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Summary 

THE ELEMENT-POTENTIAL METHOD FOR CHEMICAL EQUILIBRIUM ANALYSIS: 

~P.I.EMENTATION IN THE INTERACTIVE PROGRAM STANJAN 

w. c. Reynolds 
Department of Mechanical Engineering 

Stanford University 
Stanford, CA 94305 

The element-potential method for chemical equilibrium analysis is a 

powerful technique that is is virtually unknown in the thermodynamicsc1>mmun- · 

ity. It· provides a superior means for solution of complicated problems, 

especially those involving several phases. The concept of element potentials 

is so useful that it should be included, if not preferred, in any advanc.ed 

instruction on chemical equilibrium. 

This paper describes the basic method, a new algorithm for its effective 

computer implementat~on, and a general-purpose interactive freeware program 

that can be used to. solve ·chemical equilibrium problems in single- or multi­

.. phase systems.· The method is extremely flexible and robust, and the programs 

have been tested by many . users in difficult problems in sooting combustion, 

optical materials fabrication, and other ·multi-phase chemical problems. 

1. Introduction 

The solution of chemical equilibrium problems has posed a tough challenge 

for numerical computation. The problem may be formulated in several ways. If 

one uses the concept of equilibrium constants, · then it is .necessary to ident­

ify the set of reactions that take place and to determine the associated equi­

librium constants. One then has to solve a set of nonlinear algebraic equa­

tions for .the mol numbers of each species, a difficult task if the system is 

large. Other methods based on the minimization of the Gibbs function adjust 

the mols of each species, consistent with atomic constraints, until the min­

imum Gibbs function state is found. Again, there are many variables involved, 

and great care must be taken to be sure that all mols are non-negative. When 

there are °important rare species in the system, this can be a very difflcult 

task. 
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In search of a better way to solve combustion-equilibrium problems, the 

author reinvented what he later discovered to be a "lost" method, the so­

called method of element potentials. Early development of the method was done 

by Powe111• The RAND method for equilibrium calculation described by Clasen2 

is essentially an early implementation of the method. White3 pointed out some 

computational advantages of the method. Bigelow4 extended the no~linear pro­

gramming theory of the method • . The author's contribution is the development 

of the dual problem .and .a ,powerful .numerical implementation. For pre-STANJAN 

history of the method, see Van Zeggeren and Storey5• The purp~se of this 

paper is to make the method of element potentials known to the combustion 

community and to outline an interactive computer program based on the method 

that is available for solving chemical equilibrium problems. 

The method of element potentials uses theory to relate the mol fractions 

of each speci~s to quantities called element potentials. There is one element · 

potential for each independent atom in the system, and these element pote~­

tials, plus the total number of mols in each pha~e, are the only variables 

that · must be adjus-ted for the solution. In large problems this is a much 
. . 

smaller number than the number of spec~es, and hence far fewer variables need 

be adjusted. There are many ot her advantages to the element-potential method 

that quickly become obvious when one begins to use it. We believe that ele­

meq.t potentials should be part of ·modern instruction in thermodynamics, but 

the concept is not widel y known or taught. 

The present analysis, and· the progr~m, assumes that the gas phase is a · 

mixture of ideal gases and that condensed phases -are ideal solutions. These 

are good approximations for many practical problems of interest. The concept 

of element potentials is not limited to these models, and we believe that it 

may be very helpful in dealing with non-ideal systems. 

The program, called STANJAN because of its roots at Stanford and its 

connection with the JANNAF thermochemical data tables, is an interactive 

program designed for use with either desktop or mainframe computers. The 

basic data are taken from the JANNAF .tables, and data for a selection of 

species accompany the program. ~ companion program, JANFILE, can be used to 

prepare data for other species from the JANNAF table data. Both are very 

robus t, user-frie~dly interacti ve programs. 
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With STANJAN, the user selects the species to be included in each phase 

of the s ·ystem, sets the atomic populations and state parameters, and then 

STANJAN solves for the equilibrium state using the method of element poten­

tials. This is extremely rapid, and, with an 8087 floating-point coprocessor 

on an IBM-PC, solutions for typical combustion problems are returqed almost 

immediately. nte results include the composition of each phase (mols and mol 

fractions), and the thermodynamic properties of the system, including (if 

desired) the. speed of sound. . . .. _ . . 

Thermodynamic cycle analysis is easily executed with STANJAN, because the 

user may specify the state parameters in a variety of ways, including 

i) temperature and pressure, 

ii) pressure and entropy, 

iii) enthalpy and pressure same as last run, 

iv) voiume, entropy same as last run. 

The equilibrium composition can be calculated, or a frozen composition can be 

specified. 

ST~NJAN can be used to compute adiabatic flame temperatures for reactions 

at constant pressure (or volume). The approach is first to make a run with 

the reactants at tne inlet (or initial) state, which calculates the enthalpy 

(and energy) • . . This is followed by a run in which the products of combustion 

are considered, with· the state specified as having the same pressure and 

enthalpy (or volume and energy) as the previous run. 

A series of calculations can be made over a matrix of T and P values. 

These tabulated results can be stot'ed in a file for later processing; special 

provisions at'e made for creating output tables t'eadable by spreadsheet pro­

grams, particularly LOnJS-123. 

In summary, STANJAN is a powerful and easy-to-use program for analysis of 

chemical equilibrium in single- or multiple-phase systems. The executable 

IBM-PC program disks are freeware and may be freely copied by any institution 

for its use. The FORTRAN source programs are also available at reasonable 

cost for users who .wish to recompile for other machines or uses. 
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2. The Basic Theory of Element Potentials 

The Gibbs function of a system is: 

G (2.1) 

where gj 

of species 

is the partial molal Gibbs function and · Nj is the number of mols 

j, and s is the total number of species in the system. Treat-

ing each phase as either · a mixture of ideal gases or as · an· ideal solution, the 

partial molal Gibbs functions are given by: 

... (2.2) 

where gj(T,P) is the Gibbs function of pure j . evaluated at the system tem­

perature and pressure, · xj is the mol fraction of j in its phase, and .R 

is the urtiversal gas constant. 

The atomic population .constraints are: -

= i = 1, ••• , a (2.3) 

where "iJ is the number of i atoms in a j molecule_, pi is the popula­

tion (mo ls) of i atoms in th~ . system, and a is the number of different 

elements (atom types) present in- the system. The equilibrium solution at ' the 

~iven T and P is the distribution of ' Nj that minimizes G, subject to 

the atomic constraints (2.3), for non-negative Nj. 

Minimization problems ·with constraints are best· handled by the method of 

Lagrange multipliers. The development in this section does not assume know--

ledge of the method, but in · essence develops the method for this particular 

problem. Since Lagrange multipliers may be unfamiliar to some readers and it 

is very important in the numerical solution, a brief review of the method is 

prese~ted in Appendix A. 

For convenience, we denote gj g/T,_P)/RT, and" seek the minimum of 

G/RT. Using (2.2) we find that , for arbitrary variations in the mol numbers, 

s s 1 
l: (gj + .ln xj) dNj + / 1: Nj - dxj 

j=l j=l xj 
(2.4) 
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We denote the number of mols in phase m by N • 
m' 

then, 

(2. 5) 

where N (j) is the number of mols in the phase containing species j (a 

species present in more than one phase is assigned distinct j indices for 

each phase). The second sum in (2.4) can therefore be replaced by 

p 8 

I · N I · dx 

m=-1 
m 

J•l 
j 

in m 

where p is the total number of phases which might be present. This van­

ishes, because the mol fractions in each phase always sum to unity. 

Now the dNj are not all independent·, because of the atomic constraints. 

Relationship's' among the dNj are obtained by differentiating (2.3): 

... 0 ial, ••• ,a (2.6) 
... 

We must solve for the a restricted .dNj in terms of the s-a free dNj, 

and then substitute these relationships into (2.4) in order to express the 

G variation in terms . of freely vari~ble Nj. This process. is equivalent to 

subtracting multiples. of (2.6) fro~ (2.4): 

(2. 7) 
a s 

t ~'i I: nijdNj 
i=-1 j=l 

The Ai are the multipliers that are required to drop out the set of restric­

ted dNj from this equation. Thus, setting the coefficients of these dNj 

to zero, one has 

"" 0 (2 . 8) 

for the restricted j. With these ·dNj absent from (2. 7), the remaining 

dNj may be freely varied, and at the minimul!l·" G point there must be no 

variations that change G (to first order). This will be true only if the 
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coefficient of each free dNj is zero; hence, (2.8} also applies to the free 

j. So, for every species, 

.. (2. 9) 

Equation (2. 9) is the main res.ult of the theory of element potentials for 

mixtures of id~al gases or for ideal solutions. It relates the phase mol 

f ra~tion of each species t_o its value of · g(T ,P) /RT, to the atomic makeup of 

its molecule, . ·and .to a set .of . undetenuned multiplie.rs (the "Lagrange multi­

pliers"} to be determined from the atomic constraints. The multiplier Ai is 

called the element potential for i atoms. Using (2.2), we see that 

- (2.10} 

and hence Ai represents the Gibbs function/RT per mol of i atoms. What is 

even more amazing is that each atom of an elem~nt contributes the same amount 

to the Gibbs function of the system, i~respective of which molecule or phase 

it is in! Tile . Ai are properties of the system, however, and cannot be tab­

ulated as functions of the atom or molecule, as can the gj. It is perhaps 

for this re-a.son that the method of element potentials has not · been widely 

used, although we believe it shou~~ be the method of choice today. 

