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Abstract

In order to address increasing greenhouse gas emissions, the future fossil fuel short-

age and increasingly stringent pollutant emission regulations, a variety of biofuels

are being progressively incorporated into conventional transportation fuels. Despite

the beneficial impact of biofuels on most regulated pollutants, their combustion

induces the increase of a variety of aldehydes that are being considered for spe-

cific regulations due to their high toxicity. One of the most hazardous aldehyde

compounds is acrolein, C2H3CHO. Despite its high toxicity and increased forma-

tion during bioalcohol and biodiesel combustion, no experimental data are available

for acrolein combustion. In the present study, we have investigated the ignition

of acrolein-oxygen-argon mixtures behind reflected shock wave using three simul-

taneous emission diagnostics monitoring OH*, CH* and CO2*. Experiments were

performed over a range of conditions: Φ=0.5-2; T5=1178-1602 K; and P5=173-416

kPa. A tentative detailed reaction model, which includes sub-mechanisms for the

three measured excited species, was developed to describe the high-temperature

chemical kinetics of acrolein oxidation. Reasonable agreement was found between

the model prediction and experimental data.
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1. Introduction

In recent years, biofuels have received growing attention as an alternative to

petroleum-based fuels in light of increasing greenhouse gas emissions, supply short-

ages and stringent regulations on pollutant emissions [1, 2, 3, 4]. Depending on

the specific biofuel considered, significant reduction in carbon dioxide emission has

been reported [3, 4]. Despite the positive impact in reducing pollutant emissions,

like particulate matter [3, 5, 6], CO [3, 5], and unburnt hydrocarbons [3, 5], by in-

corporating biofuels into conventional fuels, their combustion generates an increase

production of a variety of toxic carbonyl compounds, especially aldehydes [2, 7, 8, 9].

This concern is aggravated by new engine combustion technologies such as homoge-

neous charge compression ignition and premixed charge compression ignition which

involve low-temperature reaction kinetics [8]. Studies [5, 6, 10] have demonstrated

acrolein production is increased up to 1000% for diesel-ethanol and diesel-biodiesel

blends [6]. Acrolein or 2-propenal, C2H3CHO, is a beta-unsaturated aldehyde with

important implications for atmospheric chemistry [11]. High levels of acrolein have

been correlated with urban areas having dense automotive traffic as well as rural

areas subject to forest fires [12]. In addition to its formation during combustion pro-

cesses, including burning of fossil fuels [13]; wood; plastic; and tobacco [12], acrolein

can be formed in the atmosphere as a result of chemical reactions involving unsat-

urated hydrocarbons like 1,3-butadiene [14]. Although no conclusive carcinogenic

evidence has been found for acrolein, its increased production during the combustion

of biofuels is particularly concerning for public heath due to its neurotoxic properties

[11]. Acrolein is highly toxic and physiological effects can potentially occur through

inhalation or skin exposure for concentrations as low as 0.3 ppm [12].

Given the expected growing use of biofuels and the physiological implications of

acrolein, a better understanding of its chemical kinetics is of importance. While

acrolein chemistry is incorporated into a number of chemical reaction models of

hydrocarbon fuels, most studies have focused on its reactivity at low temperature

in the framework of atmospheric chemistry, see [11]. The objective of the present

work is to gain insight into the high-temperature acrolein kinetics independently

of the complexity involved in the study of heavy hydrocarbon fuels. To this end,
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the chemical kinetics of acrolein has been studied behind reflected shock wave by

monitoring simultaneously the emission from OH*, CH* and CO2*. A tentative de-

tailed reaction mechanism, which includes sub-mechanisms for the three measured

excited species, has been developed and analyzed to underline the dominant reaction

pathways.

2. Materials and methods

2.1. Mixtures preparation

All gases were of research grade (Air Liquide). A mixture containing 2% by

volume of acrolein in argon was used to prepare the blends. Because of the highly

toxic and corrosive properties of acrolein, special materials and procedures were

employed. Corrosion-resistant regulator and pipe-lines were used. Special care was

taken to minimize leaks. Integral gas-mask, protection gloves and laboratory coat

were used during mixture preparation and experiment. Homogeneity of the mixtures

was obtained by active mixing for one hour. Mixture compositions and experimental

conditions are summarized in Table 1.

