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Summary

The element-potential method for chemical equiliﬁ;iuﬁ analysis is #
powerful technique that is 1is virtually unknown in the thermodynamicscommun-— -
ity. It' provides a superior weans for solution of complicated probléms,
especially those involving several phases. The concept of element potentials
13 so useful that it should be included, 1if not preferred, in any advanced

instruction on chemical equilibrium,.

This paper describes the baéic method, a uwew algorithm for its eéfective
computef implementation, and a general-purpose Interactive freeware program
that cAn be used to-solve'cheﬁical equilibrium problems in single- or mulci-
“"phase systems." The method is extremely flexible and robust, and the programs
have beén tested hy many - users 1ln difficult problems in sooting combustion,

opticai materials fabrication, and other multi-phase chemical problems.

1. TIntroduction

‘The solution of chemical equilibrium problems has posed a tough challenge
for numerical computation. The problem may be formulated in several ways. If
one uses the concept of equilibfium constants, then 1t 1s necessary to ident-
ify the set of reactions that take place and to determine the assoclated equi-
librium constants. One then has to solve a set of nonlinear algebraic equa-
tions for the mol numbers of each specles, a difficult task 1f the system is
large. Other methods based on the minimization of the Gibbs function adjust
the mols of each species, consistent with atomlc constraints, until the min-
imum Gibbs function state 1s found. Again, there are many variables involved,
and great care muéﬁ be taken to be sure that all mols are non-negative. When
there are important rare species in the system, this can be a veky difficult

task.



In search of a better way to solve combustion—equilibrium problemé, the
author reinvented what he later discovered to be a “"lost™ method, the so~
called method of element potentials. Early development of the method was done
by Powelll. The RAND method for equilibrium calculation described by Clasen2
is essentially an early implementation of the method. White3 pointed out some

4 extended the nonlinear pro—

computational advantages 6f the method. Bigelow
gramming theory of the method. = The author's contribution is the development
of the dual problem and a powerful numerical implementation. For pre—STANJAN
history of the method, see Van Zeggeren and Storeys. The purpose of this
paper 1is to nmké the method of element potentials known to the combustion
community and to outline an interactive computer program based on the method

that is available for solving chemical equilibrium problems.

The method of element potentials uses theory to relate the mol fractions
of each specles to quantities called element poteﬁkialé. There 15 one element -
potential for each independent atom in the system, and these element poten-'
tials, plus the total number of mols in each ﬁhase, are the only wvariables
that must be adjusted for the solution. In large problems this is a much
" smaller numbef.than the number of species, and hence far fewer variables need
be adjusted. There are many other advantages to the element-potential method
that quickly become obvious when one begins to use it. We believe that ele-
ment potentials should be part of ‘modern instruction in thermodynamics, but

the concept 1s not widely known or taught.

'_The present analysis, and the program, assumes that the gas phase 1s a-
mixture of ideal gases and tha; condensed phases -are ideal solutions. These
are good approximations for many practical problems of interest. The concept
of element potentials 1s not limited to these models, aud we believe that it

may be very helpful in dealing with non—ideal systems.

The program, called STANJAN because of its roots at Stanford and its
connection with the JANNAF thermochemical data tables, 1s an interactive
program designed for use with elther desktop or mailnframe computers. The
basic data afe taken from the JANNAF tables, and data for a selection of
species accompany the program. A companion program; JANFILE, can be used to
prepare data for ﬁther species from the JANNAF tahle data. Both are very

robust, user—friendly interactive programs.



With STANJAN, the user selects the specles to be included in each phése

of the system, sets the atomlc populations and state parameters, and then
. STANJAN solves for the equilibrium state using the method of element poten-
tials. This is extremeiy fapid, and, with an 8087 floating-point coprocessor
on an IBM-PC, solutions for typical combustion problems are returned almost
1mmédiately. The results include the composition of each phase (mols and mol
fractions), and the thermodynamic properties of the system, 1including {(if
desired) the speed of sound.

Thermodynamic_cycle analysis 1s easily executed with STANJAN, because the
user may speclfy the state parameters in a varlety of ways, including
1) temperafure and pressure,
11) pressure and entropy,
111) enthalpy and pressure same as last run,
iv) wvolume, entropy samwe as last run,
The equilibrium composition can be calculated, or a frozen composition can be

specifiéd.

STANJAN can be used to compute adliabatic flame temperatures for reactions
at constant pressure (or volume). The‘approach is first to make a run with
the reactants at the inlet (or initial) state, which calculates the enthalpy
(and energy).-. Ihié i1s followed by a run in which the products of combustion
are considefed, with- the state sﬁecified as having the same pressure and -

enthalpy (or volume and energy) as the previous run.

A series of calculations can be made over a matrix of T and P values.
These tabulated results can be stored in a file for later processing; special
provisions are made for creating output tables readable by spreadsheet pro-
grams, particularly LOTUS-~123.

In summary, STANJAN is a powerful and easy-to-use program for analysis of
chemical equilibrium ia single- or multiple-phase systems. The executable
IRI-PC program disks are freeware and may be freely copled by any institution
for 1its use. The FORTRAN source programs are also avallable at reasonable

cost for users who wish to recompile for other machines or uses.



2. The Basic Theory of Element Potentials

The Gibbs function of a system is:

B
G = (2.1)

1 &5t

where 33 is the partial molal Gibbs function and- Nj is the number of mols
of species j, and s 1s the total number of species in the system. Treat-
ing each phase as either-a mixture of ideal gases or as an ideal solution, the
partial molal Gibbs functions are given by:

'Ej = g(T,P) +RT fn X, (2_.2.)

where gJ(T,P) is the Gibbs function of pure j  evaluated at the system tem—
perature and pressure, Xy is the mol fraction of j in its phase, and R

is the universal gas constant.

The atomic population constraints are:

- -

ninj = Pi ] 1= 1’ seuy a (2-3) .

=1 @

i=l

where ny 1s the number of 1 atoms in a j wmolecule, p; 1is the popula-
tion (mols) of 1 atoms in the system, and a 1s the number of different
elements (atom types) present in the system. Thé equilibrium solution at the
given T and P 1s the distribution of 'Nj that minimizes G, subject to

the atomic constraints (2.3), for non—negative HJ.

Minimization problems with constraints are best handled by the method of
Lagrange multipliers. The development in this section does not assume know-
ledge of the method, but in essence develops the method for this particular
problem. Since Lagrange multipliers may be unfamiliar to some readers and it
is very important in the numerical solution, a brief review of the method ié

presented in Appendix A.

For counvenience, we denote Ej = gj(T P)/RT, and seek the minimum of

G/RT. Using (2 2) we find that, for arhitrary variations in the mol numbers,

4 (=) = Z (g + &n x ) N, +. z Ny - dxg (2.4)



We denote the number of mols in phase m by Em; then,

xj = Nj(“(j) (2.5)

where is the number of mols in the phase containing species § (a

N

species present in more than one phase 1s assigned distinet j 1indices for

each phase). The second sum in (2.4) can therefore be replaced by

P _ 8
. I N -I dx -
z=1 * y=1 3
o m

where p 1s the total number of phases which might be present. This van-

ishes, because the mol fractions in each phase always sum to unity.

Now the de are not all independenf, because of the atomic constralunts.
Relationships’ among the de are obtained by differentiating (2.3):

8 .
I n,dN = 0 » i= 1, ess,y 8 (2-6)

I &
We must solée for the a restricted de in terms of the s—a free dN.,
and then substitute these relationships into (2.4) 1in order to express the
G wvariation in térms‘bf freely variable N;. This process 1s equivalent to
subtracting multiples of (2.6) from (2.4):
G s
d (z5) = jfl (gj‘+ fn xj] an,
(2.7)
a ]

- I A I n dN
a1 1gmp 133

The Ay are the multipliers that are required to drop out the set of restric-
ted de from this equation. Thus, setting the coefficlents of these dN‘1

to zero, one has
g:. ttnx, - L Amn, =0 : (2.8)
h| h
for the restricted 3. With these de absent from (2.7), the remaining

de may be freely varled, and at the minimum- G point there must be no
variations that change G ~(to first order). This will be true only if the



coefficient of each free de 13 zero; hence, (2.8) also appliés to the free

jo So, for every specles,

. . ~ a
X, = ex + I An 2,
; p(, IN 15) (2.9)

Equation (2.9) 1s the main result of the theory of element potentials for
wmixtures of 1deal gases or for 1ideal solutions. It relates the phase mol
fraction of each species to its value of g(T,P)/RT, to the atomic makeup of
its molecule, and to a set of undetermined multipliers (the "Lagrange multi-

pliers™) to be determined from the atomic constraints. The multiplier Ay 1is

called the element potential for 1 atoms. Using (2.2), we see that

— : a . .
gj/gm = 121 *1?11 (2.10)

and hence A; represents the Gibbs fumction/RT per mol of 1 atoms, What is
even more amazing is that each atom of an élemgnﬁ contributes the same amount
to the Gibbs function of the system, ifreépective of which molecule or phase
it is Iin! The -ki are propertles of‘;he system, however, and caunot be tab-
ulated as functions of the atom or molecule, as can the gy It 1s perhaps
for this reason that the method of element potentials has not - been widely
used, although we believe it shou}qAbe'the method of cholce today.