The values of the element potentials are determined by the atomic con­

straints (2.3), which we rewrite as 

s 
t n N x 

j=l ij ( j ) j 
= . i = 1, ••• , a (2.11) 

Using (2. 9), this becomes a set of a equations for the a unknown >.i and 

the p unknown N • To this we add the p equations 
m 

s 
t x = 1 . , 

j=l j 
m=l, ••• ,p (2.12) 

in m 

Equations (2.11) and (2.12) must be solved simultaneously to determine the 

element potentials and phase mols. This might appear to be a difficult task, 

but it is possible to do it accurately and qui~~ly. 
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In many problems there will be a set of dominant species, the mol frac­

tions of which can be estimated from' simple balances. These can be used to 

estimate the element potentials, which · can in turn be used to calculate the 

mol fractions of the m:f,nor species. As we shall ·see in examples to follow, 

this involves only the solution of linear algebraic equations. Thus there are 

advantages to the method of element " potentials, even in "small" problems. 

Some examples are presented in the next section. 

In pro~lems _with ~~my . species, . the . method _has many significant advanta­

ges. There is no need to identify a set; of reactions or to make use of the 

associated equilbrium constants. One has to deal only with (a + p) vari­

ables, whereas other ~ethods work with the s unknown mols as variables. In a 

gas-phase problem with .100 species containing C, H, O, and N, the element­

potential method has only five unknowns, whereas · mol-iteration methods must 

work with 100 unknowns. Mol-iteration methods must .guard against negative mol 

£~act.ions, which can .:iever occur with mol fract.ions _generated by (2.9). Fur­

thermore, they can have serious problems .when some species have very small mol 

fractions, but this is · not ·a problem in a well-designed implementation of the 
' ' . 

method of element potentials~ The power of the_ element-potential method is 

exceptional in dealing with systems containing multiple phases. This will be 

illustrated by examples after the dual problem and numerical solution method 

have been described. 

3. Element Potentials in Hand Calculations 

Two simple examples will ·illustrate . the use of element potentials in hand 

calculations. Both involve the system consisting of CO, co2, o2, and C(S) 

(solid carbon) at 3000°K and l atm, where these species have the following 

Gibbs functions: 

Species 

co 

co2 

Oz 
C(S) 

7 

g = g(T,P)/RT 

-33. 578 

-49. 830 

-30.273 

-3.686 



(a) Same Number of Dominant Species as Elements 

Suppose that the system contains 2 mols of C atoms and 1 mol of O 

atoms. Some solid carbon must therefore be present, and its mol fraction in 

the solid phase must be 1. Using (2. 9) for C(S), 

(3.1) 

The element potential for carbon can. be found immediately from (3.1): · 

(3.2) 

If we can estimate one other mol fraction, we cari calculate the element poten­

tial for oxygen. At first glance, .it looks as though the dominant gas species 

should be co2 , which has the lowest Gibbs function. Now, the dissociation 

of co2 gives 1 mol of CO and 0.5 mols of o2 , for which 

G/RT = - 33. 578 + R.n(2/3) + O. 5 x (-30.273 + R.n(l/3)] - 49.668 

This is just slightly· greater t han the Gibbs function of the mol of co2, so 

there still appears to ~e a slight preference for co2• However, a half-mol 

of co2 can combine with a half-mol of C(S) to make ·a mol of CO. For 

the co2 and C(S), · 

G/RT = 0.5 x [-49~830 + R.n(l/2)] + 0.5 x (- 3.868) = - 25.455 

which is much greater than that of the mol of CO. Hence, any free carbon 

will tend to react with co2 to form CO, and consequently we expect the 

dominant gas species ·to be CO. Assuming that the CO mol fraction is 1, 

(2.9) gives 

1 (3.3) 

from which we obtain our second linear equation in the element potentials: 

gco + .e.n(l) 

Solving (3.2) and (3.4) simultaneously for the pot_entials, we have 

Ac = - 3.686 

.8 

(3.4) . 



).O • -29.892 

From this we use (3.3) to estimate the mol fraction of co2 

The assumption that CO was the dominant gas species was clearly correct. If 

we wished, we could · correct our estimates by lowering the mol fraction of CO, 

but in this case we are so close to the exact solution that the iteration is 

not worthwhile.··· Indeed,- this solution is · exact to four decimal places! 

Suppose at this point we .wished to estimate the concentration of a spe-

cies that we have not thus far included in the system, for example o. 
do this easily using the element potentials. .At 3000°K and 1 atm, 

- 12.951, so 

= exp(+ 12.951 - 29.892) 2.38 x 10-8 

We can 

g = 0 

This is a very accurate estimate, since the inclusion of 0 in the system 

with this mol fraction will not significantly influence the element poten­

tials. 

In .. summary, whenever we have a system in which one dominant species can 

be identified for· each element in the system, the mol fractions of these 

species can be used to estimate the element potentials. With these element 

potentials, estimates of all of the other mol fractions can be made, and 

corrections can be made to the element potent~als by iteration, ·. if neces­

sary. The element potentials can then be used to estimate the concentrations 

of minor species. 

(b) Fewer Dominant Species than Elements 

Suppose instead that the system contains 1 mol of C atoms and 2 mols 

of 0 atoms. Here the condensed phase will be almost absent and the gas 

phase will consist almost entirely of co2 • Therefore, we have only one dom­

inant mol fraction from which we want to estimate· two element potentials. We 

can still do this using a concept called "balancing" . The atomic constraints 

can be written as: 

1 (3.4) 
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2 (3. 5) 

The idea of balancing is to select a set of base species, and then to recast 

the constraints so that each equation contains only one of these base species. 

The base set should include the dominant species. We select the dominant spe­

cies co2 as . one base, and o2 .. as the other. Equation (3.4) contains only 

the base co2 and tells us that there is approximately 1 mol of co2 in the 

system. Combining the equations to eliminate co2 from (3.5), we obtain 

= 0 (3.6) 

This tells us that the second base species o2 must be "balanced" by CO 

and/or C(S). Since CO "has a much smaller Gibbs function that - C(S), the 

balance will be primarily with CO, and so approximately 

= (3.7) 

Since both o2 and CO are in th~ same phase, this translates into a re­

quirem~mt that the mol fraction of CO must be twice that of co2 • Then, 

u_sing (2.9) in (3.7) and taking the log of both sides, a linear equation 

relating the element potentials is obtained: 

tn(2) ~ g0 + 2A0 . . 2 
(3.8) 

A second linear equation relating the element potentials is obtained from the 

estimate that the mol fraction of co2 is unity, 

= !n(l) (3.9) 

We solve these two equa.tions and obtain 

= - 18.351 = - 15.739 

Using these potentials, the mol fractions are estimated as follows: 

= o. 599 = 0.299 1 

Clearly, the assumption that CO and o2 are rare species was ·not very 

good. However, we can correct our estimate by rescaling the xj so that they 

sum to unity, 
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.. 0.316 , - 0.158 0.526 

These estimates are within 10% of the exact values. An improvement can be ob-

tained by iterating, using our revised estimate for 

result is: 

in (3.9). 

and these produce 

xco .. 
These renormalize 

xco = 

The exact solution 

xco 

- - 18. 565 

0.390 

to give 

0.352 , 

is 

0.3582 

>.0 .. - 15. 9 53 

- 0.195 

- 0.17 5 

- 0.1791 

xco - o.526 
2 

xco - o.473 
2 

xco "" o.4627 
2 

and· so we see that with only two iterations we are very close. 

The 

The iterative process used here might be used as the basis for a numer­

ical method for general problems. However, a general method must work irre­

spective of the st~cture of any particular problem, and thus the multi-phase, 

many-species problem presents a greater challenge. The numerical method that 

we have developed to meet this challenge is based on the dual problem devel­

oped in the following sections. 

