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ABSTRACT 

The equilibrium state of a mixture of chemically react­

ing perfect gases at fixed enthalpy and pressure is formulated 

in terms of the Massieu element potentials by the application 

of the entropy maximization principle . An iterative solution 

technique is presented to obtain the parameters appropriate 

to the equilibrium state. A method for obtaining starting 

values and a stability criterion based upon the element 

potential method are presented. A perturbation technique 

is developed to predict t he equilibrium state for different 

enthalpy, pressure, and atomic mole number constraints, given 

the solution for one set of constraints. 
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SUHMARY 

The equilibrium state of a mixture of chemically react­

ing perfect gases is described by the application of the 

maximization of entropy principle for the case of fixed 

enthalpy, pressure, and atomic specie mole numbers. The 

conditions at equilibrium are formulated in terms of the 

Massieu element potentials and the temperature; there being 

one element potential for each distinct atomic type in the 

mixture. 

An iterative method of relaxing the element potentials 

and the temperature to their respective equilibrium values 

is presented . The exponential dependence of the partial 

pressures upon the potentials and the logarithmic form that 

is selected for the temperature guarantee the non-negativity 

of pressure and temperature at each step in the iteration. 

A stability criterion based upon the concavity of the 

entropy function in the variable space is developed as an 

aid to obtain rapid convergence . Since the number of atomic 

types is, in general, less than the number of molecular s pe­

cies considered in the reaction, the rank of the solution 

matrix is less than that for solution methods not using the 

element potential technique . The simultaneous relaxation 

of temperature with composition eliminates the need for 

subsequent interpolations. A method of estimating accurate 

starting values for the iteration is developed, and requires 

only that one guess the approximate temperature. 



A perturbation method for predicting the equilibrium 

state for small changes in the enthalpy, pressure, and atomic 

mole numbers is evolved from the iterative solution tech­

nique . The results of the iterative method presented, as 

well as those for the perturbation analysis, are compared 

with digital computer calculations based upon another ana­

lytic approach for nitrogen tetroxide and hydrazine combus­

tion. The results compare to within a few percent, the 

difference being due largely to the numerical inaccuracies 

incurred in interpolating property data tables. 
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Part I 

I NTRODUCTION 

The determination of the state of t hermodynamic equi­

librium for a chemically reacting gas mixture of fixed total 

enthalpy is a problem of daily occurrence in the field of 

chemical rocketry . The problem is readily resolved to t hat 

of determining the solution to a set of non-linear algebraic 

equations by an iterative method. The thermodynamic formu­

lation of the problem determines the character of these 

equations, and therefore greatly influences the complexity 

of obtaining a solution. Through the years a considerable 

number of approaches have been presented, both in the thermo­

dynamic formulation and in the solution technique. The 

methods of (1)-(3)* are representative of these. The fore­

most complicating feature of the problem is the demand that 

the formulation and solution technique be sufficiently gen­

eral to permit rapid convergence to the equilibrium state 

from arbitrary initial parameter estimates. The present 

approach is a simple, yet exact and general , thermodynamic 

formulation coupled with a solution technique possessing a 

thermodynamic criterion of solution stability, a minimum 

number of itera ted variables, and a method for determining 

starting values requiring only the estimation of the thermo­

dynamic temperature. The approach is quite amenable to 

*Numbers in parenthesis refer to the bibliography on page 49 
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either hand calculation or digital computation on small 

electronic computers . 
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Part II 

DESCRIPTION OF THE EQUILIBRiill1 STATE* 

To begin, a closed system is defined. The concept of 

closure is defined with respect to heat transfer, mass trans-

fer, and all types of work. For this analysis the types of 

work are restricted to hydrostatic mechanical work. The 

system is composed of an assembly of gaseous, chemically 

reacting molecules . Such a system may be completely speci­

fied by assigning: an extensive parameter to the lumped 

internal degrees of freedom, the interal energy (U); an 

extensive parameter to the geometric degrees of freedom, the 

volume (V); and a set of extensive parameters to the chemical 

degrees of freedom, the mole numbers (Ni)• The subscript 1 

ranges from 1 to C, the number of discreet molecular species 

in the mixture . The differential parameter dU is a measure 

of the heat transfer to the internal degrees of freedom of 

the molecular species. The differential parameter dV is a 

measure of the hydrostatic work done on or by the system. 

The differential parameters dNi are a measure of the mass 

transfer to or from the system. 

For the system described in the preceeding, we may 

postulate the entropy function (S), which possesses the 

following properties: 

a. S is a continuous and differentiable function of 

the extensive parameters. 

*Portions of this development have been abstracted from 
Blatz and Wrobel (4). 
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b. S is a monotonically increasing function of u. 
c. S is a maximum in the equilibrium stat e. 

d. s approaches the limit zero as (au) -as v) N;.. 
approaches zero. 

If we further define the derivatives with respect to 

t he ext ensive parameter as follows, 

l~~)y N· 

I (la . ) -
T 

) .. 

(as) _ p (lb.) 
aV u,N~ = T 

(;~t. v, Nr:: - )!:_;. (lc.) 
T 

we arrive at the differential form of the entropy function 

dS = du + _e_ dv - .z: f!.; dN.i 
T T .i T 

(2) 

Callen (5) illustrates that these properties of the entropy 

function are compatible with the conventional statements of 

t he laws of thermodynamics. The resulting postulatory form 

of the entropy function is, of course, identical with the 

phenomenalog ical formulation of Gibbs (6) . 

In a chemically reacting system, the concept of closure 

with res pect to mass transfer requires the preservation of 

atomic species . The conservation of atoms di ctates that 

(3) 
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where: 

"' a. w i is the number of a toms of type o< in molecu-

lar species i 

b. the total number of types of atomic species is equal 

to A 

c. N oc is the number of gram a toms of type ex per unit 

mass of system. 

The N oC possess the property that 

(4) 

where A"' is the atomic weight of atomic species <X • The 

total mass of the system is taken to be unity . 

In the light of these definitions, consider the differ-

ential form of the entropy function for a process in which 

the enthalpy and pressure are to remain fixed , i . e . , 

dH = d. ( U + PV) = o 

clP = 0 

(5a . ) 

(5b . ) 

The differentia l form of the entropy function (equation 2) 

becomes 

d 5 = d. ( U + PV) 
T 

0 

_ VdP 
T 

0 

(6) 

In the equilibrium state S is to be a maximum and therefore 

for a virtual process dS shall be zero, subject to the mass 

balance constraints. To determine the solution for this 

constrained maximization problem, the method of Lagrange 
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multipliers* is applied. Define the new function ¢ , 
(7) 

\o( 
where t he A are the constant Lagrange multipliers, one 

for each atomic species constraint. Optimizing the s6 
function with respect to the composition variables evolves 

equation 8. 

ad; (8) --
The entropy derivatives are evaluated from the postulated 

properties of the entropy function presented in equation 1. 

