.
Dimensions are given in Table 1. The general procedure fol-
lowed by the software is to first compute the region traversed by
the FLDI beams and then to discretize the domain as described
in this section. Finally, the integral in Equation 6 is evaluated
numerically along the beam paths.

Divergence angle of prisms (σ) 2 arc minutes

1/e2 beam diameter at focusing lens (D4σ) 48 mm

Focal length of focusing lenses ( f ) 300 mm

Distance from focusing lens to focus (d) 515 mm

Laser wavelength (λ) 532 nm

Table 1. Optical parameters for simulated FLDI.

The beams are assumed to have equal Gaussian intensity
distributions I0(ξ, η) and the beams are assumed to propagate
according to Gaussian beam propagation. Assuming Gaussian
propagation means that the angle of paraxial rays and higher-
order terms can be neglected from the full electromagnetic wave
propagation equations. This is a good approximation as long as
all the rays form a sufficiently small angle with the primary beam

axis such that the small-angle approximation can be invoked.
The validity of this assumption is examined later in this section.
For a more detailed discussion of the approximations involved
in assuming Gaussian beam propagation, see Chapter 4 of Born
& Wolf [15].

The beam separation ∆x is calculated by simple trigonometry
to be

∆x = 2 f tan
σ

2
= 174.5 µm (8)

This calculation is confirmed to be accurate by photographing
the beams of the physical FLDI setup at Caltech near the best
focus with a CCD camera and neutral density filters to prevent
saturation.

Equations 9-11 can be found in Section 14.5 of [16]. The
beam waist radius at best focus w0 is computed for Gaussian
beams using Equation 9, which is found by substitution for the
divergence angle of a Gaussian beam.

w0 ≈
λ

πθd
≈ 2λd

πD4σ
(9)

For a diffraction-limited beam, this corresponds to a spot size of
about 7 µm. The 1/e2 radius of the beam as a function of z, the
coordinate along the beam path, is given by Equation 10 where
z = 0 at the beam waist.

w(z) =

√√√√w2
0

(
1 +

[
λz

πw2
0

]2)
(10)
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Fig. 3. Computed beam widths (out to 1/e2) within 30 mm of
the best focus. One beam is outlined in red and the other in
blue. The width of the beams at the waist is too small to see on
this scale.

Figure 3 shows computed beam widths near the best focus of the
FLDI. For simplicity when calculating the beam profile, polar-
cylindrical coordinates are used with r̂ and θ̂ orthogonal to ẑ and
r2 = x2 + y2. The normalized beam intensity cross-section at a
point in z is then:

I0(r) =
2

w2(z)π
exp

(
−2r2

w2(z)

)
(11)
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The computational domain encompassing the beams between
the focusing lenses is discretized into a uniform grid of 10300
points along the beam paths, corresponding to a dimensional
step size of 100 µm which is found to be sufficient that the
computation is not affected by the step size. Convergence is
shown below in Section 4A. The beam cross-section is divided
into a polar grid with r non-dimensionalized by w(z), the local
1/e2 beam radius. Therefore each point (r0, θ0) on the polar grid
at a point z1 is on the same ray as the point (r0, θ0) at any other
location in z. In this way the software can be considered to be
performing geometric ray-tracing, except the eikonal equation
is not used to evaluate ray deflections due to the density field.
Density perturbations are approximated as small enough (in
magnitude and in extent along the ray path) that they only cause
a change to the phase of each individual ray but do not cause
the rays to refract significantly. The beam profiles and rays are
calculated assuming a zero-disturbance field first, and then the
total change in phase of the beams are calculated using an input
density field. Alternatively the method can be thought of as
computing a pixel-wise phase change for each beam on the face
of the detector where each grid point at a cross-section in z is
a pixel. Such a method is shown to produce accurate results
compared to the parabolic beam method developed by White
and the Rayleigh-Sommerfeld equation as long as the beam is
not analyzed close to an aperture [17]. Because the polar grid is
normalized by the local beam radius, integration occurs along
each individual ray path instead of along the z-axis.

The polar cross-section grid extends to r/w = r̄ = 2, which
contains 99.99% of the beam energy. We can now consider if as-
suming Gaussian beam propagation is accurate. The maximum
angle formed by a beam in the domain will be the angle formed
by a beam at the outer edge of the grid. Using Equations 9 and
10 and Table 1, the maximum ray angle is calculated to be 5.32◦

or 92.9 mrad. The small-angle approximation for this angle gives
an error of 0.14%, hence assuming Gaussian beam propagation
is clearly justified. The grid has 300 equally-spaced points in the
θ̂-direction, and grid points are chosen in the r̂-direction such
that each cell has an aspect ratio as close to 1 as possible. Points
are computed starting at r̄ = 2 inward to a specified limiting
radius r̄0, which is chosen to be 0.001, resulting in 363 points in
r̂. Each point is computed using the previous point according to

r̄k = r̄k−1

(
2− δθ

2 + δθ

)
(12)

where δθ is the step size in the θ̂-direction. The grid also contains
one point in the center at r̄ = 0, bringing the total number of
points at each cross-sectional grid to 108901. The grid is shown
in Figure 4. The resolution was determined by limiting the error
of numerically integrating a Gaussian using the trapezoidal rule
on the grid to less than 1%.