2.2. Experimental apparatus

The shock-tube used has been described elsewhere [15, 16]. It is composed of

three parts separated by two diaphragms and is made of stainless steel. The driver

section and the driven section are 6.19- and 11.28-m-long, respectively, (i.d. 15.24

cm). The test section is 2.44-m-long (i.d. 7.62 cm). A 2.03-m-long (i.d. 7.62

cm) cookie-cutter is used to transmit the shock wave from the driven to the test

section, avoiding perturbation of the incident shock wave. The residual vacuum

in the test section is on the order of 1 Pa. The driver gas was nitrogen. The

test section of the shock-tube was equipped with diagnostic instruments located

close to the end wall: four piezoelectric pressure transducers, mounted flush with

the inside wall for shock velocity measurements (uncertainty of 1%), and two quartz

optical windows mounted at 10 mm from the tube end, connected to two solarization-

resistant multimode optical fibers with a core diameter of 200 µm. One of the optical

fiber is linked to a single-photomultiplier (Hamamatsu) equipped with a 306±5 nm
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band-pass filter for detecting the (A2Σ+-X2Π) transition of excited OH radicals,

OH*. The second fiber is linked to a dual-photomultiplier (Thorlabs) equipped with

a quartz beam splitter and two band-pass filters centered at 410±5 nm and 430±5

nm for detecting the (A1B2-X1Σ+) and (A2∆-X2Π) transitions of CO2* and CH*

radicals, respectively. Characteristic times of reaction were defined as the time to

reach 50% and 100% of the emission peak, τ50% and τ100% respectively. The set-

ups of the photomultipliers were held constant to obtain normalized peak heights

as a function of temperature. Note that the series performed for the stoichiometric

mixture was employed to evaluate the sensitivity of the new dual-photomultiplier

as well as the emission characteristics of acrolein-based mixtures. These mixtures

demonstrated sensibly different emission intensities than mixtures previously studied

in our laboratory [15, 16]. These aspects resulted in missing parameters as seen in

Table 2 to Table 4 which summarize all the results obtained. The thermodynamic

conditions behind the reflected shock wave were calculated using the 1D shock theory

and the incident shock velocity. Uncertainties on the reflected temperature and

pressure are 1%. Uncertainties on the delay-time and the peak height is on the

order of 20%. Figure 1 shows a typical example of OH* emission and pressure

signals obtained during the present study.

2.3. Chemical kinetic scheme

The detailed reaction model presently used includes 920 reactions and 115 species.

It was developed from the model of Mével et al. [17, 18] for H2-O2 and NOx chem-

istry, the Caltech mechanism [19] for hydrocarbon chemistry and the model of Le

Cong for NOx-hydrocarbons interactions [20]. The sub-model for acrolein chemistry

was taken from the Jet-Surf model [21] and extended based on an analogy with

1,3-butadiene chemistry. Sub-mechanisms for OH*, CH* and CO2* chemistry were

respectively taken from Hall et al. [22, 23] and Hidaka et al. [24, 25]; Devriendt

et al. [26] and Smith et al. [27]; and Kopp et al. [28] and Sulzmann et al. [29].

The JetSurf mechanism [21] was also employed for comparison with the present

reaction model. Missing thermodynamic properties for acrolein and acrolein radi-

cals, C2H3CO, CHCHCHO, CH2CCHO, were calculated following the methodology
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outlined in [30]. The model is provided as a supplemental material along with the

corresponding thermodynamic properties. The modeling of the experimental results

was performed with SENKIN [31] using the constant volume reactor model. Sensi-

tivity and reaction pathway analyses were performed using this code.

The performance of the two reaction mechanisms were quantified using the mean

and the maximum errors, respectively defined as

EQ
mean =

1

N

N∑
i

∣∣∣∣ ∆Q

Qexpe

∣∣∣∣ , (1)

and

EQ
max = max

∣∣∣∣ ∆Q

Qexpe

∣∣∣∣ . (2)

N is the number of data points, ∆Q = Qmodel − Qexpe, with Qmodel and Qexpe are

the calculated and experimental characteristic quantities, respectively. The charac-

teristic quantities refer to the delay-times, τ50% and τ100%, and the normalized peak

heights. The absolute values are used to avoid positive and negative contributions

to the errors canceling out.