4; The Dual Problem 

The objective is to solve Eqs. (2.11) and (2.12) to determine the a 

unknown element potentials and the p unknown phase mols. A convergent 

algorithm exists for this purpose, based on a related max-min problem (the 

"dual" problem). We define three functions of the element potentials and 

phase mols: 

p a 

w r N (z -1) -
m m 

m=l 

. (4.1) 
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s 
z = 1: xj m j=l 

in m 

s 
H = 1: N n x 

i j=l (j) ij j 

where is defined in terms of the 

- p 
i 

by (2.9). Note that 

(4.2) 

( 4. 3) 

Z = 1 for m 

all phases present in the system when (2.12) is satisfied, and Hi = 0 for 

all atoms i when (2.ll) is satisfied. Differentiating W(l,N), 

aw 
Hi = 

a).i 
( 4.4) 

aw 
;; z - 1 ( 4. 5) 

aN 
m 

m 

so that 

a p 

dW 1: H d). + 1: (z -1 )d'N 
i i m m 

i=l m=l 
(4.6) 

Note that, at constant N , W wilt be stationary (dW = O) with respect to 
m 

arbitrary variations in the element potentials a t any state for which the 

atomic constraints are satisfied (H1 = O) . 

We define 

s 

Dim = 1: nijxj ( 4. 7) 
j=l 

in m 

s 

Qik = 1: N n n x (4.8) 
j=l (j) ij kj j 

Then 

a 
dZ 1: Dimd\ ( 4. 9) 

m i=l 

and 

a p 

dHi I: Qikd\ + I: D dN (4.10) 
im m 

k=l m=l 
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The nature of the stationary point in W is revealed by 

> 0 (4.11) 

Since Qii ) O, W is a minimum at the extremum, and W is a concave func­

tion of the element potentials. This means that the minimum W point, where 

the population constraints are satisfied for fixed phase mols, can be found by 

the method of steepest descent, in which we move down the path in X space 

along which W decreases most rapidly, until we find the minimum point. 

Now consider a path in 

From (4.6), we see that W 

(~, _!) space along which the 

on this path is also stationary 

when (2.12) is satisfied for all dN 
m 

all vanish. 

with respect to 

phases present. arbitrary variations 

Along this path the 

the analysis. 

Xi are fixed by the N ' m 
and we must consider this in 

Between any two states for which the Hi are zero, from (4.10), 

a 

This tells us how the W-minimizing 

We define a matrix Eim such that 

Then, between two nearby states where 

dX 
i 

.. 
the 

p 
1: 

m""l 

p 

l: D dN 
im m 

( 4.12) 

will change when we change the N • 
m 

= - D im 

Hi all vanish, 

E dN 
im m 

(4.13) 

(4.14) 

Then, from (4.9), along the path of states where all Hi = 0 we have 

p 

dZ :a 1: A dN (4.15) 
m 

n:al 
mn n 

where 

A • mn (4.16) 
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Equation (4.16) tells how the ~ 

*­the path where all H1 = O. Let W (N) 

change when we change the N along 
m 

denote the value of W along such a 

path. Then, from (4.6), 

where 

Therefore, using (4.15), 

2 * a w 
aN aN 

m n 

* aw 

oN 
m 

= 

v 
m 

z - 1 m 

az 
m -- = 

aN 
n 

A 
mn 

Hence, using (4.16), (4.13), and (4.8), 

a2w* a a a 
= I: 01mEim = I: I: QikEkmEim aN aN i=l i=l k::l 

m m 

s a a 
= I: I: k:l N(j)xjnijnkjEimEkm 

j=l 1=1 

s 
( a r I: N x I: n E < 0 

j=l (j) j i=l ij im 

Hence, w* is a maximum at the stationary point; moreover, 

( 4. 17) 

(4.18) 

(4.19) 

(4.20) 

w* is a convex 

function of the N This means that the method of steepest ascent, in which 
m. 

*-
we move up the W (N) surface along the most rapidly rising path, can be used 

to find the maximum. 

Summarizing, W is a minimum for given phase mols at any state for which 

the atomic constraints are satisfied. We denote such states by * w • w* is 

in turn a maximum with respect to the phase mols when the mol-fraction-sum 

constraints are satisfied. These facts form the basis for a convergent solu­

tion algorithm. 
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At the equilibrium solution, 

* w max (4.Zla) 

but, since Ai is the G/RT per mol of i atoms, 

:: - G/RT (4.2lb) 

The max-min problem for W b the "dual" of the Gibbs minimization problem, 

with the dual function W having physical significance only in the equilib­

rium state. 

To help the reader understand this max-min problem, consider the one­

species case; (2.9) becomes 

and the atomic constraint is 

For this case, 

x :: -g+n). 
e 

N n x = p 

(4.22) 

(4.23) 

(4.24) 

At fixed N, W is a concave function of A, sketched in Fig. 4. la. The 

atomic constraint (4.23) is satisfied when 

l [ ..... :: ; g + tnC.Y] 
nN 

(4.25) 

The path along which the constraints are satisfied is sketched in Fig. 4.lb. 

Thus, 

* p - PD.... p J W ~ - - N - - g + in (--) 
n n -

Nn 
(4.26) 

w* is sketched as a function of N in Fig. 4.lc. The maximum of w* occurs 

when 

N a p/n (4.27) 
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Figure 4.la Wat fixed N 

w* 

Figure 4.lc W* as a function of N 

Figure 4.lb Path along which the 
population constraint 
is satisfied 

0 ..; 

1-r--~--::r;;:---:r----1 
-10.0 -15.0 x o.o 15.0 

Figure 5.1 The W 'surface for g '"" 0, p • 1, n = 1 
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for which the element potential is, as expected, 

z. 
n 

(4.28) 

* and the equilibrium value of W is 

* W = - Ng - N n>. (4 .29) 
max 

s. Dual-Problem Numerical Solution Details 

The solution of the max-min problem proceeds in three modes. We shall 

first describe these graphically in tenns of the previous example and its 

extension into more dimensions, and then present the analytical details. 

The surface WO.,N), for n = 1, p = l, g = O, is shown in Fig. 5.1. 

One way to solve the problem is to march down the surface at constant N 
until the minimum point is reached. The loci of such minima define a road 

that leads up the valley to the saddle point, where the the equilibrium 

solution is located. 

Imagine that this surface is a hillside. On the hillside, a hiker has 

the choice of going up or down, and he must go down in >. space to reach the 

minimum W at fixed N. If there were two >.'s instead of just one, his 

downhill path could be taken in many ways; the fastest way down is the "path 

of . steepest descent". Once at the roadway, the hiker has a choice of up or 

down, and he must go up in N-space to reach the point of maximum w* where 

the phase-mol-sums are all unity. But he must stay on the road, where the 

population constraints a re satisfied. He would have a choice of s everal up­

hill roads if there were more than one N, and he should choose the road of 

steepest ascent in order to reach the summit most quickly. This is the basis 

for the numerical method for solution of the max-min problem for W; steepest 

descent variation of the element potentials at constant phase mols, followed 

by steepest- ascent variation of the phase mols while maintaining the atomic 

constraints . 

At the bottom of the valley, where the terrain is flat, it is hard to 

tell which way is down; here steepest descent methods often have difficulty, 

or are slow; but Newton-Raphson methods work well when we are close to a solu­

tion. So we use steepest descent to get close, .. .gnd Newton-Raphson to zoom to .. - ~ 

the minimum. The same basic procedure is applied ascending towards the top. 
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The phase mols are adjusted by steepest ascent until we are very near the 

solution, at which point a Newton-Raphson iteration is employed. 

In a two-phase problem, the hiker could be going nicely uphill, reducing 

the mols of one phase, and run abruptly into a fence labeled, "No more mols-­

keep out of negative mol-land ! " At this point our hiker must turn and follow 

the fence uphill, maintaining zero mols for this phase, until the path of 

steepest ascent leaves the fence. This is the basic method by which the so­

lution process decides which phases are present. We shall now outline the 

mathematics of these processes. 

Mode 1: Steepest Descent of W in A Space at Fixed N 

and 

Then, 

If a segment of the descent path in A space has length ds, then 

dW 
ds = 

= 

1 

( s. l) 

( 5. 2) 

( 5. 3) 

where the fi are the direction cosines for the descent path. To find the 

path of steepest descent, we seek the fi that maximize dW/ds, subject to 

(4.23). Thus, we put 

d---E ff= (
dW 6 a ) 
ds 2 i=l i i 

0 ( 5.4) 

where 6/2 is a Lagrange multi plier for the normalizing constraint ( 5.2). 