From the mass balance constraints of equation 3, the 

composition derivatives are obtained, i.e., 

dN · (. 

woL ,... 
(9) 

Therefore, for each molecular specie in the mixture at the 

equilibrium state, t he substitution of equations 8 and 9 

into e quation 6 reveals that 

(10) 

The same result is obtained for fixed U and v. The chemical. 

Massieu potential (~i/T) of molecular species i existing 

in the equilibrium mixture can be decomposed into Massieu 

element potentials AtJ{, , there being one element potential 

for each atomic species o( • For example, at equilibrium 

-li-See Sokolnikoff and Redheffer ( 7) for a description of 
this method of determining constrained optima 
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J!:.f.lz,O - 'A+ zX' (lla.) 
T 

}::icoz. = >-' + z>..o (llb.) 
T 

To determine the maximum value of the entropy, subject 

to the constraints, equation 10 is multiplied through by 

Ni and summed over 1 

However, since 

and 

¢ == s + .:£ )...CJ("tvo{_ = s + Fir 
0(. 

F 
T 

jj_- s 
T 

the value of the entropy in the equilibrium state is 

S == J:L - 2 t NoL 
T " 

(12) 

(13) 

(14) 

(15) 

The equilibrium state is specified in terms of the A + 1 

quanti ties [ A01
} , T . It is proposed that the solution of 

the equilibrium problem be performed by relaxing { Xj and 

T by an iterative technique to their respective equilibrium 

values. This amounts to the solution of a constrained 

maximum problem by iteration upon the Lagrange multipliers, 

which take on t he identity of element potentials for this 

problem. It shall be illustrated t hat starting values of 

the parameters are easily estimated and rapi dly relaxed to 

the equilibrium values. 
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Part III 

AN ITERATIVE SOLUTION TECHNIQUE 

A relaxation procedure ror determining the equilibrium 

state is now presented for the system under study. The 

enthalpy of such a perrect gas mixture , at equilibrium, 

shall be equal to the specified enthalpy H, as in equation 

16. 
1-1 - z N· ~· = o . "- ).. 

,(. (16) 

The mass balance constraints require that 

{ N«j - { f ~· w:} == 0 
(17) 

The equilibrium state is described by the element potentials, 

as in equation 18. 

& (18) 
T 

Here ~+ is the standard free energy of molecular specie i 

at temperature T, and p+ is the standard pressure , usually 

taken to be 1 atmos phere . The remaining relation to be 

applied is that relating the partial pressures to the mole 

fractions for perfect gases; the Gibbs - Dalton Law of equation 

19. N· h . 
). - ~A. ---N p (19) 

where N, the total number of moles, is defined as N = ~ Ni • 
...: 

Among these equations, the mole numbers may be eliminated at 

the outset by rat ioing, i.e., 

N< 
= 

H 

rvz f:J:/p w.<.<l(. 

N Z. A/ P ft.;. 
(20) 
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To abbreviate the notation, it is convenient to define an 

averaging operation 
< j': > = ~ p;; P xi 

I. 

Equation 20 may then be abbreviated to 

N"-_ 
1-1 

For the pressure constraint, equation 22 applies. 

$ p;; p = I = <I> 
I. 

(21) 

(22) 

The antilog of equation 18 presents the partial pressures 

explicitly in equation 23. 

k = _r ~ [ z ~ol.- P-/ J 
p p I( ~ RT 

(23) 

For a given estimate of {A:}& Tn, where subscript g implies 

the n'th estimat e, errors will occur in the enthalpy, mas s 

balance and pressure unless the equilibrium values were 

estimated precisely. These errors result in an imbalance, 

or residual, in the various constraint equations. Define 

the following functions for each iteration 

(24a.) 

In the equilibrium state, the~ 's are all zero. The 

6 n 's represent the dimensionless residuals in the con­

straint equations at the n'th iteration. It is desired to 
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relax the selected functions to zero by the Newton- Raphson 

method of linearized differential corrections, i.e., 

0 = d + (dLl~) &Tn + (d f~tn) bA~ 
n dT d f.~ 

(25a.) 

(25b.) 

o( 
It should be noted in passing that the ~ 's could also be 

f ormulated from equation 21 as 

and still retain the non-dimensionality . 

The ~Tn and [SA~} represent the first order correc­

tions to T and [~o(} r espectively to obtain the desired zeros . 

From this point on the dummy subscript/superscript ~ shall 

imply a general atomic species 1 ~ ft ~ A. The various par­

tial derivatives are evaluated at parameter values appro-

priate to the n'th estimate. The first order corrections 

are determined by the inversion of the resulting A + 1 linear 

simultaneous relations . 

The partial derivatives are obtained from the defining 

relations of the ~ 's, 

{)!;/==E._ [<I> -J] == <'i1 > oT dT RTz 

-;;;t! = _£_ [<'>-I] = <wo<.> 
()>/ d~ (3 R. 

df1c~.-= ~ [No(<~> -J] == No([(~ z'> + <ce> 
J T dT H <we(> H R. (ur'> Tz <wt!() 

- <~> <wo(~> ] 
<w"'i' R.Tz 

(26a.) 

(26b.) 

(26c.) 
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(26d.) 

The various averages are computed using the partial pressures 

predicted by equation 23 with the n'th estimates . Substitu­

ting the derivatives of equations 26 into equation 25 and 

transposing the constfu~ts results in equation 27. 

< '-R. '>~ dT~ -- + (27a.) 
RT'V1. T )"\. 

_ 6~ = N~R~ [ <cf>-K f- <_-f?tz),. _ (fz?.,._(w,('t..'> jSTn (27b . ) 
H <w~ If R1..r;_.z.. (w"'~ 1?.2~2 ...,_ T-w. 

-f N~ "-'> [<-It WI~ - (--Pt > ~ < Wo(~t'>n] J} ~ 
H UJ /?t <wll(>.,. /V 

Upon inverting this system, the parameters for the (n + l)'st 

estimate are arrived at by adding the corrections to the 

n'th estimates , i .e., 

(28a . ) 

( 28b . ) 

The exponential form of T is selected to insure only positive 

temperatures. In the limit of small values of bTn/Tn this 

reduces to simple additivity of the linear correction. The 

exponential dependence of Pi upon {A~} guarantees the non­

negativity of pressure. 