3. Results and discussion

3.1. Experimental results

The ignition delay-times based on OH*; CH*; and CO2* of acrolein-oxygen-

argon mixtures were measured behind reflected shock wave in the ranges: Φ=0.5-2;

T5=1178-1602 K; and P5=173-416 kPa. Within the experimental uncertainty, the

three species monitored yield similar values for the ignition delay-time. Figure 2 to

Figure 4 display the results obtained for a lean, a stoichiometric and a rich mixture,

respectively. For the three monitored emissions, the delay-times increase with the

equivalence ratio. For example, at a temperature of 1400 K, τ50% based on OH* is

twice shorter for the lean, Φ=0.5, than for the rich, Φ=2, mixture. Performing a

multi-linear fitting without constraint on τ50% measured for OH*, the experimental

results can be approximated within ±13% by the following expression:

τ50%(OH∗) = 1.45136.10−06[C2H3CHO]0.257[O2]
−0.774[Ar]−0.014 exp

(
126194

RT

)
,

(3)
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where: A=1.45136.10−06 is the pre-exponential factor (µs); Ea=126194 is the acti-

vation energy (J/mol); R is the universal gas constant (J.K−1.mol−1); and T is the

temperature (K).

Figure 5 compares the normalized τ50%(OH*) for acrolein-oxygen-argon mixtures

obtained experimentally and predicted from the above empirical correlation (Equa-

tion 3). The exponents on the fuel and oxygen concentration are consistent with

previous results obtained for small alkanes [32], large alkanes [33, 34], alkenes [35],

and aldehydes [2, 7]. An increase of [O2] favors OH radical production through the

branching reaction H+O2=OH+O whereas the increase of [Fuel] induces a consump-

tion of H atoms through Fuel+H=Alkyl+H2. The activation energy, 126 kJ/mol,

is lower than activation energies reported for n-butanal (another aldehyde with an

alkyl chain instead of an alkenyl chain) by Zhang et al. [2], 166 kJ/mol, and David-

son et al. [7], 180 kJ/mol. The measured activation energy of acrolein is closest

to that reported for ethylene by Kalitan et al. [35], 111 kJ/mol, and Horning [36],

interpolated value at 300 kPa is 137 kJ/mol. The activation energy reported for 1,3-

butadiene-oxygen-argon mixtures, based on time to half-maximum OH absorption,

is 149 kJ/mol [37]. These results seem to indicate that the nature of the hydrocar-

bon linear chain, saturated or unsaturated, dominate the ignition process over the

presence of the aldehyde function. This is consistent with previous observations by

Davidson et al. [7].

Figure 6 shows typical examples of emission profiles for CO2*, OH* and CH*. For

the rich mixture, emission prior to ignition was observed for OH* and CO2* as seen

in Figure 6. The intensity of the emission prior to ignition is higher for CO2*, 10%

of the main peak, than for OH*, 5% of the main peak. This feature was not observed

for CH*. Overall, the profiles for CH* emission appear thinner than for CO2* emis-

sion. For OH*, the emission decreases rapidly after the maximum is reached and

then decreases more slowly to form a trailing feature. Figure 7 and Figure 8 display

the evolution of normalized emission peak as a function of temperature. To normal-

ize the peak height, we maintained a constant set-up (voltage) of the PMTs and we

used the highest peak height (obtained at the highest temperature) to normalize the

peak heights obtained at lower temperatures. Consistent with previous results from
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Kopp et al. for CO2* [28], the peak height increases with temperature for all three

emissions. This trend can be explained using a quasi-steady-state analysis similar

to that from Mével et al. [15]. Details are given in the next section.

3.2. Modeling results

3.2.1. Delay-times and emission profiles

Figure 2 to Figure 4 present a comparison between the experimental delay-times

and the predictions from the present reaction model and from the JetSurf mecha-

nism. The data are fairly well reproduced for the fuel-lean mixture. For the stoi-

chiometric mixture, the delay-times are slightly under-estimated but the activation

energy is well matched. For the fuel-rich mixture, the activation energy is slightly

over-estimated. The mean errors on the delay-times are 26%, 22%, and 19% for

OH*, CH*, and CO2*, respectively. Note that Figure 2 to Figure 4 display the

predictions obtained using the correlation from Slack and Grillo [38] for CO2*, see

comments below. The largest discrepancies are observed for OH* in the rich mix-

ture but the predictions remain within 70% of the experimental values. In order to

achieve this agreement, four rate constants were modified for:

-R1: C2H3CHO=C2H3+HCO:

kPS
1 =2.48.1024 T−2.153 exp (−427054/RT ) ;

kJS
1 = 2.48.1024 T−2.153 exp (−418680/RT )

-R2: C2H3CHO+O=C2H3+OH+CO:

kPS
2 =3.00.1013 exp (−20934/RT ) ; kJS

2 = 3.00.1013 exp(−14821/RT )

-R3: C2H3CHO+OH=C2H3+H2O+CO:

kPS
3 =3.49.1009 T1.1 exp (1871/RT ) ; kJS

3 =3.49.1009 T1.18 exp (1871/RT )