The values of the element potentials are determined by the atomic con-
straints (2.3), which we rewrite as

5 —

I n N,  .x -=p .
o1 B 1

Using (2.9), this becomes a set of a equations for the a unknown A{ and

1=1, ..., a (2.11)

the p unknown N . To this we add the p equations
m
. :
I x, =1, m=1, ees, P (2.12)
Equations (2.11) and (2.12) must be solved simultaneously to determine the

element poteﬁtials and phase mols. This might appear to be a difficult task,
but it is possible to do it accurately and quickly.



In many problems there will be a set of dominant speéies, the mol frac-
tions of which can be estimated from simple balances. These can be used to
estimate the element potentials, which can in turm be ugsed to calculate the
mol fractions of the minor species. As we shall see in examples to follow,
this involves only the solution of linear algebraic equations. Thus there are
advantages to the method of element potentials, even in “small” problems.

Some examples are presented in the next section.

In problems with many species, the method has many significant advanta-
ges. There 1s no need to identify e seﬁ of reactions or to make use of the
assoclated equilbrium constants., One has to deal only with (a + p) vari-
ables, whereas other methods work with the s unknown mols as variables. In a
gas—phase problem with .100 species containing c, H, 0, and N, the élement-
potential method has only five unﬁnoﬁns, whereas mol-iteration methods must
work with 100 unknowns. Mol-iteration methods.must'guard against negative mol
ffactlons, which can never occur wifh mol f;acqions.generatéd by {2.9). Pur-
thermore, they can have serious problems when somé specles have very small mol
~ fractions, but this 1s not a problem in a well-designed implementation of the
method of element potentfals. The power of the element-potential method is
exceptional in dealing with systems containing multiple phases. This will be
illustfatéa by examples after the dual problem and numerical solutfon method
have been described.

3. Element Potentials in Hand Calculations

Two simple examples will 1llustrate. the use-of element potentiéls in hand
calculaﬁiqns. Both involve the system consisting pf co, C0,, 0,, and C(S)
(solid carbon) at 3000°K and 1 atm, where these specles have the following
Gibbs functions:

Speciles g = g{T,P)}/RT
co -33.578
co, ~49.830
0, ~30,273



(a) Same Number of Dominant Species as Elements

Suppose that the system contains 2 mols of C atoms and 1 mol of O
atoms. Some solid carbon must therefore be present, and its mol fraction in

the solid phase must be 1. Using (2.9) for C(S),

kc(s) =1 =L‘exp(-gc(s) + %) (3.1)

The element potential for carbon can be found immedlately from (3.1):
Ao = ggegy * fall) (3.2)

If we can estimate one other mol fraction, we can calgulate'the element poten-—
tial for oxygen. At first glance, it looks as though the dominant gas specles
should be CO,, which has the lowest Gibbs function. Now, the ﬁissociation
of €0, glves 1 mol of CO and 0{5 mols of 0,, for which

G/RT = - 33.578 + 2n(2/3) + 0.5 x [-30.273 + 2n(1/3)] = - 49.668

This is j?st slightly greater than the Gibbs function of the mol of C0,, so
there still appears to be a slight preference for C02. However, a half-mol
of (€0, can combine with a half-mol of C(S) to make a mol of CO. For
the COZA and C(S), "

G/RT = 0.5 x [-49.830 + £n(1/2)] + 0.5 x (- 3.868) = = 25.455

which 1is wmuch greaﬁer than that qf the mol of CO. Hence, any free carbon
will tend to react with C02 to form €O, and consequently we e;pect the
dominant gas specles to be CO. Assuming that the C0 mol fraction is 1,
(2.9) gives

Xeo = exp(—gco g+ xo) = 1 | (3.3)

from which we obtain our second linear equation in the element potentials:

AL+ A =

c o Eco + in(l) - (3.4) -

Solving (3.2) and (3.4) simultaneously for the potentials, we have

Ao = — 3,686

c
8



From this we use (3.3) to estimate the mol fraction of o,

5
x

0. " exp(—gc02 +a. 4+ 210) = 0.1193 x 10

2
The assumption that CO was the dominant gas specles was clearly correct. If
we wished, we could correct our estlmates by lowering the mol fraction of (O,
but in this case we are so close to the exact solution that the iteration is

not worthwhile. - Indeed, this solution is exact to four decimal places!

Suppose at this point we wished to estimate the concentration of a spe-
cles that we have not thus far included in the system, for example 0. We can
do thls easlly using the element potentials. _At 3000°K and 1 atm,
- 12,951, so

Bg T

xo = exp(+ 12,951 - 29.892) = 2.38 x 1078

This is a very accurate estimate, since the inclusion of O 1in the system
with this mol fraction will not significantly influence the element poten~
tials.

In summary, whenever we have a system in which one domiﬂant species can
be identified for each element in the system, the mol fractlons of these
specles can be used to estimaée the element potentlials. With these element
potentials, estimates of all of the other mol fractions can be.made, and
corrections can be made to the element potentials by 1ﬁeration,_ if neces;

sary. The element potentials can then be used to estimate the concentrations

of minor apecies.

(b) Fewer Dominant Species than Elements

Suppose instead that the system contains 1 mol of C atoms and 2 mols
of O atoms. Here the condensed phase will be almost absent and the gas
phase will consist almost entirely of C0p. Therefore, we have only one dom—
inant mol fraction from which we want to estimate two element potentials. We
can still do this using a concept called “balancing”, Thé atomic constrainté

can be written as:

NCO + NCO + Nc(s) = 1 (3.4)

2
9



The idea of balancing 13 to select a set of base species, and then to recast

the constraints so that each equation contains only one of these base species.
The base set should include the dominant gspecies. We select the dominant spe-
cles CO, as one base, and 0, as the other. Equation (3.4) contains only
the base CO, and tells us that there is approximately 1 mol of COZ in the
system. Combining the equations to eliminate 002 from (3.5), we obtain

ZNO - NCO - ZHC(S) = 0 (3.6)

2

This tells us that the second base specles 0, must be "balanced™ by CO
and/or C(S). Since CO "has a much smaller Gibbs function that- C(S), the
balance will be primarily with CO, and so approximately

ZNO = NCO : (3.7)

Since both 0, and CO are in the same phase, this translates into a re-
quirement that the mol fraction of CO must be twice that of COZ'- Then,
using (2.9) in {3.7) and taking the log of both sides, a linear equation
relating the element potentials 1s obtained:

m(2) - §02 = gt ALt A (3.8)

A second linear equation relating the element potentials is obtaiﬁed from the

estimate that the mol fraction of CO, is unity,

24
CO2

We solve these two equations and obtain

+ AC + 210 = fn(l) (3.9)

Ag = - 18351 , ) = -15.739

Using these potentials, the mol fractions are estimated as follows:

x.. = 0.59 , x. = 0.299 ', x = 1

co 02 , co

2

Clearly, the assumption that CO and 0, are rtare specles was not very
good. However, we can correct our estimate by tescaling the Xy so that they

sum to unity,

10




xgy = 0.316 , x°z - 0.158 , "coz = 0.526

Thege estimates are within 10X of the exact values. An improvement can be ob—
tained by iterating, using our revised estimate for xcoz in (3.9). The

result is:
Ac = -~ 18,55 , AO = -~ 15.953

and these produce

xco = 0-390 > sz = 0- 195 s xcoz = 0. 526
These renormalize to gilve

xco = 0.352 » xOZ = 0.175 » xcoz = 0.473
The exact solution 1s

Xo = 0.3582 , xoz = 0.1791 , xCOZ = 0,4027

and so we see that with only two iterations we are very close.

The iterative process used here might be used as the basis for a numer—
ical method for'general problems. However, a general method must work irre—
spective of the structure of any particular problem, and thus the multi-phase,
many-specles problem presents a greater challenge. The numerical method that
we have developed to meet this challenge 1s based on the dual problem devel-

oped in the following sections.

4, The Dual Problem

The objective is to solve Egs. (2.11) and (2.12) to determine the a
unknown element potentlials and the p  unknown phase mols. A convergent
algorithm exists for this purpose, based on a related max—min.problem (the
“dual™ problem). We define three functions of the element potentials and

phase mols:

p
W = I N(z-1)- I ap : : - (4.1) .

11



8
Z = L «x (4.2)
m j=1 J
n m
8
H = £ N, . n x - 4,3
1 (N1 M (4.3)
i=1
where x1 18 defined in terms of the A; by (2.9). HNote that Z, = 1 for
all phases present in the system when (2.12) is satisfied, and H =0 for
all atoms 1 when (2.11) 1s satisfied. Differentiating W(AJE),
W
EYv Hi (4.4)
i
aW
— m
aN
m
so that
a P
@ = I Hdr + I (zm—L)cnrgl (4.6)
i=1 m=]

W will be stationary (dW = 0} with respect to

Note that, at constant N ,
m
arbitrary variations 1in the element potentials at any state for which the

atomic constraints are satisfied (Hi = 0).

