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Preface

This report presents the latest in a number of versions of chemical

equilibrium and applications programs developed at the NASA Lewis Research
Center over more than 40 years. These programs have changed over the years to

include additional features and improved calculation techniques and to take

advantage of constantly improving computer capabilities. The minimization-of-

free-energy approach to chemical equilibrium calculations has been used in all
versions of the program since 1967.

The two principal purposes of this report are presented in two parts. The

first purpose, which is accomplished here in part I, is to present in detail a

number of topics of general interest in complex equilibrium calculations. These

topics include mathematical analyses and techniques for obtaining chemical

equilibrium; formulas for obtaining thermodynamic and transport mixture

properties and thermodynamic derivatives; criteria for inclusion of condensed
phases; calculations at a triple point; inclusion of ionized species; and various

applications, such as constant-pressure or constant-volume combustion, rocket

performance based on either a finite- or infinite-chamber-area model, shock wave

calculations, and Chapman-Jouguet detonations.
The second purpose of this report, to facilitate the use of the computer

code, is accomplished in part II, entitled "Users Manual and Program

Description." Various aspects of the computer code are discussed, and a number

of examples are given to illustrate its versatility.
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Chapter 1

Introduction

Knowing the chemical equilibrium compositions of

a chemical system permits one to calculate theoretical

thermodynamic properties for the system. These proper-
ties can be applied to a wide variety of problems in

chemistry and chemical engineering. Some applications

are the design and analysis of equipment such as

compressors, turbines, nozzles, engines, shock tubes, heat

exchangers, and chemical processing equipment.

For more than 40 years the NASA Lewis Research
Center has been involved in developing methods and

computer programs for calculating complex chemical
equilibrium compositions and thermodynamic properties

of the equilibrium mixtures and in applying these

properties to a number of problems (Gordon et al., 1959,
1962, 1963, 1970, 1976, 1984, 1988; Huff et al., 1951;

Svehla and McBride, 1973; and Zeleznik and Gordon,

1960, 1962a,b, 1968). Earlier versions of the chemical

equilibrium computer program (Zeleznik and Gordon,
1962a; and Gordon and McBride, 1976) have had wide

acceptance. Since the last publication this program has
been under continuous revision and updating, including

several substantial additions. One addition is an option

for obtaining the transport properties of complex

mixtures (Gordon et al., 1984) by methods simpler than
those of Svehla and McBride (1973). A second addition

is an option to calculate rocket performance for a rocket
motor with a finite-area combustor (Gordon and

McBride, 1988). The present report documents these and

other additions and revisions to the program since 1976.

The revised program is called CEA (Chemical

Equilibrium and Applications).
The program can now do the following kinds of

problems:

(1) Obtaining chemical equilibrium compositions

for assigned thermodynamic states. These states may be

specified by assigning two thermodynamic state func-
tions as follows:

(a) Temperature and pressure, tp

(b) Enthalpy and pressure, hp

(c) Entropy and pressure, sp
(d) Temperature and volume (or density), tv

(e) Internal energy and volume (or density), uv

(f) Entropy and volume (or density), sv

(2) Calculating theoretical rocket performance for
a finite- or infinite-area combustion chamber

(3) Calculating Chapman-Jouguet detonations

(4) Calculating shock tube parameters for both inci-
dent and reflected shocks

Some problems handled by the program use just one
combination of assigned states--namely, the tp, hp, sp,

tv, uv, and sv problems. For example, the tp problem,
which consists of a schedule of one or more assigned

temperatures and pressures, might be used to construct

Mollier diagrams. The hp problem gives constant-

pressure combustion properties and the uv problem gives
constant-volume combustion properties. Other problems
make use of more than one combination of assigned

thermodynamic states. For example, the shock and

detonation problems use hp and tp; the rocket problem

uses hp or tp and also sp.

This report consists of two parts. Part I, containing

the analysis, includes

(1) The equations describing chemical equilibrium

and the applications previously mentioned (i.e., rocket

performance, shocks, and Chapman-Jouguet detonations)
(2) The reduction of these equations to forms

suitable for mathematical solution by means of iterative

procedures
(3) Equations for obtaining thermodynamic and

transport properties of mixtures

Part II, a program description and users manual,

discusses the modular form of the program and briefly



describeseachsubroutine.It also discusses the prepara-

tion of input, various permitted options, output tables,

and error messages. A number of examples are also

given to illustrate the versatility of the program.

In addition to the work in chemical equilibrium

calculations and applications over the past 40 years,

progress in computer programs, data generation, and data

fitting has also been made at NASA Lewis for the ther-

modynamic and thermal transport properties of indi-

vidual species required for the equilibrium calculations.

Some examples of this effort are Burcat et al. (1985),
McBride et al. (1961, 1963, 1967, 1992, 1993a,b),

Svehla (1962), and Zeleznik and Gordon (1961). In

addition to data calculated by us, other thermodynamic
data included in our files are taken from sources such as

Chase et al. (1985), Garvin et al. (1987), Gurvich et al.

(1989), and Marsh et al. (1988). Files distributed with

the computer program are described in part II.
Various versions of the equilibrium program or

modifications of the program have been incorporated

into a number of other computer codes. An example

is Radhakrishnan and Bittker (1994) for kinetics cal-
culations.



Chapter 2

Equations Describing Chemical Equilibrium

Chemical equilibrium is usually described by either

of two equivalent formulations--equilibrium constants or

minimization of free energy. Reports by Zeleznik and

Gordon (1960, 1968) compare the two formulations.
Zeleznik and Gordon (1960) shows that, if a generalized

method of solution is used, the two formulations reduce

to the same number of iteration equations. However,

with the minimization-of-free-energy method each

species can be treated independently without specifying

a set of reactions a priori, as is required with equilibrium
constants. Therefore, the minimization-of-free-energy

formulation is used in the CEA program.

The condition for equilibrium can be stated in terms

of any of several thermodynamic functions, such as the
minimization of Gibbs or Helmholtz energy or the

maximization of entropy. If one wishes to use tempera-

ture and pressure to characterize a thermodynamic state,

Gibbs energy is most easily minimized inasmuch as
temperature and pressure are its natural variables.

Similarly, Helmholtz energy is most easily minimized if

the thermodynamic state is characterized by temperature
and volume (or density).

Zeleznik and Gordon (1960) presents equations
based on minimization of Gibbs energy. Some of these

equations are repeated and expanded herein for
convenience. In addition, a set of equations based on

minimization of Helmholtz energy is also presented.

However, because only ideal gases and pure condensed

phases are being considered, the general notation of
Zeleznik and Gordon (1960) is not used.

Physical Unit Symbol

quantity

Length meter m

Mass kilogram kg

Time second s

Temperature kelvin K

Force newton N

Pressure newton per N/m 2

square meter

Work, energy joule J

The numerical values of a number of fundamental

contants are taken from Cohen and Taylor (1987). For

example, the value of the gas constant R taken from this

reference is 8314.51 J/(kg-mole)(K). In those sections

dealing with the computer program, other units are used
in addition to or instead of SI units.

2.2 Equation of State

In this report we assume that all gases are ideal and

that interactions among phases may be neglected. The

equation of state for the mixture is

PV = nRT (2.1a)

2.1 Units

The International System of Units (SI) used in this

report is

or

---P = nRT (2.1b)

P



whereP is pressure (in newtons per square meter), V

specific volume (in cubic meters per kilogram), n moles

per unit mass of mixture (in kilograms-mole per

kilogram), T temperature (in kelvin), and p density (in

kilograms per cubic meter). Symbols used in this report

are defined in the appendix. For a reacting chemical

system the number of moles n is generally not constant.
Equation (2.1) is assumed to be correct even when

small amounts of condensed species (up to several

percent by weight) are present. In this event the

condensed species are assumed to occupy a negligible

volume relative to the gaseous species. An example

given in part II of this report illustrates the validity of
this assumption. In the variables V, n, and p the volume

and mole number refer to gases only, but the mass is for

the entire mixture including condensed species. The

word "mixture" is used in this report to refer to mixtures

of reaction products as distinguished from mixtures of
reactants, which are referred to as "total reactants."

On the basis of this definition, n can be written as

big

n = _ nj (2.2)
1=1

where nj is the number of kilogram-moles of species j
per kilogram of mixture and the index NG refers to the

number of gases in the mixture. The molecular weight of
the mixture M is defined as

1
M = - (2.3a)

ill

or equivalently as

NS

E n,Uj
M- i=I

big

1=i

(2.3b)

where M: is the molecular weight of species j and the
index NS_ refers to the number of species in the mixture.

In the CEA computer program, among the NS species,

gases are indexed from 1 to NG and condensed species
from NG + 1 to NS.

More conventionally, molecular weight is defined
as

biS

E n,Mj
MW- i=i (2.4a)

big

J=i

Molecular weight is given the symbol MW in equa-
tion (2.4a) to differentiate it from M. The two different

definitions of molecular weight, M and MW, give differ-

ent results only in mixtures of products containing con-

densed as well as gaseous species. Only M is given in

the output, but MW may be obtained from M by means
of

(2.4b)

where x/is the mole fraction of species j relative to all
species m the mixture. Some additional discussion of the

differences in these molecular weights is given in part II
of this report.

2.3 Minimization of Gibbs Energy

For a mixture of NS species the Gibbs energy per
kilogram of mixture g is given by

g

N$

= _jnj
i=i

(2.5)

where the chemical potential per kilogram-mole of

species j is defined to be

(2.6)

The condition for chemical equilibrium is the minimiza-

tion of free energy. This minimization is usually subject
to certain constraints, such as the following mass-balance
constraints:

NS

__,aon j - b_ = 0 (i = 1.... ,Q) (2.7a)
j=l



or

O

b t - bi = 0 (i = 1,...,0 (2.7b)

where the stoichiometric coefficients aij are the number
of kilogram-atoms of element i per kilogram-mole of

species j, the index _ is the number of chemical ele-
ments (if ions are considered, the number of chemical

elements plus one), b_ is the assigned number of
kilogram-atoms of element i per kilogram of total

reactants (see eq. (9.5)), and

NS

bj = 2_aonj (i = 1,...,0 (2.7c)
j-t

is the number of kilogram-atoms of element i per kilo-

gram of mixture.
Defining a term G to be

!

-- s + X,(b - bD
i-1

(2.8)

where _'i are Lagrangian multipliers, the condition for
equilibrium becomes

-- .j + x,.,o 8nj + ° (b, - bT)SX,
=0

(2.9)

Treating the variations 5nj and _X i as independent gives

!

pj + _ _.,aO = 0 (j = 1,...,NS) (2.10)
i=l

and also gives the mass-balance equation (2.7b).
From the assumptions in section 2.2 the chemical

potential can be written as

lXjo+ RT In nY + RT In P (j = 1,...,NG)
= rt

[ixI (] = NG + 1,...,NS) (2.11)

state. For a gas the standard state is the hypothetical

ideal gas at the standard-state pressure. For a pure solid

or liquid the standard state is the substance in the

condensed phase at the standard-state pressure.

Historically, the defined standard-state pressure has been

1 atmosphere (101 325 Pa). Most early tabulations of

thermodynamic data were based on this pressure.
However, in 1982 the International Union of Pure and

and Applied Chemistry (Cox, 1982) recommended that

the standard-state pressure should be defined as 1 bar
(105 Pa). Most recent compilations have used 1 bar as

the standard pressure (e.g., Chase et al. (1985), Garvin

et al. (1987), Gurvich et al. (1989), Marsh et al. (1988),

and McBride et al. (1993a,b)). The unit of pressure in

equation (2.11) should be consistent with the unit of

pressure in the thermodynamic data being used.

The term la_ and other thermodynamic terms that
appear later in the text, such as C_j, H_, S_, C_:, and
Uj°, are all functions of temperature. However, inc'tuding

T as part of the symbol notation, such as H_.(T) or H°(T),
is done only when needed for clarity. Vor example,

sensible heat for species j between a temperature T and

a temperature of 298.15 K can be written as H_(T) -

H}(298.15).
Equations (2.7a) and (2.10) permit the determin-

ation of equilibrium compositions for thermodynamic

states specified by an assigned temperature To and

pressure P0" That is, in addition to equations (2.7a) and
(2.10), we have the pair of trivial equations

T = TO (2.12a)

P = Po (2.12b)

However, the thermodynamic state can be specified by

assigning any two state functions. For example, the

thermodynamic state corresponding to a constant-
pressure combustion is specified, instead of by

equations (2.12), by

h = ho (2.13a)

P = Po (2.13b)

where Iff for gases (j = 1 to NG) and for condensed

phases (j > NG) is the chemical potential in the standard

where h is the specific enthalpy of the mixture and h0 a
constant equal to the specific enthalpy of the reactants

(see eq. (9.7)). The expression for h is

5



N$

h = _ njH 7 (2.14)
iffil

where H. ° is the standard-state molar enthalpy for
.J

species j at temperature T.
For assigned entropy and pressure (such as for an

isentropic compression or expansion to a specified

pressure), the thermodynamic state is specified by

s=s o (2.15a)

P = Po (2.15b)

where s is the specific entropy of the mixture and so the

assigned specific entropy, or the specific entropy of the

total reactant (see eq. (9.22)). The expression for s is

N$

s--E 
l=t

(2.16)

where

pansion of the appropriate equations with all terms

truncated that contain derivatives higher than the first.