The simulated FLDI response to an input density field
ρ(x, y, z) is computed by numerically evaluating Equation 6.
The integral in z is calculated using Simpson’s Rule and the 2-D
integral over the face of the beam is calculated using trapezoidal
integration.

4. SOFTWARE VERIFICATION

A. System Transfer Functions
It is possible to analytically derive an overall system transfer
function H as a function of wavenumber for simple density

x/w
-2 -1 0 1 2

y/
w
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0.5
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1.5

2

Fig. 4. Polar grid cross-section non-dimensionalized by the
local beam waist size

disturbance fields. This is performed in detail in [12], the essence
of which is summarized in this paper. Here H is defined as the
ratio of the output of the instrument to the actual first derivative
of the phase field as shown in Equation 13.

H ≡

(
∆Φ
∆x

)
meas.

dΦ
dx

(13)

H for the FLDI is the convolution of two filters, one resulting
from the finite beam separation approximating a derivative, and
the other resulting from the Gaussian intensity distribution of
the beams. In wavenumber (k) domain, these filters are simply
multiplied together to give the overall H(k) for the system. Here
k is the wavenumber of the density disturbance field, not the
wavenumber of the laser. In general, H(k) will be different
for every density field geometry in (x, y, z)-space. One simple
field geometry that can be analyzed analytically is a sinusoidal
disturbance in x that is uniform in y and infinitesimally-thin in
z at z = 0, i.e. n′ = A sin(kx)δ(z) where A is some arbitrary
disturbance amplitude and δ is the Dirac delta function. The
transfer function from the Gaussian intensity distribution of the
beam Hw(k) can be derived from Equations 6, 11, and 13. We
consider a detector over all space with the detector coordinates
ξ and η aligned with cartesian coordinates x and y and take the
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limit as the beam separation ∆x approaches zero.

Hw(k) =
1

d
dx [sin(kx)]x=0

lim
∆x→0

[
1

∆x

∞̈

−∞

I0(x, y)

 D(x,y)ˆ

s1

sin(kx)δ(z)ds1 −
D(x,y)ˆ

s2

sin(kx)δ(z)ds2

dx dy
]

=
1

d
dx [sin(kx)]x=0

∞̈

−∞

I0(x, y)
d

dx
[sin(kx)] dx dy

=
1
k

∞̈

−∞

2
w2π

exp

(
−2
(

x2 + y2)
w2

)
k cos(kx)dx dy

= exp
(
−w2k2

8

)
(14)

At z = 0 this is simply

Hw,0(k) = exp
(
−

w2
0k2

8

)
(15)

Equation 14 reveals how the FLDI rejects unwanted signal away 
from the best focus. The FLDI rapidly attenuates disturbances 
with wavelengths sufficiently smaller than the local beam diam-
eter where the product of w and k is large. w is approximately 
linear in z away from the best focus so a disturbance with a given 
wavenumber is attenuated with Gaussian decay as it moves 
away from the focus.

Note however that since the FLDI is actually measuring a
finite difference approximation to the first derivative of density
along the direction of beam separation, the magnitude of the
raw signal will be smallest where that derivative is smallest, i.e.
at low wavenumbers. Therefore the effect of the electronic noise
floor will become significant for low-wavenumber disturbances.
The issue of the noise floor will be discussed later in this section.

Hw(k) can also be computed analytically for a disturbance
field that is uniform in z but has a finite width 2L, i.e. n′ =
A sin(kx)(U(z + L)−U(z− L)) where U is the Heavyside step
function. This is a more physically meaningful transfer function
than Equation 15. Hw(k) is simply the integral of Equation 14
from −L to L in z divided by 2L.
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Fig. 5. Transfer function Hw(k) for a single beam for 1-D si-
nusoidal disturbances in x in an infinitesimally-thin plane at
z = 0

Hw(k) =
1

2L

Lˆ

−L

exp
(
−

w2
0k2

8

(
1 +

[
λz

πw2
0

]2))
dz

=
πw0
√

2π

kLλ
exp

(
−

w2
0k2

8

)
erf
(

kLλ

2
√

2πw0

) (16)

Equation 16 is plotted for various values of L, the density
disturbance half-width in z, in Figure 6. As L increases, rolloff
begins at lower values of k because the instrument is integrating
over portions of the beam where the diameter is larger, thus
filtering high wavenumber disturbances according to Equation
14. The error function in Equation 16 introduces a k−1 rolloff
that extends until the Gaussian decay cuts in at a wavenumber
of about 103/mm.
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Fig. 6. Transfer function of Equation 16 plotted for various val-
ues of L. As L increases, or, as more signal away from best fo-
cus is considered, the error function in Equation 16 contributes
a k−1 rolloff beginning at lower values of k. This leads to at-
tenuation of high-wavenumber disturbances away from best
focus.

Figures 7 and 8 compare the output of the FLDI software
with the analytical result from Equation 16 for two values of
L, 10 mm and 30 mm. Excellent agreement is again observed
between the analytical and computed transfer functions except
at high wavenumbers where numerical errors manifest away
from best focus where the beam is larger and the cross-sectional
grid is therefore coarser with respect to the high-wavenumber
disturbances.