We define
5
= I n,.x (4.7)
im j=1 1§75
inm
5
= I N n n X {(4.8)
U (111 k3" 5
j=1
Then
a
dZm = I Dimdli (4.9)
i=1
and
a P
4,
dl-li T Qikdkk + T Dimde {(4.10)
k=1 m=1

12



The nature of the stationmary point in W 13 revealed by

TN Y Yy 2 O (4.11)

Since Q44 > 0, W 1is a minimum at the extremum, and W 18 a concave func-
tion of the element potentials, This means that the wminimum W point, where
the population constraints are satisfied for fixed phase mols, cam be found by
the method of steepest descent, in which we move dowm the path in X sgpace

along which W decreases most rapldly, until we find the minimum point.

Now consider a path in (A, N) space along which the H; all vanish.
From (4.6), we see that W on this path is also stationary with respect to
arbitrary variations dN  when (2.12) 18 satisfied for all phases present.

m
Along this path the Ai are fixed by the N , and we must consider this in
m

the analysis.

Between any two states for which the Hi are zero, from (4.10),

a P
I Q. .dx = - T D dN (4.12)
ik k i
k=1 e
This tells us how the We-minimizing Ay will change when we change the N .
m
We define a matrix E, such that
a
I QikEkm = = Dim (4.13)
k=1
Then, between two nearby states where the H; all vanish,
P —
dA, = I E, dN (4.14)
i im m
- m=l
Then, from (4.9), along the path of states where all Hy = 0 we have
P —
dZ = I A dN (4.15)
m mn  n
n=]
where
a
Ahn = 151 DimEin (4.16)

13



Equation {(4.16) tells how the Zy change when we change the N  along
n

* _
the path where all Hy = 0. Let W (N) denote the value of W along such a
path. Then, from (4.6),

*
oW
_ =V (4.17)
- m
aN
m
where
Vo = z, -1 (4.18)
Therefore, using (4.15),
BZW* 3z
—— = — = A (4.19)
aN 9N aN
m n n
Hence, using (4.16), (4.13), and (4.8),
*
—E_iti_—'- = ; D1 Ei = - : 2 QikEkmEi
aN aN 1=1 0 1=1 k=l m
m m
) a a _
= = I Z ¢ N,,.x.n,,n .E
=1 1=l k=1 (3731713 &} imEkm
8 ( a )2
- L N, .x I n E < 0 (4.20)
i
j=1 (1) 3 1=1 } inm

* *
Hence, W is a maximum at the statlonary point; moreover, W is a convex

function of the N This means that the method of steepest ascent, in which
m.

we move up the W*(ﬁ) surface along the most rapldly rising path, can be used
to find the maximum.

Summarizing, W 1is a minimum for given phase mols at any state for which
the atomic constraints are satisfied. We denote such states by H*. w* is
in turn a maximum with respect to the phase mols when the wmol-fraction—-sum
constraints are satisfied. These facts form the basis for a convergent solu-

tion algorithm.

14



At the equilibrium solution,

« a
Voax = ~ 151 APy (4.21a)

but, since A; 1a the G/RT per mol of 1 atoms,
W = = G/RT (4.21b)

The max-min problem for W 1s the "dual” of the Gibbs minimization problem,
with the dual function W Thaving physical significance only in the equilib-

rium state.

To help the reader understand this max—min problem, consider the one-

species case; (2.9) becomes

X = e—§+nl (4.22)
and the atomliec constraint is
i'n X = p (4.23)
For this case,
v o= H(e"g'*“l - 1) - ap (4.24)

At fixed ﬁ, W 18 a concave function of A, sketched in Fig. 4.la. The
atomic constraint (4.23) is satisfied when

A = L[g + n(2) (4.25)
n nN

The path along which the constraints are satisfied is sketched in Flg. 4.lb.
Thus,

L
P_§-Rlg L
W == N n[g+!.n (_‘)] (4.26)
Nn

W* i3 sketched as a function of i. in Fig. 4.lc. The maximum of W* occurs

when

N = p/n .~ (4.27)

15
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Figure 4.la W at fixed N

Figure 4.1b Path along which the

population constraint
1s satisfied

Figure 4.lc W* as a function of N
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Figure 5.1 The W surface for g =0, p=1, n=1
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for which the element potential is, as expected,

]
f
S g

(4.28)

*
and the equilibriumvalue of W 1is

*

W = -Ng = - Nni (4.29)
max

5., Dual-Problem Numerical Solution Details

The solution of the max-min problem proceeds in three modes. We shall
first describe these graphically in terms of the previous example and its

extension into more dimensions, and then present the analytical details.

The surface W{(A,N), for n =1, p =1, E = 0, 1s shown 1in Fig. 5.1l.
One way to solve the problem 1s to march down the surface at constant "
until the minimum point 1is reached. The locl of such minima define a road
that leads up the wvalley to the saddle point, where the the equilibrium

solution is located.

Imagine that this surface is a hillside. On the hillside, a hiker has
the choice of going up or down, and he must go down in A space to reach the
minimum W at fixed N. If there were two A's instead of just one, his
downhill path could be taken in many ways; the fastest way down is the "path
of steepest descent”. Once at the roadway, the hiker has a choice of up or
down, and he must go up 1in E;space to reach the point of maximum W* where
the phase-mol-sums are all unity. But he must stay on the road, where the
population constraints are satisfied. He would have a cholice of several up-
hill roads 1f there were more than one E; and he should choose the road of
steepest ascent in order to reach the summit most quickly. This 1s the basis
for the numerical method for solution of the max—-min problem for W; steepest
degcent variation of the element potentials at constant phase mols, followed
by steepest-ascent variation of the phase mols while maintaining the atomic

constraints.

At the bottom of the valley, where the terrain 1s flat, it is hard to
tell which way is down; here steepest descent methods often have difficulty,
or are slow; but Newton—Raphson methods work well when we are close to a solu-
tion. So we use steepest descent to get close, and Newton—-Raphson to zoom to

the minimum. The same basic procedure is applied ascending towards the top.

17



The phase mols are adjusted by steepest ascent untll we are very near the

solution, at which point a Newton—-Raphson {teration is employed.

In a two-phase problem, the hiker could be going nicely uphill, reducing
the mols of one phase, and run abruptly into a fence labeled, "No more mols——
keep out of negative mol-land!”™ At this point our hiker must turn and follow
the fence uphill, maintaining zero mols for this phase, until the path of
steepest ascent leaves the fence. This 1s the basic method by which the so—
lution process decldes which phases are present. We shall now outline the

mathematics of these processes.

Mode l: Steepest Descent of W 1n A Space at Fixed N

If a segment of the descent path in X space has length ds, then

di; = fids : (5.1)
and
a
121 fifi = 1 - {(5.2)
Then,
S - 131 H £ (5.3)

where the fi are the direction cosines for the descent path. To find the
path of steepest descent, we seek the f; that maximize dW/ds, subject to
{4.23). Thus, we put
a
av _ 8 -
d (ds 3 )3 fifi) 0 (5.4)
1=1
where B/2 1s a Lagrange multiplier for the normalizing constraint (5.2).

Hence, the steepest descent path 1s that for which

(1

, - Bfi) af, = 0 (5.5)

i

n o1

i

for arbitrary dfi. Thus, the direction cosines for. the path of steepest

descent are given by
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Then (5.2) gives

8 2
I HIHI = B (5.7)
i=1
so that
a
dWw  _ _
i 151 H1H1/B B (5.8)

which must be negative for descent. Hence, from (5.7)

, a
B = =4 I HH (5.9
=1 11

For a given set of phase mols and potentials, we calculate the Hy and
determine the path of steepest descent towards the set of Ai which, for the
given phase mols, will render all of H; = 0. The distance that we should go
along this path is estimated using a Taylor series expansion of dW/ds,

A
dWw _ dW d W
35 - adsle T 2 As + .. (5.10)
ds |o

Since we seek dW/ds = 0, using (5.8) and (4.4),

a da a a 2

3 cdwy Tk 3°W
0 = B+ I =— (=) =— = B+ I I ————ff As (S.11)
pap ANy ‘s’ ds el 1op MY LTk
So, using (&4.11)
As = - B (5.12)
a a
I . q f.f
k=l 1= 1K

Since the matrix Q,, 1s determined by the current values of the phase mols
and element potentials, the path of steepest descent and the trial step we
should take down it are easily calculated. This method for adjusting the
element potentials 1s denoted as mode 1 in STANJAN,

In mode 1, the first thing done after the variocus quantities have been

evaluated for the.new potentials is to examine Ehe behavior of W on the old
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path of steepest descent. If the minimum point has been passed, then a "val-
ley 1interpolation” is made using both the old state and the new state to
estimate the location between them on the descent path where the minimum W
point occurs. This interpolated state is then used to start a fresh descent.
If the trial points are jumping back and forth across a valley, overshooting
the minimum point, then “"damping” is turned on, in which the step along the
path 1is reduced from that estimated above. This allows the trial point to
descend down a steep hillside and then turn to follow the gentler downflow of

the valley towards the point of minimum W.

