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An analytical model for direct initiation of gaseous detonations

C.A. Eckett, J.J. Quirk, J.E. Shepherd

Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena CA 91125, USA

Abstract: A new model is presented for direct initia-
tion of gaseous detonations by a blast wave. The anal-
ysis identifies unsteadiness in the induction zone as the
primary physical mechanism by which a detonation may
fail to initiate. The local model of the reaction zone is
verified by numerical simulations and then used to pro-
duce an equation for the critical energy which agrees
with empirical correlations to within an order of magni-
tude.
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1. Introduction

When a large amount of energy is released in a small
region of an unconfined combustible gas mixture, the
ensuing spherical blast wave can initiate a spherical det-
onation in the gas. In other cases, a detonation is not
initiated and the blast wave decays away to an acoustic
wave in the manner of a blast in a non-reacting gas. The
main factor believed to control this initiation event is the
initial energy release. Experiments suggest that it must
be above a certain level, known as the critical energy, to
successfully initiate a detonation. Experimental correla-
tions have typically assumed that the critical energy Ec

can be well approximated by

Ec = Bρ0U
2

CJ λ3,

where ρ0 is the initial gas density, UCJ is the Chapman-
Jouget (CJ) velocity, and λ is the detonation cell
width. Our correlation of experimental data presented
in Benedick et al. (1986) suggests that the constant B ≈
200. Assuming the cell width is roughly related to the
induction zone length ∆i by λ ≈ 30∆i then gives,

Ec = B′ρ0U
2

CJ ∆ 3
i ,

where the proportionality constant B′ ≈ 5 × 106.

Various attempts have been made in the past to derive
an equation for the critical energy (see Lee (1977) and
Benedick et al. (1986)), but these were phenomenologi-
cal models that simply attempted to relate the critical
energy Ec to other experimentally determined dynamic
parameters such as the cell width λ or the critical tube
diameter dc. There is certainly value to this, since these
other parameters are easier to measure experimentally,
but there exists no satisfactory model for predicting λ

or dc so the real physics in the initiation problem is left
unexplained. A recent attempt to find a more funda-
mental model was made by He and Clavin (1994), who
considered the influence of the leading shock curvature
on initiation problems to be the fundamental issue.

Here we present an alternative idea which suggests
unsteadiness in the reaction zone is the dominant mech-
anism causing direct initiation failure. Analysis of the
1D reaction zone structure leads us to a local initiation
model in Section 2, which we verify through direct nu-
merical simulations in Section 3. The local model is then
used in Section 4 to produce a global model which gives
satisfactory predictions for critical energy.

2. Local initiation model

The starting equations are the mass, momentum and
species conservation equations of the spherically sym-
metric reactive Euler equations,

Dρ

Dt
+ ρ

∂u

∂r
+

2
r
ρu = 0, (1)

Du

Dt
+

1
ρ

∂P

∂r
= 0, (2)

Dyi

Dt
= Ωi, (3)

where u, ρ and P are the velocity, density and pres-
sure, r is the distance from the coordinate origin, t is
the time, yi is the mass fraction of species i, and Ωi is
the rate of production of species i. The energy equa-
tion is replaced by the adiabatic change equation, from
Fickett and Davis (1979),

DP

Dt
= c2 Dρ

Dt
+ ρc2σ̇, (4)

where c is the frozen sound speed, σ̇ =
∑

σiΩi is the
total thermicity, and σi is the thermicity coefficient of
species i. These equations can be transformed to the
frame of reference of the leading shock,

x = R(t) − r, w(x, t) = U(t) − u(r, t),

where R and U are the position and velocity of the shock,
and w is the flow velocity in the shock-fixed reference
frame. They can then be rearranged to give the following
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reaction zone structure equations:

η
Dw

Dt
= wσ̇ − 2

R − x
(U − w)w

− M2 dU

dt
+

∂w

∂t
− w

ρc2

∂P

∂t
, (5)

η
Dρ

Dt
= − ρσ̇ +

2
R − x

(U − w)ρM2

+
ρw

c2

dU

dt
− ρw

c2

∂w

∂t
+

1
c2

∂P

∂t
, (6)

η
DP

Dt
= − ρw2σ̇ +

2
R − x

(U − w)ρw2

+ ρw
dU

dt
− ρw

∂w

∂t
+

∂P

∂t
, (7)

where M=w/c is the Mach number, and η is the sonic
parameter 1−M2. These equations are the solutions for
the flow gradients along a particle path in the reaction
zone. In each equation, the first term on the right hand
side is the contribution from the chemical heat release,
the second is that due to wave curvature, and the remain-
ing terms represent the purely unsteady contribution.