-R4: C2H3CHO+O=CH2O+CH2CO:

kPS
4 =3.17.1014 exp (−40704/RT ) ; kJS

4 =1.9.107 T1.8 exp (−921/RT )

where kPS
i and kJS

i refer to the rate constant used in the present study and in Jet-

Surf, respectively.
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The modified rate constants remain within a factor of two in the temperature range

presently studied as compared to the values proposed in JetSurf [21]. Such modifica-

tions are consistent with typical accuracy of theoretical calculations of rate constants

[39]. The JetSurf values were based on the recommendation from Tsang and Hamp-

son [40] for the reverse reaction of R1 and on analogies with formaldehyde for R2 and

R3, and with C2H4 for R4. The mean error on the experimental data observed when

using the JetSurf was on the order of 25-40% depending on the emission considered,

with a maximum error close to 80%. Overall, the JetSurf tends to under-predict the

delay-times.

As an alternative to solving for the excited state of CO2 directly in the chemical

model, the profiles of CO2* were calculated using the expression proposed by Slack

and Grillo [38]:

[CO2∗] ≈ 6.8.105[CO][O] exp

(
−16295

RT

)
, (4)

where the pre-exponential factor is expressed in cm3/mol s, and the activation en-

ergy in J/mol.

This expression reproduces the delay-times based on CO2* emission better than the

detailed reaction model assembled from Kopp et al. [28] and Sulzmann et al. [29]

studies. Kopp et al. stated that their reaction model for CO2* was tentative. For

instance, they used the rate constants proposed for the ground state CO2 to describe

the formation of CO2*. These values were disregarded in the present study and the

formation of CO2* was assumed to be due only to the reaction CO+O+M=CO2*+M

and the rate constant was taken from Sulzmann et al. [29]. To describe the quench-

ing of CO2*, Kopp et al. assumed that the rate constants were the same as those

for the quenching of OH*. From elementary collision theory, it can be argued that

the effective collision section of CO2* should be larger than that of OH* and con-

sequently, the rate constants should be higher. We did not attempt to propose

an updated reaction model for the chemistry of CO2* because our experiments are

not well suited for this purpose. The kinetics of acrolein is complex and involves a

number of chemical steps that are not well characterized. Because the dynamics of

an excited species is highly dependent on the ground state chemistry [17, 41, 42],

simpler and better-known chemical systems such as carbon monoxide- or methane-
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based mixtures should be employed for such reaction rate determination.

The discrepancies of the CO2* sub-model are also reflected in the predicted nor-

malized profile of Figure 6. Both models over-estimate the intensity of the emission

prior to ignition whereas the correlation from Slack and Grillo [38] reproduces fairly

well the whole profile. As shown in Figure 8, the correlation reproduces reasonably

well the variation of the emission peak height with temperature. A pathway analysis

indicates that the rate constant of the quenching reaction by argon is probably too

low. For OH*, the normalized emission profiles are overall well reproduced by the

present model as illustrated in Figure 6. The JetSurf tends to predict too wide emis-

sion peaks and does not capture the trailing feature which follows the fast decrease of

the emission signal. The main emission event is due to CH+O2=OH*+CO whereas

the trailing feature relates to H+O+M=OH*+M. The evolution of the peak height

with temperature is well predicted for the lean mixture, Figure 7, but is under-

estimated for the rich mixture, Figure 8. Both models demonstrate similar trends.

Concerning CH*, the calculated emission profiles are overall too narrow as com-

pared to experiments. This difference might be explained by the contribution of the

broadband emission of CO2* at 430 nm as illustrated in [28]. The possible influence

of the chemiluminescence from CO2* has previously been emphasized by Nori and

Seitzman in the case of methane-air flames [43]. This aspect is beyond the scope

of the present study and requires an appropriate model to describe CO2* chemilu-

minescence. The evolution of the CH* emission peak height is well reproduced as

illustrated in Figure 7.

3.2.2. Analysis of the chemiluminescence intensity

In hydrocarbon-based mixtures highly diluted with argon, the dynamics of ex-

cited OH radicals, OH*, can be approximated by the following reduced reaction

scheme:

RChem
1 : OH∗ = OH + hν (5)

RChem
2 : OH∗ + M = OH + M (6)

RChem
3 : CH + O2 = CO + OH∗ (7)
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Applying a quasi-steady-state analysis to OH∗ leads to:

[OH∗] =
[CH][O2]k3

1 + k2
k1

[M]
. (8)

The chemiluminescence intensity is directly proportional to the concentration of OH∗

so that:

Ichem(OH∗) ∝ A
[CH][O2]k3

1 + k2
k1

[M]
, (9)

where A is a constant which accounts for the volume probed, the light collection

solid angle and the efficiency of the detection system.