Mode 1 18 very robust and will work effectively, even when the trial
state is far from the state of minimum W. For example, convergence has heen
obtalned iIn cases where the initfal mol fraction sum Z was as large as
1017! Improvements occur along the descent path at the rate of a decade or
two per step, and it 1is not long before the errors in the Hi become quite
small. At this point an adjustment is made in the phase mols, and the solu-

tion process continues.

Mode 2: Newton—Raphson Adjustment of the A at Fixed E

Near the polnt of minimum W, 1t becomes difficult to tell the direction
of steepest descent, and instead a Newton—Raphson iteration 1s used to find
the point where the Hi all vanish. Equation (4.10) becomes, for fixed phase

mols,
a
i Qb = - H (5.13)

This 1s solved to obtain the desired changes. This procedure 1s denoted as
mode 2 in STANJAN. It is adopted whenever the H errors are sultably small,

and abandoned 1in favor of mode 1 1f the computed changes are too large.

Phase Mols Adjustmeats in Modes 1 or 2

After a set of Ay rendering the H1 all zero (approximately) has been

found for a glven set of E., we must adjust the N for maximum w*. When
m m

the solution is not close, a steepest ascent method is used to adjust the

N .
m
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*
Let r, represeat the direction cosines in N space, and ds an ele~

Tk
ment of the path along which we seek the maximum of W . Then

_ *
dN a r ds {(5.14)
m m
p
L rmrm = 1 (5015)
m=1
From (4.17),
*
P
M- :ovre (5.16)
m m
ds m=1

To fiand the path of steepest ascent, we seek the r_ that maximize dw*/ds*,

n
subject to (5.15). Thus we set

*
W a P
d(—*-i z rmrm) = 0 {(5.17)

where af2 18 a Lagrange multiplier for the normalizing constraint (4.34),

Hence, the steepest ascent path is that for which

P
mil (v,-ar ) df = 0 (5.18)

for arbitrary dr_. Thus, the direction cosines for the path of steepest

m
ascent are given by

Ly = Vm/a {5.19)
Then (5.15) gives
P 2
L VV = a (5.20)
@ m
m=1
50 that
*
p
M - L VV/a o= a (5.21)
mm
ds m=]1

which must be positive for ascent. Hence, from (5.20)
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a = El Vme {5.22)
m=

The distance that we must go along the path is estimated from a Taylor's

*, *
series expansion of dW /ds .

dw* dw* dzw *
5 = * + %7 AS + ... {5.23)
ds ds (o ds o

Since we scale the point dw*/ds = (0, using (5.21),

. dN *
P 3 dw m P P azw *
0 = a+ I T T = o+t L I ———1rr =+ &s (5.24)
-— - m
n=l 3N ds ds n=1 m=1 3N 3N
m n m
So, using (4.19),
* - a
As = 5.25
P P ( )
b I A rr
p=l g=] AD QM

This 1is used to estimate the distance along the path to the maximum W
point. 1If this distance would produce negative phase mols, then the changes
are reduced to prevent this occurrence. Limits placed on the changes, “ridge
interpolation”, oscillation damping, and other numerical tricks add to the

robustness of the program.

If 1s the path of steepest ascent reaches a state where one N is zero,
then that phase will be absent 1in the system, and the phase 1is d:;pped from
the phase sums. A new path of steepest ascent 1s then computed, and a step
towards the maximum of W* is taken. The possibility of inactive phases

becoming active 1s considered in each phase adjustment.

Mode 3: Newton—Raphson Adjustment of the XA and ﬁ

When the atomic poulation errors are small and the mol fraction sums for
all active phases are very nearly unity, a Newton-Raphson scheme is used to
adjust the iy and N simultaneously. The equation system (4.9), (4.10) is

m

used to calculate the changes necessary to bring all Hi to zero and all Zm
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to unlity. This mode is adopted whenever the solutlion is wvery near and aban-
doned whenever the changes it requests are too large. Thils mode 1s always the

last mode used before a converged solution; it is called Mode 3 in STANJAN.

Accuracy and Convergence

The element potentials and phase mols are adjusted to accuracy of | part
in 108, and the mol fraction sums are made unity to 1l part in 1010,  This
accuracy 1s maintained, even in nearly singular cases, with the help of the

matrix conditioning procedure described below.

300
On an IBM-PC, mol fractions as small as 10~ are displayed. On most

nalnframes the mol fractions can be no smaller than 10'68. Thus, more acccu—
rate results can actually be obtained in some problems using the smaller

desktop computers!

6. Independent Atoms, Basls Speciles, and Matrix Conditioning

In some syatems the atoms are not Independently variable; for example, in
a system consisting of CO, COS, and S, the atoms C and O are not in-
dependently varlable. In order to avold singular matrices in the solutionm,
we must work only with the independent atoms. These are ildentified in the
STANJAN initializer, described below. The atom sums above are then carried
out only over the independent atoms, and only the element potentials of inde-

pendent atoms are computed,

In any system there will be a small set of base species which together
could contain all of the atoms. While there is one base species per indepen-
dent atom, there need not be a one-to—one correspondence between the indepen-—
dent atoms and base species. Usually there are many possible sets of base
specles; the most useful are those that dominate the system, and the STANJAN
Initializer identifies these. For exanple, In a system containinga mixture
of €O, COp, 0,, and C(S) at 3000°K and 1l atm, with a C:0 ratio of
2:1, the base species will be C(S) and CO (see example in Section 3).

The base species play a key role in obtaining accurate solutions when the

matrices are nearly singular. This 1s accomplished by a process we call

matrix conditioning, an idea closely related to the balancing concept used in

the second example of Section 3. For exampley’éonsider a system contalning
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co, COZ’ and 02, with a C:0 ratio of 1:2, at a low temperature. The
system will consiat almost entirely of C0y, and the population equations
will he

N +N = l (601)

2N + N, + 2N = 2 (6.2)

Since NCO and Ng are both very small, these two equations are very nearly
the same, i.e., the system is very nearly linearly dependent. Conditioning

removes this difficulty.

We need to solve equations of the form
a
121 Wk = Y (6.3)

where X, denotes the solution vector and Y; the right—hand side (see
(4.,19) and (4.21))., The Q4 matrix associated with this system is

+
*co, * *co zxco2 * Xeo
Qik = N (6.4)
2x + x 4x + x. + 4x
CO2 Cco CO2 co 02
because xCOZ = ], and the other xj are very small, this matrix is very

nearly singular, and hence the solutions of (4.13) and (5.13) are very hard to

construct accurately.

The idea of matrix conditioning 1s to form linear combinations of the
equations that remove all but one base species from each equation. This is

equivalent to multiplying the (6.4) by a conditioning matrix Chi’ this

produces
a a s _ a
I I I C¢C N nnxX = I C Y (6.5)
i 1] k k 114
f=1 k=] §=1 " G LK =1 "
Now, for the nth equation, we select Cni such that the only base species
th

retained is the n
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a 1 if § 1s the nth base species,
L Cninij (6.6)
i=1 0 if j 1s any other base species.
Then, instead of solving (6.4), we solve the conditioned equations
a » * (6.7)
L Qikxk = Yi .
k=1
where the conditioned matrix and right-hand side are
* a
U = E Ciaf (6.8)
n=1
* a
i k=1 ik'k

In the C-0 example above, we take CO, and 0, as the base species. The
first equation does not contain the base 02, and hence 1s already condi-
tioned. The second conditioned equation is formed by subtracting the firat of
(6.3) from half of the second. Thus, the two conditioned equations are

(N X, = Y (6.10)

+ Nco)xl + (ZNCO + N . !

o, 2

co

(-N )%, + (28 -N_JX = -Y +5%Y (6.11)

CO) 1 0, co’"2 1272
This palr of equations will be linearly independent and will yield accurate

numerical results, even when the mols of CO and 0, are very small,

STANJAN computes Qik exactly, so that the base species vanish com
pletely from other than their own equations. The conditicned versions of
equations (4.19-4.21) are solved, rather than the primitive equations. The
bages are reviewed and changed 1f necessary whenever a phase appears or dis-

appears durlng the solution, and a new conditioning matrix is calculated.

This matrix conditioning allows STANJAN to solve accurately, even when
two original equations differ by as little as one part in 1020 or more! The

matrix~conditioning process 18 also used in the phase-redistribution process
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in the initializer (Section 7) to help maintain high accuracy in nearly sing-

ular systems.

The population equations may also be conditioned, producing

a s a %

I I C. N .n .x =
ik k ik k i
k=l j=1 By 1
Note that, by (6.6), all but one of the base species drop out from each of
these conditioned population equations. For example, the conditioning of Egs.