The FLDI software can compute the response for a single 
beam probing k cos(kx) at a beam cross-section

 mm

at z = 0 over 
relevant wavenumbers for disturbances in supersonic and hy-
personic flows, and this is compared with the analytical result 
of Equation 15 in Figure 5. The computed r

 mm

esponse curve is 
nearly identical to the analytical result. The response curve is 
flat with a value of 1 for low wavenumbers (long wavelength) 
with a sharp exponential rolloff beginning at about  mmk = 100/mm, 
which is a disturbance wavelength of 63 µm, much smaller than 
most relevant waves in supersonic flows. From Equation 14 it is 
apparent that the rolloff point occurs at lower wavenumbers for 
larger beam diameter, i.e. further from best focus. This is what 
makes the FLDI immune to density disturbances away from the 
focus, such as the turbulent shear layers at the edges of a free-jet 
supersonic wind tunnel.
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Fig. 7. Transfer function Hw(k) for a single beam for uniform
2-D sinusoidal disturbances in x between z = ±10 mm cen-
tered at z = 0.
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Fig. 8. Transfer function Hw(k) for a single beam for uniform
2-D sinusoidal disturbances in x between z = ±30 mm cen-
tered at z = 0.

In addition to the filtering effect due to the changing beam
size there is a second filter due to the beams being separated
by a finite distance. Hs(k), the transfer function based on beam
separation, is calculated by computing the response of the FLDI
by approximating the FLDI as two point-detectors separated by
∆x, again compared to the ideal case of the true derivative of the
disturbance:

Hs(k) =
2 sin

( k∆x
2
)

∆x d
dx
[
sin(kx)

]
x=0

=
2 sin

( k∆x
2
)

k∆x
(17)

This is a sinc function, which has zeros for k = 2nπ
∆x for integers n.

This will only be true for strictly two-dimensional disturbances,
which is not physical. Fulghum [12] has shown by Monte-Carlo
simulation that for randomly-oriented disturbances the transfer
function is not oscillatory and does not contain zeros. The precise
form of the transfer function can in theory be determined by
similar means using the FLDI software presented here, but the
process is very time-consuming and it has been observed that
the effect from Hw(k) is much more significant.

Hw(k) and Hs(k) are combined for strictly two-dimensional
disturbances here for verification purposes because an over-
all transfer function can be derived analytically. Because the
transfer functions are written in wavenumber space, the overall
transfer function H(k) is simply the product of Hw(k) and Hs(k).
For instance, for density disturbances in the infinitesimal plane

at best focus, the overall transfer function is

H(k) =
2

k∆x
sin
( k∆x

2
)

exp
(
−

w2
0k2

8
)

(18)

Three overall transfer functions for L = 0 mm (infinitesimal
plane at best focus), L = 10 mm, and L = 30 mm, respectively,
are shown in Figures 9-11. Excellent agreement is observed
between the FLDI software (points in Figures 9-11) and the
analytical functions (lines in Figures 9-11), affirming the accuracy
of the computational method. The apparent oscillations in the
transfer functions result from the sinc filter because of the strictly
two-dimensional nature of the disturbance field simulated. It is
also worth noting here that there is no filtering effect resulting
from the overlap of the beams away from best focus as can
be seen in Figure 3. In other words, the FLDI does not reject
signals by “common-mode" rejection because the beams overlap
away from the best focus, but because the beam diameter is
large compared to the wavelengths of the disturbances being
measured. The fact that the beams overlap in space is irrelevant
to signal rejection.

Wavenumber [1/mm]
10-2 10-1 100 101 102 103

Tr
an

sf
er

 F
un

ct
io

n 
M

ag
ni

tu
de

 [d
B]

-35

-30

-25

-20

-15

-10

-5

0

5

Analytical Result
Computation

Fig. 9. Transfer function H(k) for the two-beam FLDI for 1-D
sinusoidal disturbances in x in an infinitesimally-thin plane at
z = 0.
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Fig. 10. Transfer function H(k) for the two-beam FLDI for uni-
form 2-D sinusoidal disturbances in x between z = ±10 mm
centered at z = 0.

A convergence study was performed by computing the total
sum-of-squares error for the transfer function shown in Figure 11
as a function of the resolution in z, the direction of mean beam
propagation. This is shown in Figure 12 with the red square
indicating the chosen resolution. Absolute error is chosen over
relative error because the small absolute errors at small values
of the transfer function at high wavenumbers are not important
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Fig. 11. Transfer function H(k) for the two-beam FLDI for uni-
form 2-D sinusoidal disturbances in x between z = ±30 mm
centered at z = 0.

to the output of the software, but these dominate the relative
error. The grid is converged with approximately 4000 points in
z, corresponding to a step size of 257.5 µm. The chosen step size
of 100 µm is therefore sufficiently small.
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Fig. 12. Convergence study for the transfer function shown in
Figure 11. The red square indicates the chosen resolution.

The issue of the electronic noise floor can best be seen here.
Figure 13 shows the absolute response of the instrument for a
disturbance propagating between ±10 mm on either side of the
focus in terms of intensity due to a difference in phase change,
which is converted to voltage by the photodetector. The den-
sity field is the same as used to compute the transfer function
of Figure 10. Although the FLDI can accurately measure the
derivative of a density field at wavenumbers below the rolloff,
the magnitude of the output signal decreases on either side of
the rolloff point. Evaluating the magnitude of density distur-
bances from an FLDI signal necessarily involves integration to
counteract the differentiation performed by the instrument and
this resolves the issue of the output signal being lower for low
wavenumbers, but one must be aware of this issue in order to
avoid the electronic noise floor of the physical FLDI system.