If detonation failure is thought of as the failure of
particles to rapidly undergo reaction after crossing the
shock, then since the reaction rate is typically strongly
dependent on temperature, the Lagrangian gradient of
temperature will be of most interest in identifying deto-
nation failure. Here we assume the simplest possible re-
action, a one-step irreversible reaction, A → B, where A
and B are perfect gases with the same molecular weight.
Define the reaction progress variable Z as the mass frac-
tion of product B. Then the temperature reaction zone
structure equation can be found:

ηCP
DT

Dt
= (1 − γM2)q

DZ

Dt

+
2

R − x
(U − w)w2 (8)

+ w
dU

dt
− w

∂w

∂t
+

1
ρ

∂P

∂t
,

where T is the temperature, CP is the specific heat at
constant pressure, γ is the ratio of specific heats, and
q is the heat of reaction. For a decelerating wave such
as the blast wave in a spherical initiation problem, the
unsteady terms in this equation will be of opposite sign
to the heat release term, and will hence act to quench
the reaction if the wave is decelerating too rapidly. For
a convex wavefront such as a spherical wave, the cur-
vature term in Eq. (8) is actually of the same sign as
the heat release term and so cannot possibly quench the
detonation. As will be demonstrated in the following
section, the curvature term is typically small compared

with the unsteady terms. We will ignore it in the subse-
quent analysis.

The kinetics are assumed to be governed by a first-
order Arrhenius rate law,

DZ

Dt
= k(1 − Z) exp

(
− Ea

RgT

)
, (9)

where Rg is the specific gas constant, Ea is the activation
energy, and k is the pre-exponential rate multiplier.

Assuming a large activation energy, asymptotic expan-
sions of the flow variables can be made in the induction
zone using the parameter θ = Ea/RgTs, where subscript
s refers to conditions immediately after the shock. For
example, T/Ts = 1 + φ/θ + O(1/θ2). If the time scale
of evolution of the partial time derivatives in Eq. (8) is
much greater than the induction time (the time scale in
the Lagrangian derivative), the leading order asymptotic
equation is,

ηsCP Ts
1
θ

Dφ

Dt
= (1 − γM2

s )qkeφ−θ (10)

+ ws
dU

dt
− ws

dws

dt
+

1
ρs

dPs

dt
.

The unsteady terms are now a prescribed forcing, and
we have reduced the equation from a PDE to an ODE
which can be solved analytically. It is found that thermal
runaway (φ → ∞) occurs in finite time provided

− θwsti
ηsCP Ts

(
dU

dt
− dws

dt
+

1
ρsws

dPs

dt

)
< 1, (11)

where

ti =
1
k

1 − M2
s

1 − γM2
s

1
θ

CP Ts

q
eθ (12)

is the asymptotic induction time for a planar ZND wave.
We refer to the left hand side of Eq. (11) as the initiation
parameter α, so the critical initiation parameter is αc =
1. The expression for αc can be simplified using the
strong shock jump conditions. Defining a characteristic
shock decay time t∗ by

1
t∗

≡ − 1
U

dU

dt
,

we then find the critical shock decay time is

t∗c = 6
γ − 1
γ + 1

θti. (13)

This indicates t∗c is proportional to the detonation induc-
tion time, as expected from dimensional analysis. Since
θ is large, Eq. (13) also demonstrates that unsteadiness
can be important even when t∗ � ti. It is only when
t∗ � θti that the unsteady terms can be neglected and
the flow considered quasi-steady.
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3. Numerical simulations

3.1. Computational details

To examine the governing physical processes and validate
the model, we performed direct numerical simulations of
point-initiated spherical detonations. All computations
were performed with the irreversible one-step mechanism
considered in the previous section. The spherically sym-
metric reactive Euler equations were written in conser-
vative form, in a fixed reference frame. Normalization
was made by the upstream conditions for density, pres-
sure and temperature, uref =

√
RgT0 for velocity, the

half reaction length ∆ for length, and tref = ∆/uref for
time.

Integration was performed using operator splitting.
The convective flux was integrated with Roe’s approxi-
mate Riemann solver (Roe 1986), using a general equa-
tion of state implementation due to Glaister (1988).
Second-order accuracy was obtained via Min-Mod flux
limiting. The integration of the geometry source terms
was by first-order forward Euler, while the reaction
source terms were integrated by a nominally second-
order predictor-corrector scheme. The code was incor-
porated in the Amrita CFD programming system of
Quirk (1997), making use of an adaptive mesh refine-
ment algorithm (Quirk 1991). Sufficient refinement was
used at the leading shock and in the reaction zone to cap-
ture a finely resolved shock and have at least 100 grid
cells in the reaction zone.