The linearized iteration scheme described in the pr e ­

ceeding will succeed in converging to the equilibrium solu­

tion only so long as the influence of the truncated terms 
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of the series expansion remain small. ~nis may not always 

be the case, and is the subject of a succeeding section. 
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Part IV 

THE STABILITY OF THE EQUILI BRIUH STATE 

In order to establish that the optimized solution is a 

maximum, the entropy function must be concave in the region. 

This requires that, for a virtual displacement of the system 

from the converged solution, t he first order change of en­

tropy must be zero and the second order change must be nega-

tive. To evaluate the second order change it is necessary 

to return to the constrained optimum problem. Consider an 

optimizing function 

(29) 

{ 'o(} where 1\ are the Lagrange multipliers for the atomic 

specie constraints and ~ the multiplier for the constrained 

enthalpy. The constraint equations are as follows, 

P=P (30a.) 

H = <' N ft. 
~ ~ .(. 

J. ( 30b.) 

(JOe.) 

Given the entropy flli~ction in t erms of temperature, pressure, 

and mole numbers for a mixture of perfect gases, i.e. equa-

tion 31, 

5 = z N~ ft.; - 2 /1£· ur- NR. kNf_E_)- < N: Riht.N.- (31) 
. - . ~ J-.r L. ,( A. ). T 4 T ~ i 

+NRIM._N 
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the ¢ 1 

ftmc ti on may be expressed explicitly. 

*N~· iL(- z ry;,/ _ NRk(%+)- t ~. Rh~· 
T ~ T I ~ 

(32) 

-1- NR b. N- (/J ~ ~·-h,; + :Z ~ Ao~- ~· U1 o{. 

~ ~ ~ 

-1.' To a quadratic approximation, the variation in ~ is given 

by (33) 

~ ~·C;~· (;- (//) + ~ [-l( (f -Cj)-r ~o(X'--jf+ 
A A 

- R. iM{~-t) 1- R. ~N- ICPn /~.(.·] .f ~· 

- ~ M·CL/ ( Sr) 2 + $~· ( ; - f.b) Jr JN;· 
, Z T • 

+ !G ~l- 8. 2 (JN..lz. 
i?J fV ,z _,· ft{ 

Applying the principle that the first order variations must 

be independently zero, the previously formulated equilibrium 

conditions are repeated, i.e., 

Z.' ).. o( w{ c~.. = + jJ~./r 
0( 

Sm
4
x = J-1 - 2 Aci.No(, 

T ot 

and the Lagrange multiplier lf becomes the inverse of tem-

perature. The quadratic variation must be negative in sum, 

if the optimized state is truly a maximum. The remaining 

quadratic terms of the variation, therefore, must obey the 

inequality of equation 34. 

< Z ~· (JJM.r)' 
; R. 

(34) 
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The mole numbers may be eliminated from equation 34 by apply­

ing equation 19 and its variation. The substitution into 

equation 34 produces the new inequality of equation 35. 

(3.5) 

The inequality of equation 35 may be cast in terms of the 

element potentials by substi tuting from the variation of 

equation 18, i.e., 

<w,1> ~)# + (-ft.> J--tnr 
(36) 

R RT 

and noting that, in equilibrium, the number of moles may be 

expressed in terms of the enthalpy as follows 

(37) 

therefore: 

&_ = - f {!{> = - <ce>fr _ g !p_ ~ 
N <-A> (-A> i P-~· (--!{ > 

(38) 

The result of the substitution is presented in equation 39. 

(39) 

The inequality of equation 39 is of value in determining 

whether a given set of parameter estimates will readily 

converge to the equilibrium values upon the application of 
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a linearized iteration technique, since it contains the 

thermodynamic constraint upon second variations. 

If the linearized corrections to the solution parame­

ters [~}, T do not satisfy equation 39, it is apparent 

that the starting estimates were made in a region of the 

variable space that does not possess the correct curvature 

to describe a maximum. It may be more efficient to re­

estimate than to extrapolate from the initial point, for the 

entropy surface may not be amenable to a linear fit when far 

from equilibrium. The coefficients of equation 39 should 

be evaluated at the equilibrium condition. This is not 

known a priori, and the estimated properties must be substi­

tuted . This lessens the effectiveness of equation 39 as a 

calculation aid. However, this is a good a posteriori check 

of the estimate method developed . A further discussion of 

this point is presented in Part VI when numerical results 

are compared. 
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Part V 

CONVERGENCE OF THE SOLUTION 

The application of a linearized iterat ive technique 

cannot guarantee unconditional convergence to the equi-

librium solution. The thermodynamic stability criterion 

discussed in Part IV is a convenient discriminator for 

first estimates and gives an indication of the thermodynamic 

influence upon solution convergence, but is admittedly cum­

bersome for evaluation at each step . It is convenient to 

introduce some measure of the total error in the solution 

to judge the progress of successive iterations and determine 

when the solution has essentially converged . This can reduce 

the number of iterations to convergence by indicating the 

most efficacious path of relaxation. In the linearized 

scheme, the slopes of the ~ functions are extended in the 

various coordinat e directions from the estimated point . Due 

to curvature of the function , the linear extension departs 

from the true dependence . Because of this departure it may 

be expected that the direction of the change is approximately 

correct , but that the magnitude of the correction vector may 

be incorrect . If the proposed linearization is a good esti-

mate of the actual dependence , the optimum correction vector 

magnitude will approach the predicted magnitude . The optimum 

magnitude is that which minimizes the errors ~p and {Ll~} • 
P { 

/\o(} 
The 6. and ~ are dimensionless measures of the errors 

in the various constraints, are zero in equilibrium, and are 
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normalized. The normalization permits comparison of the 

errors with unity to determine an absolute measure of 

convergence. 

The optimization is a one-dimensional one resulting in 

the proportion of the predicted correction magnitude which 

results in the minimum error. A logical choice for the 

error function to be minimized is the sum of the squares of 

the L P and [ ~} • Define the error at the n'th iteration 

to be 

(dn)2 
+ £1 (6n):G 

oL 

If the iterative scheme is to be convergent, subsequent 

errors should be monotonically decreasing, i.e., E2
_L1<E2 <E2 

1
• n..- n n-

After inverting the correction matrix for the n'th iteration 

one obtains the linear corrections blnTn and 

parameters to be used to calculate the properties at the 

n + l'st iteration are therefore 

(4la.) 

(4lb.) 