The correction variables used areAln nj (j = 1,...,NG),

Anj (j = NG + 1,...,NS), Aln n, n_ = -_,JRT, a n d

AInT. As Zeleznik and Gordon (1968) points out, it is
no restriction to start each iteration with the estimate for

the Lagrangian multipliers equal to zero inasmuch as

they appear linearly in equation (2.10). After making

dimensionless those equations containing thermodynamic

functions, the Newton-Raphson equations obtained from

equations (2.10), (2.7), (2.13a), and (2.15a) are

ahnj - _a¢r_ i - Alnn - -- AlnT
i=1 RT

= _l.tj (j = 1,...,NG)
RT

(2.18)

, He _ "j
-_acn, - -_TAIn T =iol RT

(j = NG + 1..... NS) (2.19)

s7 - R In nj _ R haP (j = 1,...,NG)Sj= n
IS7 (j = NG + 1,...,NS) (2.17)

and S ° is the standard-state molar entropy for species j.

Equation (2.17) is similar to equation (2.11), and the
same discussion concerning standard-state pressure that

applied to equation (2. I 1) also applies to equation (2.17).

2.3.1 Gibbs Iteration Equations

The equations required to obtain composition are

not all linear in the composition variables and therefore

an iteration procedure is generally required. In the itera-

tion procedure to be described it will be convenient to

treat n as an independent variable. A descent Newton-

Raphson method is used to solve for corrections to initial

estimates of compositions nj, Lagrangian multipliers Xj,
moles of gaseous species n, and (when required)

temperature T. This method involves a Taylor series ex-

NO NS

_ aqnj Aln nj + _.
j=l j=NG+i

% a nj = b_ - bk

(k = 1..... 0

NO NG

__,n/alnnj - nAlnn = n - _n/
jft jfi

NG o NS H?

at. Rr-'an'

+ nj'----2AInT= R_r
U-I

(2.20)

(2.21)

(2.22)



At" T
j-i R j=No+l U=l

"gO - S

R

NG

+ n - _ nj (2.23)
j-I

where C_i is the standard-state specific heat at constant

pressure for species j at temperature T.

2.3.2 Reduced Gibbs Iteration Equations

For problems with assigned thermodynamic states

tp, hp, or sp, various combinations of equations (2.18) to
(2.23) could be used to obtain corrections to estimates.

However, for chemical systems containing many species,
it would be necessary to solve a large number of

simultaneous equations. This large number of equations

can be reduced quite simply to a much smaller number

by algebraic substitution. The expression for Aln nj

obtained from equation (2.18) is substituted into equa-
tions (2.20) to (2.23). When equation (2.19) written with

signs reversed is included, the resulting reduced

equations are

_, _, a_aonjn i + a_Anj + aqnj At" n
i=1 1=1 /=NG÷I l,,j= 1

tj=l

e,_o] Noa At" T = b_-b k + y]_ aqnj_tj
) j:, RT

(k = 1.....0 (2.24)

| o

E ao., + H7 At" T- "J
RT RTi=1

q = NG + 1,...,NS)

(2.25)

_ ,,,/,j_,+ ,_-,, At.. + A_ r
i:l j:l t.#=l tj:i RT )

NO NG

= n - _ nj + _ n/ix# (2.26)
j:_ j:_ RT

' (_aqnlHTI + NS H°" + __,Ol° nn_R_)E ,< E _"., A_..
i-l 1+1 _ J _ J-NG+I -I

+ ,,.T: -
R2T 2 J 1-1 R2T 2/=l /=l

(2.27)

+ E hA.+ At"
j=NO+I R _# I,j-I

o "°",".',1+ njC;"s+_ At" r- _°-_
_,1=1 R /=l R1T ) R

+ n

NG big

- E nj + E _ (2.28)
j=l S-i R2T

Equations (2.24) to (2.28) are given in table 2.1 in

a form that permits a direct comparison with other sets
of simultaneous equations presented in later sections

(tables 2.2 to 2.4). (Note that tables 2.1 to 2.4 appear at

the end of this document.) In a previous report (Gordon
and McBride, 1976), some special script symbols were

used for the sake of compactness in preparing tables 2.1

to 2.4, as for example,

9(- h (2.29)
RT

These script symbols are no longer used in this report.

The correction equations required for several types

of constant-pressure problems are summarized as

follows, where i = 1..... | and j = NG + 1..... NS:

Type of Equations Correction

problem required variables

_i, _lj, AIn nAssigned temperature

and pressure, tp

Assigned enthalpy

and pressure, hp

Assigned entropy and

pressure, sp

(2.24), (2.25),

(2.26)

(2.24), (2.25),

(2.26), (2.27)

(2.24), (2.25),

(2.26), (2.28)

gi, An), AIn n,
Aln T

_i, An),AIn n,
Ain T

7



After obtainingthe correctionvariablesshown
above,the correctionsfor gaseousspeciesAln nj

(/" = 1.... ,NG) are then obtained from equation (2.18).

Section 3.3 discusses controlling the size of corrections

before they are applied to obtain improved estimates.

2.4 Minimization of Heimholtz Energy

The equations presented in this section are similar

to those in section 2.3. Whatever differences appear are

due to the different forms of the chemical potential

laj (j = 1,...,NG). In section 2.3 pressure was one of the
assigned thermodynamic states, and consequently Gibbs

energy was minimized. In this section volume (or

density) is one of the assigned thermodynamic states,

and consequently Helmholtz energy is minimized.

The two energies (Gibbs and Helmholtz) have the

following thermodynamic relationship:

f = g - PV (2.30)

where f is the Helmholtz energy per kilogram of mix-

ture. After substituting Gibbs energy g as given by

equation (2.5), equation (2.30) becomes

NS

f-. _ _,,,,j - ev
j=l

(2.31)

The chemical potential iaj can be expressed as a thermo-
dynamic derivative in several ways (Kirkwood and

Oppenheim, 1961). One way is given by equation (2.6).

Another expression is

(2.32)

If

!

e--z.Ex,(b,-b:)
i=!

(2.33)

the condition for equilibrium based on the minimization

of Helmholtz energy subject to mass-balance constraints
is

Ns(, /j=l i=l

!

• E(b,- b,°)8x,
i=l

=0

(2.34)

Treating _nj and 8_ i as independent again gives, as in
section 2.3, equations (2.7) and (2.10). Now, however,

instead of equation (2.11),

laI
+ RTInnIR'T

= V
q = 1,...,NG)

(j = NG + 1,...,NS) (2.35)

where R' = Rxl0 -5.

Equations (2.7) and (2.10), with laj given by
equation (2.35), permit the determination of equilibrium

compositions for thermodynamic states specified by an

assigned temperature TO and volume V0; that is, in
addition to equations (2.7) and (2.10), we have the pair

of trivial equations

T = To (2.36a)

V = Vo (2.36b)

Analogous to equation (2.13) for a constant-

pressure combustion process, we can set down the

following conditions for constant-volume combustion:

u" " (2.37a)= U0

V = Vo (2.37b)

where u' is the specific internal energy of the mixture

and u 0 a constant equal to the specific internal energy of
the reactants. The expression for u' is

NS

u' --E niO; (238)
j=i

where U7 is the standard-state molar internal energy for

species j.



Analogousto equation(2.15),for assignedentropy
andvolume(suchasfor an isentropiccompressionor
expansionto a specifiedvolume),thethermodynamic
stateis specifiedby

s = so (2.39a)

V = V0 (2.39b)

Iteration equations are derived in section 2.4.1 that

permit solution of the composition variables for constant-

volume problems.

2.4.1 Helmholtz Iteration Equations

Correction equations are obtained in a manner
similar to that described in section 2.3.1. In this case,

however, the expression for lay is equation (2.35) rather
than equation (2.11). Because n does not appear

explicitly as a variable in equation (2.35), Aln n no

longer appears as a correction variable. The Newton-
Raphson equations obtained from equations (2.10), (2.7),

(2.37a), and (2.39a) are

- a¢x i - -_TAln T = _-_Alnnj t=i
q = 1,...,NG)

(2.40)

NO (S 1 _s SjEn,/R -1 Alnnj + E -_An,
j=l \ j=I",IG* 1

+ AInT= -so -s

V=l R

(2.44)

where C_°,j is the standard-state specific heat at constant

volume for species j at temperature T.

2.4.2 Reduced Helmhoitz Iteration Equations

Equations (2.40) to (2.44) may be reduced to a
much smaller set of working correction equations by

eliminating Aln nj, obtained from equation (2.40), from

equations (2.42) to (2.44). When equation (2.41) written

with the signs reversed is included, the resulting reduced

set of equations is

! NG

E E +
i=1 j=l a_ Anj + RT )Aln Tl=SOq \1=1

NG

= b_' - bk ÷j_ a_PtJRr
(k-- 1,...,0 (2.45)

U? pj
A r-- q=NG+I .... ,_I )

(2.41)

_aox i + --AInT =
i=x RT RT

q = NG+I,...,NS)

(2.46)

NO NS

a_nj Aln nj + _ akjAn _ = b_' - b, (k = 1,...,0
j=t /=NG*I

(2.42)

j=l RT

Ns U?

/=NG*I

+ AInT -

L/=I

: -- U:Uo

RT
(2.43)

,=, ) '

NS o

+ E V) Anj
j=_÷1 RT

+ njC_-_--LJ+ _ &In T
[ j._ R j._ R2T 2 ]

, _ o
uo - u ny_ _j

+

RT j=l RUT2
(2.47)



,=1 '= j=NG*I R

t_=zR +_ R21;

so-, + n,%__-
R 1=i R2T

(2.48)

Equations (2.45) to (2.48) are given in table 2.2 in a
form that permits direct comparison with the iteration
equations in table 2.1 and the derivative equations in where
tables 2.3 and 2.4.

The correction equations required for several types

of constant-volume problems are summarized as follows,
wherei=l ..... landj=NG+ 1.... ,NS: and

Type of Equations Correction

problem required variables

(2.45),(2.46)Assigned temperature

and volume, tv

Assigned internal

energy and volume,

uv

Assigned entropy and

volume, sv

(2.45),(2.46),

(2.47)

(2.45), (2.46),

(2.48)
_i, An/, _dn T

After obtaining the correction variables the

corrections for gaseous species Aln nj q=l .... ,NG) are
then obtained from equation (2.40). (See section 3.3 for

discussion on controlling size of corrections before

applying them to obtain improved estimates.)

2.5 Thermodynamic Derivatives From
Matrix Solutions

All thermodynamic first derivatives can be ex-

pressed in terms of any three independent first deriva-

tives. The Bridgman tables, as tabulated, for example, in

Lewis and Randall (1961), express first derivatives in

terms of (aVlOl),. (ov/ol') r, and (OhiO1]e =-% We use

the logarithmic form of the volume derivatives because

it gives an indication of the extent of chemical reaction

occurring among the reaction species. These derivatives

may have more than one value depending on what is

assumed occurs to composition in a thermodynamic

process from one condition to another. If, for example,

composition is assumed to reach its equilibrium value

instantaneously, the derivatives are referred to as

"equilibrium" derivatives. If, on the other hand, reaction

times are assumed to be infinitely slow, composition
remains fixed (frozen) and the derivatives are referred to

as "frozen." Special subscripts are used to differentiate

these different conditions only for cp, thermal
conductivity, and Prandtl number. The equilibrium value

of Cp may be expressed as the the sum of a "frozen"
contribution and a "reaction" contribution as follows:

cp,e = cv.f + cv,_ (2.49a)

NS

cv.! = _ n.iC_°,j (2.49b)
j=l

/=l JT_-_--T)e + i=NO.l -T-__-T)e (2.49c)

The expressions in equations (2.49b) and (2.49c) were

obtained by differentiating equation (2.14). (Subscripts

different from those used in equation (2.49a) are used in
transport property calculations. See section 5.2.3).

From equation (2.1)

01nV] = 1 + (01nn] (2.50)
Oln T),,, t_Oln T)v

Oln P ) r I,Oln P Jr

2.5.1 Derivatives With Respect to Temperature

The derivatives of nj and n with respect to temper-
ature are needed to evaluate equations (2.49c) and (2.50).