The results presented in this paper use the following
fluid and chemical parameters:

γ = 1.4, q = 12 RgT0, Ea = 25 RgT0.

This corresponds to a marginally unstable planar CJ det-
onation, based on the normal mode 1D stability analysis
of Lee and Stewart (1990). A higher activation energy
would better approximate real gas mixtures and would
result in a more square-wave type structure as assumed
in the asymptotics. However, He (1996) has shown that
for high activation energies, the gross instability charac-
teristics of the one-step model cause failure of the wave
for any igniter energy, a property not indicative of real
flows. The same paper also demonstrated that even for
slightly unstable mixtures, the instability provides a sec-
ondary, weaker mechanism of detonation failure. To iso-
late only the primary fluid dynamic mechanism, we de-
cided to stay near the stability boundary. Various other
parameter sets were investigated in the vicinity of the
stability boundary, varying γ between 1.2 and 1.6, and
q/RgT0 between 8 and 33. The behavior of the param-
eter set considered here appears to be universal in the
ranges studied. The chosen parameters give the follow-
ing CJ detonation:

UCJ = 5.08 uref , PCJ = 11.2 P0, PvN = 21.3 P0,

where subscript vN refers to the von Neumann condi-
tions (post-shock state) in a CJ detonation.

The initial conditions used were a small, motionless,
high pressure hot core of fully reacted gas centered at the
origin, so the problem was effectively that of a spherical
shock tube. The conditions of the core were chosen to
approximate the energy density and temperature of a
typical high explosive. Table 1 shows the core initial
conditions and size for the three cases presented. The

Table 1. Initial conditions for numerical simulations.

Case A Case B Case C

rcore/∆ 6.30 10.00 15.87
Pcore/P0 2 × 104 2 × 104 2 × 104

ρcore/ρ0 2 × 103 2 × 103 2 × 103

Esource/P0∆3 5.24 × 107 2.09 × 108 8.38 × 108

source energy Esource increases by a factor of 4 in each
case. Variation of the initial conditions revealed that the
core pressure was high enough such that the flow was
approximately independent of the exact form of energy
deposition, by the time the blast wave had decayed to
the CJ velocity. So the igniter may be considered a point
source.

3.2. Computational results

Figure 1 shows a time series of spatial pressure profiles,
for cases B and C. Case B decays to slightly below CJ
velocity, re-accelerates briefly, but then fails and decays
away like a non-reacting blast wave. The disappearance
of the von Neumann spike is evident. Case C successfully
initiates and forms a spherically expanding detonation at
close to CJ conditions. The velocity of the leading shock
wave is shown in Fig. 2 for all three cases. Case B is a
marginal failure between the failure and successful initi-
ation of cases A and C respectively. The hump in the
velocity profile of case B is a manifestation of the in-
stability of the detonation. It was not observed in runs
with stable mixtures. Figure 3 shows the location of the
leading shock and the points of 5% and 95% reaction
completion, on an r-t plot for case B. The point of fail-
ure where the reaction zone decouples from the shock
is clearly evident around t/tref = 67. Also shown on
this plot is the location of the sonic surface. A sonic
point far behind the reaction zone is somewhat mean-
ingless since the flow velocity there is clearly not related
to the shock reference frame, but the region where the
sonic surface penetrates the back of the reaction zone is
relevant. While we do not propose that it controls the
detonation failure, it is a good indicator of the state of
the flow. Without a sonic point, the flow at the rear of
the reaction zone is subsonic, and signals from the inner
expansion wave can propagate into the reaction zone,
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Figure 1. Spatial pressure profiles at nearly equal time in-
tervals. (a) Case B; (b) Case C.
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Figure 2. Leading shock velocity versus radius for the three
cases.

decelerating the shock.