B. Comparison with Experiment
An experiment with a controlled density gradient was devised
to compare the FLDI software against experimental data. A
gravitationally-stabilized argon jet with a high-aspect ratio, rect-
angular cross-section is probed with the beams of the FLDI ex-
perimentally, and a model of the resulting density field is input
into the FLDI software so that the results can be compared. The
experimental apparatus is shown in Figure 14. The primary com-
ponent is a rectangular cavity of length 165 mm, width 10 mm,
and depth 152 mm. Argon is fed through the hole at the bot-
tom of the chamber at a specified pressure using a needle valve.
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Fig. 13. Normalized FLDI output signal for sinusoidal distur-
bances within ±10 mm of the focus in z, corresponding to the
transfer function plotted in Figure 10.

The chamber is filled with 20-40 mesh size (approximately 400-
800 µm diameter) corn cob abrasive media to ensure the flow at
the exit of the chamber is laminar and uniform across the exit
plane. The top of the chamber is covered with a woven-wire
steel cloth with 230-by-230 µm openings to contain the abrasive
media.

Fig. 14. A solid model of the chamber for the argon jet with
dimensions given in mm. The coordinate system shown corre-
sponds to the orientation of the coordinate system of the FLDI
beams.

The jet was imaged using schlieren visualization and is found
to achieve the stable configuration shown in Figure 15. The ar-
gon is moving vertically upward at the chamber exit with an
average velocity of 0.22 m/s, computed from the measured flow
rate delivered by a King Instruments rotameter, but stops and
reverses direction due to gravity. The maximum height achieved
at y = 0 is determined by the flow rate and is typically about
15 mm. A 2D planar computation was performed using Open-
FOAM with the rhoReactingFoam solver [18]. Figure 16 shows
the steady-state result of the computation, with velocity vectors
on the left and streamlines on the right with both superimposed
on a contour plot of argon mass fraction. Numerical schlieren
from the computation exhibits qualitative agreement with the
schlieren image in Figure 15.

The flow is observed to be uniform along the length of the
chamber in z, stable in time, and laminar. The chamber is placed
in the test section of the Caltech Ludwieg Tube and made parallel
to the z-axis of the FLDI beams by using a level suspended
between two parallel circular cavities.
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(a) Schlieren image of the
argon jet in the x− y plane.
The top of the jet is about
15 mm from the chamber
exit and is observed to be
uniform across the jet cross-
section, temporally stable,
and laminar.

(b) Pseudo-schlieren image
of the argon jet showing the
vertical gradient in density
for comparison with the
experiment.

Fig. 15

Fig. 16. Steady-state result of OpenFOAM computation of the
flow out of the argon jet. Velocity vectors are shown on the
left and streamlines on the right. Both are superimposed on a
contour plot of argon mass fraction. Ljet is the length out of the
page (in z) that the cross-section shown here extends.

The FLDI beams are separated in the x-direction and located
at the interface of the argon and air, such that they measure
the density change across the interface as shown in Figure 15a.
The resulting phase change is less than π/2 so the small-angle
approximation can be invoked as in Section 2. Portions of the
jet can be covered with tape such that only sections of the jet are
active. Fluctuations in the ambient air are negligible compared
to the density difference across the interface. The optical index
field can therefore be approximated for computational purposes
as varying in x and being uniform in y and z over the portion(s)
where the chamber exit is not covered, and uniform everywhere
else, i.e. n′ = njet(x)(U(z0 + L/2)−U(z0 − L/2)). This allows
for comparison between the FLDI software and experiment for
a number of different configurations. At each condition the flow
rate of the argon is adjusted to produce the maximum FLDI
signal, meaning that the beams are centered on the maximum
of the density gradient. Test cases performed are presented in
Table 2 by total length of the jet in z (Ljet) and the center of the
jet in z (z0).

The variation in index of refraction in the x-direction across
the argon-air interface is shown in Figure 17. Cubic spline inter-
polation is used in the FLDI software when evaluating the index
of refraction on the computational grid. The index of refraction
for a mixture of gases is calculated from Equation 19, which is
derived from Equation B29 in [19] by substituting the definition

Configuration Ljet z0

A 165 0

B 130 0

C 110 0

D 90 0

E 70 0

F 50 0

G 30 0

H 20 0

I 10 0

J 82.5 41.25

K 20 10

L 20 20

M 20 30

N 32.5 66.25

Table 2. Argon jet configurations tested (dimensions in mm).

of mass fraction (Y):

n′ = YAr (ρAr + ρair) (KAr − Kair) + Kair (ρAr + ρair − ρair|x→∞)
(19)

x [mm]
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∆
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OpenFOAM data
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Fig. 17. Index of refraction field from the OpenFOAM compu-
tation with spline interpolation.

The computational and experimental FLDI phase change
outputs for each case in Table 2 are plotted versus one another in
Figure 18. Uncertainty in the experiment is difficult to quantify,
but errors are believed to be largely due to three-dimensional
effects at the ends of the jet. The error bars in Figure 18 are
a bound on the error from calculating the response with an
additional 5 mm of jet length on either side of the jet for each
configuration. Three-dimensional effects have a larger influence
on shorter jet lengths, which explains the scatter in the data at
the low-response end of the figure. A linear regression analysis
was carried out to test the correlation of experimental data and
numerical results. The regression line has a slope of 0.99 and an
intercept of 0.00, compared to the ideal values of 1 and 0 for slope
and intercept, respectively, and all but one of the individual
points lie on the regression line within the computed uncertainty.