These may be obtained by differentiating equations

(2.10), (2.7), and (2.3), which gives the following:

__' : _fo .) .;
aln r)p - Z,., aq[0_]_ /, _,aba TIp " -_

q = 1,...,NG) (2.52)

' 2 .:
-E,=, ,o1,1r),, Rr (j = NG + 1,...,NS) (2.53)
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(k = 1,...,0 (2.54)

_,o (at..D .(a_"l =o
E.,/_/- tomr),
1=I \ Ip

(2.55)

As in the case of the iteration correction equations

previously discussed, the derivative equations can be
reduced to a much smaller number of simultaneous

equations by eliminating (ain nj/aln T_p, obtained from

equation (2.52), from equations (2.54) and (2.55). When

equation (2.53) written with the sign reversed is
included, the resulting reduced number of temperature

derivative equations is

L£ ( a=,_ aJ anJ ]%a_,_.,--, + _
'tainr)_ _ainr/,l=l 1=1 /=NG+I

(ain._ = .o o
+_ ,,,¢,,t_), -,-,E_,v,,,,;=,

(t = L..,0 (2.56)

D (o.,_ n7
<'"t_J, : -_ (j = NG + 1,...,NS) (2.57)

a.n. = -E np_
E_,:I_ "taint), s:, er

(2.58)

Equations (2.56) to (2.58) are given in table 2.3 in
a form that simplifies the comparison of derivative equa-

tions with the iteration equations in tables 2.1 and 2.2.
The values of the derivatives obtained from equa-

tions (2.56) to (2.58) could be used in equation (2.52) to

obtain derivatives for the gaseous species (0in n/IOln T)p

q = 1..... NG) and all of the temperature derivatives

could then be used to evaluate ce from equations (2.49).
However, there is an alternative and much simpler

procedure for obtaining Cp. SubstitutingOlnnilain T)P

obtained from equation (2.52) into equations (2.49) and

dividing by R yield

fii'p;Ir i! "°+ a_""l + _+ES(x'_'
t.#:l RT )tOinTJp 1:1 R j=l R2T 2

(2.59)

In equation (2.59) only the temperature derivatives

obtained directly from solution of equations (2.56) to

(2.58) are required. Furthermore, all the coefficients in

equation (2.59) are exactly the coefficients appearing in

the reduced-enthalpy equation (2.27). The second-last

term in equation (2.59) is the frozen contribution to

specific heat (eq. (2.49b)); the remainder of the terms are

the reaction contribution (eq. (2.49c)).

2.5.2 Derivatives With Respect to Pressure

The derivative (ain n/Oin P)r can be obtained in a

manner similar to that described for obtaining derivatives

with respect to the temperature. Differentiating equa-
tions (2.10), (2.7), and (2.3) gives

a.,.,] , ( o:,'l _(0k,./ :
aine;,-_a"t_J, t_),. -I

q = 1,...,NG) (2.60)

, (a:,_
-Ea.. -- =

,:, "toineJ,. 0 q = NG+I .... ,NS) (2.61)

(oin,0 ( % ]
+ --o

(k = 1,...,0 (2.62)

:it 0---_) r t-_--_) r : 0 (2.63)
j=l

Equations (2.60) to (2.63) can be reduced to a

smaller set by eliminating (0in nj/ain _r, obtained from

equation (2.60), from equations (2.62) and (2.63). When

equation (2.61) written with the sign reversed is
included, the results are
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l=l j=l j=NO÷I

NG NO
( ainn_

+ av,,t J-- av', :,...,or y=t
(2.64)

q --NG + I,...,NS) (2.65)

.o ( a=. _ No
(2.66)

Equations (2.64) to (2.66) are given in table 2.4 for

comparison with tables 2.1, 2.2, and 2.3. The only

derivative obtained from solution of equations (2.64)

to (2.66) that is used is (OinnlainP) r (see eq. (2.51).

2.6 Other Thermodynamic Derivatives

As stated previously, all thermodynamic first

derivatives can be expressed in terms of the three

thermodynamic first derivatives discussed in the previous

sections--namely, Cp, ain v[aln 7) e, and(aln V/aln P)r
(see Bridgman tables in Lewis and Randall (1961)).

Velocity of sound a, a frequently used parameter, is
defined by

a2=(aP) =PfahlPl = l e ( a _ P _s Pk,ain PJs P_ainV)s
(2.67)

From Bridgman tables

ainP = %

v;,c (a.,vI -+ oh,
(2.68)

This may be written as

atnP] _ c,
ain V]s cv( aln V_) (2.69)

t0_Yr

where

PV( ain V]2

r k ain T)e

= Cp + ( ain V] (2.70)

k-g-_ ),

Using the symbols

and

=- ( ainPI (2.71)
"is _ain p Js

Y _=cp (2.72)
Cv

equation (2.69) may be written as

¥ (2.73)
Vs = ( din v]

k-O---_-_) r

Using the equation of state given in equation (2.1),

we obtain from equation (2.67) the familiar expression

for velocity of sound

a = _ (2.74)

Note that the Ys defined by equation (2.71) is required

in equation (2.74) and not the specific heat ratio T

defined in equation (2.72).

In section 3.5 an alternative expression is derived

for Ys for the special situation of triple phases, where the
expressions in equations (2.68), (2.69), and (2.73) are no

longer valid.

Gordon and Zeleznik (1962) gives numerous first
derivative relations that are of interest in rocket

performance calculations. One of these derivatives,
which is used in section 6.3.4, is

alnP] _ %
aM TJs nR( Sln V] (2.75)

ksin Th,

A numerical example involving this derivative is given
in Zeleznik and Gordon (1968).
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Chapter 3

Procedure for Obtaining Equilibrium
Compositions

In principle, obtaining equilibrium compositions by

means of the Newton-Raphson iteration procedure dis-
cussed in sections 2.3.1, 2.3.2, 2.4.1, and 2.4.2 should

offer no difficulties. However, a number of practical

items require detailed attention in order to avoid numeri-
cal difficulties: initial estimates, tests for condensed

phases, phase transitions and triple points, convergence,
accidental singularities, special handling of ions, and

consideration of trace species.

3.1 Initial Estimates

An extremely simple procedure is used in this

report to assign estimates for composition. For the first

iteration of the first point in a schedule of points, we
assign n = 0.1, which is equivalent to an estimate of 10

for molecular weight. Then the number of kilogram-

moles of each gaseous species per kilogram of mixture

is set equal to 0.1/NG, where NG is the number of gase-

ous species being considered. The number of moles of
each condensed species is set equal to zero. For hp, sp,

uv, and sv problems an arbitrary initial estimate of

T = 3800 K is used by the program unless a different

estimate is included in the input.

Admittedly, this simple procedure will often give

poor initial estimates. However, for a general chemistry

program, we find this technique preferable to the alterna-

tive of devising numerous special routines for obtaining

good estimates for numerous possible chemical systems.
Furthermore, the estimating technique is used only for

the first point in any schedule of points. For all points

after the first the results of a preceding point serve as
initial estimates.

Because no attempt is made to obtain good initial

estimates, the question arises whether convergence can

be "guaranteed." This question is discussed in
section 3.3.

3.2 Magnitude of Species Used During
Iteration

Both the linear and logarithmic composition varia-

bles are used for gaseous species during the composition

iteration process. Only the linear variable is used for

condensed species. Corrections to compositions for

gases are in the form of logarithmic variables Aln nl, and
therefore the logarithmic values of gaseous compositions

In nj are continuously updated from iteration to iteration.

The linear values of the compositions nj are obtained by

taking the antilogarithm of In nj. However, to save com-
puter time during iteration, n7 are calculated only for
those species whose mole fractions are greater than a
certain specified size. In a previous version of the

program (Gordon and McBride, 1976) this specified size

had only one value, namely nj/n = 10 -8 (or lnnj/n
= -18.420681). A program variable SIZE was defined as

SIZE = 18.420681. Thus, antilogarithms of In nj were
obtained only for gases meeting the following condition:

In nj./n > -SIZE (nj/n > 10-8.) For gaseous species not
passing this test nj were set equal to zero. In addition,
the maximum number of iterations permitted was 35.

In the present CEA program several additional

variables relating to SIZE have been added to handle

more demanding situations. Two of the present variables

relating to the mole fraction size for which antilogari-

thms are obtained are TSIZE for non-ionized species and

ESIZE for ionized species. TSIZE may be modified for

any of the following reasons: inclusion of species in the
calculations with mole fractions smaller than l0 -8 (by

means of an input parameter TRACE); a change of
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components;a singular matrix; or the chemical system

under consideration containing a chemical element that

differs in magnitude from the largest of the other
elements by more than 105 . The purpose of changing

TSIZE in the last case is to ensure that not all species

containing the trace element will be eliminated during

iteration. To aid in testing for trace elements, a param-
eter BRATIO is defined to be the ratio of the elements

with the lowest to highest kilogram-atoms per kilogram

of mixture. The following, then, are the conditions under

which several parameters relating to species size are set
to various values. These conditions are based on exten-

sive practical experience with obtaining solutions for

many types of problems:

(1) TSIZE = SIZE until convergence or a singular
matrix occurs.

(2) TSIZE = XSIZE if TRACE # 0 after first con-

vergence, or if a singular matrix or new components
occur.

(3) ITN - maximum number of iterations.

Default:

(1) SIZE = -In 10-8 = 18.420681

(2) XSIZE = -In 10-11 = 25.328436

(3) ESIZE = -In 10-14 = 32.236191

(4) ITN = 50

(5) TRACE = 0

Nondefault:

(1) If TRACE # 0, ITN = 50 + NS/2
(2) If TRACE < 10-8, XSIZE - -In TRACE and

ESIZE = -In (TRACExI0 -3) = XSIZE + 6.9077553

(3) If BRATIO < 10-5, SIZE = In 1000/BRATIO

and XSIZE = SIZE + In 1000 (6.9077553)

(4) If singular matrix, XSIZE = TSIZE = 80.

The use of ESIZE to control the size of ionized

species permitted to be present during iteration is
discussed in the section 3.7.

3.3 Convergence

The problem of convergence is discussed in
Zeleznik and Gordon (1962a) and Gordon and McBride

(1976). Zeleznik and Gordon (1962a) points out that the

iteration equations sometimes give large corrections that,

if used directly, could lead to divergence. Two situations

can cause large corrections. The first situation occurs in

the early stages of the calculation and is due to poor esti-

mates. The second may occur at later stages of the calcu-

lation when the iteration process sometimes attempts to

make extremely large increases in moles of species that

are present in small amounts. An example of this second

situation is given in Zeleznik and Gordon (1962a). In
both of these cases a control factor _, is used to restrict

the size of the corrections to In nj (j = 1..... NG) and nj
(j = NG + 1..... NS) as well as to In n and In T obtained

by solving the equations in tables 2.1 and 2.2.

The numerical value of _, is determined by empiri-

cal rules that experience has shown to be satisfactory.
For T and n, corrections are limited to a factor of e 0"4

= 1.4918. For gas-phase species two different correction

controls are calculated that depend on the magnitude of

the mole fractions. The logarithm of each mole fraction
is compared with a parameter called SIZE whose default

value is -In 10-8 = 18.420681. If ln(njln) > -SIZE,
corrections to nj are limited to a factor of e 2 = 7.3891.

For these limitations on corrections to T, n, and nj/n the
value of a control factor _'! may be calculated as

2
),_ -- (3.1)

max(Slain T I, 51Aln nl, lain nil)

For those gaseous species for which In(n/n)

_<-SIZE and Aln nj >_0, a control factor L2 is defined as

_2 =mill

-In5 - 9.2103404
n

Alnnj- Alnn
(3.2)

This prevents a gaseous species with a small mole

fraction from increasing to a mole fraction greater than
10-4. The control factor _, to be used in equations (3.4)

is defined in terms of kl and L2 as

Jt = rain(l, ;t,, _'2) (3.3)

A value for _, is determined for each iteration.

Whenever current estimates of composition and/or tem-

perature are far from their equilibrium values, _, will be

less than 1. Whenever they are close to their equilibrium

values, _, will equal 1. New estimates for composition
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andtemperaturearethenobtainedfrom thecorrection
equations

In ny ÷'' = In n;0 + )_(O(AIn nj)(O q = 1,...,NG)

nT,, = + x(o(a.j)(o q = NG ÷ 1,...,NS)

In n c_÷_)= In n (° + X(°(Aln n) (°

In T (s÷_) = In T (° + 2.(0(AIn 20(0 (3.4)

where the superscript i represents the ith estimate.

The iteration procedure is continued until correc-

tions to composition satisfy the following criteria:

njlAIn nil < 0.5x10 -s
NS

(] = 1..... NG)

. ]AnjJ < 0.5xl0_S
NS

j=i

(j = NG + 1,...,NS)

nlAIn n I < 0.5xl0_S
NS

(3.5)

For those chemical elements for which b_ >
1.0xl0 -6, the convergence test for mass balance is

- aenj a (0)m x x 1.0xl0-'
j=l (3.6a)

(i ffi 1,...,0

where the subscript "max" refers to the chemical element

i with the largest value of b_. When temperature is a
variable, the convergence test for temperature is

lAIn TI _; 1.0xl0 -4
(3.6b)

For a constant-entropy problem (sp, sv, or rocket), the

following convergence test on entropy is also required:

(3.6c)

When TRACE g 0, an additional test is used:

_(k) (_l)

_J --- xi < 0.001

,_.-t) (i" 1,...,0 (3.6d)

where the superscript refers to the kth iteration. The

convergence tests in equations (3.5) and (3.6) ensure

accuracy to five places in composition when expressed
as mole fractions.