Hence, the steepest descent path is that for which 

a 
E (Hi - 6fi) dfi 

i=l 
0 ( 5. 5) 

for arbitrary df i. 

descent are given by 

Thus, the direction cosines for . . the path of steepest 
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Then ( 5.2) gives 

so that 

dW 
ds = B 

which must be negative for descent. Hence, from (S.7) 

8 = 

( 5. 6) 

( s. 7) 

( s. 8) 

( s. 9) 

For a given set of phase mols and potentials, we calculate the Hi and 

determine the path of steepest descent towards the set of Ai which, for the 

given phase mols, will render all of Hi = O. The distance that we should go 

along this path is estimated using a Taylor series expansion of dW/ds, 

Since we seek dW/ds = O, usin~ (S.B) and (4.4), 

0 = B + 

So, using (4.11) 

a a (dw) dAk 
r n _ ds ds 

k=l K 

As 

= 

- B 

(5.10) 

( 5. 11) 

( 5. 12) 

Since the matrix Qik is determined by the current values of the phase mols 

and element potentials, the path of steepest descent and the trial step we 

should take down it are easily calculated. This method for adjusting the 

element potentials is denoted as mode l in STANJAN. 

In mode l, the first thing done after the various quantities have been 
.· 

evaluated for the . new potentials is to examine ·the behavior of W on the old 
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path of steepest descent. If the minimum point has been passed, then a "val­

ley interpolation" is made using both the old state and the new state to 

estimate the location between them on the descent path where the minimum W 

point occurs. This interpolated state is then used to start a fresh descent. 

If the trial points are jumping back and forth across a valley, overshooting 

the minimum point, then "damping" is turned on, in which the step along the 

path is reduced from that estimated above. This allows the trial point to 

descend down a steep hillside and then turn to follow the gentler downflow of 

the valley towards the point of mi nimum w. 

Mode 1 is very robust and will work effectively, even when the trial 

state is far from the state of minimum W. For example, convergence has been 

obtained in cases where the initial mol fraction sum Z was as large as 

1017 1 Improvements occur along the descent path at the rate of a decade or 

two per step, and it is not long before the errors in the Hi become quite 

small. At this point an adjustment is made in the phase mols, and the solu­

tion process continues. 

Mode 2: Newton-Raphson Adjustment of the .>. at Fixed N 

Near the point of minimum w, it becomes difficult to tell the direction 

of steepest descent, and instead a Newton-Raphson iteration is used to find 

the point where the Hi all vanish. Equation (4.10) becomes, for fixed phase 

mols, 

- H 
i 

( s. 13) 

This is solved to obtain the desired changes. This procedure is denoted as 

mode 2 in STANJAN. It is adopted whenever the H errors are suitably small, 

and abandoned in favor of mode 1 if the computed changes are too large. 

Phase Mols Adjustments in Modes 1 or 2 

After a set of .Ai rendering the Hi all zero (approximately) has been 

* found for a given set of N , we must adjust the N for maximum W • When 
m m 

the solution is not close, a steepest ascent method is used to adjust the 

N • 
m 
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Let rm represent the direction cosines in 

ment of the path along which we seek the maximum 

From ( 4. 1 7) , 

* 
dN r ds 

m m 

p 
E r r 1 

m=l 

* dW --* = 
ds 

m m 

p 
E 

m=l 
V r mm 

To find the path of steepest ascent, we seek the 

subject to (5.15). Thus we set 

d 
(

dw* - ~ e 
* 2 " ds m=l 

r r ) m m 

N space, and ds* 

of * w • Then 

that maximize 

0 

an ele-

( 5. 14) 

( 5.15) 

(5.16) 

* * dW /ds , 

( 5.17) 

where a/2 is a Lagrange multiplier for the normalizing constraint (4.34). 

Hence, the steepest ascent path is that for which 

p 
E 

m=l 
(v - ar ) df 

m m m 
0 ( 5.18) 

for arbitrary drm. 

ascent are given by 

Thus, the direction cosines for the path of steepest 

Then (5.15) gives 

so that 

* dW 

p 
E 

m=l 

--* = 
ds 

= 

v v 
mm 

2 
a 

p 
E 

m=l 
V V /a 
mm 

= a 

which must be positive for ascent. Hence, from (5.20) 
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( 5. 20) 
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( 5. 22) 

The distance that we must go along the path is estimated from a Taylor's 

* * series expansion of dW /ds • 

* * dW 
--* 

* dW 
--* 
ds o 

6s + ••• 
ds 

Since we scale the point * dW /ds = 0, using (5.21), 

0 Cl + 

So, using (4.19), 

p p ~ _a_ ( dW * ) dN m = 
- * * 

Cl + I: I: 

n=l oN ds ds 
m 

* 6s 
p p 
I: I: 

n=l m=l 

n=l m=l 

Cl 

A r r 
nm n m 

2 * a w 

aN aN 
n 

( 5.23) 

* r r . 6s ( 5.24) 
n m 

m 

( 5. 2 5) 

This is used to estimate the distance along the path to the maximum w* 
point. If this distance would produce negative phase mols, then the changes 

are reduced to prevent this occurrence. J..imits placed on the changes, "ridge 

interpolation", oscillation damping, and other numerical tricks add to the 

robustness of the program. 

If is the path of steepest ascent reaches a state where one N 
m 

is zero, 

then that phase will be absent in the sys tem, and the phase is dropped from 

the phase sums. A new path of steepest ascent is then computed, and a step 

towards the maximum of w* is taken. The possibility of inactive phases 

becoming active is considered in each phase adjustment. 

Mode 3: Newton-Raphson Adjustment of the l and N 

When the atomic poulation e rrors are small and the mol fraction sums for 

all active phases are very nearly unity, a Newton-Raphson scheme is used to 

adjust the Ai and N simultaneously. The equation system (4.9), (4.10) is 
m 

used to calculate the changes necessary to bring all H-i to zero and all Zm 
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to unity. This mode is adopted whenever the solution is very near and aban­

doned whenever the changes it requests are too large. This mode is always the 

last mode used before a converged solution; it is called Mode 3 in STANJAN. 

Accuracy and Convergence 

The element potentials and phase mols are adjusted to accuracy of 1 part 

in 108, and the mol fraction sums are made unity to 1 part in 1010• This 

accuracy is maintained, even in nearly singular cases, with the help of the 

matrix conditioning procedure described below. 
300 

On an IBM-PC, mol fractions as small as 10- are displayed. On most 

mainframes the mot fractions can be no smaller than l0- 68• Thus, more acccu­

rate results can actually be obtained in some problems using the smaller 

desktop computers! 

6. Independent Atoms, Basis Species, and Matrix Conditioning 

In some systems the atoms are not independently variable; for example, in 

a system consisting of CO, COS, and S, the atoms C and 0 are not in­

dependently variable. In order to avoid singular matrices in the solution, 

we must work only with the independent atoms. These are identified in the 

STANJAN initializer, described below. The atom sums above are then carried 

out only over the independent atoms, and only the element potentials of inde­

pendent atoms are computed. 

In any system there will be a small set of base species which together 

could contain all of the atoms. While there is one base species per indepen­

dent atom, there need not be a one-to-one correspondence between the indepen-

dent atoms and base species. Usually there are many possible sets of base 

species; the most useful are those that dominate the system, and the STANJAN 

initializer identifies these. 

of and C(S) 

For example, in a system containing a mixture 

at 3000°K and 1 atm, with a C:O ratio of 

2:1, the base species will be C(S) and CO (see example in Section 3). 

The base species play a key role in obtaining accurate solutions when the 

matrices are nearly singular. This is accomplished by a process we call 

matrix conditioning, an idea closely related to the balancing concept used in 

the second example of Section 3. For example-,-·-·consider a system containing 
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CO, co2 , and o2 , with a C:O ratio of 1:2, at a low temperature. The 

system will consist almost entirely of co2 , and the population equations 

will be 

= 1 (6.1) 

= 2 (6.2) 

Since Nco and 

the same, i.e., 

N0 are both very small, these two equations are very nearly 
2 

the system is very nearly linearly dependent. Conditioning 

removes this difficulty. 

We need to solve equations of the form 

= (6.3) 

where Xk denotes the solution vector and Yi the right-hand side (see 

(4.19) and (4.21)). The Qik matrix associated with this system is 

xco 
2 

+ xco 2xco 
2 

+ xco 

Qik = N (6.4) 

2xco 
2 

+ xco 4xco 
2 

+ xco + 4x
0 2 

he cause xco ::< 1, and the other xj are very small, this matrix is very 
2 

nearly singular, and hence the solutions of (4.13) and (5.13) are very hard to 

construct accurately. 

The idea of matrix conditioning is to form linear combinations of the 

equations that remove all but one base species from each equation. This is 

equivalent to multiplying the (6.4) by a conditioning matrix 

produces 

a a s 
r r r 

i=l k=l j=-1 

C N n n x X 
ni (j) ij kj j k 

= 

a 
r 

i=l 

c y 
ni i 

this 

( 6. 5) 

Now, for the nth equation, we select Cni such that the only base species 

retained is the nth; 
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! : if j is the th base species, a n 
I: cni nij .. 

i=l if j is any other base species. 
(6.6) 

Then, instead of solving (6.4), we solve the conditioned equations 

a 
* * I: Qikxk .. Yi 

k•l 
( 6. 7) 

where the conditioned matrix and right-hand side are 

- (6.8) 

(6.9) 

In the C-0 example above, we take co2 and o2 as the base species. The 

first equation does not contain the base o2 , and hence is already condi­

tioned. The second conditioned equation is formed by subtracting the first of 

(6.3) from half of the second. Thus, the two conditioned equations are 

= (6.10) 

= (6.11) 

This pair of equations will be linearly independent and will yield accurate 

numerical results, even when the mols of CO and o2 are very small. 