(6.1) and (6.2) produces

N + N = 1 {(6.13)

_ %—N +N. = 0 (6.14)

The right-hand sides of these equations (the "“conditioned populations™) are
just the mols of the base species, and this fact is used to compute the con-
ditioned populations. The balancing procedure described in Section 3 is
required whenever one of the conditioned populations pI is zero, and the
conditioned population equation provides this balance. Note that (6.14) 1is
the balance equation (3.7).

7. Initialization

The solution requires an initial guess, and a good guess leads to a fast
solution. The STANJAN 1initializer is one of the most important reasons for
its success in treating general problems. Problems that could not be initial-
ized by early STANJAN versions now run nicely, and problems that took dozens
of iterations are now initialized so well that only a few iterations are
required. Thus, the STANJAN initializer may be of considerable interest to

those who prefer to use other methods for equilibrium solution.

The basic idea of the Initializer is to create an approximate distribu-
tion of the atoms from which the phase mols and mol fractions of key species
can be estimated. These estimated mol fractions are then used to estimate the
element potentials, in much the same way as the examples in Section 3. The

initializer does this in a way that works for an arbitrary problem.
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The initializer begins by distributing the system atoms to a set of base
specles in a way that makes an approximate Gibbs function as small as poss—
ible. This approximate Gibbs function is that obtained by neglecting the
&n X3 corrections to the Gibbs functions (see 2.2). The initializer minimi-

zes
* 8

G ~
T o I g,N (7.1)
AT 0 B

subject to the atomic constraints (2.3) and to the constraints
Nj > 0 » j = 1’ ess 5 8 ‘ (7-2)

This minfmization problem is a classic problem in linear programming, and is
golved by the simplex method. Because the simplex method may not be familiar
to readers, a brief description of it 1s given here; for more detall see

Appendix B, and for a full account see Veinottﬁ.

The theorems of linear programming show that the solution will be one
where only a small set of specles have non-zero mols (in the approximation
(7.1)). At each step in the simplex process one has identified a set of "base
species" that contain the atoms, with all other species having zero mols. The
simplex.proceaa 1s a base~gpecles~replacement process in which the function to
be minimized is continually reduced by changing the base specles set until no
further reductions are possible. There are always as many base species as
there are independent atoms in the system, and the base specles mols together

contaln all of the atoms.

The process begins by placing all atoms in "false" monatamic species.
The atoms are transferred to the real species by a simplex minimization of the
total number of false mols. Important conclusions are drawn at the end of
this simplex process. If it 1s impossible to eliminate the false species,
then the assigned populations were impossible. If a false species remalns as -
a base with zero mols, then that atom is not linearly independent in the sys~

tem. Thie is the process by which independent atoms are identified.

Once the atoms are placed in real specles, the simplex minimization
process continues until no further reduction in ¢* can be achieved. The
dominant species are then i1dentified as the base specles; the mols of all
other species are zero at this point. The conditioning matrix is calculated

for this set of base species.
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The initial distribution of atoms to the base specles allows estimation
of the phase mols and mol fractions of the base specles, with one base species
per independent atom. In order to estimate the element potentials, one linear
equation in the element potentials must be obtained for each independent atom
in the system (i.e., for each base species). For each base there are two

primary possibilities:

i) If the estimated mol fraction is greater than zero, this value 1is
used to derive one linear equation relating the element potentials (see exam~

ples in Section 3).

i1) If the base species was estimated to have zero mols, then the dom-
inant balancing species is identified. The balancing species is a secondary
species that appears in the conditioned population equation with a negative
coefficlent; the one with the largest expected mol fraction is chosen as the
dominant balancing species. Four possible events are then possible:

a) If no balancing species can be found, then the specles is
excluded and the initialization Is repeated.

b) 1If the balancing specles 1s in the same phase as the zero-mols
base specles, then the balance equation 1s used to derive a linear
equation relating the potentials (see example in Section 3). If
the phase has zero molg, the "phase-redistribution” flag is set,

¢} 1If the balancing species 1s in another phase, then the other
zero-mols base specles are examined and the bases are reordered so
that the dominant zero—mols base 1s considered first.

d) If the zero-mols base is the dominant zero-mols base in a phase
containing zero mols, then 1its mol fraction 1s set to unity and
this value 1s used to derive a linear equation relating the element
potentials, and the phase-redistribution flag is set.
The conditioning matrix 1is recomputed whenever the bases are changed. These
processes produce a set of linear algebralc equations, which is solved for the

estimated element potentials,

In determining the balancing specles, estimates of the element potentials
are used to estimate the species mol fractions. The simplex Lagrange multi-
pliers themselves provide the firat estimates of the element potentials for
purposes of selecting the balancing species, Then, after a set of element
potentials has been obtained from the process described above, the selection

of balancing specles 1s repeated using these potentials, and different
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balancers are chosen 1f appropriate. Thus, the final element potentials are

conslstent with the cholces of balancing species used to generate them.

If the phase redistribution flag was set by the element potentlial estima-
ting process described above, then it 1is necessary to redistribute the atoms
to populate an empty phase. The idea is to redistribute so that the balancing
specles are present in about the right amount, which will force the specles
that they balance to be present. The first step is to estimate the mol frac-
tions of the balancing species using the estimated element potentials. Then
the atoms are redistributed amongst the set of specles consisting of the
original base specles plus the balancing specles, seeking to bring the mol
fractions of the balancing species as close to their targets as possible.
This 1s accomplished by a second simplex calculation in which the sum of the
differences between the target mol fractions and actual mol fractions 1is
minimized, subject to the atomic constraints, to the constraint that all mols
must be non—negative, and to the constraint that the target mol fraction can
not be exceeded. Usually these targets are met precisely, The net effect is
that approximately the right number of atoms are put ianto the phases which, on
first estimation, had zero mols. This intricate simplex process is described

in more detail below.

If a phase redistribution is required, the element potentials are reesti-
mated using the revised mol distribution, following the procedure described
above. On each pass the base set is checked to see that they are the dominant
species, and if necessary bases are changed. Thus, at the end the phase mols
and element potentials are all based on a consistent set of dominant species.
These initial estimates of the phase mols and element potentials will generate
approximately the correct mol fractions, and so the equilibrium solution by
the method described in Section 5 usually converges to high accuracy in just a

few iterations.

When running a sequence of calculations involving the same species and
atomic populations at nearby states, the full initialization process 1is
avoided. The mol fractions of the base species from the previous run are
ingtead used to estimate the element potentials, and the phase mols of the
previous run are used. STANJAN also provides the option of freezing the
composition, and these runs do not require initialization or equilibrium

solution.

29



The phase~redistribution simplex process uses the variables

y, = - N

— *
] ] + N(j)xj {balancers) (7.3a)

for the balancing species assigned target mol fractions x;, and
¥y = Nj (bases) (7.3b)

for the base specles. Equation (7.3a) is rewritten as

. .
y, = x I y,+ I N “) - N (7.4)
J .1 (jlo j j"b j j

in (§) in (§)
where the sum over J'o denotes a sum over the base species, and J"b de-
notes a sum over the balancing species, in the phase of balancing species J.
The set of (7.4) for the balancing specles (there may be more than one) is

inverted to give, for the balancing species,

+ (balancers) " (7.53)

= I T,.u¥,u I B,,¢¥.::
R & R P £ N

where j"b denotes a sum over balancing species and j'o denotes a sum over
base species and T and B result from the inversion. Then, for the base

species,
Nj = yj {bases) {7.5b)

Equations (7.5) allow expression of the Nj in terms of the simplex variables

¥y The atomic constraints (2.3) can then be expressed in the form

I R
jbo

ijyj = pi '] i = 1, L N » a (7.6)

where Jbo denotes a sum over all variables in this simplex problem (the
base and balancing specles); Rij is computed from Ijj"’ Bjj" and Nyge
Finally, the simplex variables also satisfy

Y4 > 0 for all j (7.7)

Note that (7.7) keeps the balancing mol fractions no greater than their tar—

gets.
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The simplex process 1s initiated by establishing a feasible set using
additional false monatomic species having yj = Nj and minfimizing the sum of
the false mols, subject to the constraints. Then the problem described above

1is solved.

In order to improve the accuracy in nearly singular problems, the atomic
constraint equations (7.6) are multiplied by the conditioning wmatrix Cy,
discussed in Section 6. In some problems with very rare balancing specles,
the constraint equations may not be very well satisfied after some simplex
base change. A correction is then made. The approach is to select the con—
straint equation best satisfied, and then to treat that silmplex base as a
known quantity in a smaller set of equations for the other simplex bases. The

net result is a remarkable increase in accuracy.

In summary, the initializer 18 a sophisticated program that makes a very
good guess as to the distribution of atoms to dominant species and phases in
the system. It possesses remarkable accuracy in very-nearly-singular situa-

tions. The lmportance of the initializer cannot be overemphasized.