As pointed out in section 3.2 the maximum number
of iterations permitted by the CEA program is
50 + NS/2. For most of the hundreds of different kinds

of problems that have been solved by the program,

convergence has been obtained in fewer than this

number. For the first point, which starts with arbitrary

initial estimates, a typical number of iterations is 8 to 20.

For succeeding points, which use compositions of a

previously calculated point for initial estimates, a typical
number of iterations is 3 to 10. In the sample problems

given in part II, for example, the number of iterations for

the first point was 9 to 15. In some special cases a

problem may be singular, and solutions to the correction
matrix are then unobtainable. Techniques for handling
this situation are discussed in section 3.6.

3.4 Tests for Condensed Phases

For the first point in a schedule of points, unless

INSERT records are used (see part II of this report), the

program considers only gaseous species during the itera-

tion to convergence. For each point after the first, the

program uses the results of a previous point for its initial
estimate. After every convergence the program automati-

cally checks for the inclusion or elimination of con-

densed species.
The test is based on the minimization of Gibbs

energy. At equilibrium, equation (2.9) is satisfied (i.e.,
8G = 0). The requirement for a condensed species j,

which was not previously included as a possible species,
to now be included is that its inclusion will decrease

Gibbs energy; that is, from equation (2.9)

kRTJ_ i-1
(3.7)

where the subscript c refers to a condensed species.

Equation (3.7) is identical to the vapor pressure test used
in Zeleznik and Gordon (1962a) when data for the gas
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phaseaswell forthecondensedphaseareavailable.The
vaporpressuretestis

RTJc RT n /s
(3.8)

where the subscript g refers to the gas phase of the same

species as the solid phase referred to by the subscript c.

Equations (3.7) and (3.8) are equivalent. The last term in

equation (3.7) is identical for the gas and condensed

phases of the same species. From equation (2.10) this

term for the gas phase equals (laj/RT)g, which, using the

definition of laj in equation (2.11), leads directly to
equation (3.8). However, the advantage of equation (3.7)

over (3.8) is that equation (3.8) can be used only when

the gas phase of the species corresponding to the con-

densed phase to be tested is present, whereas equation

(3.7) can always be used. Using equation (3.7) eliminates
the need for the extensive programming required in
Zeleznik and Gordon (1962a) to accommodate

A1203(s,1), for which gas-phase data are not available.
At most, only one new condensed species is in-

cluded after each convergence. In the event that several

condensed species pass the test required by equa-

tion (3.7), only that species giving the largest negative

change to Gibbs energy is included as a possible species
and convergence to a new equilibrium composition is

obtained. This process is repeated until all condensed

species required by equation (3.7) are included.

If, after convergence, the concentration of a
condensed species is negative, the species is removed

from the list of currently considered species, and conver-

gence to a new equilibrium composition is obtained.

3.5 Phase Transitions and Special
Derivatives

The calculation method is based on the assumption

that condensed phases are pure. Therefore, the possibility

exists of encountering phase transition between solid and

liquid (melting points) or between two stable solid

phases. Such transitions constitute triple points because

three phases of the same species coexist, one gaseous

and two condensed. Such triple points are characterized

by a definite vapor pressure and temperature, independ-

ent of the relative proportions of each phase. This

characterization is shown by the fact that the iteration

equations of table 2.1 become singular for an assigned

temperature and pressure and the inclusion of two

condensed phases of the same species. At a triple point,

for a specified system pressure, the relative amounts of

the phases can be determined only if either the enthalpy

or the entropy is assigned.

The program can obtain equilibrium compositions

containing either one or two condensed phases of a

species with or without the corresponding gas phase.

When temperature is assigned, no problems arise as to

which one of the two or more condensed phases of a

species is to be considered. However, when temperature

is a variable, such as in combustion or rocket problems,

several possibilities need to be considered. For example,

if a liquid phase is being considered by the program and

the temperature at convergence is below the melting
point, two possibilities exist. First, the solid phase might

be substituted for the liquid phase and a new conver-

gence obtained, or second, both liquid and solid might

be considered simultaneously and a new convergence

obtained. Similar possibilites exist when convergence is
obtained with a solid phase above the melting point.

These possibilities and methods of treating them are
discussed in detail in Zeleznik and Gordon (1962a); the

discussion is not repeated herein. In brief, the following

criteria are used by the program to determine whether to

switch one condensed phase of a species to another or

whether to consider both simultaneously:

(1) Liquid present at temperature T < Tm:

(a) If T,n - T > 50 K, switch solid for liquid.

(b) If Tm - T < 50 K, include solid and liquid.

(2) Solid present at temperature T > Tin:

(a) If T- Tm > 50 K, switch liquid for solid.
(b) If T - Tm < 50 K, include solid and liquid.

Similar tests apply for two solid phases of a species.

The unusual situation of constant temperature

during an isentropic compression or expansion process

can occur when two phases of the same species coexist.

The transition temperature remains constant while one

phase is being converted to the other. Under this

circumstance derivatives with respect to temperature are

not defined. Thus, several of the derivatives previously

discussed, Cp, cv, and (Din V/Dln T)p, cannot be obtained
in this case. As a consequence equation (2.73) cannot be

used to obtain Ts.

In Gordon (1970) the following expression was
derived for the situation of constant temperature and
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entropy:

_(a., --
Ys,r _ 81n p )s,r Oln V I

OIn P)r

(3.9)

The velocity of sound for this situation is no longer

given by equation (2.74) but rather by

as,r = _ (3.10)

These derivatives will be used in connection with

discontinuities in a rocket throat (see section 6.3.4).

3.6 Singularities

The iteration method used in this report has

successfully handled numerous chemical systems under

a wide variety of thermodynamic conditions. Neverthe-
less, special procedures are required to take care of

several situations involving singularities that would
otherwise cause the iteration method to fail. One such

situation is a singularity in the coefficient matrix that is

caused when all species that contain one of the elements
are temporarily eliminated during the iteration process.

Another situation resulting in a singularity occurs when
two rows of the coefficient matrix are identical. This

happens when the ratio of the assigned elements in these
two rows is equal to the ratio of the stoichiometric
coefficients of these two elements in every gaseous

species being considered during the current iteration that
contains both elements. That is,

aq _ b_
q = 1,...,NG) (3.11)

a_ b_

One example for which equation (3.11) applies is

stoichiometric hydrogen and oxygen at low temperatures
and pressures, where the only species with n: > 10-8 is

4

H20(g ). Another example is stoichiometric hthium and
fluorine at low temperatures, where the only species are

LiF, Li2F 2, and Li3F 3. When either of these two
situations occurs, the program will automatically reset all

species currently set to zero to nj = 10-6. This reset

feature can be tried twice and will usually take care of

these causes of singularity.

If the restart procedure just described is not suc-

cessful and the situation represented by equation (3.11)

is the cause of the singularity, the program will attempt

an additional procedure: (1) selecting one of the larger

species containing both elements to be one of the new

components; (2) reducing the number of components and

the size of the coefficient matrix by 1; and (3) switching

components for the rest of the chemical system.
Another singularity is caused when several

condensed species are currently being considered and

one of these species can be formed by some linear
combination of the others. An example of this is a

chemical system containing iron and oxygen where the
current iteration is simultaneously considering FeO(s),

Fe203(s), and Fe304(s). When this occurs, the program
automatically removes one of the species involved with

the singularity, prints an error message with this
information, and restarts.

3.7 Iteration Procedure and Tests

for Ions

The program is capable of calculating equilibrium

properties of plasmas (mixtures containing ionized

species) if the plasma is considered ideal. Ideal is here
meant to imply that no coulombic interactions are
considered. Plasma textbooks, such as Griem (1964),

point out that effects of coulombic interactions do need

to be considered in plasmas (by means of the Debye-
Huckel approximation, e.g.). However, special pro-

gramming is needed to take care of these effects.

Therefore, because the program does not consider these
effects, the results of calculations when ions are

considered will be valid only for those conditions where

the ionic density is so small that the coulombic effects

are unimportant.
For ions to be considered, the charge-balance

equation

NO

a,jnj = O (3.12)
j=!

is required, where a# indicates the excess or deficiency
of electrons in the ion relative to the neutral species. For

example, in a mole of an ionized species, aej = -3 for
Ar +H- and +1 for 02. To prevent difficulties in matrix
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solutions,theprogramautomaticallyremovesthecharge-
balanceequationwhen,for eachionizedspeciesbeing
considered,In njln < -ESIZE (defined in section 3.2).

There are situations when all the previous

convergence tests have been passed but the ion balance

is still incorrect. A special iteration procedure was

developed to obtain the correct ion balance for these

situations. It consists of obtaining a value of the

Lagrangian multiplier for ions divided by RT, based on

the assumption that the magnitude of the ionized species

is small relative to the un-ionized species. The initial

estimate for ne is taken to be the value in storage for the
current point or from a previous point. The iteration

procedure consists of the following steps:

(1) Corrections to it e are obtained from

NO

j=i (3.13)
A_e- NO

(a ,j)2nj
i=1

(2) The test for convergence is

lane[ _; 0.0001 (3.14)

(3) If this convergence test is not met, new

estimates for the composition of ionized species are
obtained from

(In nj) i+1 = On nj) t + aej Ax, (3.15)

where the superscript i refers to the ith iteration. The

previous sequence of steps is repeated until equa-

tion (3.14) is satisfied. The CEA program allows for a

maximum of 80 ion-balance iterations, but generally
convergence is reached in about 2 to 10 iterations.
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Chapter 4

Thermodynamic Data

Thermodynamic data are included with the current

program for reaction products and reactants. The number
of these products and reactants changes over time as new
ones are added to the data base. The data are selected

from a number of sources, but the principal current
sources are Chase et al. (1985), Cox et al. (1989),

Gurvich et al. (1989), and Marsh et al. (1988). McBride
et al. (1993a) documents the sources and the data for 50

reference elements plus electron gas and deuterium,

which are presently included in the thermodynamic data
set. These elements are discussed in section 4.1. The data

for the atomic gases as well as for a number of diatomic

and polyatomic gases were calculated at NASA Lewis by
using the PAC91 computer program described in

McBride and Gordon (1992).

The thermodynamic data provided with the CEA
program are in the form of least-squares coefficients (to

be described). These data, in formatted form, are

processed by subroutine UTHERM and stored for further
use in unformatted form. Subroutine UTHERM and the

format for the coefficient data are both described in

part II of this report.

4.1 Assigned Enthalpies

For each species heats of formation (and, when

applicable, heats of transition) were combined with
sensible heats to give assigned enthalpies /-P(T). By
definition

H*(7) - /-/*(298.15)+ [(/-/*(7)- H*(298.15)] (4.1)

We havearbitrarilyassumedH°(298.15)= AfH°(298.15).
Equation (4.1) then becomes

/-£'(7) = A//-F (298.15) + [/-/°(7) -/-r'(298.15)] (4.2)

In general, H°(T) _ AfH°(T) for T _ 298.15 K.
A set of reference elements must be specified in

order for heats of formation to be unambiguously related

to specific reactions. Included among the species for
which thermodynamic data are on a data file are the

following 50 reference elements plus deuterium and

electron gas: Ag, AI, Ar, B, Ba, Be, Bi, Br 2, C, Ca, Cd,

CI 2, Co, Cr, Cu, D 2, e-, F 2, Fe, Ge, H 2, He, Hg, 12, K,

Kr, Li, Mg, Mn, Mo, N 2, Na, Nb, Ne, Ni, 0 2, P, Pb, Rb,
S, Si, Sn, Sr, Ta, Th, Ti, U, V, W, Xe, Zn, and Zr. The

thermodynamic data for these elements are documented
in McBride et al. (1993a). For all reference elements

A/H°(298.15) =/-/°(298.15) = 0.
Assigned enthalpies for a number of reactants are

in a reactant data file. For noncryogenic reactants

assigned enthalpies (heats of formation) are given at

298.15 K. For cryogenic liquids assigned enthalpies are

given at their boiling points. These enthalpies are usually
obtained by subtracting the following quantities from the

heat of formation of the gas phase at 298.15 K: the
sensible heat between 298.15 K and the boiling point,

the difference in enthalpy between the ideal gas and the

real gas at the boiling point, and the heat of vaporization
at the boiling point.