STANJAN computes Qik exactly, so that the base species vanish com-

pletely from other than their own equations. The conditioned versions of 

equations (4.19-4.21) are solved, rather than the primitive equations. The 

bases are reviewed and changed if necessary whenever a phase appears or dis­

appears during the solution, and a new conditioning matrix is calculated. 

This matrix conditioning allows STANJAN to solve accurately, even when 

two original equations differ by as little as one part in 1020 or morel The 

matrix-conditioning process is also used in the phase-redistribution process 
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in the initializer (Section 7) to help maintain high accuracy in nearly sing­

ular systems. 

The population equations may also be conditioned, producing 

a s a 
* E E C N n x = I: c ikpk = pi 

k=l j=l 
ik (j) kj j 

k=l 

(6.12) 

Note that, by (6.6) , all but one of the base species drop out from each of 

these conditioned population equations . For example, the conditioning of Eqs. 

(6.1) and (6.2) produces 

1 (6.13) 

(6.14) 

The right-hand sides of these equations (the "conditioned populations") are 

just the mols of the base species, and this fact is used to compute 'the con-

ditioned populations. The balancing procedure described in Section 3 is 

required whenever one of the conditioned populations * Pi is zero, and the 

conditioned population equation provides this balance. Note that (6.14) is 

the balance equation (3.7). 

7. Initialization 

The solution requires an initial guess, and a good guess leads to a fast 

solution. The STANJAN initializer is one of the most important reasons for 

its success in treating general problems. Problems that could not be initial­

ized by early STANJAN versions now run nicely, and problems that took dozens 

of iterations are now initialized so well that only a few iterations are 

required. Thus, the STANJAN initializer may be of considerable interest to 

those who prefer to use other methods for equilibrium solution. 

The basic idea of the initializer is to create an approximate distribu­

tion of the atoms from which the phase mols and mol fractions of key species 

can be estimated. These estimated mol fractions are then used to estimate the 

element potentials, in much the same way as the examples in Section 3. The 

initializer does this in a way that works for an arbitrary problem. 
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The initializer begins by distributing the system atoms to a set of base 

species in a way that makes an approximate Gibbs function as small as poss­

ible. This approximate Gibbs function is that obtained by neglecting the 

in xj corrections to the Gibbs functions (see 2.2). The initializer minimi­

zes 

* G 
RT .. 

subject to the atomic constraints (2.3) and to the constraints 

> 0 , j = 1, ••• , s 

(7.1) 

(7 .2) 

This minimization problem is a classic problem in linear programming, and is 

solved by the simplex method. Because the simplex method may not be familiar 

to readers, a brief description of it is given here; for more detail see 

Appendix B, and for a full account see Veinott6• 

The theorems of linear programming show that the solution will be one 

where only a small set of species have non-zero mols (in the approximation 

(7.1)). At each step in the simplex process one has identified a set of "base 

species" that contain the atoms, with all other species having zero mols. The 

simplex process is a base-species-replacement process in which the function to 

be minimized is continually reduced by changing the base species set until no 

further reductions are possible. There are always as many base species as 

there are independent atoms in the system, and the base species mols together 

contain all of the atoms. 

The process begins by placing all atoms in "false" monatamic species. 

The atoms are transferred to the real species by a simplex minimization of the 

total number of false mols. Important conclusions are drawn at the end of 

this simplex process. If it is impossible to eliminate the false species, 

then the assigned populations were impossible . If a false species remains as 

a base with zero mols, then that atom is not linearly independent in the sys­

tem. This is the process by which independent atoms are identified. 

Once the atoms are placed in real species, the simplex minimization 

* process continues until no further reduction in G can be achieved. The 

dominant species are then identified as the base species; the mols of all 

other species are zero at this point. The conditioning matrix is calculated 

for this set of base species. 
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The initial distribution of atoms to the base species allows estimation 

of the phase mols and mol fractions of the base species, with one base species 

per independent atom. In order to estimate the element potentials, one linear 

equation in the element potentials must be obtained for each independent atom 

in the system (i.e., for each base species). For each base there are two 

primary possibilities: 

i) If the estimated mol fraction is greater than zero, this value is 

used to derive one linear equation relating the element potentials (see exam­

ples in Section 3). 

ii) If the base species was estimated to have zero mols, then the dom­

inant balancing species is identified. The balancing species is a secondary 

species that appears in the conditioned population equation with a negative 

coefficient; the one with the largest expected mol fraction is chosen as the 

dominant balancing species. Four possible events are then possible: 

a) If no balancing species can be found, then the species is 
excluded and the initialization is repeated. 

b) If the balancing species is in the same phase as the zero-mols 
base species, then the balance equation is used to derive a linear 
equation relating the potentials (se·e example in Section 3). If 
the phase has zero mols , the "phase-redistribution" flag is set. 

c) If the balancing species is in another phase, then the other 
zero-mols base species are examined and the bases are reordered so 
that the dominant zero-mols base is considered first. 

d) If the zero-mols base is the dominant zero-mols base in a phase 
containing zero mols, then its mol fraction is set to unity and 
this value is used to derive a l i near equation relating the element 
potentials, and the phase-redistribution flag is set. 

The conditioning matrix is recomputed whenever the bases are changed. These 

processes produce a set of linear algebraic equations, which is solved for the 

estimated element potentials. 

In determining the balancing species, estimates of the element potentials 

are used to estimate the species mol fractions. The simplex Lagrange multi­

pliers themselves provide the first estimates of the element potentials for 

purposes of selecting the balancing species. Then, after a set of element 

potentials has been obtained from the process described above, the selection 

of balancing species is repeated using these potentials, and different 
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balancers are chosen if appropriate. Thus, the final element potentials are 

consistent with the choices of balancing species used to generate them. 

If the phase redistribution flag was set by the element potential estima­

ting process described above, then it is necessary to redistribute the atoms 

to populate an empty phase. 'nle idea is to redistribute so that the balancing 

species are present in about the right amount, which will force the species 

that they balance to be present. The first step is to estimate the mol frac­

tions of the balancing species using the estimated element potentials. Then 

the atoms are redistributed amongst the set of species consisting of the 

original base species plus the balancing species, seeking to bring the mol 

fractions of the balancing species as close to their targets as possible. 

This is accomplished by a second simplex calculation in which the sum of the 

differences between the target mol fractions and actual mol fractions is 

minimized, subject to the atomic constraints, to the constraint that all mols 

must be non-negative, and to the constraint that the target mol fraction can 

not be exceeded. Usually these targets are met precisely. 'nle net effect is 

that approximately the right number of atoms are put into the phases which, on 

first estimation, had zero mols. this intricate simplex process is described 

in more detail below. 

If a phase redistribution is required, the element potentials are reesti­

mated using the revised mol distribution, following the procedure described 

above. On each pass the base set is checked to see that they are the dominant 

species, and if necessary bases are changed. 'nlus, at the end the phase mols 

and element potentials are all based on a consistent set of dominant species. 

These initial estimates of the phase mols and element potentials will generate 

approximately the correct mol fractions, and so the equilibrium solution by 

the method described in Section 5 usually converges to high accuracy in just a 

few iterations. 

When running a sequence of calculations involving the same species and 

atomic populations at nearby states, the full initialization process is 

avoided. The mol fractions of the base species from the previous run are 

instead used to estimate the element potentials, and the phase mols of the 

previous run are used. STANJAN also provides the option of freezing the 

composition, and these runs do not require initialization or equilibrium 

solution. 
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The phase-redistribution simplex process uses the variables 

* = - N + N x 
j (j) j 

(balancers) 

for the balancing species assigned target mol fractions 

- (bases) 

for the base species. Equation (7.3a) is rewritten as 

xj* ( l: yj, + l: Nj .. ) 
j I 0 j"b 

in (j) in (j) 

- N 
j 

and 

(7. 3a) 

(7. 3b) 

(7 .4) 

where the sum over j 'o denotes a sum over the base species, and j "b de­

notes a sum over the balancing species, in the phase of balancing species j. 