In order to minimize the number of iterations required , it 

is desirable to select 7T n such that the error at the start 

of then+ l's t iteration is a minimum. This requires the 

one dimensional optimization of E~ + 1 with respect to 77n~ 

where 
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This implicit function of TT n is most easily optimized by 

a graphical determination. For each value of 71 n' the 

function must be evaluated. After each iteration this opti-

mization must be repeated. The number of iterations, and 

therefore , the number of matrix inversions, may be reduced 

at the expense of more matrix multiplications and manipula-

tions. This inconvenience can be minimized by recognizing 

that the optimization need be only approximate. 

tant cri terion is that the subsequent error E~ + 

smaller than E~. Therefore , if one evaluates E~ 

"n = 1, assuming the linear correction technique 

exact, and finds it less than E~, the c onvergence 

The impor-

1 be 

+ 1 for 

to be 

is assured 

and the next iteration may be started. Note that the compo-
c~.. 

nents .£0. P and .:d must be c omputed for the next iteration 

matrix anyway. If E2 (7Tn = 1) is not less than En2 ' n + 1 

then one may select other values of ZTn and determine the 

corresponding error. A choice of 7Tn = 0.5 will give a third 
2 point, and the trend of En + 

1 
should be apparent, at least 

in approximation. 

It must be noted that, although the errors ~p and ~~ 

are dimensionless they may have a disproportionate influence 

upon the combined error E2 • In particular, the enthalpy 
CJ(._ 

terms in 6 , i.e • , 
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The enthalpy is a relative property . A gas mixture may , 

depending upon the datum selected, possess either a negative 

or a positive value of H. This may "sensitize" the error 

function to small changes in enthalpy since, for small 
(-A.'>. 

changes in parameters , H can undergo order of magnitude 

changes as well as sign changes. One could, with sufficient 

sub stantiating experience, assign weighting coefficients in 

the error function formulation to account for these inequi-

ties and define an error function of the type 

(43) 

It will be demonstrated numerically that the selection of 

the enthalpy base implicitly defines such a biasing. The 

enthalpy base which permits negative as well as positive 

values and has its zero in the range such that H is small in 

magnitude represents the most discriminating one with respect 

to enthalpy errors. 

The iterative method fails for H = 0, due to the singu­
oi.. 

lari ty introduced in the definition of IS. • Although such 

instances are rare, this dependence upon the enth alpy datum 

is somewhat disconcerting. It is generally accepted that 

one may assign an arbitrary datum for enthalpy measurement . 

However , the present difficulty is primarily one of defini-

tions. In Part IX a more fundamental pr oblem with respect 

to the enthalpy datum arises and is discussed briefly. 
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Part VI 

APPLICATION OF THE E~mNT POTENTIAL ~ffiTHOD TO THE 

EQUILIBRI UM DETERMINATI ON OF THE 

NI TROGEN TETROXIDE-HYDRAZINE COMBUSTION SYST~~ 

To demonstrate the appli ca tion of the calcu l ation method 

described, a typical solution is presented . The chemical 

system selected is that of nitrogen tetroxide (N2o
4

) and 

hydrazine (N2~) in a mass mixt ure ratio (0/F) of 1.2:1. 

The combustion is assumed to occur at 150 psia. This system 

is a convenient example in t hat t he equilibrium s olution is 

available from independent calculations for comparison 

purposes. From these assumptions, and the propertie s of 

t he reactants, the [N~J and H may be determined as follows: 

The masses of the separate reactant s are 

mass of N2\ = 1 = 0.4545 gr./gr. mixt ure t + 1.2 

1.2 = 0.5455 gr./gr. mixture t + 1.2 

The moles of reactants are computed, using the molecular 

weights of t he reactants, to be 

moles of N21\ = 0.4545 = 0.014183 mo1./gr. mixture 
32.048 

0 ·5455 = 0.005928 mol./gr . mixture 
92.016 

Using the chemical formulae for t he reactants, t he gram 

atoms of t he species [N«]are 
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NH = 4(0.014183) = 0.05673 gr. at./gr. mixture 

NN = 2(0.014183) + 2(0.005928) = 0.04022 gr.at./gr. 

mixture 

N° = 4(0.005928 = 0.02371 gr . at./gr. mixture 

The mixture enthalpy is determined from the assigned enthalpy* 

of the reactant mixture at the input conditions (298° K 

assumed) 

h(N204) = -.578 Kcal ./mol . 

h(N2B4) = 18.170 Kcal./mol . 

H = (0.005928)x(-.578) + (0.014183)x(l8.17) = .2543 

Kcal./gr . mixture 

= 254.3 cal./gr . mixture 

This completes the determination of the equilibrium con-

atrainta. 

The first estimate of combustion temperature is selected 

to be 2500° K., approximately 500 K0 leas than the established 

equilibrium value,9) This was selected as being representative 

of the uncertainty in temperature of an unexplored system. 

Appendix I contains the method of determining the first esti­

mates of {Aj from the assumed temperature . The potentials 

are estimated to be, 
}I )l,jR - - q,q/ 

)..~I R =: -/Z. 9Z 

)..~I R =: - !8.06 

-l:·Unlesa otherwise specified, thermodynamic properties are 
taken from reference (8) . 
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Using these values for the potentials at 2500° K, the vector 

of partial pressures of the molecular species is computed 

from equation 23. The var ious coefficients of e quation 27 

are evaluated using the partial pressure averaging tecP_nique . 

The resulting 4 simultaneous linear correction equations are 

then solved. The first order corrections are made to [ A.'o<"} 

and T and a new composition vector computed. The results of 

the first three iterations are presented in Table I . The 
r/. d.. 

root of the error function ( -fi2) and the function .!! - Z)... ~ 
RT o<. .n 

are presented as well, the latter is identically the entropy 

(S/R) in the equilibrium state only. The parameters appro-

priate to the zero'th estimate, i.e., the elemental products 

estimate of Appendix I are presented to illustrate the rela-

tive accuracy of the initial estimate procedure . 
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Table I 

RESULTS OF THE EQUILIBRiill1 CALCULATION FOR THE CONi3USTI ON 

OF N204 - N2B4 AT 150 PSIA AND 0/F = 1.2:1 

,\H/R AN/R AO/R T (°K) I[E2 li->tif 
RT R 

Zero 
Estimate 

(elemental 
products) - 9 .12 -13.03 -14. 22 2500 715. 0 1.430 

First 
Estimate -9.91 -12. 92 -18 . 06 2500 3.50 1 . 560 

1st 
Iteration 

Second 
Estimate - 9 .63 -13.20 -18 .00 2857 0.561 1.546 

2nd 
Iteration 

Third 
Estimate - 9 . 97 -13.29 -17.14 2975 0 .310 1.550 

3rd 
Iteration 

Fourth 
Estimate -10.10 -13.31 -16 . 84 3025 O.J.41 1 . 550 

Independent 
~olution(9) -10 .21 -13.34 -16 . 58 3055 0 1.551 
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The results presented are for iterations in which the 

full first order corrections were applied. It is worthwhile 

to note that the error 1JE2 is monotonically decreasing for 
n 

this system. To determine any departure from the optimal 

iterative steps, the error was evaluated for intermediate 

cases, i .e. , fractional first order corrections. In all 

cases, the linear step appeared to be approximately optimum. 