4.2 Least-Squares Coefficients

For each reaction species the thermodynamic

functions specific heat, enthalpy, and entropy as

functions of temperature are given in the form of least-

squares coefficients. The general form of these equations
is as follows:

C_ _ _a,T¢, (4.3)
R
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RT RT RT
-- -alT -2 + o.2T-l In T + a3

7 3 7 4 d s

s°R-f-C rdT (4.5) +,,,T+a v+ ¥
(4.10)

Two sets of least-squares coefficients have been

used in the chemical equilibrium program to represent

thermodynamic data. The "old" form has been used for

the last 25 years (Gordon and McBride, 1976; and
McBride et al., 1993b). It consists of a fourth-order

polynomial for the t_JR function plus integration
constants for enthalpy and entropy as follows:

C_ -_al + asT + asT2 + a4T3 + as74 (4.6)
R

I-I*_ al + asT + a--2T2+ a---_dT3+ as74 + a._.._ (4.7)
RT 2 3 4 5 T

a3T2 a4T3 as74 + o.7S° =aI InT + asT + +-- +
R 2 3 4 (4.8)

The "new" form for these functions will be used to

represent the thermodynamic data with the program
described in part II. This form consists of seven terms

for _R and corresponding terms for enthalpy and
entropy as well as the integration constants a 8 and a 9 as
follows:

= alT -2 + as T-I + as + a4T
R

+ as T2 + a6T 3 + as74 (4.9)

_ T -2

R -at--2---asT-l + a31nT+a4T

T 2 T 3 74

+ant +a(_- +ovT +a_ (4.11)

For gases the temperature intervals for both the old
and new functional forms are fixed. These intervals are
200 to 1000 K and 1000 to 6000 K for the old form

(i.e., the fourth-order polynomial form for Cp). The new
form uses these same intervals plus an additional interval
from 6000 to 20 000 K for some gases. For the con-

densed species each phase has its own set of coefficients.

If possible, the old form uses the same two temperature

intervals for condensed species as for the gases, but the
intervals are usually limited by transition points. Further-

more, there are two intervals only if the 1000 K common

point is within the species temperature range. Otherwise,
there is just one. By contrast, the new functional form
has a flexible number of intervals in order to fit the

selected data more accurately.

Generally, the three functions C_/R, H°/RT, and
S°/R are fit simultaneously. The fit is constrained to
match the functions exactly at T = 298.15 K. Thus, the

least-squares coefficients reproduce heats of formation at

T = 298.15 K exactly. For temperature intervals that do

not contain T = 298.15 K, the fit is constrained to give
the same functional values at the common temperature

point for any contiguous intervals. When phase transi-
tions occur, the fit is constrained so that the difference

in Gibbs energy is zero between the phases at the

transition point.
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Chapter 5

Thermal Transport Property Data

The CEA program provides an option for calculat-

ing mixture viscosities and thermal conductivities. The

formulas for these mixture properties are given in sec-

tion 5.2. Viscosity and thermal conductivity data for

individual gaseous species, which are required for the
mixture calculations, are included with the current pro-

gram. Thermal transport properties for condensed species
are not included inasmuch as there is no feasible method

for calculating thermal transport properties for a multi-

phase mixture. The thermal transport data were taken
from Svehla (1995).

5.2 Mixture Property Data

Thermal conductivity and specific heat of a mixture

each consists of two parts, the so-called "frozen" and
"reaction" contributions. This was discussed for specific

heat in section 2.5. Equation (2.49a) shows specific heat
as the sum of these two parts. Analogously, thermal

conductivity can be written as

_'eq = _'fr + Xm (5.2)

5.1 Data for Individual Species

The thermal transport property data provided with

the CEA program are in the form of least-squares coeffi-
cients. The data for each species were fitted to the

following form, which is also used in Gordon et al.

(1984):

In = A ln T + --B + __C + D
T 7 2

(5.1)

where rl is viscosity and _, is thermal conductivity. A

binary interaction parameter rlij is also included for some
pairs of species in the same form as equation (5.1).

The coefficients in equation (5.1) were generated to

give viscosity in units of micropoise (laP) and thermal

conductivity in units of microwatts per centimeter-kelvin

(laW/cm-K). The order and format of the transport data
coefficients are given in part II of this report.

where keq, _'fr' and _'re are the equilibrium, frozen, and
reaction thermal conductivities of the mixture,

respectively. The mixture viscosity, on the other hand,

has only one term.

5.2.1 Viscosity and Frozen Thermal Conductivity

As pointed out in Gordon et al. (1984), most

aI_proximate mixture methods have the following form
for mixture viscosities and frozen thermal conductivities

(also the form used in the CEA program):

rlm_x= _ xdrl_, m,_ (5.3)
J=l

ai + E Xj*i]

j-!

and

r_ x_. i
_'f_ = _ m_ (5.4)

i=l

x i + jZxjO o
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where NM is the number of gaseous species for thermal

transport property calculations (NM < 50), x i is the mole

fraction of species i relative to the NM gaseous species

used for thermal transport property calculations, rli is the

viscosity of species i, lqmix is the viscosity of the mix-

ture, _'i is the thermal conductivity of species i, ¢ij is the
viscosity interaction coefficient between species i and j

in equation (5.3) (d_ij _ t_ji), and _ij is the interaction
coefficient between species i and j in equation (5.4) (_ij

_I/JiZseveral_forms for the interaction coefficients _ij and

Vii available in the literature are compared in Gordon
et al. (1984), and the following were used:

and

[ 2.41(M_ - Mj)(Mj - O.142Mj)]_0 = 4)0 I+ (M--i+ Mj)-_
(5.6)

For some pairs of species an interaction parameter rlij is
available from the literature. As discussed in section 5.1,

these values have been least squared and are included in
the transport property data file. When this parameter is

available, _q is obtained from the following equation
rather than from equation (5.5):

,1, (5.7)

The interaction parameter rli) also appears in the expres-
sion for the reaction contribution to thermal conductivity.

The same values of t_ij that are obtained from equa-
tions (5.5) or (5.7) are also used in equation (5.6).

5.2.2 Reaction Thermal Conductivity

The reaction contribution to thermal conductivity is

obtained in the same manner as discussed by Butler and

Brokaw (1957) and Brokaw (1960) and as used by

Svehla and McBride (1973). The following equation is

used, which is applicable when local equilibrium exists

in a mixture of reacting or ionizing gases:

NR Arn? /_r,/x.--RE R----V
i=1

(5.8)

where NR is the total number of chemical reactions of

gaseous species and Aft-/_ is the heat of reaction for
reaction i at temperature T expressed as

ArHi°(T) = _ cx.afl_ (i = 1,2,...,NR) (5.9)
k=l

where OLikare the stoichiometric coefficients written for

the chemical reactions involving species A k as follows:

NM

_tt_Ak -- 0 (i = 1,2,...,NR) (5.10)
k=l

Equations (5.8) to (5.10) are also applicable to ionizing
gases. In this case the heat of reaction is replaced by the

ionization potential, and ions and electrons are species.

Note that the stoichiometric coefficients O_ik dis-
cussed here are defined differently from the stoichio-

metric coefficients a/j discussed in chapter 2. In the
coefficients t_ik the subscripts refer to species k in
reaction i, and the coefficient may be positive or

negative. In the coefficients aij the subscripts refer to
chemical element i in species j, and the coefficient is

always positive.

The _'r,i required in equation (5.8) are found by
solving the following set of linear equations:

_"_gq_.j - (i = 1,2,...,NR) (5.11)
j:_ RT

where the gij are given by

NM-, r_ {RT ffa'k cxi_ecxJk_czi__._1 (5.12)

and where

RT 5MeM_ (5.13)

The A_ factor in the previous equation is a collision
cross-section ratio that is used in Svehla and McBride

(1973) but is not used in this report. In its place we have

substituted the value of 1.1, which, as may be seen in
Hirschfelder et al. (1954) (table I-N for the Lennard-

Jones potential and table VII-E for the modified
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Buckingham6-exppotential),is atypicalvalue(to two
figures) for this parameter.The parameterrlk0 in
equation(5.13)wasbrieflydiscussedinsection5.2.1and
is availablefor somepairsof specieswith thetransport
propertiesof individual species.For most pairs of
species,however,it is calculatedfrom equation(5.7)
where_k_is defined,with appropriatesubscripts,by
equation(5.5). The thermalconductivityof the gas
mixtureasgivenby equation(5.2)is thenobtainedby
addingtheresultsof equations(5.4)and(5.8).

5.2.3 Specific Heat for Gases Only

Some functions, such as Prandtl number, involve a

number of other parameters (e.g., specific heat, viscosity,

and thermal conductivity). In this event, for consistency,

the parameters involved should be based on similar

assumptions. Inasmuch as viscosity and thermal conduc-

tivity are calculated for a maximum of 50 gases (with no

condensed species permitted), specific heat, when used
with these properties, should also be based on the same

gases. The following equation, which is similar to
equation (2.49a) but with different subscripts, is used to

express specific heat for transport property calculations:

cp,_ = cp_ + cp,_ (5.14)

When no condensed species are present and the

same gaseous species are included in the transport

property calculations as in the thermodynamic property

calculations, equations (2.49a) and (5.14) will produce
the same numerical results. Otherwise, they may yield
different results.

The equation for Cp fr is similar to equation (2.49b)
except for being restricted to gases and having a

different limit for the number of gases involved; that is,

cp,fi. -

NM

,,,%
i=l

NM

i=1

(5.15)

An alternative method of calculating the reaction

contribution to specific heat is given in Svehla and

Brokaw (1966) that differs from but is equivalent to

equation (2.49c) or the reaction part of equation (2.59).

It is analogous to the method for obtaining the reaction
contribution to thermal conductivity (eq. (5.8)), namely

,re =

X,
I=1

NM

E
i=1

(5.16)

Note that the upper case X i in equation (5.16) are not the

same variables as the lower case x i. The X i are found by

solving the following set of linear equations:

i = 1,2,...,NR (5.17)
A,nT,

jr1 RT

where the dij are given by

de= E Extx, ---
x, 3, xk x, )

(5.18)

Note that the terms in equation (5.18) are the same as

those in equation (5.12) except that the RT/PD u group

is not present.

5.2.4 Prandtl Number

Prandtl numbers have application in heat transfer
calculations. Frozen and equilibrium Prandtl numbers

may be calculated from previously calculated properties

by means of

and

prfr_ ep_rn.ax (5.19a)

Pr_ cp,mrl_ (5.19b)
=" _'_1
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Chapter 6

Theoretical Rocket Performance

Before the publication of Gordon and McBride

(1988), the Chemical Equilibrium Calculations (CEC)

computer program described in Gordon and McBride

(1976) could calculate theoretical rocket performance

only for an infinite-area combustion chamber (IAC).

Calculation of rocket performance for a finite-area com-

bustor (FAC), presented in Gordon and McBride (1988),
was added as an option to the Chemical Equilibrium

with Transport Properties (CET) program in 1988.

Figure 6.1 presents schematic cross sections of FAC

and IAC rocket engines. Various points at which calcula-

Infinite-area chamber, inf

l Exit, e
I

\

"_Combustor end, C

products

- 1_ .... CE
,, ,,
I I

Injector, inj Throat, t

(a)

finite-area chamber, inf

it, e

Co)

Figure 6.1 .--Schematics of rocket combustion chamber cross
sections. (a) Finite-area combustion chamber. (b) Infinite-area

combustion chamber.

tions are made in the CEA program to obtain rocket

performance are indicated in these figures. Combustion
and throat parameters are always calculated first auto-

matically. For the IAC model, only one combustion

point is calculated, namely, at infinite area (inf'). How-
ever, for the FAC model, two combustion points are

calculated, namely, at the combustion chamber inlet (or

equivalently at the injector face, inj) and at the combus-
tor end, c. In addition to these two combustion points for

the FAC, a combustion calculation for an infinite-area

combustor, indicated in figure 6.1 (a) by the dashed line,

is also made. The results at this fictitious point are used

as an aid in an iteration procedure to obtain combustor
end conditions, as discussed in section 6.4. In addition,

the pressure at this point is used in calculating c* (see
section 6.2.6). Throat conditions are indicated by the

subscript t; other nozzle exit conditions, either subsonic

or supersonic, are indicated by the subscript e. Nozzle

conditions are assigned as an option and may be in the
form of assigned area ratios, pressure ratios, or both.

6.1 Assumptions

The calculation of theoretical rocket performance

involves a number of assumptions. For the same propel-

lant and operating conditions theoretical performance can

vary depending on which assumptions are used. For this

report most of the assumptions are the same for both the

IAC and FAC models. These assumptions are one-
dimensional form of the continuity, energy, and

momentum equations; zero velocity at the combustion

chamber inlet; complete combustion; adiabatic combus-

tion; isentropic expansion in the nozzle; homogeneous

mixing; ideal-gas law; and zero temperature lags and

zero velocity lags between condensed and gaseous

species. The chamber in the FAC model is assumed to
have a constant cross-sectional area. In this chamber

P_ PA_E _H.._r_ NOT rlLME_

P._CE.L_" ..t ___iNTEr_TiO,%_.LLYi3tL,=_.
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combustionis a nonisentropic,irreversibleprocess.
Duringtheburningprocesspartof theenergyreleasedis
usedto raise the entropy,and the pressuredrops.
Expansionin thenozzleis assumedto be isentropic.