Considering that [O2] is essentially constant, equation 9 can be re-written as:

Ichem(OH∗) ∝ BFk(OH∗)[CH], (10)

where

B = A[O2] (11)

and

Fk(OH∗) =
k3

1 + k2
k1

[M]
. (12)

The magnitudes of the normalized values for Fk(OH∗), [CH]max, the experimental

OH* emission, and calculated OH* (obtained with the detailed model) are compared

in Figure 9. It is seen that the ratio Fk(OH∗) demonstrates a linear temperature-

dependence whereas [CH]max exhibits an exponential dependence with temperature.

The dominant parameter for the evolution of OH* chemiluminescence is the concen-

tration of its transient precursor: CH radicals.

In the case of CH*, the following reduced reaction scheme is used:

RChem
4 : CH∗ = CH + hν (13)

RChem
5 : CH∗ + M = CH + M (14)

RChem
6 : C2H + O = CO + CH∗ (15)

A similar quasi-steady-state analysis for CH∗ leads to:

Ichem(CH∗) ∝ A′Fk(CH∗)[C2H][O], (16)
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where A′ is a constant accounting for the optical system efficiency, and

Fk(CH∗) =
k6

1 + k5
k4

[M]
. (17)

Figure 10 displays the magnitudes of the normalized values for Fk(CH∗), ([C2H]×[O])max,

the experimental CH* emission, and calculated CH*. Similar to OH*, the ratio

Fk(CH∗) demonstrates a linear temperature-dependence whereas ([C2H]×[O])max

exhibits an exponential dependence with temperature. This indicates that the lead-

ing order parameter for the evolution of CH* chemiluminescence with temperature

is the concentration of its transient precursors: C2H and O.

In the case of CO2*, the correlation from Slack and Grillo [38] demonstrates the

dominant role of [CO] and [O] but predicts an exponential dependence with tem-

perature of Fk(CO∗2) = 6.8.105 exp
(−16295

RT

)
cm3/mol, rather than a linear one. A

more consistent sub-model is required for CO2* in order to draw definite conclusions

about the temperature dependence of the chemiluminescence intensity.

These observations for OH*, CH* and CO2* indicate that the chemiluminescence

processes are dominated by the dynamics of the ground-state chemical species. This

is consistent with previous results [15, 42] obtained on chemiluminescence processes

in shock-tube experiments. As previously mentioned, the experimental uncertainty

is too large to discriminate between the delay-times obtained with the different

chemiluminescence signals. The ground-state dynamics controls the formation of

the excited species and the formation time-scale of the three excited species are

predicted by the model to be different. Figure 11 shows an example of calculated

normalized profiles for the excited species and their precursors. Both OH* and CH*

peak at very similar times and correlate well with the peak of the energy release

rate, i.e. the temperature derivative. On the contrary, CO2* peaks about 40 µs

after the temperature derivative peak located at about 190 µs. This is due to the

broad profile of CO as well as the delayed formation of O atoms. This indicates

that OH* and CH* can be considered as reliable ignition markers whereas CO2*, if

measured alone, could lead to overestimated ignition delay-time. This conclusions
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is likely mixture specific and will need to be investigated in other chemical systems.

3.2.3. Sensitivity and chemical pathway analyses

In order to determine the important chemical reactions for the oxidation of

acrolein, sensitivity and reaction pathway analyses have been performed. Figure 12

shows the most sensitive reactions with respect to temperature. Calculations were

performed for Φ=0.5, 1 and 2, at T=1400 K and P=350 kPa. These sensitivity

analyses demonstrate the importance of (i) the reactions between acrolein and oxy-

gen atoms: C2H3CHO+O=CH2O+CH2CO; C2H3CHO+O=C2H3+OH+CO; and

C2H3CHO+O= C2H3CO+OH; (ii) the branching reaction H+O2=O+OH; (iii) HCO

chemistry: HCO+M=CO+H+M and HCO+O2=CO+HO2; and (iv) vinyl radical

chemistry: C2H3+OH=CH2CHO+O. These results are further emphasized in Fig-

ure 13 which summarizes the main reaction pathways during the oxidation of a

stoichiometric acrolein-oxygen-argon mixture at T=1400 K and P=350 kPa. In the

present model, acrolein consumption is balanced between hydrogen-abstraction re-

actions, 57%, and dissociative reactions with O and OH, 40%. The abstraction

reactions products undergo C-C bond rupture and lead to the formation of CO:

C2H3CO=C2H3+CO; and HCO: CHCHCHO=C2H2+HCO and CH2CCHO=H2C2+HCO.