The set of (7 .4) for the balancing species (there may be more than one) is 

inverted to give, for the balancing species, 

= (balancers) . (7. Sa) 

where j "b denotes a sum over balancing species and j 'o denotes a sum over 

base species and T and B result from the inversion. Then, for the base 

species, 

(bases) (7.5b) 

Equations (7.5) allow expression of the Nj in terms of the simplex variables 

Yj• The atomic constraints (2.3) can then be expressed in the form 

i = 1, ••• , a ( 7. 6) 

where jbo denotes a sum over all variables in this simplex problem (the 

base and balancing species); R.ij is computed from Tjj .. , Bjj,, and nij. 

Finally, the simplex variables also satisfy 

for all j (7. 7) 

Note that (7.7) keeps the balancing mol fractions no greater than their tar­

gets. 
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The simplex process is initiated by establishing a feasible set using 

additional false monatomic species having Yj • Nj and minimizing the sum of 

the false mols, subject to the constraints. Then the problem described above 

is solved. 

In order to improve the accuracy in nearly singular problems, the atomic 

constraint equations (7 .6) are multiplied by the conditioning matrix Cik 

discussed in Section 6. In some problems with very rare balancing species, 

the constraint equations may not be very well satisfied after some simplex 

base change. A correction is then made. The approach is to select the con­

straint equation best satisfied, and then to treat that simplex base as a 

known quantity in a smaller set of equations for the other simplex bases. The 

net result is a remarkable increase in accuracy. 

In summary, the initializer is a sophisticated program that makes a very 

good guess as to the distribution of atoms to dominant species and phases in 

the system. It possesses remarkable accuracy in very-nearly-singular situa-

tions. The importance of the initializer cannot be overemphasized. 

8. Examples 

a) Carbon-Rich C-.0 System 

The first example involves a carbon-rich mixture of CO, co2 , o2 , and 

O, with the possibility of a solid carbon phase. The full output log of this 

run is presented to give the reader a flavor of STANJAN. The user begins by 

calling STANJAN. After an opening opportunity to see a brief description of 

the element potential method, the dialog begins. The user's responses are 

underlined in the log in Fig. 8.1. The margin numbers refer to the notes that 

follow. This example is similar to the first two examples in Section 3, and 

the reader may find it useful to make the comparison. 

1) Note that the first step is to get the data for the species to be 
used. In this case the user selects the general-purpose combustion file 
COMB.DAT, from which he selects the desired species. When running a lot 
of problems with the same species, it is faster to first use the program 
JANN FILE to set up a data set containing only the desired species, and 
then use the single-keystroke defaults * and II to make the phase 
selection from this species set. 

2) In this example the user had made a previous run with the same atoms, 
and so is given a choice of using the same populations or making a setup 
change. In the first run STANJAN offered two ways to specify the atom 
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populations, either by giving them directly or by naming some reactants 
in the data file and then specifying the number of mols of each put into 
the system. 

3) The isentropic sound speed, defined as 

c - ~c::)s (8.1) 

is calculated. Equilibrium states will be used to calculate c unless 
the frozen composition option is selected, in which case it becomes the 
sound speed with frozen chemistry. 

4) STANJAN includes an optional instructive monitor, which can be used 
to learn about the method. It is included here to display the features 
of the initializer and dual problem solution described in previous sec­
tions. 

5) This is what the user woul d have seen had he chosen to check the 
atomic composition. 

6) These are the properties as computed from the JANNAF table data. 

7) The initializer first finds that CO will be the dominant species. 
The balancing requires the presence of co2 , in the amount estimated. 
The initializer then redistributes the atoms to the phases to provide the 
target mol fraction of the balancing species co. 

8) Note how close the solution is after the initialization. Only two 
iterations are 5equired to reach a solution accurate in mol fractions to 
one part in 10 • 

9) These are the data taken from the JANNAF tables. 

10) This is the primary output. 
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1) 

Figure 8.1 Example run log for carbon-rich C-0 system 

You m•y now select a sp•ci•• data fil•. Th• fil• COMB.DAT cont•ins a ••t 
of sp•cies for combustion an•lysis. Just <r•turn> if no file is d•sired. 

Getting species d•ta fil• COMB.DAT 
c 

PLEASE WAIT! 

C<S> 
CH4 
co 
C02 
H 
H2 
H20 
H20CL> 
HO 
N 
N2 
NO 
N02 
0 
02 

Species data files COMB.DAT 

c 
H20<L> 

C<S> 
HO 

CH4 
N 

co 
N2 

C02 
NO 

H 
N02 

H2 
0 

Typa the species in phasa 1, saparated by COCMlas. When typing 
file spaci•• above, b• •ure to us• EXACTLY th• saae characters. 
If you enter other species you will nead thair thermochemical data. 
Type * to includ• all ;as species abov•, • for all condensates. 
Just <return> if you are finished specifying phases. 

co,co2,o,02 

Typa the species in phase 2, separated by co111111as. Wh•n typing 
file species •bove, be sur• to use EXACTLY the same char•cters. 
If you enter oth•r species you will need their thermochemic•l data. 
Type • to include all gas species above, • for all condensates. 
Just <return> if you are finished sp•cifyin; pha•••· 

CCS> 

Type the species in phas• 3, saparat•d by co11M11as. Whan typing 
file species above, be sure to use EXACTLY the same characters. 
If you enter other species you will need their thermoch•mic•l data. 
Type • to includ& all gas speci&s abov•, • for all condensates. 
Just <return> if you ar• finished sp&cifyin; phases. 

Do you want to CHECK th• ATOMS in the 1110leculvs? N 

<return> may be us&d for "no" 

(continued) 
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Figure 8.1 (continued) 

The mi><ture h•s the SAME ATOMS •• in the last run. 

2) This is the CURRENT SETUP1 

Ph•se 1 species: 
CO C02 0 

Ph Ase 
C<S> 

Atom 
c 
0 

2 spec:i es: 

rel•tive population 
1.00000000E+OO 
1.ooooooooe+oo 

02 

Do you want tc m•ke •ny SETUP CHANGES? ~ 

<return> m&y be used for •no" 

Run mcde options: 

0 Abort and redo setup 
1 Specified T •nd P 
2 Specified T and I,/ 

3 Specified T •nd s 
4 Spec: if i ed F' •nd I,/ 

s Specified p •nd ~ 
6 Spec:i f i ed p and s 
7 Specified I,/ and u 
B Spec:i fi ed I,/ and H 
9 Specified I,/ •nd s 

10 A matri>< of spec:i f i ad P,T cases <LOTUS file option> 
11 P and H s•111e •s last run 
12 V and U sa111e AS l•st run 
13 Specified T, s same •& l•st run 
14 Specified P, S &Allle •• last run 
1 :s Specified IJ' S s•m• •a last run 
16 Ona of the above at a specified frozen composition 

Enter run mode optioni 1 

Enter T <K>: 3000 

Enter P (atm> 1 1 

3) The sound speed can be c:•lculated, but then the c•lcul•tions take lonQar. 

Do you want the SOUND SPEED? 

Do you want to SAVE the run OUTPUT in • file?~ 

4) Do you want to MONITOR the run <probably not>? .r_ 

Monitor- levels: 
O none 
1 CT,P> state iteration monitor 
2 method instruction monitor-
3-9 trouble diagnostic monitor 

Monitor- level? 2 

Do you want the MONITOR OUTPUT in a FILE? ~ 

(continued) 
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Start of run monstor output 

5) Atomic compositions: Figure 8.1 (continued) 

6) 

7) 

8) 

co 
C02 
0 

c 
1 
1 
0 
0 
1 

0 
1 
2 
1 
2 
0 

02 
C<S> 

Properties 
species 

for T a 3000.000 
h, kc.al /1110l 

-4,0b:S 

K, P • 1.0133E+O:S Pa 
s, cal/mol-K Q/RT 

co o:S.370 -33.:S7S 
C02 -57.519 79.948 -49.830 
0 ~0.096 -12.951 
02 

73.081 
23.446 
14.412 

67.973 -30.273 
C CS> 12.129 -3.686 

In i ti .a 1 i z a ti en : 