Combustionconditionsare obtainedwith the
assumptionof chemicalequilibriumof thecombustion
products.FortheIAC modeltheCEAprogramprovides
theoptionof calculatingeitherequilibriumor frozen
theoreticalrocketperformance.Equilibriumperformance
is basedon theassumptionof instantaneouschemical
equilibriumduringexpansionin thenozzle.Frozenper-
formanceis basedon theassumptionthatcomposition
remainsfrozenat the combustioncompositionduring
expansion.For the FAC modelonly equilibriumper-
formanceispermitted.

Assumingthesamevelocity(eitherzeroor other-
wise)atthecombustionchamberinlet,identicalthermo-
dynamicresultsareobtainedfor thecombustioninlet
conditionfor boththeIAC andFACmodels.

6.2 Parameters

6.2.1 Conservation Equations

Rocket performance, as well as other fluid dynamic

problems in the program, is based on the following

conservation equations, which are consistent with the

assumptions previously discussed:

(1) Continuity:

pzAzU2 = plAlul (6.1)

(2) Momentum:

2
P2 + P2U_ = P! + PlUl (6.2)

(3) Energy:
2 2

u7 ul
h2+--=hl+--

2 2
(6.3)

Equation (6.1) describes the condition of constant mass

flow rate, which will be given the symbol rh; that is,

rh = pAu (6.4)

Equation (6.2) applies only for constant-area, one-
dimensional flow.

6.2.2 Velocity of Flow

The combustion chamber inlet is indicated by the

subscripts inf for the IAC model and inj for the FAC
model. Then using these subscripts instead of 1 and

using e instead of 2 in equation (6.3) and assuming the

velocity at the combustion chamber inlet to be negligible
relative to the exit velocity result in equation (6.3)

becoming

= l _/2(h_ - h,)
U e

[ j2(hmj h,)

for IAC model

for FAC model

(6.5)

where h is in units of joules per kilogram and u is in
units of meters per second.

6.2.3 Force

From the momentum principle of fluid mechanics
the external force on a body in a steadily flowing fluid

is due to the change of momentum of the fluid and to

the increase in pressure forces acting on the body. For

rocket applications this is expressed as

F- rhue + (e, - P,,)A, (6.6)
gc

The conversion factor gc has been introduced to allow
for various units. For some commonly used systems of

units, such as the cgs system or the International System

(Goldman and Bell, 1986), gc = 1. However, in the
English Technical System, commonly used by engineers,

gc = 32.1740 (lbm/lbf)(ft/s 2)

6.2.4 Specific Impulse

Specific impulse is defined as force per unit mass

flow rate. From equation (6.6)

I- F _ u, + (P,- Pa)Ae (6.7)

rh gc rh
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In rocket literature specific impulse is often expressed in

English Technical System units of pounds force per

pound mass per second. However, for those systems of

units previously mentioned for which gc = 1, I is both
dimensionally and numerically equal to velocity.

In this report when the exit pressure is equal to the

ambient pressure, specific impulse will be given the

symbol Isp" From equation (6.7)

U_

I_ - (6.8)
gc

When the ambient pressure is assumed to be zero

(vacuum conditions), specific impulse will be given the

symbol Ivac. From equations (6.7) and (6.8)

P_Ae
/_,_ = I_ + -- (6.9)p/l

6.2.5 Mach Number

Mach number is defined as the ratio of velocity of

flow to velocity of sound:

_/[q, _ u (6.1 O)
a

Velocity of flow is given by equation (6.5). Velocity of
sound is given by equation (2.74) (or eq. (3.10)).

6.2.6 Characteristic Velocity

Characteristic velocity is given the symbol c* and
is defined as

c*- Pi"e4*gc (6.11)
v/l

6.2.7 Area per Unit Mass Flow Rate

From equation (6.4)

A

rh

1

PU e

(6.12)

The terms p and u e are obtained from equations (2.1b)
and (6.5), respectively.

6.2.8 Coefficient of Thrust

The coefficient of thrust is defined in terms of

previously defined parameters

u (6.13)
Cr- c*

6.2.9 Area Ratio

The ratio of area at any exit nozzle station to area

at the throat is obtained from the values of equa-

tion (6.12) at these two points

A, (A/m),
D

A,
(6.14)

6.3 Procedure for Obtaining

Equilibrium Rocket Performance
for IAC Model

The procedure for obtaining equilibrium perform-
ance differs somewhat for the IAC and FAC models.

The principal difference is due to only one combustion
point being required for the IAC model (point inf in

fig. 6. l(b)) but two combustion points being required for

the FAC model, namely, at the inlet and exit of the finite

chamber (points inj and c in fig. 6.1 (a)). The procedure
for the IAC model is discussed first, inasmuch as it is

somewhat simpler.

For the IAC model the procedure consists of first
determining combustion properties and then determining

exhaust properties at the throat and at other assigned

stations, if any, in the nozzle exit. Combustion and throat

conditions are always obtained first automatically by the

CEA program. To obtain other nozzle conditions (either
subsonic or supersonic), the desired points must be

specified as part of the input in the form of assigned area

ratios or pressure ratios.

For the FAC model the procedure involves first

determining combustion properties at the combustor

inlet. This station is also referred to as the "injector (inj)
station." Conditions at the end of the combustor c and at

the throat are then both determined by means of an

iteration loop that also includes the fictitious point inf
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(fig. (6.1(a)),as discussedin section6.4. The two
combustionstationsinj andc andthethroatarealways
calculatedfirstautomaticallybytheCEAprogram.Asis
thecasefor theIAC modelothernozzleexit points,if
desired,mustbespecified.

6.3.1 Combustion Conditions

For both the FAC model at station inj and the IAC

model at station inf, the same combustion temperature

and equilibrium compositions are obtained by the pro-

gram for an assigned chamber pressure and the reactant

enthalpy (in the program HP = .TRUE.). From the
combustion compositions and temperature the combus-

tion entropy and other combustion properties are deter-

mined. For the IAC model the combustion entropy Sin f

is assumed to be constant during isentropic expansion in

the nozzle. However, combustion in a finite-area rocket

chamber (the FAC model) is a nonisentropic process.

The entropy increases during the combustion process

from Sin. to S while pressure drops from P- to P Forc m l c"
the FA_ model the entropy at the end of the combustion

chamber s c is held constant during isentropic expansion
in the nozzle•

6.3.2 Exit Conditions

Exit conditions include the throat conditions and

assigned area ratios AJA r or pressure ratios PinflPe or

Pin:/P: Throat conditions are always determinedJ
automatically by the program. Other exit conditions, on

the other hand, are optional and, if included, will be
calculated after throat calculations are completed.

For an assigned pressure ratio equilibrium compo-
sitions and exit temperature are determined for the

pressure P corresponding to the assigned pressure ratio

and for the combustion entropy (Sin f for IAC and s . for
• . IllJ .

FAC). For throat and assigned area ratios iteration

procedures are used to determine the correct pressure

ratios. These procedures are described in sections 6.3.3
to 6•3.7.

After equilibrium compositions and temperature are
obtained for an assigned pressure ratio or area ratio, all

the rocket parameters for that point can be determined.

6.3.3 Throat Conditions

Throat conditions can be determined by locating the

pressure or pressure ratio for which the area ratio is a

minimum or, equivalently, for which the velocity of flow

is equal to the velocity of sound. The second procedure

is used in this report. Throat pressure is determined by
iteration.

The initial estimate for the pressure ratio at the

throat is obtained from the approximate formula

P_-fi_t --)-(Ys; 1 vd(_s-_)
(6.15)

Equation (6.15) is found in many references on rocket

propulsion, such as Sutton and Ross (1976), but is exact

only when Ys is constant from combustion point to

throat. Because the value of Ys is not yet known at the

throat, the value of Ys from the combustion point is used
by the CEA program in equation (6•15). It generally

gives an excellent initial estimate.

Equilibrium properties for Sinf and for the value of

Pt calculated from equation (6.15) are obtained as for
any exit point. From these properties Ue2 (using

eq. (6•5)) and ae2 (using eq. (2.74)) are calculated and
the following test for convergence is made:

2 _ 2

_ 0.4x10-4 (6•16)

I ", I

This criterion is equivalent to ensuring that at the throat
the Mach number is within l_0.2xlO -'4.

If the convergence test is not met, an improved

estimate of the throat pressure ratio is obtained from the
iteration formula

Pt,k.t = P 1 7 y_ ),_

(6.17)

where the subscript k indicates the kth iteration• A

maximum of four iterations on throat pressure is

permitted. Usually, no more than two are required.

6.3.4 Discontinuities at Throat

Gordon (1970) gives a special procedure for

obtaining throat conditions when the velocity of sound

is discontinuous at the throat• This type of discontinuity

may occur when a transition point, such as a melting

point, is being calculated at the throat. The solution of
this problem requires the following equation, which
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permitsestimatingthe throatpressureat the melting

point, where the solid phase just begins to appear:

Oln P )s(inInPt = InP + _ T,, - In T) (6.18)

where the derivative is given by equation (2.75).

6.3.5 Assigned Subsonic or Supersonic Area Ratios

An iteration process is used in the CEA program to
obtain the pressure ratios corresponding to the assigned

area ratios. In general, initial estimates for pressure ratios

in the iteration scheme are obtained from empirical

equations derived from plots of previously calculated

data. However, if the current as well as the previous

assigned supersonic area ratios are greater than 2, an

analytic expression is used to obtain the initial estimate.
The same analytic expression is also used in all cases to

obtain improved estimates for the pressure ratios.

6.3.6 Empirical Formulas for Initial Estimates of

Pin fie e

Initial estimates of pressure ratios corresponding to
subsonic area ratios are obtained from the following

empirical formulas:

inP 

In Pinf - Pt

P,

and

+ 10.58 + 9.454 At

/

,.A. A._+ 10.58 In +9.454in_- t

(6.19)

( A. )1.0001 < -- < 1.09
A, (6.20)

When an assigned supersonic area ratio requires an

initial estimate of pressure ratio to be obtained from an
empirical formula, the following formulas are used:

In_=InPPt +I3"29_InA*12+l'535inAeA,)A,

and

In_-__ = Ys + 1.4 At z 2
¢

(6.21)

(6.22)

In equation (6.22) the value of Ys is that determined for
throat conditions.

6.3.7 Analytic Expression for Improved Estimates of

PinflP e

The equilibrium properties obtained for the initial

and each subsequently improved estimate of PinflPe are
used in equations (6.23) and (6.24) to obtain the next

improved estimates. From table I of Gordon and

Zeleznik (1962) the following derivative can be obtained:

Oin_ (_nRTI 'u2-a2)"
a U2 )¢

This derivative is used in the following correction

formula to obtain an improved estimate for PinflPe:

Pe )kq _ P" )k Oln

L_, t/sjt

["in__ I, A,hJ
(6.24)

where the subscript k refers to the kth estimate and
where the area ratio with no iteration subscript is the

assigned value. The iteration procedure is continued until

I P')k., _ P'}t

(6.25)
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with a maximumof 10iterationspermitted.Generally,
convergenceis reachedwithin twoto four iterations.

6.4 Procedure for Obtaining

Equilibrium Rocket Performance
for FAC Model

In this report the finite-area combustor is assumed
to have a constant cross section. For this constant-area

combustion chamber the momentum equation (6.2) can
be written as

(P + 9u2)i,_ = (e + pU2)c (6.26)

Substituting rh/A = pu (from the continuity eq. (6.4)) into

equation (6.26) gives

When velocity at the injector face is negligible, equa-
tions (6.26) and (6.27) reduce to

rhu / (6.28)emj : (e +p.2)c : e ÷ T c

An iteration procedure is required to satisfy

equation (6.28). This procedure is somewhat different for
each of the two possible input options available for FAC.

In option 1 the contraction ratio Ac/A t is assigned. In
option 2 the mass flow rate per unit combustor area rh/A c

is assigned. The iteration procedure for option 1 is

simpler and therefore will be described first. Four points

shown in figure 6.1 (inj, inf, c, and t) are involved in the

iteration procedure. Thermodynamic parameters at the

injector face are obtained by a combustion calculation.

This point needs to be calculated only once. Starting

with an estimated value for Pinf' calculations are then

made for points inf, t, and c (the assigned contraction
ratio) exactly as is done for the IAC model (for the

infinite-area combustion point, the throat, and an

assigned subsonic area ratio). A check is then made to

see if equation (6.28) is satisfied to within the tolerance

[Pi,j - (P + PU2)cl < 2xl0-S (6.29)

If equation (6.29) is satisfied, the calculations for

the finite-area combustor are complete for points c and t.
Calculations are then continued if other values of

pressure ratio and/or area ratio have been specified in the

input. If equation (6.29) is not satisfied, an improved

estimate for Pinf is obtained as described in section 6.4.2,

and the procedure for the points inf, t, and c is repeated

until equation (6.29) is satisfied.
An iteration procedure similar to that described for

option 1 is also used for option 2. However, the
contraction ratio is not known for option 2. Therefore,

the iteration procedure involves starting with an

estimated value for AclA t as well as for Pinj and then

obtaining improved estimates for both Pinj and AJA r
Not surprisingly, more iterations are required for

option 2 than for option I, which requires improved

estimates for Pinj only. As for option 1 iteration is
complete when equation (6.29) is satisfied.