Vinyl radicals are formed via C2H3CO=C2H3+CO and C2H3CHO+O=C2H3+OH+CO.

Their consumption results in the formation of C2H2: C2H3(+M)=C2H2+H(+M);

and CH2O: C2H3+O2=HCO+CH2O. The formation of formaldehyde is also due

to C2H3CHO+O=CH2O+CH2CO. Formaldehyde reacts mainly with O and OH to

form HCO through H-abstraction reactions. Acetylene is mainly formed from vinyl

and acrolein radicals dissociation and consumed by reaction with O atom, which con-

tributes to 14% of the CO production. Carbon monoxide production is dominated

by reactions which involves HCO: HCO+M=CO+H+M and HCO+O2=CO+HO2.

Finally, CO2 is formed by: CO+OH=CO2+H; which allows for the production of

H-atom and enhances the branching process.

To develop the present acrolein reaction model, we adopted the following pro-

cedure: 1) we replaced our acrolein reaction model, from [19], by that of JetSurf
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[21]; 2) we added a number of reactions based on an analogy with 1,3 butadiene; 3)

we adjusted the 4 rate constants mentioned previously. The unimolecular reactions

considered in JetSurf were C2H3CHO=C2H3+CHO and C2H3CHO=CH2CHCO+H.

Moreover, H-abstraction reactions in JeSurf were only included for the H atom of

the aldehyde function. Because unimolecular and H-abstraction reactions on the

vinyl group were neglected, only one radical of acrolein was taken into account:

CH2CHCO. We added two unimolecular reactions: C2H3CHO=CH2CCHO+H and

C2H3CHO=CHCHCHO+H along with H-abstraction reactions for the vinylic H

atoms. The reactions rate for these reactions were taken equal to those for 1,3 bu-

tadiene. This approach was motivated by the measured activation energies from the

present and previous experimental results for various alkane-, alkene- and aldehyde-

based mixtures.

The dominant initiation reactions for the oxidation of acrolein are C2H3CHO=C2H3+CHO

and C2H3CHO= CH2CHCO+H. Based on the CO2* emission profiles, we slightly

decreased the rate constant of the first reaction. With the original rate constant,

double-peak CO2* profiles were predicted by the model due to the too rapid for-

mation of HCO which leads to CO and ultimately to CO2* . The contribution of

C2H3CHO=C2H3+CHO to acrolein consumption is about 20% higher than that of

C2H3CHO=CH2CHCO+H. This seems consistent with the relatively small differ-

ence of energy between the C-CHO and the H-CO bonds reported for aldehydes

[44].

The additions of these reactions along with a few rate constant modifications ap-

pears to be sufficient in reproducing the experimental activation energy and delaying

the formation of HCO and CO via hydrogen-abstraction pathways. Nevertheless,

it should be recognized that the present reaction model is tentative and can be

substantially improved. We have made admittedly crude estimates of the reaction

coefficients for reactions R1 to R4 which reproduced the experimental results. To

our knowledge, there are no experimental determination nor reliable calculations

available for these reaction rates. The reaction rate recommended by Tsang and

Hampson [40] for the inverse of R1: C2H3+HCO=C2H3CHO comes from an analogy

with CH3+HCO=CH3CHO and is given with an uncertainty factor of 3. Similar
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uncertainty can probably be considered for the other reaction rates we modified

since they were already estimated in JetSurf. Additional experimental data are re-

quired to properly quantify the branching ratios of the initiation step during the

auto-ignition of acrolein-oxygen mixtures. In particular, C2H2, CH2O and CO ap-

pear as important intermediates. Their accurate measurement, along with that of

the OH radical, would help better characterize the reaction mechanism of acrolein

oxidation.

4. Conclusion

In the present study, the ignition of acrolein-oxygen-argon mixtures has been in-

vestigated over the following ranges: Φ=0.5-2; T5=1178-1602 K; and P5=173-416

kPa. These data constitute, to our knowledge, the first available experimental mea-

surements for this extremely toxic pollutant. It is shown that the activation energy

of the ignition process seems to be mainly controlled by the unsaturated nature of

the linear hydrocarbon chain and is not influenced by the aldehyde function. A

tentative detailed reaction model was proposed based on existing kinetic data and

an analogy with 1,3-butadiene to describe the high-temperature chemical kinetics of

acrolein oxidation. Reasonable agreement with the experimental data was demon-

strated. Sensitivity and reaction pathway analyses demonstrated the importance of

reactions of acrolein with oxygen atom and of formaldehyde, vinyl radical and acety-

lene chemistry. The experimental data and the preliminary acrolein kinetic model

developed in this work can be used to improve the understanding of the formation

of toxic substances by biofuel combustion and mitigate their negative environmental

footprint.