A solution using precisely optimum iteration steps was not 

performed . The results of this survey are presented in 

Table II, for the sample calculation at the first and second 

iterative step . 

Table II 

OPTIMIZATION OF THE ITERATIVE PATH 

Tin = 0 Tin= 0 .5 Tin = 1 1Tn = 1.5 

"'lE2 2 3.50 2. 65 0 .561 1.74 

fE2 
3 0.561 0 . 270 0.310 --

These results point up the practical efficiency of using the 

full predicted step between iterations, provided that the 

error is decreasing . 

In defining the error function (E2) , it was noted that 

the magnitude of the function is dependent upon the enthalpy 

base selected . The dependence of the magnitude of the error 

at the initial estimate upon the base selected has been 

determined for three enthalpy reference systems in common 

use . In (1) zero enthalpy is assigned to certain stable 
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compounds at 0° K such that virtually all other molecular 

species possess positive enthalpies. In (8) zero enthalpy 

is assigned to the elements at 0° K. In (10) the elements 

are assigned zero enthalpy at standard temperature (298° K). 

It is apparent that, in the order presented, the reference 

bases tend to smaller algebraic enthalpies for a given 

species. 

The values of the mixture enthalpy computed from the 

prescribed reactant enthalpies for the iterative example are, 

2224 cal./gr . , 254. 3 cal . /gr . and 130. 6 cal . /gr . respective­

ly, for the three enthalpy reference systems mentioned . The 

corresponding errors at the first iteration ( lfE1
2 ) were 

0.48, 3.50, and 8 . 18 respectively. This illustrates that 

the error function described can assume different values for 

the same estimate , depending upon the enthalpy reference. 

This scale change does not alter the normalization or dimen­

sionality of the error function . It merely serves to accen­

tuate small enthalpy errors . 

In Part IV, the criterion for the stability of the 

equilibrium state was developed in element potential coor­

dinates . For the example under investigation, equation 39 

has been evaluated for several estimates of the solution 

parameters . The various coefficients of equation 39 can 

be evaluated from the known equilibrium state. For a given 

estimate, the displacements olnT and {~A~}are determinable. 

Since t he estimating procedure of Appendix I requires only 

t he assumption of a trial temperature, the stability 



- 27 -

criterion may be applied to determine the adequacy of the 

estimates at various levels of temperature error. 

The equilibrium value of the temperature is 3055° K. 

The inequality of equation 39 was tested at 2000° K, 2500° K, 

3500° K and 4000° K. The results indicate that the inequal­

ity is served at 2500° K and 3500° K but is violated at 

2000° K and 4000° K. This implies that, for this problem, 

the estimating technique places the parameters in the region 

of the equilibrium state if the temperature estimate is in 

error by less than approximately 500 ~. The preceeding is 

substantiated by noting t hat at 2500° K the solution converged 

readily without recourse to any damping of the linearized 

scheme . This was not the case for an attempted solution 

using the elemental products estimate . 
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Part VII 

AN ESTII'iATE OF TRACE iviOLECULAR SPECIES AND 

A TEST FOR CONDENSED PHASES 

The analysis presented will determine the equilibrium 

state of maximum entropy for a specified set of molecular 

species assumed to be present in the mixture. For the sake 

of brevity, only a portion of the possible molecular species 

are considered in the equilibrium determination because of 

the vanishingly small mole fractions, and therefore influ-

ence, of certain molecular forms in a given region of tem-

perature. The rank of the correction matrix is unaffected 

by the number of molecular species considered. However , the 

vector multiplications represented by the coefficients of the 

matrix become operationally more cumbersome to perform because 

of the number of components involved. This implies that an 

appreciable calculation effort may be expended needlessly by 

considering trace species. A procedure for avoiding this is 

described in the following . 

At each step in the iteration, the mole fraction of all 

possible molecular s pecies may be evaluated from the esti-

mated parameters to be 

h · + [ \# .f3 JJ+-_r) = !:li_ = K ~ ~,4 - £::::L ] 
p N p R R-T 

Those species exhibiting a value less than some arbitrary 

level, e . g . 10-4 to 10-5 should be neglected in the succeeding 

iteration. The correction matrix coefficients are computed 
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on the basis of a mole fraction average, and therefore coef­

ficienGs computed for the truncated species distribution 

will assymptotically approach the values computed consider-

ing all possible species. At convergence, when the error 

has been reduced to an arbitrarily small value, the parame-

[xd..}, ters T are assymptotically approaching the exact 

values, and the partial pressures of trace species predicted 

from these parameters are essentially correct. The resultant 

mismatch in constraints [N~}, H, P, should remain negli­

gible . Thi s mismatch may readily be determined if desired. 

This procedure may be used to predict the presence of 

condensed phases as well, although only qualitatively at 

present . A gaseous molecular specie may represent the vapor 

phase of a possible condensed phase. Although only perfect 

gases have been considered in the iterative scheme, the under-

lying analysis is applicable to condensed phases. The chemi ­

cal potential (;Ui) of the gaseous phase of a molecular 

species is , in the equilibrium state, equal to 

The molal chemical potential of a pure , ideal condensed 

phase is only a function of temperature, and is tabulated. 

Therefore , if the value of the chemical potential of the con-

densed phase of molecule i at the converged temperature T is 

less than the gaseous phase potential computed from Tz >..~~""-, 
d. 

the condensed phase is present in some unspecified amount, 

and t he solution must be re-evaluated, taking into account 

the phase or phases predicted. This recomputation has not 

been developed in the present analysis. 
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Part VIII 

EXTENSION TO PSUEDO-EQUILIBRIID1 STATES 

The ~~alysis presented is valid for predicting the 

state of equilibrium obtained by a mixture of reacting gases 

given time for all kinetic processes to subside, or come 

into balance . In a dynamic process it may be desired to 

determine the psuedo-equilibrium state in which certain, or 

all , of the molecular species are "frozen" at specified 

molal levels not necessarily those of t he maximum entropy 

state. ?ne iterative sch eme may be applied to such systems 

to determine the adiabatic temperature and unspecified 

molecular specie mole numbers . This requires the introduc­

tion of the new constraint(s) that N i shall be a constant 

equal to the specified value for the frozen components . 