6.4.1 Initial Estimates for Pinf and AclA t

A curve given in figure 3-14 of Sutton and Ross

(1976) relates PinftPinj with AclA t for an assumed value
of y = 1.2. The following empirical equation was derived

by fitting three selected points read from the curve:

(6.30)

Equation (6.30) is used only to obtain an initial estimate

for Pinf'

For option 1 the assigned value of the contraction

ratio Ac/A t is used in equation (6.30). For option 2 an

initial estimate of Ac/A t is required. This initial estimate
is obtained from

ac

At 2350---_ (6.31)

A_
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Equation(6.31) was derivedby startingwith the
relationshipfor characteristicvelocity c* = PinfAt#n

(eq. (6.11) with gc = 1), multiplying both sides by A c,

and using a representative but approximate value of

c* = 2350 m/s. When equation (6.31) is substituted into

equation (6.30), a quadratic in Pinf is obtained. The

solution of this quadratic gives the initial estimate for

Pinf" This estimate for Pinf, when used in equation (6.31),

gives the initial estimate for Ac[A r If the input value of

rh/A c is so large that equation (6.31) calculates a value
less than 1, the program will stop the calculations and

print out the error message INPUT VALUE OF

MDOT/A = (value) IS TOO LARGE. GIVES CR
ESTIMATE LESS THAN 1.

6.4.2 Improved Estimates for Pinf and Ac]A t

For option 1 an improved estimate for Pinf

(Pinf, new) is obtained by assuming that the ratio of this

desired Pinf,new value to the current value of Pinf is equal

to the ratio of the assigned value of Pinj (Pinj,a) to the

current value of Pinj (obtained by means of eq. (6.28)).
This assumption leads to

(6.32)

Equation (6.32) often gives such an excellent improved

estimate for Pinf that it need be used only once to obtain
convergence (eq. (6.29)). For option 2 an improved

estimate for Ac/A t is required in addition to the one for

Pinf and is obtained from

rh

A c At

At

(6.33)

For some test cases involving hydrogen and oxygen as

propellant, approximately four iterations involving equa-

tion (6.33) were required for convergence (eq. (6.29)).

6.5 Procedure for Obtaining Frozen
Rocket Performance

The procedure for obtaining rocket performance
assuming that composition is frozen (infinitely slow reac-

tion rates) during expansion is simpler than that

assuming equilibrium composition. The reason is that
equilibrium compositions need be determined only for

combustion conditions. After obtaining combustion con-

ditions in the identical way described for equilibrium

rocket performance, the remainder of the procedure is as
follows.

6.5.1 Exit Conditions

Improved estimates of the exit temperature

corresponding to some assigned PinflPe are obtained by
means of the following iteration formulas:

(In Te)k. ' = (In Te)k + (Aln Te)k (6.34)

where

(Aln Te)k - si'r - se)' (6.35)
Cp,e_

and where k refers to the kth estimate. The initial esti-

mate of an exit temperature is the value of temperature

for the preceding point. The iteration procedure is
continued until

IAln TeI < 0.5×10 -4 (6.36)

The maximum number of iterations permitted by the pro-

gram is eight, although the convergence criterion of

equation (6.36) is generally reached in two to four
iterations.

Phases are also considered to be frozen. Therefore,

the program will calculate frozen rocket performance for

assigned schedules of pressure and/or area ratios only
until an exit temperature is reached that is 50 K below

the transition temperature of any condensed species

present at the combustion point. If a calculated exit tem-

perature is more than 50 K below the transition tempera-

ture, this point and all subsequent points in the schedule

are ignored by the program and do not appear in the

output. In addition, the following message is printed:
CALCULATIONS WERE STOPPED BECAUSE NEXT

POINT IS MORE THAN 50 DEG BELOW TEMP

RANGE OF A CONDENSED SPECIES.

After an exit temperature has been determined, all

the rocket performance parameters (section 6.2) can be
determined.
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6.5.2 Throat Conditions

Calculations for frozen throat conditions are similar

to those for equilibrium conditions. That is, equa-

tion (6.15) is used to get initial estimates for PinflPt,

equation (6.17) is used to get improved estimates for

PinflPt, and equation (6.16) is used as the convergence
criterion. With composition and phases frozen, there is

no possibility of discontinuities at the throat, in contrast

to equilibrium compositions.

6.5.3 Thermodynamic Derivatives for Frozen

Composition

The thermodynamic derivatives discussed in pre-

vious sections were based on the assumption that in any

thermodynamic process, from one condition to another,

composition reaches its equilibrium values instantan-

eously. If, on the other hand, reaction times are assumed
to be infinitely slow, composition remains fixed (frozen).

In this event expressions for derivatives become simpler
(see Zeleznik and Gordon (1968) for further discussion).

An expression for specific heat, based on frozen compo-

sition, has already been given in equation (2.49b). Some

other derivatives based on frozen composition are as

follows: From equations (2.50) and (2.51), respectively.

(a _v/
_)p = 1 (6.37)

din V] = -1 (6.38)
Oln P ) r

From equation (2.70)

cv = Cp,i- nR (6.39)

From equations (2.73) and (6.38), it is clear that for

frozen composition

¥s=¥
(6.40)
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Chapter 7

Incident and Reflected Shocks

The solution to the conservation equations that
describe conditions for incident and reflected shocks is

most conveniently-obtained in terms of assigned

temperature before and after shock. Therefore, theoretical

values for shock parameters, such as velocities and gas
compositions, are generally found tabulated as functions

of assigned temperatures (or temperature ratios). How-

ever, in shock tube experiments shock velocities are

generally known, rather than temperature ratios, thus
requiring interpolation for purposes of comparison. It is

therefore useful to have a calculating scheme that calcu-

lates shock properties in terms of assigned velocities, and

that is the scheme used in this report.
No consistent nomenclature has been found in the

literature for shock parameters. For example, in Gaydon

and Hurle (1963) u is the velocity of the gases relative

to the velocity of the shock front w, and v is the actual

velocity of the gases in the shock tube. In Glass and Hall
(1959), however,.the converse is given. We will use es-

sentially the nomenclature of Gaydon and Hurle (1963).

Figure II.6 in Gaydon and Hurle (1963) shows the
usual incident and reflected conditions in both

laboratory-fixed and shock-fixed coordinates. Velocities

can be expressed as

= _-_ = V +_ or ti = _-_ (7.1)

For incident shock waves equation (7.1) gives

til = Ws - 17t = Ws (7.2)

and

1i2 = _s - ¢2 (7.3)

In equation (7.2) it is assumed that the test gas is at rest

(-¢! = 0). For reflected waves equation (7.1) gives

_" = v2 + _'R (7.4)

and

u5 = V5 + _'R = g'K (7.5)

In equation (7.5) it is assumed that the shocked gases at
the end of the shock tube are brought to rest ('_5 = 0).

The asterisk is used with -//2 in equation (7.4) to differ-

entiate it from _T2 in equation (7.3). The gas properties

are the same for condition 2, but the relative velocities

are different. All quantities that appear in equations (7.2)

to (7.5) are positive, and henceforth the arrows will be

dropped.

7.1 Incident Shocks

For a constant-area shock the conservation equa-

tions describing incident conditions are those given by

equations (6.1) to (6.3) with A I = A 2. For iterative

purposes it is convenient to reduce these equations to a
form similar to that given in Zeleznik and Gordon

(1962b) as follows:

(7.6)

h, = hi + -_- 1-['-_2)]

(7.7)

It is also convenient to use the symbols P* and h* for

the right sides of equations (7.6) and (7.7), respectively.

These equations then become
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h" -_ =0

(7.8)

(7.9) P1

02 RT1 I,alnP)ra PI

(7.13)

In equation (7.9), h 2 is defined by means

equation (2.14).

7.1.1 Iteration Equations

of

Applying the Newton-Raphson method to equa-

tions (7.8) and (7.9) divided by R and using for the

independent variables the logarithm of temperature ratio

and pressure ratio across the shock give

(7.10)

O_nP, P, oh,r,
Pt Tx

_ P2 p,
PI

at.5 P' a._5
PI 7'1

_ h 2 - h" (7.11)

R

where

a_r2
T,

_ M,",_(p, )
e_e* e2 1+-- 1

,,,:r ,,./
o _ : --_t_)t_--_--p:_

Pl

+ T2[IOlnVI -1]

alnr2
rl

uf(pl)2(OlnV] Y2Cp, 2

: - _t_) t_),,_ R

(7.14)

(7.15)

(7.16)

(7.17)

Pi) k t l]k+i \ l/k

(7.12a)

_ ,j_+, tr,)_
(7.12b)

and the subscript k stands for the kth iteration.

The partial derivatives and right sides in equa-
tions (7.10) and (7.11) are given as follows:

,h. ,h.. u2['1
where from equations (2.1b) and (2.3a)

Pi Pl Mi T2

P2 P2 M2 TI

(7.18)

(7.19)
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7.1.2 Corrections and Convergence

An arbitrary control factor X is applied to the

corrections obtained from solution of equations (7.10)

and (7.11) before using the corrections in equa-

tions (7.12) to obtain improved estimates. The purpose
of the control factor is to limit the size of the corrections

in order to prevent divergence. Different maximum

corrections are permitted during the course of the

iteration process. Depending on the iteration number this

control factor permits a maximum correction of 1.5 to

0.05 times the previous estimates of PzJPi and T2IT 1.
This is the same as permitting a maximum absolute

correction of 0.40546511 to 0.04879016 on In PzlP1 and

In T2/T I. As an illustration, the control factor X,
corresponding to the maximum correction of 0.40546511

is obtained by means of the following equations:

0.40546511
J'3 - (7.20)

0.40546511
J'4 - (7.21)

_. = min(_.3,_.4,1) (7.22)

A schedule of numerical values used in equations (7.20)

and (7.21) (in addition to the value of 0.40546511) and

the criteria for when they are used are discussed in

part II of this report.
Improved estimates are obtained by using equa-

tion (7.22) with equation (7.12) to give

ln(P21 = In(P21+ jt/AlnpP_2 / (7.23a)
te,),+, te, L , ,,,

In( T2] ln(Tz] +

iT,)., tT,L , T,:,

The iteration process is continued until corrections

obtained from equations (7.10) and (7.11) meet the

following criteria:

(7.24a)

(7.24b)

7.1.3 Initial Estimates of T2/T 1 and P21PI

Formulas for temperature ratio and pressure ratio

across the incident shock, assuming constant "l', can be

found in texts such as Gaydon and Hurle (1963). These

formulas, slightly rearranged, are

P2 _ 2¥1'//4_1z - Yl + 1 (7.25)

Pt "fi +1

2

_ (7.26)

Tl Pi Yi +1

If ], is constant over the temperature range T ! to T2,

equations (7.25) and (7.26) give exact theoretical values

for P21PI and T21T 1. When composition is assumed to be
frozen across the shock, _/2does not vary greatly from ]'1,
and equations (7.25) and (7.26) generally give excellent

first estimates. Improved estimates are then obtained as
described in sections 7.1.1 and 7.1.2. However, if

equilibrium composition is assumed across the shock,

equation (7.26) generally gives estimates of temperature
ratio that are too high. In Gordon and McBride (1976)

an empirical equation is used to lower the T2 estimates

obtained from equation (7.26). This procedure has now

been replaced by a new estimating scheme that gives
considerably better estimates, especially at high Mach

numbers. The initial estimate for P2 is still obtained from
equation (7.25). However, the initial estimate for T2 is

obtained by ca.rrying out a combustion calculation using
the estimate for P2 for the assigned pressure and the
value obtained from the following equation for the

assigned enthalpy:
2

U 1
h 0 = h2 = h l+- (7.27)2

The properties for condition 1 are for the unshocked

gases.
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7.2 Reflected Shocks

The reflected shock conservation equations could be

written like equations (6.1) to (6.3), but it is more con-

venient to use the relations in equations (7.4) and (7.5),

which give

p_wR -- p:(v: + w=) (7.28)

P5 + p,w_ = /)2 + P2(V2 + we) 2 (7.29)

1 2 1 v
h5 + _wR = /12 + _(2 + w,) 2 (7.30)

For iterative purposes it is convenient to reduce equa-
tions (7.28) to (7.30) to a form similar to equations (7.6)

and (7.7) as follows:

P,
P_

-1+

P5

2 --

P2V2 P2 (7.31)

2

P__2_ (7.32)

P2

For convenience, the fight sides of equations (7.31)
and (7.32) will be given the symbols P" and h'. The

reflected shock parameters may now be solved by the
simultaneous solutions of

P5
P'--- =0

/'2
(7.33)

h' - h5 -- 0 (7.34)

7.2.1 Iteration Equations

Applying the Newton-Raphson method to equa-

tions (7.33) and (7.34) divided by R and using for

independent variables the logarithm of temperature ratio

and pressure ratio across the shock give

ol.5 P_ o.,5 r_
_ 7"2

l

(7.35)

ain5 p2 a.,5
Aln T5 _ hs-h'

T2 R

(7.36)

where

., ke2)k., _ 2j,
(7.37)

Aln-:- = In - In
t, k 2/k,! k 2h,

(7.38)

The partial derivatives and fight sides for equa-

tions (7.35) and (7.36) are as follows:

o -- u2q .-_ (oInv] e,
= _ (p, 112_,0_).- _ (7.39)

P5

aln TsT2 RT2 (Ps-)2_OInTje__1

(7.40)

r ]
I, P2

(7.41)
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_(h' - hs) P_2_v_ p__ (a_.vI

M,[t,akr),._ J
(7.42)

°'
O__ _ v_ P--22 ( din VI Tscp's (7.43)

P5 +]1

hs - h' hs - h2 v_ P2

R R
(7.44)

7.2.2 Corrections and Convergence

The same control factors, correction equations, and

tests for convergence discussed in the previous section

for In P21P! and In TffT 1 (eqs. (7.20) to (7.24)) are

applicable for In P51P2 and In Ts/T 2.