Acknowledgements

The present work was carried out in the Explosion Dynamics Laboratory and the

Turbulent Flow Oriented Research in Combustion and Energy groups of the Cali-

fornia Institute of Technology. Karl Chatelain is grateful to the ”Conseil Régional

du Centre” for sponsoring a student fellowship during his stay at Caltech.

14



References

[1] Akih-Kumgeh B, Bergthorson JM. Ignition of C3 oxygenated hydrocar-

bons and chemical kinetic modeling of propanal oxidation. Combust Flame

2011;158:1877-1889.

[2] Zhang J, Pan L, Mo J, Gong J, Huang Z, Law CK. A shock tube and kinetic

modeling study of n-butanal oxidation. Combust Flame 2013;160:1541-1549.

[3] Posada F., Malins C., Baral A. Biodiesel carbon intensity, sustainability and

effects on vehicles and emissions. Technical report, The International Council

on Clean Transportation, 2012.

[4] van Renssen S. A biofuel conundrum. Nature Clim. Change 2011;1:389-390.

[5] He C, Ge Y, Tan J, You K, Han X, Wang J, You Q, Shah AN. Comparison

of carbonyl compounds emissions from diesel engine fueled with biodiesel and

diesel. Atmos Environ 2009;43:3657-3661.

[6] Guarieiro LLN, de Souza AF, Torres EA, de Andrade JB. Emission profile of 18

carbonyl compounds, CO, CO2, and nox emitted by a diesel engine fuelled with

diesel and ternary blends containing diesel, ethanol and biodiesel or vegetable

oils. Atmos Environ 2009;43:2754-2761.

[7] Davidson D, Ranganath S, Lam KY, Liaw M, Hong Z, Hanson R. Ignition delay

time measurements of normal alkanes and simple oxygenates. J Propul Power

2010;26:280-287.
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tion de combustibles gazeux : Méthane, gaz naturel et mélanges contenant de

l’hydrogène, du monoxyde de carbone, du dioxyde de carbone et de l’eau, Ph.D.

thesis, Université d’Orléans; 2007.
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N Φ XACRO XO2 XAr T5 (K) P5 (kPa)

1 0.5 0.0038 0.0266 0.9696 1178-1458 358-381

2 1 0.007 0.0245 0.9685 1168-1539 173-416

3 2 0.011 0.019 0.9698 1179-1602 305-386

Table 1: Mixture compositions and experimental conditions examined in the present study.
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N Φ T5 (K) P5 (kPa) τ50%(CO2∗) (µs) τ100%(CO2∗) (µs) Peak height CO2*(-)

1 2.00 1179 386 692 763 0.18

2 2.00 1225 347 429 504 0.22

3 2.00 1225 374 481 550 0.21

4 2.00 1288 349 306 353 0.30

5 2.00 1365 345 158 184 0.43

6 2.00 1435 336 108 133 0.56

8 2.00 1602 305 51 65 1.00

9 0.50 1178 370 523 615 0.37

10 0.50 1220 363 411 460 0.38

11 0.50 1316 359 135 175 0.57

12 0.50 1316 381 117 128 0.63

13 0.50 1365 358 85 99 0.70

14 0.50 1458 360 44 62 1.00

17 1.00 1242 415 280 311 -

18 1.00 1252 373 286 330 -

26 1.00 1337 371 162 193 -

28 1.00 1360 352 116 135 -

31 1.00 1367 323 103 117 -

35 1.00 1539 314 33 45 -

Table 2: Summary of the experimental results obtained from CO2* emission for reflected shock-

heated C2H3CHO-O2-Ar mixtures.
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Table 3: Summary of the experimental results obtained from OH* emission for reflected shock-

heated C2H3CHO-O2-Ar mixtures.