~ is a dummy variable representing the frozen specie ~ 
.( 

The composition vector Wj is replaced by one which has a 

Here 

• 

zero component for all but~=~ , for which the component is 

unity. This specification increases the number of variables 

to be iterated by one for every added constraint. In effect, 

the frozen molecular species are treated as inert, irreducible 

atomic species. The effect of the additional constraints is 

to uncouple the correction equations, and results in numerous 

zeros in the correction matrix . 

An interesting extension of the psuedo-equilibrium 

approach is to cases in which a molecular specie is limited 

to mole numbers greater than a specified value. In such 
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cases, the molecular specie in question is introduced both 

as a psuedo-inert atomic specie and as a conventional product . 

This requires the introduction of two composition vectors for 

a single molecule and is best handled in the calculat ion by 

assigning one or the other a dummy notation . 
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Part IX 

EXTENDI NG THE SOLUTION 

Once the equilibrium solution has been obtained for a 

set of constraints P, tNfH} , it may be desired to determine 

the influence of small changes in these constraints upon the 

equilibrium state. In particular, the solution at another 

pressure or enthalpy may be desired. The linear correction 

equations represent a perturbation procedure for just such 

changes • The functions Ll P, { E}, defined as the error com­

ponents in the iterative calculation take on values appro-

priate to the perturbed constraints. A solution of the 

resulting simultaneous equations determines the linear per­

turbation of the parameters [fJ, T, and permits an approxi­

mation of the new equilibrium state. The new constraints 

P 1 , N~' , H1 prescribe the new values of the ~ 's as 

follows. 

The linearized perturbation equations are 

0 = t6p' + (44a.) 

The errors, or residuals, are to be made zero in the new 

equilibrium state. The b.P', [~-<'J are defined using the 

new constraints, i.e., 

J 

(1 > -I =- p (1>-! 
p' 

(45a.) 
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Nc( I .J)_ 1 

<' n) - I 
H' (w•>' 

p p' N-<'(~'> -I= N~'(-j,_)- I 
p' P H 1 < w-<> H I < w-<) 

(45b.) 

The necessary derivatives are the same as those computed 

in the iterative scheme, except that all of the primed 

constraints are substituted . The resulting perturbation 

equations are therefore 

(46a.) 

(46b.) 

This set of equations may be simplified by noting that P 
P' 

may be factored, and that the following relations are 

appropriate at the point from which the perturbation is 

made 

( wol..') == N""­

(1{> H 

A further abbreviation is possible by noting that for small 

changes in the variables 

p ~ ? -"--' 
p 

o('j .. tc<' /} I 
I - N I 1-1' -::::: - ~ e!.-. + -»n :: 

N'YH /v'« 
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Including these simplifications and abbreviations into the 

perturbation equations yields 

(47a.) 

(4 7b.) 

The presence of the primed quantities in the correction 

matrix would constitute a second order correction in the 

solution, and consequently they have been replaced by the 

base values . All other second order terms have been dropped 

in the linearization. Also, retaining the primed quantities 

would require the re-evaluation of the correction matrix at 

each perturbation. By this method, the solution may be 

extended from a known point to obtain approximations of the 

parameters appropriat e to the new equilibrium state f or 

constraints P', H1 , [N~'} • Again it must be cautioned 

that the enth alpy base selection may influence the accuracy 

when working with H and/or H' nearly zero . 

Two numerical examples have been evaluated to illus-

trate the application of such a perturbation technique. 

The variations with pressure of {X'~} , and T were computed 
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for the 1.2:1 mixture ratio, nitrogen tetroxide-hydrazine 

system. These were compared with the values obtained by 

an independent exact solution.(9) The base point was at 

a pressure of 150 psia. The comparison was made for pres­

sures from 5 psia to 160 psia . Further data for comparison 

was not conveniently available. The 6"'- 1 s are zero, since 

enthalpy and atomic specie values are constant, i.e., 

appears only in 

(N~ 1}. The influence of a pressure change 

the 6P', which takes on the value ln pr • 
p 

The averaged properties at the base point of the perturba-

tion are all available from the previously mentioned itera­

tive solution. The set of perturbation relations were 

solved for the influence of pressure changes, and compared 

with the exe.ct solution. The plots of [I.e>(], T versus ln P 

for the exact solution are presented in Figures (1) and 

(2) respectively, and the slopes compared with those pre­

dicted by the perturbation method. The results of the slope 

comparison are presented in Table III. 

Table III 

COMPARISON OF TEE PERTURBED SOLUTION AND AN EXACT 

CALCULATION FOR N204 - N2H4 COMBUSTION (0/F = 1.2:1) 

d ( AH I R) cl ('A"' IRJ cl..('AO/R_) d~T 
d -P.m. p cJ._ .i.m_ p d..Q.m p ciJht- p 

Perturbed 0.4128 0.4425 0 .322 0. 03035 

Exact ( 9) 0.4213 0.4385 0.295 0.02915 

% error -2.0 0.87 9.1 4.1 
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An examination of the plots of the exact solution 

parameters illustrates that only the parameter ln T devi­

ates from a linear function of ln P over the range illus­

trated. The errors in the[~} function slopes of Table 

III can be attributed to numerical inaccuracies in the 

correction matrix coefficients, and to the difficulty of 

establishing an accurate slope from the discreet points 

of the exact solution. The exact solution compared does 

not result directly in the element potentials , and there­

fore requires an intermediate calculation to arrive at the 

comparable variables. This calculation requires interpola­

tion from the free energy ( ~i ) tables at the various 

temperatures. 

The success in predicting the equilibrium state for 

lower pressures than the base point implies that higher 

values should be equally successful since, for perfect 

gases, there can be no discontinuous behavior with respect 

to pressure. The perturbation with respect to pressure makes 

possible the examination of the effect of pressure upon the 

equilibrium without the necessity of repeating a multi­

stepped iterative solution from arbitrary first estimates . 

For the specific example, the perturbation is shown to be 

valid over a considerable range (5 psia < P' < 160 psia) and 

may, in fact, be adequate over the range of general engineer­

ing interest in combustion processes. 

The variation of the equilibrium state with a change 

of the applied pressure, as discussed in the preceding 
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paragraphs, is of considerable interest and may be examined 

further. If we assume that the perturbation is valid over 

some arbitrary range of pressure for fixed H, [N~J , the 

changes of the mole fractions of the mixture molecular com­

ponents with pressure are easily predicted, since for a 

given species i 

cL9!Yl p..: = 

clkP 

(48) 

in the region in which the perturbation is valid. Denoting 

the new state with primes, this predicts that 

p/ = Pt· . (P)' ~ .. -; 
P' p ? 