8., Examples
a) Carbon—-Rich C-0 System

The first example involves a carbon-rich mixture of CO, COZ’ 0,, and
0, with the possibility of a solid carbon phase. The full output log of this
run is presented to glve the reader a flavor of STANJAN., The user begins by
calling STANJAN. After an opening opportunity to see a brief description of
the element potential method, the dialog begins. The user's responses are
underlined in the log in Fig. 8.l. The margin numbers refer to the notes that
follow. This example 1s similar to the first two examples in Section 3, and

the reader may find it useful to make the comparison.

1) Note that the first step is to get the data for the species to be
used. In this case the user selects the general-purpose combustion file
COMB.DAT, from which he selects the desired species. When rTunning a lot
of problems with the same specles, it 1s faster to first use the program
JANNFILE to set up a data set containing only the desired species, and
then use the single-keystroke defaults * and # to make the phase
selection from this specles set.

2) In this example the user had made a previous run with the same atoms,
and so 1s given a cholce of using the same populations or making a setup
change. In the first run STANJAN offered two ways to specify the atom
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populations, either by giving them directly or by naming some reactants
in the data file and then specifying the number of mols of each put into
the system.

3) The isentropic sound speed, defined as

R ) (8-1)

is calculated. Equilibrium states will be used to calculate ¢ unless
the frozen composition option is selected, in which case it becomes the
sound speed with frozen chemistry.

4) STANJAN includes an optional instructive monitor, which can be used
to learn about the method. It 18 included here to display the features
of the initializer and dual problem solution described in previous sec—
tions.

5) This 1is what the user would have seen had he chosen to check the
atomic composition,.

6) These are the properties as computed from the JANNAF table data.

7) The initializer first finds that CO will be the dominant species.
The balancing requires the presence of C0;, 1in the amount estimated.
The initializer then redistributes the atoms to the phases to provide the
target mol fraction of the balancing species CO.

8) Note how close the solution is after the initialization. Only two
iterations are gequired to reach a solution accurate in mol fractions to
one part in 10%.

9) These are the data taken from the JANNAF tables.

10) This i{s the primary output.
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1)

Figure 8.1 Example run log for carbon-rich C-0 system

You may now salect a spescies data file. The file COMB.DAT containg a set
of species for combustion analysis. Just <return> if no file is desired.

Species data file? COMB.DAT

Getting species data file COMB.DAT PLEASE WAIT!

c
C(5)
CHa
co
coz2
H
H2
H20
H20<¢L?
HO
N
N2
NO
NOZ2
o
0z

Species data file: COMB.DAT

c c(52 CH4 co coz2 H H2
H20{L) HO N N2 NO NO2 0

Type the species in phasa I, ssparated by commas. When typing
file species above, bu sure to use EXACTLY thes same characters.

I¥f you enter other species you will need their thermochamical data.
Type # to include all gas species above, # for all condensates.
Just <return> if you are finished specifying phases.

co,co2,0,02

Type the species in phase 2, separated by commas. When typing
file species above, be sure to use EXACTLY the same characters.

I you enter other species you will need their thermochemical data.
Type # to include all gas species abovae, # for all condaensates.
Just <return> if you are finished specifying phases.

C(s)

Type the species in phase 3, separated by commas. When typing
file species above, be sure to use EXACTLY the same characters.

14 you enter other species you will need their thermochemical data.

Type # to include all gas species above, # for all condensates.
Just <return> if you are finished specifying phases.

Do you want to CHECK the ATOMS in the molecules? N

<return> may be usad for "no"

(continued)
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Figure 8.1 (continued)

The minture has the SAME ATOMS as in the last run.
This is the CURRENT SETUP:

Phase | species:

co co2 n] 02
Phase 2 species:

Cis) :
Atom relative population

[ 1. 00000000E+0QQO

[a] 1. 00000000E+00

Do you want to make any SETUP CHANBGES? N_

<return> may be used for "ng"

Run mode optione:

o] Abort and redc setup

1 Specified T and P

2 Specified T and V

3 Specified T and S

4 Specified F and V

5 Specified P and H

& Specified P and S

7 Specified V and U

a Specified V and H

e Specified V and §
10 A matrix of specified P,T cases (LOTUS file option)
11 P and H same as last run

12 V and U same as last run

13 Specified T, S same as last run

i4 Specified P, S same as last run

15 Specified V, 5§ sama as last run

l& One of the above at a specified frozen composition
Enter run mode optioni j_
Enter T (K): 3000
Enter P (atm): 1|
The sound speed can be calculated, but then the calculaticons take longer,
Do you want the SOUND SPEED?
Do you want to SAVE the run OUTPUT in a file? ___
Do you want to MONITOR the run (probably not)? Y
Monitor levels:

0 none

1 (T,P) state iteration monitor

2 method instruction monitor

3-9 trouble diagnostic monitor

Monitor level? 2

Do you want the MONITOR OUTPUT in a FILE? __

{continued)
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5)

6)

7)

8)

Start of run monitor output

Atomic compesitions: Figure 8.1 {continued)
[ [w]

co 1 1

coz 1 2

(o) o 1

02 0 2

Cts) i o)

Propertias for T = 3000,000 K, P = 1,0133E+05 Pa

species h, kcal/mol s, cal/mol=K g/RT

co -4,0463 &5.370 ~33.578

coz -57.51%9 79.B48 -49,B830

o 73.081 50,096 =-12.951

o2 23,444 &7.973 =-30,273

c(s: 14,412 12.129 =3.686

Initialization:

Independent atom population
cC 1. 00000E+Q0O
o 1. 0CO00E+CO

Estimated distribution:
Phase 1| mols = 1,00000E+00
Phase 2 mols = .OOOCOOCE+0O0Q
co coz2 o o2 cs)
molsr 1.00000E+0Q0 ,COOO00CE+00 ,OQO0CQQE+Q0 ,Q0000E+QC ,OCOOQO0E+00Q
X . 10000E+01 .0Q0000E+00 .00000E+Q00 ,Q0000E+00 ,00Q000E+0Q0

Phase redistribution:
Target mol fraction = .11932E-035 for CO2

Estimated distributien:
Phase 1 mols = 9,99999E-01
Phase 2 molse = 1,19321E-06 -
£ co2 s] oz cs)
mols: %.9999BE—01 1.19321E-06 .OO0C00E+QQ0 .OCOQOE+O0 1.,19321E-06
b ¢ « 10000E+01 .1]1932E-03 ,O00COQ0E+00 ,O00000E+00 . 10000CE+Ol

Equilibrium solution monitor:

EQUIL pass 1; dual function W s I 4577465381673E+01
phasa 1 mols = 9.9999BBO7E~01; mol fraction sum I = 1.000000043932E+00
phase 2 mols = 1.19320842E~063 mol fraction sum Z = 1,000000000000E+00
element potential for C = -3.4B41355B09540E+00; population error = -2,845E-12
element potential for O = -2.98914979432BE+01}; population error = 4{,.393E-08

co coz 0 o2 c(s)
Xz - 10000E+01 ,11932E-035 .43935E-07 .135274E~=12 .10000E+0O]
Element potentials and phase mols adjusted by Newton—Raphson

EQUIL pass 23 dual function W = 3.4577453B4LOATFE+OL
phase | mols = %,.99998B0O7E-01; mol fraction sum Z = 1,000000000000E+0Q0Q
phase 2 moles = 1.,23718084E=04; mol fraction sum 2 = {,000000000000E+00Q
element potential for C = =3,486155B09540E+00} population error = 1.2BlE-1S
element potential for 0 = -2,987149800721E+0!} peopulation error = 1.28B1E-13

co coz2 - 0 oz cs)
Xe . 10000E+01 .11932E-05 ,L4393I5E~07 ,15274E-12 ,10000E+0]
Element potentials and phase mols adjusted by Newton—Raphson

Final distribution:
co coz2 o a2 C(S}
mols: 9.99998E-01 1.19321E-086 4.3F351E~QB 1.52743JE-13 1.,237143E-06

End of run monitor output
(continued)
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9)

10)

Fig 8.1 (concluded)

OUTPUT READY. Nota:

Do you want to see the JANNAF data used? Y

On 1BM-PC,

uge <ctrl-PrtSc> to start printer

Please press <return’> to continue.

JANNAF table data:

{ctrl—-s> stops/starts IBM-PC display.

(optional).

For T = 3000.00 K

species mol. mase enth. form g0 H=HO
g/mol kcal /mol cal /mol =K kcal /mol

Phase 13 Gas specias:
co 2B, 010354 =26, 420 65.370 22,3357
coz 44, C0995 94,054 79.848 36,3533
Q 146. 000C0 59.559 S50.096 13.522
02 31.9987% . 000 &7.973 23,445
Phase .23 Condensed speciest Density, g/cc
C(s) 12.01100 . 000 12.129 14,412 2.700
Independent relative elament
system atom popul ation potential

Cc 1. 00000000E+00 -3.68A2

Q 1, CO000000E +00 -29,8913
Composition at T = . J000.00 K P = 1,000E4+00 atmosphares
species mol fraction mol fraction mass fraction molg#

in the phase

Phase 1: Molal mass, g/mol =
co « 10000E+01
coz . 11932E-05
0 . 43935E-07
0z . 15276E-12

Phase 21 Molal mass, g/mol =
C(s) « 10000E+01

#+ Species mols for the atom populations in ools.