9

The FLDI software can therefore be considered verified versus
analytical calculations and validated against experimental data
with a high degree of confidence.
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Fig. 18. Experimental vs. numerical data for the argon jet ex-
periments detailed in Table 2. The letters marking each data
point correspond to the configurations in Table 2. The line is
the ideal line y = x.

5. SIMULATED MEASUREMENTS

A. Description
One of the more promising applications of the FLDI is measuring
instability waves in hypervelocity boundary layers where other
more conventional techniques such as surface-mounted pressure
transducers or hot-wire anemometry are not suitable. The FLDI
is capable of making such measurements because of its high
temporal resolution and ability to reject signals away from best
focus. This was done by Parziale at Caltech in his PhD thesis [11].
These instability waves are Mack-mode waves and propagate
two-dimensionally in the mean flow direction. Because the
waves are two-dimensional, one can assume that waves only
propagate along the x-axis of the FLDI. As such, the FLDI is
quite capable of measuring their frequency, but because of the
path-integrated nature of FLDI measurements it is impossible
to determine their amplitude from the FLDI output alone. This
point is possibly made clearest by Smeets himself [20]: “From the
signals received [from a 2D shear layer], primarily qualitative
information could be achieved, e.g., on the frequency spectra of
the turbulent fluctuations near the focal point. The deduction
of quantitative data on the level of local density fluctuations
is only possible by means of assumptions and approximations.
The accuracy of the results is, therefore, only moderate."

From Equation 6 we see that the change in phase between
the two FLDI beams, which is converted to a voltage by the pho-
todetector, is an integrated function of the density fluctiations
along the beam paths.

∆Φ(t)
∆x

=
2πK
λ∆x

¨

D

I0(ξ, η)

( D(ξ,η)ˆ

s1

ρ′(x1, t)ds1

−
D(ξ,η)ˆ

s2

ρ′(x2, t)ds2

)
dξ dη (20)

where ρ′ represents the local density fluctuations. We seek the
amplitude of ρ′, the density fluctuation. If ∆x is sufficiently

small and recalling that x1 = x2 + ∆xx̂, we can write this equa-
tion in terms of derivatives in x instead of finite differences
and approximate the two beam paths in Equation 20 as being
common.

s1 ≈ s2 ≈ s (21)

ρ(x1) ≈ ρ(x2) +
∂ρ

∂x
∆x (22)

dΦ(t)
dx

≈ 2πK
λ

¨

D

I0(ξ, η)

ˆ

s

∂ρ′(x, t)
∂x

ds dξ dη (23)

Since the output of the FLDI is a function of time, not space, it is
much more useful to take derivatives with respect to time. This
conversion can be done using Taylor’s hypothesis x = crt for a
constant phase speed cr. We then have

dΦ(t)
dt

≈ 2πK
λ

¨

D

I0(ξ, η)

ˆ

s

∂ρ′(x, t)
∂t

ds dξ dη (24)

We can then apply the mean value theorem for integrals to the
right-hand side to obtain

dΦ
dt

=
2πK

λ
Z

∂ρ′

∂t
(25)

Here
∂ρ′

∂t
represents the averaged value of the time-derivative

of ρ′ over the spatial integral. Z is an unknown parameter with
units of length that makes ρ′ equal to the actual ρ′ fluctuation
in the boundary layer. It is approximately equal to the length
of the region where the FLDI is probing the boundary layer,
but it cannot be determined a priori from experimental data
alone. However, Z is primarily a function of the flow geometry,
and can be calculated with knowledge from the FLDI software
for a given geometry and used with experimental data for the
same flow. It is sensitive to the spatial filtering of the FLDI as
indicated in Equation 16, so care must be taken to ensure that the
wavelengths being measured are not significantly attenuated.

We can then integrate the FLDI output in time to obtain the
density fluctuations as a function of time

cr

∆x

ˆ t

0
∆Φ(τ)dτ =

2πK
λ

Zρ′(t) (26)

or, solving for ρ′

ρ′(t) =
crλ

2π∆xZK

ˆ t

0
∆Φ(τ)dτ (27)

The integral can be evaluated using standard numerical integra-
tion methods, e.g. Simpson’s rule. Alternatively, since instability
waves are often analyzed in frequency space, we can write the
Fourier transform in time of Equation 27

F [ρ′] = crλ

2π∆xZK
1

iω
F [∆Φ] (28)

The FLDI software can be used to make simulated measure-
ments of a Mack mode wave packet in a boundary layer, and the
result of that simulation can be used to calculate a value for Z
that can be used in experiments to determine the magnitude of
the fluctuations. The wavepacket is calculated for T5 shot num-
ber 2789. The boundary layer edge conditions are as follows:
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Me 4.55

Te 2105 K

Ue 4191 m/s

pe 47.1 kPa

Re/m 4.76× 106 /m

ρe 0.0777 kg/m3

Table 3. Boundary layer edge conditions for T5 shot 2789.