(49) 

for each molecular specie. The temperature for the new 

equilibrium state is given by 

(50) 

The ki and kt are all specified by linear combinations of 

the computed {A~ , T slopes. The above forms would be 

of considerable value for instances in which a range of 

pressure levels is to be explored for a given set of con­

straints {Noc} , H. For additional accuracy, an iteration 

at the new point would account for the higher order terms 

dropped. 

One would expect that the most direct method of obtain-

ing the variation of the solution parameters with pressure 



- 40 -

l-rould be through the differentiation of equation 22. Doing 

so results in the following, 

= 
R. diM p 

( 

(WI) 

d. fM T = RT 
diM p (-I[> 

A comparison of these predictions with the exact solution 

has been made for the sample calculation. The results are 

in poor agreement. The disagreement appears to be due to 

the relative nature of the enthalpy discussed previously. 

For instance, in the temperature derivative the variation 

of absolute temperature with absolute pressure is predicted 

to be a function of the relative property < h > • 

It was not convenient to evaluate the enthalpy per-

turbation solutions independent of any atomic specie changes 

because the exact solutions readily available are for 

constraint appropriate to the combustion of specific r eac-

tants. To compare , the perturbation was a pplied to the con­

ditions of 1 . 0:1 and 1.6 :1 mixture ratio combinations of 

nitrogen tetroxide and hydrazine at 150 psia . The base 

point for the perturbation was at 1.2 :1 mixture ratio. 

These examples s pan the stoichiomet ric condition of 1 . 44:1 . 

The magnitude of the perturbed constr aints , the predicted 

values of the parameters , and the exact values are pre-

sented in Table IV . 
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Table IV 

RESULTS OF A PERTURBATION IN I-HXTURE RATIO FOR 

NITROGEN TETROXIDE- HYDRAZINE AT 150 PSIA 

Hixture Ratio (0/F) 1.0:1 1.2:1 1.6:1 

d log NH/H 0.0023 0 -.00448 

d log NN/H 0.0514 0 -. 0955 

d log No/H 0.1845 0 -.339 

pred. AH/R -9. 90 - -10.70 

exact AH/R - 9. 85 -10.21 -10.71 

pred. ~/R -13.29 - -13.41 

exact AN/R -13.28 -13.34 -13.36 

pred. >.P/R -17. 27 - -15 .36 

exact )..0 /R -17.53 -16.58 -15.53 

pred . T° K 2984 - 3157 

exact T° K 2945 3055 3059 
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The contents of Table IV illustrate that the results 

of the perturbation compare favorably with the exact solu-

tion values. Due to the rather large perturbation at the 

1.6:1 point, the results deviate quantitatively from the 

exact values. In general, one will be interested in only 

small changes in constraints such as those that occur due 

to finite heat transfer or limited secondary injection. 

Expression of the equilibrium state in terms of the 

element potentials for gaseous systems permits a consid­

erable reduction in calculation effort when a number of 

conditions are to be investigated for a given set of 

reactants. At a given pressure, the converged iteration 

for a s pecified mixture ratio represents a base point for 

a perturbation to other mixture ratios. If not exact, this 

at least will give adequate estimates for rapid convergence 

at the new point. Given results at one pressure, the per-

turbation procedure determines the equilibrium state for 

other pressures without subsequent iteration. Since the 

iterative process is usually the most time-consuming cal-

culation in thermochemical problems , the potential compu­

tational savings is considerable. The parameters {~~} , T 

were determined from the exact solution(9) of the nitrogen 

tetroxide-hydrazine combustion system. They are presented 

in Table V, and illustrated graphically in Figure (3). A 

tabulation of the [ ;__<} and T as a function of { Na(}, H, and 

P from the results of completed solutions could aid in 
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estimating parameters appropriate to different constraints. 

In this regard, a correlation formula might be developed to 

speed the estimating. 
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P~tx 

CONCLUSIONS 

The presented method of determining the equilibrium 

state of a mixture of chemically reacting gases has been 

shown to be simple and versatile in application. The method 

of determining starting values from an estimate of tempera­

ture alleviates the chore of making an arbitrary estimate 

of t he many v~iables involved, and at the same time it 

results in an accurate starting point. A stability cri­

t erion for the equilibrium state is presented in the element 

potential coordinates. The perturbation method presented 

is valuable in determining the trend of t he solution result­

ing from a change in constraints, without resorting to a 

detailed exact solution. Some, or all, of these refinements 

could be advantageously incorporated into existing calcula­

tion programs to reduce the time, and therefore cost, of 

digital computer operation for propellant performance calcu­

lations. The iterative solution deals with a number of 

equations equal to the number of atomic types plus one. For 

typical calculations this number will rarely exceed eight. 

Therefore, limited capacity computing equipment may be util­

ized in the analysis. The error criterion discussed is 

useful as a solution aid and may find furt her a pplication 

in a study of the convergence limits of t he solution method 

presented. 
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NOMENCLATURE 

Symbols 

Number of atomic species in the mixture 

Atomic weight of atomic species ex:. 

Number of molecular species in the gaseous mixture 

Molal specific heat at constant pressure 

Error function of equation 40 

Gibbs function (H-TS) 

Mixture enthalpy 

Molal enthalpy 

Number of moles 

Total hydrostatic pressure 

Partial pressure of component i 

Molal perfect gas constant 

Mixture entropy 

Thermodynamic temperature 

Hixture internal energy 

!1ixture total volume 

Iterative function, equation 24 

Optimizing functions, equations 7, 29 

Element chemical potential 

Stoichiometric coefficient 

Molal chemical potential 

Operators 

d, a Differential 

~ Finite difference 
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< ) Average by mole fraction 

{ } A vector of comp onents 

Subscripts/Superscripts 

o( Pertaining to atomic type ~ 

p General atomic type 

i Pertaining to molecular specie i 

n Denoting the n'th estimate in the iterative solution 

Denoting the perturbed values of the system con­

straint 
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Appendix I 

A HETHOD FOR DETERMINING STARTING ESTIMATES 

It has been stated that accurate first estimates of 

the parameters [XX} were simple to evolve. The succeeding 

is a technique for obtaining these estimates. The first 

estimate of temperature is strictly an estimate, in that 

no simple approximation technique appears applicable. In 

lieu of any intuitive feeling, some standard estimate may 

be used. The values of {A~} can be estimated from the 

assumed temperature and the system constraints. Due to 

the additivity of the atomic potentials to result in molecu­

lar potentials, as described in equation 11, it is not 

necessary to estimate the chemical potentials of monatomic 

species. One need only estimate the chemical potential of 

A molecular species which have linearly independent compo­

sition vectors ( uu; ). Thus one selects components, one 

representative of each atomic species present . 