3.3. Validation of local initiation model

The local initiation model suggested that information
along particle paths in the reaction zone would be instru-
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Figure 3. Location of shock, 5% and 95% reaction surfaces,
and sonic point, for case B.

mental in determining initiation failure. Thus streamline
data was extracted from the numerical output by inter-
polation of the flow field. Figure 4 shows the paths of ten
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Figure 4. Ten sample particle paths for case B. Shock
(dashed line); 5% to 95% reaction (shaded region); particle
paths (solid lines).

sample particles from case B, in a magnified view of the
critical region of Fig. 3. Also shown are the shock and
partial reaction region. The first few particles rapidly
pass through the reaction zone, indicating that the flow
is still detonating at this stage. By about the fifth or
sixth particle, the time taken to traverse the reaction
zone becomes much longer, suggesting that the wave is
failing. This is the same point at which the reaction zone
decouples from the shock, so both concepts of failure lead
to the same conclusion on when the detonation fails. The
last two particles do not react at all in the time plotted,
indicating that the reaction has completely quenched by
then. The temperature profiles along the same ten par-
ticle paths are plotted in Fig. 5. Again it is clear that
by particle path 5 or 6, the thermal explosion time is
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Figure 5. Temperature along same ten particle paths as in
Fig. 4, for case B.

increasing rapidly. The last few particles do not reach
thermal explosion at all in the computed time range.
The slight negative temperature gradient after crossing
the shock is the forcing of the unsteadiness, as discussed
in the analysis of Section 2, and it is this gradient that
prevents the later particles from exploding.

Figure 6 shows an extraction of the various contribu-
tions to the Lagrangian temperature gradient in Eq. (8),
along two of the earlier particle paths. The time tp is
measured from when each particle crosses the shock. In
both cases, the curvature contribution is very small, jus-
tifying our earlier assumption that it can be safely ig-
nored. Along particle path 4, the unsteadiness is a neg-
ative forcing that reduces the temperature gradient be-
low that simply due to heat release, but it is not strong
enough to prevent reaction. By particle path 7, the un-
steadiness dominates the heat release, causing the to-
tal gradient to become negative for a considerable time,
and the reaction essentially quenches. Notice that early
in the reaction zone the unsteady terms are not strictly
constant. This is because the one-step mechanism does
not produce a real induction zone at the low activation
energy used. It is expected that computations with real
mixtures would better agree with the asymptotics.

As a final validation of the local model, the initiation
parameter α is plotted in Fig. 7 for the two failed cases,
cases A and B. Indeed, α is well below the critical value
of 1 early in the flow, but then increases sharply upon
failure. The time where α = 1 in case B very closely
matches the time of failure identified earlier.

4. Global initiation model

To convert the present local initiation model into a useful
predictive formula for critical energy requires an a priori
knowledge of the approximate blast wave velocity pro-
file. The simplest choice is the Taylor-Sedov similarity
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Figure 6. Terms in reaction zone temperature Eq. (8), for
case B. —– total temperature gradient; – · – · – heat release; –
– – curvature; · · · unsteadiness. (a) Particle 4; (b) Particle 7.
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Figure 7. Initiation parameter α for cases A and B.

solution for a non-reacting strong point blast,

R =
(

Esource

Aρ0

)1/5

t2/5, (14)
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where Esource is the igniter energy release, and A is a
blast wave constant which is a function only of γ and is
O(1). Successive differentiation of this relation gives the
characteristic shock decay time as

t∗ = − U

dU/dt
=

(
32
675

Esource

Aρ0

1
U5

)1/3

. (15)

A further decision to make is at what point in the blast
wave profile to apply the failure criterion. The numerical
simulations suggest that these detonations typically fail
around the point where the blast wave has decayed to
the CJ velocity, so we will apply the model at U = UCJ .
Substituting Eq. (15) into Eq. (13), and introducing
the asymptotic induction length for a planar detonation
∆i = wsti with the strong shock limit for ws, gives the
critical energy,

Ec = 4.56 × 103A θ 3
CJ ρ0U

2
CJ ∆ 3

i,CJ . (16)

This equation has the same functional dependence on
density, velocity and reaction zone length as the empir-
ical relation in Section 1. For typical mixtures of hy-
drogen or hydrocarbons in air or oxygen, θ ≈ 5 to 15,
resulting in a constant of proportionality B′ of the order
106 to 107. This concurs with the previously proposed
empirical relation.

5. Conclusions

We have demonstrated that in direct initiation of gaseous
detonations by an overdriven blast wave, the primary
physical mechanism by which a detonation may fail to
initiate is unsteadiness in the reaction zone. This notion
has been derived analytically by detailed consideration
of the reaction zone structure, namely the competition
between chemical heat release, wave curvature and flow
unsteadiness. Direct numerical simulations have been
used to confirm that heat release and unsteadiness form
the dominant balance in the reaction zone structure tem-
perature gradient equation, thus indicating excessive un-
steadiness can cause quenching of the reaction and fail-
ure of the detonation to initiate.
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