Fig. 19. Cone model used in T5 studies

The FLDI measurement location is 710 mm from the tip of
a 5-degree half-angle cone model as shown in Figure 19. Wave
packet characteristics are calculated using the method described
in [21] and [22].

The density field in a hypersonic boundary layer contains a
propagating disturbance that can be approximated as

ρ(x, y, t) = ρ̄(x, y) + ρ′(x, y, t) (29)

a mean spatial density field ρ̄(x, y) and a fluctuating component
ρ′ representing a wave packet containing high-frequency waves
representative of Mack (second mode) instabilities.

ρ′ = ρSFE(x, t)ρ′∗ (30)

Here ρSF is a dimensional scale factor that determines the am-
plitude of the density fluctuation. It is chosen such that the
maximum density fluctuation is 0.1% of the freestream value.
E(x, t) is an envelope describing the extent of the wave packet
in x, and ρ′∗ is a non-dimensional fluctuation of the form

ρ′∗ = Re
[
g(y) exp

(
i(αx−ωt)

)]
(31)

where g is a complex eigenfunction in y, α is a complex
wavenumber containing information on both the spatial
wavenumber (αr = k) and the spatial growth rate (αi), and
ω is the temporal frequency of the wave. Written in terms of of
real and imaginary parts, ρ′∗ is

ρ′∗ = exp(−αix)
(

gr(y) cos(αrx−ωt)− gi(y) sin(αrx−ωt)
)

(32)
The eigenfunctions and eigenvalues were computed by Bitter
[21] using parallel flow linear stability theory for a boundary
layer on a cone with flow conditions given in Table 3. The real
and imaginary eigenfunctions are plotted versus height above
the cone surface in Figure 20 along with the mean density profile
through the boundary layer.

From Figure 20c and examination of the cone geometry it
is determined that the FLDI beams are inside the boundary
layer within about 10 mm on either side of the best focus. The
envelope is chosen to be a Gaussian that it contains about 15
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Fig. 20

wavelengths inside the region where its value is greater than 1%.
Functionally, this has the form

E(x, t) = exp
(
−A(x− crt− x0)

2

l2

)
(33)

for envelope length l and spatial starting location x0.
Equation 30 has the final form

ρ′ = ρSF exp
(
−A(x− crt− X0)

2

l2 − αix
) (

gr(y) cos(αrx−ωt)

− gi(y) sin(αrx−ωt)
)

(34)

The parameters in Equation 34 have the values given in Table
4. It is important to recognize that we should not expect sig-
nificant spatial filtering for αr = 2.116/mm based on Figure 10.
Note that Figure 10 does not represent the transfer function for
this cone boundary layer flow but is the transfer function for
two-dimensional disturbances propagating in x and uniform in
z from −10 < z < 10 mm and so the exact magnitude of the
transfer function at a given wavenumber is not directly applica-
ble here. Still, Figure 10 does predict whether or not a particular
wavenumber will be appreciably attenuated.

ρSF 2.276× 10−20 kg/m3

A − ln 0.01 = 4.6

l 14π/αr = 20.8 mm

x0 710 mm - l = 689.2 mm

cr 3633 m/s

αi -0.0488/mm

αr = k 2.116/mm

ω = 2π f = crαr 7.697× 106 rad/s

Table 4. Boundary layer wave packet parameters.
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The FLDI beams are positioned in the simulation at the local
maximum of the density eigenfunction at y = 0.81 mm. The den-
sity fluctuations are converted to refractive index fluctuations by
the Gladstone-Dale relation (Equation 7) with K = 0.227× 10−3

m3/kg. The wavepacket is assumed to be axisymmetric with
respect to the cone axis. The local density is transformed from
the FLDI coordinate system (subscript f ) to a coordinate system
relative to the cone surface normal (subscript c) so that Equation
34 can be evaluated by a series of trigonometric operations for
cone half-angle θc. Note that at z f = 0, (x f , y f ) = (xc, yc) as
expected.

yc = cos θc

(√[
(x f − y f tan θc) tan θc +

y f

cos θc

]2
+ z2

f

− tan θc(x f − y f tan θc)

) (35)

xc = x f + tan θc(yc − y f ) (36)

The index of refraction change, relative to the index of refraction
outside the boundary layer, at a point (xc, yc, t) is

∆n = K(ρ̄(yc) + ρ′(xc, yc, t)− ρe) (37)

Functions ρ̄, gr, and gi are tabulated on a uniform stencil in yc
with step size 0.74 µm, and values are interpolated from the
tabulated functions for each simulated ray in the FLDI software.
The wave packet is propagated in time and the sample rate of
the simulated FLDI is 20 MHz, sufficient to fully temporally
resolve the wave packet.

B. Results
The output of the simulation is shown in Figure 21 along with
the input density disturbance at the probe location in x, which
is halfway between the two FLDI beams, and z = 0, i.e. best
focus. Note that the output is in phase change, as it would be if
output from a photodetector in a physical FLDI setup, and that
the output is proportional to the time derivative of the input
wave packet as indicated by Equation 27.
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Fig. 21. Output of the FLDI simulation compared to the input
boundary layer wave packet density disturbance. The y-axis
on the left corresponds to the FLDI output and the y-axis on
the right corresponds to the input density at the location of the
beams at z = 0.