N Φ T5 (K) P5 (kPa) τ50%(OH∗) (µs) τ100%(OH∗) (µs) Peak height OH*(-)

1 2.00 1179 386 652 728 0.20

2 2.00 1225 347 425 476 0.24

3 2.00 1225 374 474 515 0.26

4 2.00 1288 349 311 346 0.36

5 2.00 1365 345 150 182 0.62

6 2.00 1435 336 113 136 0.73

7 2.00 1522 329 66 120 -

8 2.00 1602 305 51 66 1.00

9 0.50 1178 370 490 554 0.09

10 0.50 1220 363 407 440 0.22

11 0.50 1316 359 143 165 0.44

12 0.50 1316 381 117 139 0.52

13 0.50 1365 358 84 108 0.58

14 0.50 1458 360 47 63 1.00

15 1.00 1168 241 1030 1066 -

16 1.00 1169 173 1128 1194 -

19 1.00 1252 248 403 426 -

20 1.00 1258 416 450 471 -

21 1.00 1285 231 278 304 -

22 1.00 1300 240 237 256 -

23 1.00 1307 244 231 253 -

24 1.00 1323 245 210 229 -

25 1.00 1329 251 142 158 -

27 1.00 1360 257 158 175 -

28 1.00 1360 352 119 135 -
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N Φ T5 (K) P5 (kPa) τ50%(OH∗) (µs) τ100%(OH∗) (µs) Peak height OH*(-)

30 1.00 1366 382 121 135 -

31 1.00 1367 323 101 117 -

32 1.00 1376 262 128 144 -

33 1.00 1440 236 70 86 -

34 1.00 1450 343 49 61 -

35 1.00 1539 314 34 48 -
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N Φ T5 (K) P5 (kPa) τ50%(CH∗) (µs) τ100%(CH∗) (µs) Peak height CH*(-)

1 2.00 1179 386 701 745 0.07

2 2.00 1225 347 448 484 0.14

3 2.00 1225 374 498 535 0.13

4 2.00 1288 349 325 348 0.28

5 2.00 1365 345 170 187 0.61

6 2.00 1435 336 115 135 -

7 2.00 1522 329 97 136 -

8 2.00 1602 305 52 70 1.00

9 0.50 1178 370 508 599 0.07

10 0.50 1220 363 407 443 0.11

11 0.50 1316 359 140 165 0.27

12 0.50 1316 381 115 133 0.37

13 0.50 1365 358 86 103 0.43

14 0.50 1458 360 45 62 1.00

22 1.00 1300 240 226 251 -

28 1.00 1360 352 114 131 -

29 1.00 1364 367 117 128 -

31 1.00 1367 323 98 112 -

35 1.00 1539 314 31 43 -

Table 4: Summary of the experimental results obtained from CH* emission for reflected shock-

heated C2H3CHO-O2-Ar mixtures.
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Figure 1: Typical experimental signals, pressure and OH* emission, and definitions of the two

characteristic times of reaction.
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Figure 2: Experimental and calculated auto-ignition delay-times of a lean acrolein-oxygen-argon

mixture. Solid lines: present model. Dashed lines: JetSurf.
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Figure 3: Experimental and calculated auto-ignition delay-times of a stoichiometric acrolein-

oxygen-argon mixture. Solid lines: present model. Dashed lines: JetSurf.
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Figure 4: Experimental and calculated auto-ignition delay-times of a rich acrolein-oxygen-argon

mixture. Solid lines: present model. Dashed lines: JetSurf.
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Figure 5: Comparison between normalized τ50%(OH*) for acrolein-oxygen-argon mixtures obtained

experimentally and predicted from the empirical correlation.
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Figure 6: Experimental and predicted normalized CO2*, OH* and CH* profiles for acrolein-oxygen-

argon mixtures. Solid lines: present model. Dashed lines: JetSurf.
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Figure 7: Experimental and calculated normalized peak height as a function of temperature for a

lean acrolein-oxygen mixture. Solid lines: present model. Dashed lines: JetSurf.
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Figure 8: Experimental and calculated normalized peak height as a function of temperature for a

rich acrolein-oxygen mixture. Solid lines: present model. Dashed lines: JetSurf.
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Figure 9: Magnitudes of the normalized values for Fk(OH∗), [CH]max, the experimental emission,

and calculated OH*.
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Figure 10: Magnitudes of the normalized values for Fk(OH∗), ([C2H]×[O])max, the experimental

emission, and calculated OH*.
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Figure 11: Calculated normalized profiles for excited species and their percursor along with tem-

perature derivative profile.
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Figure 12: Normalized sensitivity coefficients with respect to temperature for acrolein-oxygen

mixtures.
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Figure 13: Reaction pathway diagram during the oxidation of a stoichiometric acrolein-oxygen-

argon mixture. Conditions: T=1400 K; P=350 kPa. Frames represent species reservoirs. Arrows

thickness is proportional to the relative molar flux (also indicated between brackets).
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