Mixture properties:
T = 3000.000 X .
U =-1,4974E+06 J/kg

Mada O (T,P) iterations}

on IBM-PC,

molal mass =
P = 1.0i33E+05 Pa
H ==6&,0&691E+05 J/kqg

in mixture
28.011

« 10000E+0Q1
« 11932E-05
. 439ISE-0O7
« 152746E=12
12.011

«123I71E-05

2 EQUIL iterations.

Please press <return’?> to continue.

36

in mixture

« 1Q000E+01
« 1874BE-0S
« 25094E-07
+ 17451E-12

» S3049E~0&

28.011 kg/kmol
vV = B,7884E+00C
E§ = §,7645E+03

use <ctrl-PrtSc)> to stop printer (cptional).

?.99998E-01
1.19321E-04
4.39351E-086
1.352763E=13

1.23714E=-06

mau3/kg
J/7kg-K



Il

b) Example with Two Complex Phases

The next example is taken from the field of fiber optics manufacture. It
involves a complex set of specles in the gas phase, and a condensed phase,
treated here as an i1deal solution. The JANNAF data and operating conditions
were provided to the author by the AT&T Bell Laboratories. For brevity only

the final output is given in Fig. 8.2. Note that only five iterations were
required.

¢) Gas Turbine Engine Example

This example shows how STANJAN can be used to calculate the adiabatic
flame temperature in a gas turbine engine combustor, and then the composition

after isentropic expansion in the turbine nozzle.

The first step 18 to get the enthalpy of the reactants by a run at the
combustor inlet state., Here we took T = 400°K, P = 6 atm, and assumed that

the reactants were
CH4 + 202 + 7,52 N2

The results are shown in Fig. 8.3.

The next step 18 to get the adiabatic flame temperature by finding the
state of the products at the same enthalpy and pressure as the last run. The

reactants and a set of products are allowed speclea. The results are shown in
Fig. 8.4.

The final step is to get the temperature following isentropic expansion
in the turbines by finding the equilibrium state for the same species at the

same entropy and a specified pressure (here 1 atm.). The results are given in
Fig [ ] 8‘ 5.
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Figure 8.2

Independent
system atom
Aar
[ §

o
Si
Ge
P

Compasition at T =

species

Phase 13
Ar

c1

c1la
Ci2
clasi
GeD
Ge02

0

az

0si
02si
ClaGe
Cl130F
oP

azrF
O10P4
ClGe
Phase 2
GeO2(1)
025i (1)
a3pP{1)

# Species mols for the atom populations in mols.

Mixture properties:
T = 14630.000 K
U ==3.4778E+05 J/kg

Made O (T,P)

Molal

Molal

iterations

relative
population

1.000000Q00E-0Q1
&, 06000000E+00Q
2,88340000E+01
1. 000000Q0E+00
S« 13000000E-01
2, 30000000E-02

mass, g/mal
« 597 12E-~02
«S46748E-01
« 10439E-02
- 15201E+00
« 47293E-07
«17976E~10
. 13847E~-12
« 22737E-04
- 783462E+0Q0
. B2707E-12
« 93341E-10
. 2B&451E-08
»11&417E-04
. 15489E-08
+ 31089E-03
« 242869E-03
» 17S09E-13

1650.00 K
mol fractlon
in the phase

mass, g/mol =

« 33993E+Q0
» 56007E+00
+ 12491E-05

molal mase =

P =

38

elemant
potential
-25.7073
-14,2887
-14,14651
-50.0253
-43.84678
-37.385%

P = 1,000E+00 atmaspheres

mol fraction mass fraction

in mixture
38.255

« 9475BE-02
« 32040E=-Q1
« 9I729E~03
« 13940E+0Q0Q
. 43370E=0Q7
- 164B4E~10
« 12498E-12
+ 20831E-04
« 71841E+00
« 79843E~12
+87430E-10
« 26274E-08
. 10453E-04
.14204E-08
« 28510E=03
« 28090E-03
. 14057E=-13
75.214

. 28201E-01
« 54738E-01
« 1034&2E-06

S EQUIL iterations.

Output for example with two complex phases

in mixture

« 32939E-02
- 44550E-01
- 113920E-02
- 23921E+00
. 18882E-0&4
» 3OI4ZE-10
. 32141E-12
+« B0737E-05
« 35631E+Q0
. BOF21E-12
» 12849E-0%
« 135393E-07
«3933I0E-04
. 14140E-0B
« #3449E-03
» 16530E-02
. 41983E-13

« 71380E-01
« 79624E-01
« 19804E-06

41.321 kg/kmol
1.0133E+05 Pa
H =~2,4331E+05 J/kg

mols#

1.00000E-01
9. 50357E-01
1.74821E-02
2.54579E+00
7.92022E-07
3.01041E-10
2.318946E-12
3.80779E-04
1.31233E+01
1.38510E-11
1.39701E-09
4,79825E-08
1.94345E-04
2.59397E-08
S.20437E-03
4.39927E-03
2,93228E~13

5. 15000E-01
9.99999E-01
1.B89240E-0646

V = 3.0048E+00 m##3/kg
& = &.2782E+03 J/kg=K



Figure 8.3 First step in the turbine example:

Calculation of the enthalpy of the reactants

Indepandent relative el eanant
system atom population potential
H 4 . 00000000E+00 -11.4094
0 4. Q0000000E+00Q wi2. 3340
N 1.350400000E+01 -10.8371
Depandent
systen atom
c 1. 00000000E+00
Composition at T = 400.00 K P = &.000E+00 atmospheres
spacies mol fraction mol fraction mass fraction mol s&
in the phase in mixture Tin mixture
Phaze 13 Molal mass, @g/mgl = 27.633
CH4 . $SQS7E—O1 « YS0I7E-01 . SS5187E-01 1. 00000E+00D
02 - 1901 1E+00 « 1901 1E+0Q + 2201 3E+00 2.00000E+00
N2 + 71483E+00 « 71 483E+00 « 7T24646E+00 7+ 32000E+00

# Speclies mols for the atom populations in mols.

Mixture properties: molal mass = 27.633 kg/kmol
T = 400.000 K P = 6,0795E+05 Pa V = 1 9796E-01 mas3/ kg
U =-2,84F4E+05 J/kg H w=1,4459E+05 J/kg § = 7,0201E+03 J/kg-K

Made O (T,P) iterations} 1 EQUIL iterations.
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Figure B.4 Second step in the turbine example:

Calculation of the adiabatic flame temperature

Independaent relative al emant
system atom paopul ation potential
c 1.00000000E+Q0 -20, 446746
H 4. 00000000E+00 -11.9990
o] 4. 00000000E+00 ~1&.34467
N 1,50400000E+01 -12,.9931
Compeosition at 7 = 23146.31 K P = &,000E+00 atmospheraes

species mol fraction mal fraction mass fraction
in the phase in mixture in mixture
Phase 1: Molal mass, g/mol = 27.44646
c . S95338E-14 . DO3SBE~-14 «24209E-16
CHa . 2580BE-15 « 258B0BE~15 . 1S074E-13
Co « 734620E-02 » 7S420E-02 « 77120E-02
coz .B8491BE-01 .B4F18E-01 « 13927E+00
La! « Z2987E-03 « 22987E~-03 .BAZ61E-OS
H2 . 2BEB37E-02 « 28B57E-02 ».21181E-03
HB20 . 1B473E+00 » 1B4A73E+QQ «12118E+Q0
HO . 24233E~-02 . 24233E=02 - 130046E-02
N « 15B22E-07 « 13B22E-07 . BOA93IE-CB
N2 « 70944E+00 +« 7O0944E+QQ « 723SBE+QQ
NO «21100E-02 «+21100E-02 - 23033E-02
NO2 . &H7T728E-04 “A&T7724E~06 «11345E-03
u] » 13180E-03 « 131B0E-O3 . 76780E-04
o2 . 3S53I9E~02 - 3I5339E-Q02 . 4148404E-02
Phase 2: Molal mases, g/mol = : 000
H2O (L) . 00000E+00Q « O0CO0E+00 « 0O00QE+00
Phase 31 Molal mass, g/mal = « 000
C(s) . 00000E+00 +» 00000E+00 - 00000E+00

# Species mols for the atom populations in mols.

Mixture properties: molal mass =
T = 23146,309 K P =
U =-8,4777E+03 J/kg

27 .464 kg/kmol

&,.0795E+05 Pa VvV = 1.1334E+QO
H =m=~1,445FE+08 J/kg S = 9,3I791E+03
Macde 23 EQUIL iterations.