Equation 27 is applied to the simulated FLDI output and Z
is determined by means of iteration until the peak magnitude
of the measured power spectral density of the simulated output

is equal to that of the input. For the flow geometry studied
here, Z is calculated to be 12.6 mm. Figure 22 shows the both
the measured and input density fluctuations with respect to
time. Note that the only difference between the two is that
the measured fluctuations are slightly ahead of the input with
respect to time. This is simply a consequence of the conical
geometry of the flow: the wave packet will first be observed by
the FLDI beams away from the focus. Equations 35 and 36 make
the issue clear. For z 6= 0, yc > y f so xc > x f .
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Fig. 22. Output of the FLDI simulation, scaled with Equation
27, compared to the input boundary layer wave packet for the
optimum value of Z = 12.6 mm.

Figure 23 shows the power spectral density of the input and
output density fluctuations. The two curves match each other
almost exactly with the appropriate value of Z except that the
simulated measurement has higher noise away from the peak in
frequency. Presumably even more noise would be present in an
experiment, so this slight increase in noise is inconsequential.

Frequency [Hz]
104 105 106 107

∆
ρ
/ρ

E
 ×

 1
00

%

10-8

10-6

10-4

10-2

100

FLDI Simulation
Density Disturbance at Focus

Fig. 23. PSD of the FLDI simulation, scaled with Equation
27 and optimum Z value, compared to the PSD of the input
boundary layer wave packet.

The parameters in Table 4, namely αr and cr, are changed to
determine the universality of the value of Z for wave packets
of different spatial wavenumber and frequency. The values
for αr and cr are given in Table 5 along with the computed
frequency and the error in the peak amplitude of the simulated
measurement relative to the peak magnitude of the input wave
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packet.

Case No. αr [1/mm] cr [m/s] f [Hz] % Error

1 2.116 3633 1.22× 106 0.0

2 0.4 3633 2.31× 105 4.0

3 7 3633 4.05× 106 -26

4 30 3633 1.73× 107 -94

5 2.116 2500 8.42× 105 0.0

6 2.116 5000 1.68× 106 0.0

Table 5. Wave packet properties tested with fixed value of Z.

The error in the peak amplitude of the wave packet is appre-
ciable only in cases 3 and 4. The reason for the large error can
be deduced by examining the values of αr in these cases and
consulting Figure 10. Recall again that the transfer functions
plotted in Figures 9-11 are not transfer functions for the conical
boundary layer under examination in this section, but nonethe-
less they lend some insight to when the instrument will begin
to roll off in wavenumber space. Notice that at αr = 7/mm, the
transfer function has dropped to about -2 dB, which corresponds
to about a 35% reduction in signal magnitude, close to the ob-
served error in Table 5. Similarly, for αr = 30/mm, the transfer
function is approximately equal to -17 dB, corresponding to a
98% reduction in magnitude which is again quite close to the
error in Table 5 for case 4. Physically, this means that the wave-
length of the Mack-mode waves is sufficiently small that it is
comparable in size to the beam width in the region where the
FLDI is probing the boundary layer and therefore the waves are
being heavily spatially filtered by the beams.

It is interesting to examine further the output from the FLDI
software for case 4 where αr = 30/mm. The density change as
a function of time and the power spectral density of the distur-
bance are shown in Figure 24. As Table 5 indicates, the measured
signal magnitude is significantly reduced compared to the in-
put disturbance using the same value of Z calculated for case 1
where there is very little spatial filtering by the instrument. In-
terestingly, though, the FLDI is able to measure the frequency of
the signal correctly. This is a somewhat surprising result because
if one were to approximate the FLDI as two point measurements
separated by the beam separation ∆x, one would predict spatial
aliasing if the wavenumber of the disturbance is greater than
π

∆x , which would be 18 mm here. This spatial aliasing would
become temporal aliasing when Taylor’s hypothesis is applied.
Figure 24b clearly does not display this behavior, however, so
the finite beam diameter seems to prevent spatial aliasing based
on wavenumber. An FLDI will only suffer from aliasing if the
sampling frequency is not sufficiently high compared to the fre-
quency of the disturbance being measured. The only effect of
high wavenumbers is the attenuation of the signal due to spatial
filtering, which will lead to a limitation from the electronic noise
floor of the system.

Based on this analysis we conclude that the value of Z in
Equation 27 is only a function of the geometry of the density
field being probed and the attenuation of the signal due to spatial
filtering based on wavenumber. If the attenuation is sufficiently
small for all wavenumbers of interest in the experiment then only
a single value of Z needs to be calculated to accurately compute
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(a) Output of the FLDI simula-
tion for case 4 in Table 5 scaled
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the density change quantitatively. Even if the wavenumbers of
interest are high enough to be filtered by the FLDI, new values
of Z can be calculated for given wavenumbers without much
difficulty. The measurement will still be a point measurement
at the focus of the FLDI and the phase speed of the disturbance
must be known a priori, but for the specific application of measur-
ing Mack-mode waves on a slender-body boundary layer these
restrictions are not problematic. The phase speed can either
be calculated from stability theory as is done here or it can be
measured as in [23]. One also needs some knowledge regarding
the shape of the density eigenfunctions.