Independent atom 
c 
0 

population 
1.00000E+OO 
1.00000E+OO 

Estimated distribution: 
Phase 1 mols = 1.00000E+OO 
Phase 2 mols • .OOOOOE+OO 

co C02 
mol&I 1.00000E+OO .OOOOOE+OO 

Xl .lOOOOE+Ol .OOOOOE+OO 

Phase redistributions 

0 
.OOOOOE+OO 
.OOOOOE+OO 

Target mol fraction• .11932£-0:S for C02 

Estimated distribution1 
Phase 1 mols = 9.99999£-01 
Phase 2 mols = 1.19321E-06 

·CO C02 
mols: 9.99998E-01 .1.19321£-06 

XI • lOOOOE+Ol • 11932E-O:S 

Equilibrium &elution monitors 

0 
.OOOOOE+OO 
.OOOOOE+OO 

02 
.OOOOOE+OO 
.OOOOOE+OO 

C <S> 
.OOOOOE+OO 
.OOOOOE+OO 

02 C<S> 
.OOOOOE+OO 1.19321£-06 
.OOOOOE+OO .10000E+01 

EQUIL pass 1; dual function W • 3.4:S776:S38167:SE+01 
phase 1 mols • 9,9999BB07E-01; mol fr•ction sum Z • 1.000000043932E+OO 
phase 2 mols = 1.19320842E-06J mol fraction sum Z • 1.000000000000E+OO 
element potential for C • -3.6B61:S:SB09:S40E+OOa population error • -2.B4:SE-12 
element potential for 0 • -2.999149?9632BE+01J population error • 4.393E-OB 

ca co2 o 02 c cs> 
X: .lOOOOE+Ol .11932E-O:S ,4393:SE-07 .1:S276E-12 .10000E+01 

Element potentials and phase mols adjusted by Newton-Raphson 

ECUIL pass 2; dual function W • 3.45776:S3B6069E+01 
phase 1 mols = 9.9999BB07E-Ol; mol fr•ction sum z • 1.ooooooooooooE+OO 
phase 2 mols = 1.23714080E-061 mol fraction su~Z • 1.ooooooooooooE+OO 
element potential for C a -~.6Bb15:SB09:S40E+OOJ population error • 1.2B1E-1:S 
element potential for 0 • -2.9S9149S00721E+011 population error • 1.2S1E-l:S 

ca ca2 · o 02 c < s > 
Xt .10000E+01 . 11932E-O:S .43935£-07 .1527oE-12 .10000£+01 

Element potentials and phase mols adjusted by Newton-Raphson 

Final distribution: 
CO Ca2 0 02 C c S > 

mols: 9.9999BE-01 1.19321£-06 4.39351E-OB 1.52763£-13 1.23714£-06 

End of run monitor output 

(continued) 
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9) 

Fig 8.1 (concluded) 

OUTPUT READY. Notes <ctrl-s> stops/starts IBM-PC display. 

Do you want to see th• JANNAF data used? Y 

On IBM-PC, use <ctrl-PrtSc> to start printer <optional>. 
Please press <return> to continue. _ 

JANNAF table data1 
species 

Phase 1J 
co 
C02 
0 
02 

mol. mass 
c;i/11101 

Gas species r 
28.010:54 
44 . 00995 
16.00000 
31.99879 

enth. form 
kcal /mol 

-26.420 
-94.0!54 
59.559 

.000 
Phase .2J Condensed species1 

For T • 3000.00 K 
SO H-HO 

cal/111Cl-K 

6:5.370 
79.848 
!50.096 
67.973 

kcal/1110l 

22. ::S:57 
::S6. :53:5 
13.522 
23.446 

Density, ;/cc 
c ( s) 12. 01100 • 000 12.129 14.412 2.700 

10) Independent 
system atom 

c 

relative 
population 

1 . 00000000E+OO 
1 . ooooooooE+oo 

element 
potential 

-3. 6862 
0 

Composition at T • . ::S000.00 K 
species mol fraction 

Phase 
co 
C02 
0 
02 

in the phase 
1 1 Molal mass, g/mol • 

.lOOOOE+Ol 
• 119::S2E-O:S 
. 4393SE-07 
.15276E-12 

Phase 2r Molal mass, g/mol • 
C<S> .10000E+Ol 

-29.891:5 

p -
1.000E+OO 

mol fraction 
in mixture 
28.011 
• 10000E+01 
.11932E-O:S 
.4393SE-07 
.1:5276E-12 
12. 011 
.12371E-O:S 

* Species mols fer the atom populations in 111Dls. 

at111aspher•• 
mass fraction 

in mixture 

.10000E+01 
.1B748E-0!5 
.25096E-07 
.174:S1E-12 

.S3049E-06 

molal mass • 28. 011 kg/kmol 

111ols• 

9.99998E-01 
1.19321E-OO 
4.39351E-OB 
1.::S2763E-13 

l.23714E-OO 

Mixture prcperties1 
T • 3000.000 K Pc 1.0133E+OS Pa V • 8.7884E+OO m••3/kg 
U •-1.4974E+06 J/kg H •-6.0691E+0:5 J/kg 6 • 9.764!5E+03 J/k;-K 

Made O <T,P> iterationss 2 EQUIL iterations. 

On IBM-PC, use <ctrl-PrtSc> to stop printer <optional>. 
Please press <return> to continue. _ 
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b) Example with Two Complex Phases 

The next example is taken from the field of fiber optics manufacture. It 

involves a complex set of species in the gas phase, and a condensed phase, 

treated here as an ideal solution. The JANNAF data and operating conditions 

were provided to the author by the AT&T Bell Laboratories. For brevity only 

the final output is given in Fig. 8.2. Note that only five iterations were 

required. 

c) Gas Turbine Engine Example 

This example shows how STANJAN can be used to calculate the adiabatic 

flame temperature in a gas turbine engine combustor, and then the composition 

after isentropic expansion in the turbine nozzle. 

The first step is to get the enthalpy of the reactants by a run at the 

combustor inlet state. Here we took T • 400°K, P • 6 atm, and assumed that 

the reactants were 

The results are shown in Fig. 8.3. 

The next step is to get the adiabatic flame temperature by finding the 

state of the products at the same enthalpy and pressure as the last run. The 

reactants and a set of products are allowed species. The results are shown in 

Fig. 8.4. 

The final step is to get the temperature following isentropic expansion 

in the turbines by finding the equilibrium state for the same species at the 

same entropy and a specified pressure (here 1 atm.). The results are given in 

Fig. 8. 5. 



Figure 8. 2 Output for example with two complex phases 

Independent 
system .atom 

Ar 

relative 
papul.atian 

1.00000000E-01 
6,06000000E+OO 
2.88340000E+01 
1.00000000E+OO 
:5.1:5000000E-01 
2.::SOOOOOOOE-02 

Cl 
a 
Si 
Ge 
p 

Campasitian .at T = 16:50.00 K 
species mal fraction 

Phase 
Ar 
Cl 
ClO 
Cl2 
Cl4Si 
Geo 
Ge02 
0 
02 
OSi 
02Si 
Cl4Ge 
Cl::SOP 
OP 
02P 
010P4 
Cl Ge 

in the phase 
11 Molal mass, g/mal = 

.!59712E-02 

.S6748E-01 

. 10439E-02 

. 1:5201E+OO 

. 47293E-07 

.17976E-10 

.13847E-12 

.22737E-04 

. 78362E+OO 

.82707E-'-12 

.9S361E-10 

.286:SlE-08 
• 11617E-04 
. 1!5489E-08 
.31089E-03 
.26269E-03 
.17!509E-13 

Phase 21 
Ge02Cl> 
02SiCl> 
03PC1 > 

Molal mass, g/mol • 
.33993E+OO 
.66007E+OO 
• 12491E-05 

element 
potanti.al 

-2:5.7075 
-16~2887 
-14.1651 
-50.0253 
-43.8678 
-37.38:59 

P = 1.000E+OO atmospheres 
mal fraction mass fraction 

in mixture in mixture 
38.255 
.54758E-02 
. S2040E-01 
.9S729E-03 
.13940E+OO 
.43370E-07 
.16484E-10 
.12698E-12 
.208:51E-04 
• 71861E+OO 
.7584SE-12 
.874SOE-10 
.26274E-08 
.106:53E-04 
.14204E-08 
.28510E-03 
.24090E-03 
.16057E-13 
75.214 
.28201E-01 
.S475BE-01 
.10362E-06 

.:52939E-02 

.446SOE-01 

.11920E-02 

.23921E+OO 

.18882E-06 
• ::S:S342E-10 
.32141E-12 
.80737E-0!5 
. S:S651E+OO 
.80921E-12 
.12869E-09 
• 13:593E-07 
.39S::SOE-04 
.16140E-08 
. 43449E-03 
.l~:SOE-02 

• 41983E-13 

• 71380E-01 
.79626E-01 
.19804E-06 

* Species mols far the .atom populations in mols. 

molal mass • 41.321 kg/kmol 

mols• 

1.00000E-01 
9.:50359E-01 
1.74821E-02 
2.S4579E+OO 
7.92022E-07 
::S.01041E-10 
2.31B96E-12 
3.80779E-04 
1.31233E+01 
1. 38!510E-11 
1.59701E-09 
4.7982SE-08 
1.9454SE-04 
2.:S9397E-08 
S.20647E-03 
4.39927E-03 
2.93228E-13 

:5.l:SOOOE-01 
9.99999E-01 
1.89240E-06 

Mixture prapertiess 
T = 1650.000 K P = 1.0133E+OS P.a V = 3.0048E+OO m••::S/kg 
U •-S.4778E+OS J/kg H =-2.4331E+O:S J/kg S • 6.2782E+03 J/kg-K 

M.ada O CT,P> itaratians1 S EQUIL iter•tians. 
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Figure 8.3 First step in the turbine example: 

Independent 
syste• •to. 