4 (T,P) iteratiaons}

40

mols#®

S5.B5920E~1646
2.73153E-15
8. 00373E-02
9. 19962E~01
2.43302E-03
3. 03426E-02
1.93542E+00
2.36492E-02
1.&7459E-07
7. S0883E+00
2.2333I0E-02
7. 164807E-0&
1,39501E-03
3.76148E-02

« DO000E+Q0

+« 000CCE+0Q

o*a3/kg
J3/7kg-K



Fiéure B.5 Third step in the turbine example:

Independant
system atom

Z0Iron

Composition at T =
m@l fraction
in the phase

species

Phase 11
C

CH4

Co

caz

H

H2

H20

HD

N

N2

NO

NO2

o

oz
Phase 2:
c(s}
FPhase 3:
H20 (L)

# Species mols for the atom populations in mols.

Mixture properties:
1674.929 K
U ==1.7272E+0& J/kyg

T =

Mada

Calculation of the nozzle exit state

1.

relative
popul ation
00000000E+00

4, 00000000E+00
4. 00000000E+Q0

1.

Malal

Molal

Molal

3 (T,P) itarations;

S0400000E+01

1674,93 K

mass, Q/mol =
. 1560BE-23
- I3F2IE-20
« II223E~03
. 744697E-01
+ 16438E-03
. 202851E-03
« 1B9B2E+00
- 7R204E~04
«2784646E-11
« 7145BE+00
. 8451BE-04
. B34&7BE-08
« 48685E-04
« 20673E-03
mast, g/mol =
- 00000E+00
mags, @/mol =
« 00000E+00

molal mass =

el eament
potential
—-24.7380
-13.70%6
~-18.3106
-13.3409

P =

mol fraction

in mixture
27.6235
« 1560B8E-23
« PI925E-20
» SIZ25E-03
. 74497E~01
» 1643BE-035
«20251E-03
. 18982E+00
- 74204E-04
. 27866E~-11
« 71458E+00
+84518E-04
» B347BE-0B
« 486B3JE-046
« 2067 3E-03
« 000
« OCO00E+Q0
. 000
. E+Q0

P = 1.0133E+05 Pa

Calculating the sound speed;

Sound speed (isentropicg) =

H ==1.2231E+0&4 J/kg

24 EQUIL iterations.

PLEASE WAIT!

794.9 m/s

41

v
g

1.000E+00 atmosphares
mass fraction

in mixture

. &7862E-24
- 5454 5E-20
« 334BBE-03
» 15086E+00
» 37977E-07
. 1477BE-04
» 12379E+00
. 454683E-04
«14130E-11
« 72442E+00
. 71807E-04
« 13936E~-07
- 2B197E=06
« 23946E-03

» QOQOOQOE+Q0

» COOO0E+00

27.62%5 kg/kmol

- P750E+00
«S7F1E+O3

mol e

1.46424BE-23
7.88372E-20
3. 49629E-03
7. 96504E-01
1.72976E-05
2. 13099E-03
1.99747E+00
7. B0B48E-04
2,73239E-11
7. 51956E+00
8. BY380E~04
8.80548E-08
S.12314E-06
2.17341E-03

+« 00000E+Q0

« 00000E+0Q0

mee3/kg
J/7kg-K



d) Other Applications

An early version of STANJAN was used for fiber—optics fabrication analy-
sls by McAffee et al.7 This version, which did not use the full dual problem,
had difficulties in converging with multiple phases, and had to be extended by
them to cover ideal solutions. The present version runs their problems very
quickly, with no difficulty.

More recently, McAffee et al.8 studied other such problems wusing the
element potential method. At that time, the full dual problem had not yet
been developed, so they developed their own algorithm for making the steepest

descent.

9, Avallability and Implementation of STANJAN

STANJAN and an assoclated data file-managing program, JANFILE, have been
compiled using MICROSOFT(c) FORTRAN for use on the IBM-PC or compatible desk-
top computers. These programs run with or without the floating point ceproc-
essor. This version can handle up to twenty specles, in up to six phases,

A

containing up to eight different elements.

The user disk, contalning the compliled programs, data files, and exam—
ples, 1is available for educational use as freeware. An institution desiring
to use this program for instructional use should send a blank formatted disk
to the author in a floppy disk mailer. The disk will be returned with these
files. This disk may be freely copled, and faculty members are encouraged to

help spread STANJAN by sending coples to colleagues at other institutions.

The FORTRAN source programs are also avallable on IBM~PC floppy disk, at
a reasonable cost. For detalls contact the author., These may be recompiled
for use on larger computers, and can be easily modified to handle larger
problems. These programs are good examples of modern, structured FORTRAN pro-
grams, are very well documented internally, and may themselves be useful as

educational tools.

An early version of the equilibrium routine of the parent STANJAN, which
did not use the full dual problem, was incorporated in Sandia's widely used
CHEMKIN program as “the Stanford Equilibrium Solver”. Users of that program
will find the present equilibrium solver more robust and faster, especially 1if
used with the current STANJAN initializer.
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Appendix A

The Method of Lagrange Muitipliers
Lagrange multipliers are used in the theoretical solution of problems of

the form

F(x) = min (A.1)
subject to the constraints
C.(x) = conmstant , k=1, o0 , ¢ (A.2)

In general, F and Ck may be nonlinear functions of the solution vector
x = (X7, X9, eee’y X )o
Taking the differential of F,

n

dF = T Hidxi (A.3)
i=]
where
H - .ai. (A.&)
i axi

Now, for F to be a minimum with respect to arbitrary variations, dF = O

for arbitrary dxi that satisfy the consgtraints

n

de = (0 = z Aikdxi | (A.5)
i=1
where
aCk _

If we have n variableé and ¢ constraints, only n—-c of the variables may
be freely varied. Before examining the conditions under which dF 1s zero
for arbitréry variations of the free Xy, we need to represent the changes in
the restricted x; in terms of the changes in the free ones, and then substi-
tute for the changes in the restricted variables in (A.3). This substitution

is equivalent to subtracting a linear combination of the equations (A.5) from
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(A.3) such that the restricted dx; drop out of the result. This subtraction

yields:

n c
(Hi - zl xkAik) dx, (A.7)

c
dF - L dC - z
k=1 Ak k i=]1 k=

must be chosen to drop out the restricted dxi-

where the coefficilents Ai
In order for the restricted dxi to drop out, the coefficient of each must be

zero, so for these 1,

c

By = L A4, =0 (A.8)
k=1

For the remaining freely varied X4 there must be no variation that changes

F (to first order) which requires that the coefficient of these dxy also

vanish in (A.7). Hence, (A.8) must hold for all 1{i.

3

Equation (A.8) represents a set of n simultaneocus equations for the

solution vector x;. The constraints (A.2) provide ¢ additional equations

for the A, called the "Lagrange multipliers”.

If F and C; are quadratic functions of the Xy then (A.8) will be a

linear equation system; this is the case in‘the applications to finding the

. paths of steepest descent described in Section 5 above. In the element poten-—

tial theory, F 18 the system Gibbs function, and the resulting equations are

nonlinear.
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The Simplex Method

The Simplex method finds the solution vector yj that minimizes

n
F(y) = I w.y (B.1)
j_l j j
Subject to the constraints

n
I Aijyj - Ci , i=1, «ec , C (§.2)

=1
> O B.3
vy 2 (B.3)

The method solves this problem simultaneously with a "dual” problem of maximi-

zing

I AC = max ' (B:fA)

subject to

I NA, £ v (B.5)

The method rests on the fact that the final solution will contain only as many
non-zero yy as there are constraints (B:Z). These are the "base variables”
for the problem. The solution Involves sgtarting with a trial set of bases and
then replacing one base at a time. Each replacement results in a reduction in

the value of the objective function F. The process terminates when no fur-

ther changes are possible.

On each simplex pass, the first step 1s to determine the n “simplex

Lagrange multiplers”™ A, by solving

n
kfl Aijk - Wj (B.5)

where (B.6) applies only to the current base set. Then, for each variable

Ty that is not a current base, one computes
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n
= I - .
SJ o Aijk wa (B.7)

for each j that 1s a candidate as a better base; Sj represents the reduc-
tion in F per unit of yJ added to the systeme The 3J having the largest

SJ > 0 1s chosen as a new base fo replace one of the old bases.

The direction of changes in the space y 1s then calculated from (B.2),

I A + A = 0 (B.8)

Ay
108 ik 'k

137

where JOB denotes a sum over the old bases, and k denotes the new base
member. This determines the directions AyJ/Ayk. Then ;he change 1in each old
base along this path is examined, and the first point along the path at which
one of the old yJ drops to zero 1is found. This determines the value of
Y 1in the new base set, and hence the changes in the other bases Yy The
process ends when there 1s no possible base change.,

The simplex method requires a "feasible solution™ (an initial base set)
to start. This can:be generated using the same simplex process by ektending
the system to include a set of non—negative false variables, one for each

constraint. The feasible solution is then obtained using the simplex process

to minimize the sum of the false variables.
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