The initial estimates of the { ACI(} are arrived at by the 

solution of the A equations , 

~~"-= _ldf _ A ( _f!J_) - k(~J 
R. ~Rf; ~ N1 P 

} 

(I-1) 

where j ranges over the A representative molecular species . 

The Nj are determined by a mass balance using the {N~J con­

straints of t he problem. Thus the first estimates are 

evolved from the simultaneous solution of A linear equa­

tions. A method of selecting the characteristic molecular 

species required is presented next . 
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A reliable procedure for determining components has 

been found to proceed as follows. One first assumes that 

all of the atoms of species o<.. are in their stable ele-

mental form at the estimated temperature. Thi s permits 

the determination of the number of moles of the A species 

assumed to be present. Using this information, a set of 

{ 1c<o} element potentials A are generated as predicted by 

equation I-1 . Thi s permits the evaluation of a molecular 

composition vector [Pi} 0 where: 

{ rA} ~ [r+~ c >/~_!!~/~- .&+ J} 
o /?. I(T 

(I-2) 

This vector includes, if desired, all combinations of the 

atoms in molecular form for which thermodynamic data is 

available . For each atomic specie o(, there will be an 

ordering of prevalence of the molecular species contain-

ing o(. One selects the most prevalent representative of 

each atomic species to compute the new values of {A~}, by 

satisfying the mass balance among these A component molecu-

lar species. ~llien a particular molecular s pecies is the 

most prevalent for more than one atomic specie, the requi-

sit e number of components to s pecify the problem are arrived 

at by selecting this and the next most prevalent molecular 

specie from the ordering list of the atomic types involved. 

In effect, a crude iteration is performed upon the { ~~} at 

cons tant temperature . To arrive at the estimates, it is 

necessary to solve only one set of A simultaneous equations. 

The effect of this estimation technique is to bring the 
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molecular species into approximately the proportions they 

would exhibit in equilibrium at the estimated temperature, 

although not exactly. For many reactions the most preva-

lent species are known from experience, and the first step 

may be omitted. 

It is worthwhile to note that this estimation technique 

breaks down when the reactants occur in stoichiometric pro-

portions. In such instances, mass balance cannot be sat-

isfied among t he A component molecular species except by 

assigning the coefficient zero to one or more of them. Such 

an assignment would introduce a logarithmic infinity into 

the problem. This may be avoided by assigning some arbi-

trarily small, but finite, value to these vanishing coef­
~ 

ficients. For example, the coefficient 0.005N might be 

assigned to the vanishing component of element ~ • In this 

way, the estimation method may be used for all mixture 

proportions. 

Several numerical examples are now presented to illus-

trate the estimation tecP~ique. The first example is that 

of the nitrogen tetroxide-hydrazine system which has been 

selected as the sample iterative calculation. See Part V. 

The mixture ratio selected (1.2:1) is slightly fuel rich 

from stoichiometric (1.44:1). The estimated temperature 

is 2500° K. The possible products were limited to eight 

molecular species for simplicity in demonstration. These 

correspond to the species of mole fraction greater than 
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10-4 in the equilibrium solution. The atomic species con-

straints have been determined to be 

NH = 0.05673 gr. at./gr. 

NN = 0.04022 gr. at./gr. 

No = 0.02371 gr. at./gr. 

for this problem. The stable forms are diatomic molecules. 

The corresponding estimates of [A:} at 2500° K and 150 psia 

are 

A~ --- - 9. IZ 
R 
AN 

<) = -13 .03 
R. 

t\~ 
- = -14.Z~ 
R. 

From thi s, the sample molecular species vector may be gen-

erated from equation I-2. The result is 

H H2 OH H20 N2 NO 02 0 

(pi/p+)o .055 4.76 2.829 1010.0 3 . 40 .1556 2.04 . 0207 

The representative molecular species are H2 , H2o, and N2 

for the atomic species H, D, and N respectively. 

The second example is that of nitrogen t etroxide and 

hydrazine in stoichiometric proportions . The pressure and 

assumed temperature are as in the preceeding example. The 

estimate fA: J of the parameters is 



'A~= 
R. 

~~ = 
R 
Ao 
_E._= 

R 
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- 9.13 

- I 3.0Z 

- /4.Z I 

The corresponding molecular species vector is 

H H2 HO H2o N2 NO 

(pifl>+)o 0 .054 4.618 2.829 1097.0 3.456 0 .23 

02 0 

2.117 0.030 

The components at stoichiometric conditions are H2 , N2 , and 

H2o respectively. The coefficient of H2 for the succeeding 

estimate is presumably zero, but is taken to be some small 

value, e.g ., 0.005 N H, to avoid the singularity mentioned. 

To illustrate the application of the estimate technique 

to other mixtures and temperatures, the case of a hydrocarbon­

oxygen system is selected. The mixture of reactants C6H2 + 

5.502 is assumed. The temperature is assumed to be 4500° K, 

and t he pressure 150 psia . The elemental products estimate 

is made for the C, H2 , and 02 forms, and gives 
Ac 
-

0 -= -Z.72... 
R. 

A~= -;1.17 
R 

A~- -!S.IZ 
~-

The corresponding composition vector calculated from these 

is, for 9 species, 
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c co C02 H H2 HO H2o 02 0 

Jn(pi,i>+)o 1.57 15.69 13.94 1 .13 -.22 1.25 0.21 1.48 2.0 

The representative species are quite clearly CO, OH, co2 
for C, H, 0 respectively. The abbreviated chemical reac-

tion is therefore, C6H2 + 5.502 ~ 20H + 3CO + 3C02 • 

Several other examples were calculated and the results sat-

isfactorily predicted the accepted predominant species. 

The reason that this estimate technique is an effective 

one in describing the element potentials is apparent from 

an investigation of the describing function, equation 23 

The first term on the right is, by definition, only a func-

tion of the estimated temperature for a given species; the 

second is a function of the prescribed pressure . The third 

term is a function of the estimated temperature, the pres-

sure and the atomic species constraints, and is therefore, 

the most difficult to estimate. Selecting the most preva-

lent molecular specie representative of atomic specie 

guarantees that ln Ni will take on its smallest magnitude 
N 

and any error will reflect only small changes in the poten-

tials {A~}. The corresponding molecular species vector 

will accurately predict the mixture proportions at the 

estimated temperature . 