H 
0 
N 

Dependant 
syste• ato• 

c 

Composition 
species 

Phase 11 
CH4 
02 
N2 

Calculation of the enthalpy of the reactants 

at 

relative 
population 

4.00000000E+oo 
4.00000000E+oo 
1.:50400000E+o1 

1.00000000E+OO 

T • 400.00 
tnOl fraction 
in the phase 

Mel al 111•••· Q/mol 
.9:SO:S7E-01 
.19011E+OO 
.714B3E+OO 

K 

-

el•-nt 
potenti•l 
-11. 4094 
-12. 3340 
-10.8:571 

p • 6.000E+OO •tmospheres 
mol fraction 111••• fr•ction 
in •iwture in mi>cture 
27.633 
.9:SO:S7E-01 .:S:S1B7E-01 
.19011E+oo .2201:5E+OO 
.71483£+00 .72466E+o0 

* Speci•• •ols far the ato• populations in mals. 

molal 111••• • 27.633 kQ/klllDl 

mol•• 

l • OOOOOE +00 
2.00000E+OO 
7.:52000E+OO 

Mixture properti••• 
T ·• 400.000 K P • 6.07cr.5£+0:5 Pa V • 1.9796E-01 111••3/kQ 
U •-2.6694E+0:5 J/kQ H •-1.46!59E+o:5 J/kQ S • 7.0201E+03 J/kQ-K 

Made 0 <T,P> iterations1 1 EQUIL iterations. 
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Figure 8.4 Second step in the turbine example: 

Calculation of the adiabatic flame temperature 

Independent relative element 
system atom population potential 

c 1.ooooooooE+oo -20.4676 
H 4.00000000E+OO -11.9990 
o 4.00000000E+OO -16.:5667 
N 1.:50400000E+01 -12.9931 

Composition at T "' 2316.31 K p - 6.000E+OO atmospheres 
species mol fraction mol fraction mass fraction mols• 

in the phase in mi>eture in mi>eture 
Phase 11 Molal mass, o/mol "' 27.466 
c .:5~:5BE-16 . :5:53:5BE-16 .24209E-16 :5.95920£-16 
CH4 .2:580BE-15 .2:580BE-1:5 .15074£-1:5 2.731:53E-1:5 
co .7:5620E-02 .7:5620E-02 .77120E-02 B.0037:5E-02 
C02 .8691BE-01 .8691BE-01 .13927E+OO 9.19962E-01 
H .229B7E-03 .22987E-03 .B4361E-0:5 2.43302£-03 
H2 .288:57E-02 .288:57E-02 .21181E-03 3.0:5426E-02 
H20 .1847:5E+OO .1B47:5E+OO .1211BE+OO 1.9:5:542E+OO 
HO .2423:SE-02 .24233E-02 .15006E-02 2.56492E-02 
N .1:5822E-07 .1:5822E-07 .80693E-OB 1.674:59E-07 
N2 .70944E+OO .70944E+OO .723:5BE+OO 7.:50883E;:+OO 
NO .21100E-02 .21100E-02 .230:53£-02 2.23330E-02 
N02 .67724E-06 .67724E-06 • 11345E-0:5 7.16807E-06 
0 • 131BOE-O:S .131BOE-03 .767BOE-04 1.39:501E-O:S 
02 .3SS:S9E-02 .3:5539£-02 .41404E-02 :S.7614BE-02 

Ph&se 21 Molal m&as, otmol - .ooo 
H20<L> .OOOOOE+-00 .OOOOOE+OO .OOOOOE+OO • 00000£+00 

Phase 31 Molal m&ss, g/mol "' .ooo 
C <S> .OOOOOE+OO .OOOOOE+OO .OOOOOE+OO .OOOOOE+OO 

• Species mols for the atom populations in mols. 

molal mass • 27.466 kg/kmol Miwture propertiesz 
T • 2316.309 K p = 6.079:5E+0:5 Pa v"' 1.1:534E+OO 111••3/ko 
U •-8.4777E+0:5 J/kg H •-1.46:59E+0:5 J/ko s - 9.3791E+03 J/ko-K 
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Figure 8.5 Third step in the .turbine example: 

Calculation . of the nozzle exit state 

Independent rel&tiv• •l•m1tnt 
syst- ate• population potential 

c 1.ooooooooE+oo -24.7390 
H 4.00000000E+OO -13.7096 
0 4.00000000E+OO -18.3106 
N 1.:S0400000E+01 -13.3409 

Composition at T = 1674.93 K p c 1.000E+OO at•osph•r•s 
speci as mol fr•ction 11101 fraction mass fraction 1nals• 

in the phas• in .. i><ture in mi><turtt 
Phastt 11 Molal mass, g/mol .. 27.62:5 
c .1560BE-23 .1560SE-23 .67S62E-24 1.6424SE-2:S 
CH4 .9:S925E-20 .93923E-20 .:54543£-20 9.99372E-20 
co .:S:S225E-O:S • :S:S:Z:Z:SE-03 .:S36SBE-O:S 3.49629£-0:S 
C02 .94697£-01 .94697£-01 .15086E+o0 9.9~4E-01 
H .164:SBE-05 .16438£-05 .59977£-07 1.72976E-O:S 
H2 .20251E-03 . 20251E-03 • 1477SE-04 2.1:S099E-03 
H20 .1B9B2E+OO .1B982E+OO .12379E+OO 1.99747E+OO 
HO .74204E-04 .74204£-04 .4S683E-04 7.BOB4BE-04 
N . 27B66E-11 .27966E-11 .14130E-11 2.93239£-11 
N2 • 714SBE+OO .714:SSE+OO .72462£+00 7.51956£+00 
NC .S4:S1SE-04 .B4S1SE-04 .91807E-04 B.89380E-04 
N02 . 9367BE-OB . B:S678E-OB . 13936£-07 B.BO:S4BE-OB 
a .486BSE-06 . 4868:5E-06 • 28197£-06 :S.12:S14E-06 
02 .20673£-03 .20673E-03 .23946£-03 2.17S41E-03 

Phase 21 Mol•l milss, g/mol • .ooo 
C<S> ,OOOOOE+OO .OOOOOE+OO .OOOOOE+OO . 00000£+00 

Ph as• :SI 1101 al mass, ;/mol • .000 
H20CL> .OOOOOE+OO . OOOOOE+OO .OOOOOE+OO .OOOOOE+OO 

* Species mols for the atom populations in mols . 

molal m•ss • 27,625 kg/kmcl Mi><ture properties& · 
T = 1674.929 K P • 1,0133E+05 Pa V c 4.97SOE+OO m••3/k; 
u =-1.7272£+06 J/kg H •-1.2231E+06 J/kQ 5 = 9.3791£+03 J/kg-K 

Made 3 <T,P> iterations1 24 EQUIL iterations. 

Cillculatin; th• sound speeds PLEASE WAIT! 

Sound speed Cisentropic> .. 794.9 mis 
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d) Other Applications 

An early version of STANJAN was used for fiber-optics fabrication analy­

sis by McAffee et al. 7 This version, which did not use the full dual problem, 

had difficulties in converging with multiple phases, and had to be extended by 

them to cover ideal solutions. The present version runs their problems very 

quickly, with no difficulty. 

More recently, McAffee et al. 8 studied other such problems using the 

element potential method. At that time, the full dual problem had not yet 

been developed, so they developed their own algorithm for making the steepest 

descent. 

9. Availability and Implementation of STANJAN 

STANJAN and an associated data file-managing program, JANFILE, have been 

compiled using MICROSOFr(c) FORTRAN for use on the IBM-PC or compatible desk­

top computers. These programs run with or without the floating point coproc-

essor. This version can handle up to twenty species, in up to six phases, 

containing up to eight different elements. 

The user disk, containing the compiled programs, data files, and exam­

ples, is available for educational use as freeware. An institution desiring 

to use this program for instructional use should send a blank formatted disk 

to the author in a floppy disk mailer. The disk will be returned with these 

files. This disk may be freely copied, and faculty members are encouraged to 

help spread STANJAN by sending copies to colleagues at other institutions. 

The FORTRAN source programs are also available on IBM-PC floppy disk, at 

a reasonable cost. For details contact the author. These may be recompiled 

for use on larger computers, and can be easily modified to handle larger 

problems. These programs are good examples of modern, structured FORTRAN pro­

grams, are very well documented internally, and may themselves be useful as 

educational tools. 

An early version of the equilibrium routine of the parent STANJAN, which 

did not use the full dual problem, was incorporated in Sandia's widely used 

CHEMKIN program as "the Stanford Equilibrium Solver". Users of that program 

will find the present equilibrium solver more robust and faster, especially if 

used with the current STANJAN initializer. 
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