To summarize, the routine to accurately compute the density
change of Mack-mode waves in a hypervelocity boundary layer
from FLDI data is as follows:

1. Compute wave properties and eigenfunctions from linear
stability analysis, e.g. in [21]

2. Input this data into FLDI software such as the one in the
current study

3. Compute a value for Z in Equation 27 by matching the
results of step 2 to the specified density change of the input
wavepacket

4. Apply Equation 27 to the experimental FLDI data using
the value of Z from step 3, taking care to ensure that the
wavenumber of the Mack mode wave is not appreciably
spatially filtered by the FLDI

The simple procedure used in [11] for computing the density
disturbance magnitude for T5 shot 2789 can give an estimate
accurate within an order of magnitude if the “integration length"
is estimated based on the length through which the FLDI beams
are inside the cone boundary layer. However, such a proce-
dure makes significant approximations that limit its accuracy to
within about a factor of 2. The routine outlined above, on the
other hand, requires knowledge of the form of the disturbances
and is limited in accuracy by experimental uncertainty and any
uncertainties associated with the computations performed in
step 1. One could alternatively simply make an estimate of Z
based on the boundary layer geometry and skip directly to step
4 above. Estimating Z would likely give results that are more
accurate than the procedure in [11] because Equation 27 takes
into account the fact that the FLDI is differentiating the density
disturbance in space while the simplified procedure does not,
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but the results would be less accurate than those obtained by
following the full routine outlined above.

There is a caveat to these results. The freestream disturbances
outside the boundary layer have been neglected in this anal-
ysis, but in an experiment the FLDI beams integrate through
these disturbances and they will contribute to the output sig-
nal. Therefore care must be taken to ensure that the freestream
disturbances do not occupy the same frequency space as the
disturbance of interest at the focus, or that the wavenumber of
the freestream disturbance at the frequency of the disturbance
of interest is sufficiently high that it is heavily spatially filtered
by the FLDI away from the focus. It is important to recognize
that the characteristic velocity of the freestream disturbances can
be different from the characterstic velocity of the disturbance of
interest, as it is for hypervelocity boundary layers. Based on mea-
surements taken in T5, it appears that the frequency range over
which there is significant FLDI signal in the freestream is signfi-
cantly below the 1.2 MHz of a typical Mack-mode wave packet,
so signal contamination from the freestream is not expected to
be problematic when using the FLDI to measure Mack-mode
waves on a cone boundary layer. The effect of freestream dis-
turbances on the output signal ought to be evaluated for each
facility on a case-by-case basis for future experiments before
attempting to quantify boundary layer instability measurements
to ensure the measurements are accurate. This is particularly
true for low-enthalpy facilities where the frequency content of
the freestream disturbances and that of Mack-mode waves are
not as far apart as they are in high-enthalpy flow.

Another word of caution is warranted regarding measuring
Mack-mode waves in hypervelocity boundary layers with an
FLDI. From Figure 20, it is clear that the magnitude of density
fluctuations varies significantly with height in the boundary
layer, and as such the output of the FLDI is quite sensitive to
the location above the cone surface where the disturbance is
measured. Indeed, if the measurement location is moved only
400 µm from the specified measurement location of y = 0.81 mm
to y = 1.2 mm, the error in the measurement using the value of
Z calculated for case 1 in Table 5 is greater than 50%. Therefore
great care must be taken to accurately measure the height of the
beam centers from the model surface in an experiment.

6. CONCLUSIONS

Focused laser differential interferometry is a promising tech-
nique for measuring localized, high-frequency density distur-
bances in supersonic and hypersonic flows. In particular, the
FLDI is an attractive instrument for measuring Mack-mode in-
stability waves in hypersonic boundary layers. A computational
tool has been developed here that has been verified against
analytical predictions of the FLDI response as well as experi-
mental measurements with a physical FLDI setup. Using the
FLDI software, it is possible to calculate the output of an FLDI
to an arbitrary density field. Such a prediction can only be made
analytically for very simple density fields. These computations
allow FLDI experiments to give quantitative measurements of
the density fluctuation amplitude if certain details about the
flow in question are known by applying correction factors to the
computational output such that the FLDI output matches the
input density disturbance of interest. This procedure is shown to
work well for hypersonic boundary layer disturbances where the
disturbance is localized near the best focus of the FLDI, is two-
dimensional in nature, and the phase speed of the instabilities
can be accurately predicted from theory.

Some general statements can be made concerning using the
FLDI to make measurements in compressible flows. The FLDI
does reject signals away from its best focus, but this signal re-
jection is not related to common-mode rejection associated with
the beams sharing common paths. The rejection is in fact atten-
uation due to spatial filtering because of the increasing beam
diameters away from the focus. As such, disturbances with
small enough wavenumbers (long enough wavelengths) will
not be attenuated away from the FLDI focus and will therefore
contribute to the FLDI signal over a significant extent of the
beam paths. As a result the FLDI can accurately measure the
frequency content of density disturbances in a flow, but it does
not in general yield information as to where along the beam
path the disturbances are located or their amplitude at any given
point along the beam path. In order to extract quantitative den-
sity information, details regarding the geometry of the density
disturbance field, the preferred direction of the disturbances (if
any), and the characteristic velocity of the disturbances must be
known. If these are known, then the FLDI output can be sim-
ulated using a procedure such as the one presented here, or, if
the flowfield is simple enough, by analytical methods, and then
experimental measurements can be adjusted as necessary such
that the density fluctuation magnitude is correct. The authors
are not aware of any other method to extract suitably accurate
quantitative density fluctuation magnitudes from FLDI data.
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