7.2.3 Initial Estimates of TsIT 2 and PsIP2

A value of Ts/T 2 = 2 is generally a satisfactory

initial estimate. An estimate for PsIP2 in terms of TsIT 2
can be obtained by inverting equation (2.36) in Gaydon

and Hurle (1963). For Ts/T 2 = 2 this gives

",)' (7.45)

Only one solution of equation (7.45) is positive.
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Chapter 8

Chapman-Jouguet Detonations

The method used for obtaining Chapman-Jouguet
detonation parameters is described in Zeleznik and

Gordon (1962b). There are three steps in the calculation

procedure. First, an initial estimate of the detonation

pressure and temperature is made. Second, the estimate

of these parameters is improved by using a recursion

formula. Third, the correct values are obtained by means

of a Newton-Raphson iteration procedure. The required

equations are derived in Zeleznik and Gordon (1962b)
and are summarized herein for convenience in slightly
modified form.

The same conservation equations (6.1) to (6.3) for

continuity, momentum, and energy that apply for shock

also apply here with the additional constraint that

u 2 = a 2. For iterative purposes, as was true for the shock
equations, it is convenient to reduce the three conserva-

tion equations to two:

1 - Ysa - 1 (8.1)

h2:h, ]÷ 2M2 L_) - 1
(8.2)

The pressure ratio in equation (8.1) is the reciprocal

of the pressure ratio in equation (7.6) because, as pointed
out in Zeleznik and Gordon (1962b), the Newton-

Raphson iteration encounters fewer problems in the form

of equation (8.1).
For convenience in writing the iteration equations

the symbols P" and h" are used to represent the right

sides of equations (8.1) and (8.2), respectively. These

equations then become

P" P_ - 0 (8.3)

P2

h" - h e = 0 (8.4)

8.1 Iteration Equations

Applying the Newton-Raphson method to equa-
tions (8.3) and (8.4), dividing by R, and using for

independent variables the logarithm of temperature ratio
and pressure ratio across the detonation give

a_5 P' a_5 r,
P1 Tl

(8.5)

+ Amr=_h_-h"

a p_ P, otnr2 T, e
P_ 7"1

(8.6)

where Aln P2/Pl and Aln T2/T 1 are defined by equa-
tion (7.12).

The partial derivatives appearing in equations (8.5)

and (8.6) can be evaluated if Ts is taken to be independ-

ent of temperature and pressure. This assumption is
reasonable for moderate ranges of temperatures and

pressures. To within the accuracy of this assumption the

partial derivatives and right sides of equations (8.5)
and (8.6) are
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Pl

P1 P2 (aln V / (8.7)

a_r_
7",

(8.8)

- 1 + Ys,2 - 1 (8.9)
P2 /'2

el

+ 1] (8.10)

_[$,2T2[(.2)2 + l](a]n VI Y2Cp,2

(8.11)

R - R _-_2 [-_l-1 (8.12)

8.3 Initial Estimates of T21T 1 and

P21P 1

A good initial estimate for pressure ratio is not as

important as a good estimate for temperature ratio. For

a number of chemical systems that were investigated, an

initial estimate of (P2/PI) 0 = 15 has been found to be

satisfactory. An initial estimate for temperature ratio is

found by calculating the flame temperature T2

corresponding to the enthalpy

h2 : hi 4 M t [ PI)o
(8.13)

Improved initial estimates for the assumed value of

(P2/P1)o and the estimated value of (T2/TI) 0 correspond-

ing to h2 in equation (8.13) can be obtained by using the
recursion formulas

k*l 2Ys_ ak
(8.14)

RY s:2 rk21- 1
+

2M l cp,_ rk ÷l

where

(8.15)

(8.16)

8.2 Corrections and Convergence

The discussion of convergence controls and correc-

tions for shock calculations applies equally well for

Chapman-Jouguet detonations. Equations (7.20) to (7.22)

give the control factor _; equation (7.23) gives the new

estimates for P2/PI and T2/T]; and equation (7.24) is the
test for convergence.

(8.17)

The quantities M 2, _ts,2, and Cp, 2 in equations (8.14)
to (8.16) are the equilibrium values for (Pz/PI)o and

(T2ITI) o. Repeating the use of equations (8.14) to (8.17)
three times in the program generally provides excellent

initial estimates for the Newton-Raphson iteration.

40



Chapter 9

Input Calculations

A number of options are provided in the program

for specifying input, and these options are discussed in

detail in part II. Part of the input concerns reactants. The

total reactant may be composed of a number of reactants,
each of which may be specified as an oxidant or a fuel.

If the total reactant contains more than one oxidant,

these oxidants may be combined into a total oxidant by

specifying the relative proportion of each oxidant.

Similarly, if the total reactant contains more than one

fuel, the fuels may be combined into a total fuel by
specifying the relative proportion of each fuel. The

overall properties of the total reactant (such as elemental
o p

compositions bi, enthalpy h0, internal energy u0,
molecular weight M 0, density PO, positive and negative

oxidation states V+ and V-, specific heat c0, and entropy
So) can then be calculated by specifying the relative
amounts of total oxidant and total fuel. This method is

particularly convenient if calculations are to be obtained
for a number of oxidant-fuel ratios.

To obtain assigned properties for the total reactant,
each reactant j may be specified as either a fuel or an

oxidant even though a reactant may ordinarily be thought

of as inert (e.g., N2). If reactants are not divided into
fuels and oxidants, they are treated like fuels with

o/f= O. Letting the superscript k equal 1 for oxidant

(provided that there is an oxidant) and 2 for fuel, the

kilogram-atoms of the ith element per kilogram of total
oxidant or total fuel is

_c

b? E "= aq nj
i=1

(i = 1,...,_; k = 1,2) (9.1)

where NREAC is the total number of reactants and# k)

is the number of kilogram-moles of the jth reactant per

kilogram of total oxidant (k = 1) or total fuel (k = 2). If

the amounts of oxidants and fuels are specified in terms

of weights, n: _) is obtained by

k)
NREAC

1=1

(/"= I,...,NREAC; k = 1,2)

(9.2)

where 1_/k) is the weight of the jth reactant and M[ _) is

the molecular weight of the jth reactant. If, however,
amounts of oxidants and fuels are specified in terms of

kilogram-moles N: k),

nfk) = NREAC

E
j=l

(j : 1,...,NREAC; k = 1,2)

(9.3)

The M: k) can be calculated from the atomic weights of

the chemical elements M i as

M:t)= __,a_.k)Mi
i=1

q = 1,...,NREAC; k -- 1,2)
(9.4)

The b: t) can be combined by means of the
following equation to give the kilogram-atoms per
kilogram of total reactant:

b i -
0l+-
f

(i = 1..... _) (9.5)

where olf is the oxidant-to-fuel weight ratio.

Formulas analogous to equations (9. I) and (9.5) can

be used to obtain other properties of the total oxidant,
total fuel, and total reactant (such as enthalpies, internal
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energies,molecularweights,anddensities).Theenergies
givenin thenextfourequationsarein theformin which
theyappearin thematrixarrays(tables2.1to 2.3).

(1) Specificenthalpyof totaloxidant(k = 1) or
total fuel(k = 2)h (k) divided by RT, (kg-mole/kg)(_):

h(k) _J,c (HT)C*)n)k) (k= 1,2) (9.6)
RT - j=_l RT

where (H?)(k) is the molar enthalpy of the jth reactant,

(J/kg-mole)_/)

(2) Specific enthalpy of total reactant h0 divided by
RT, kg-mole/kg:

I,

-0 _ (k = 1,2) (9.7)
RT o

1 + --

f

(3) Specific internal energy of total
(k = 1) or total fuel (k = 2) (u)(k) divided

(kg-mole/kg)(k):

oxidant

by RT,

RT j=l RT
(k = 1,2) (9.8)

where (U°I (k) is the molar internal energy of the jth
-(k)reactant, (J/kg-mole)) .

(4) Specific internal energy of total reactant u_

divided by RT, kg-mole/kg:

÷(ol(,')'"
Uo' _ RT _f} RT
RT o

1 + --

f

(9.9)

(5) Molecular weight of total oxidant (k = 1) or

total fuel (k = 2):

M(k) _ 1 (k = 1,2) (9.10)
NREAC

jffil

(6) Molecular weight of total reactant, kg/kg-mole:

[f+ 11M(')M(2)
Mo = (9.11)

(If M (I) = O, M0 = M(2); and if M (2) = O, M0 = M(1).)

(7) Density of total oxidant or fuel:

p(_) = 1 (k = 1,2) (9.12)

n)k,M k)E
(2)

jffil pj

(8) Density of total reactant:

(9.13)

In the main program of CEA several alternative

expressions are given for specifying the relative amounts

of total oxidant to total fuel and for relating them to olf.
Two expressions are given for equivalence ratio---a

chemical equivalence ratio r and a fuel-to-air (or fuel-to-

oxidant) equivalence ratio _. If the chemical equivalence

ratio is specified, it will be necessary to make use of

÷ and V/" be positive andoxidation states. Let V i
negative oxidation states of the ith element in its

commonly occurring compounds. At least one of these

will be zero. Thus, for example, the negative oxidation

state for chlorine is -1 and its positive oxidation state is

zero. The oxidation states per kilogram of total oxidant
or total fuel are

!

V"(k)= _ Vi"b:k) (k = 1,2)
i=l

(9.14)

!

V -(*) = _ Vt- b: k) (k = 1,2)
i=1

(9.15)

The positive and negative oxidation states for the total
reactant are then
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:,
V" = (9.16)

o
l+--

f

V- - (9.17)
0

l+--

f

The chemical equivalence ratio is now defined as

+

r - --- (9.18)
V-

The equivalence ratio ¢, commonly used in

engineering practice, is defined as

f

_ a (9.19)

(Lo
where fla is the fuel-to-air weight ratio. As Gordon

(1982) points out, the two equivalence ratios r and _ are

always identical for the stoichiometric condition. In

addition, they are always identical when all the positive

valence atoms are in the fuel and all the negative valence

atoms are in the oxidizer (eg., CH 4 + 02). However, if
some negative valence atoms are in the fuel (e.g.,

CH3OH) or if some positive valence atoms are in the

oxidizer (e.g., H202), then for off-stoichiometric
conditions r and ¢ differ for the same reaction. For

example, for CHaOH + 1/2 02, r = 2 and ¢ = 3.
One of the options in the SHOCK problem requires

reactant compositions relative to the total reactant. These

may be obtained as follows:

f

for k=l

= n:k) for k = 2
O

l+--

f

(j = I,...,NRF.AC) (9.20)

where mj is kilogram-moles ofjth reactant per kilogram
of total reactant.

Specific heat and entropy for the total reactant in

kilogram-moles per kilogram can be calculated by using

the mj, CTj, and Sj of the j reactants:

(9.21)

R .o mj
(9.22)
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Appendix--Symbols

A,B,C,D

A

A e/A t

Ak_

Ak

d

ai(i = 1...9)

a U

(k)
aij

aS, T

b i

b_t)

b7

C F

transport property coefficients, eq. (5.1)

area, m2

ratio of nozzle exit area to throat area,

eq. (6.14)

collision cross-section ratio, eq. (5.13)

chemical formula of species k,

dimensionless, eq. (5.10)

velocity of sound, m/s, eqs. (2.67)
and (2.74)

least-squares coefficients, eqs. (4.6)

to (4.11)

stoichiometric coefficients, kilogram-

atoms of element i per kilogram-mole of

species j, (kg-atom)/(kg-mole)), eq. (2.7a)

stoichiometric coefficients, kilogram-

atoms of element i per kilogram-mole of

reactant j (oxidant if k = 1, fuel if k = 2),

(kg-atom)!k)/(kg-mole)J k), eq. (9.1)

velocity of sound, m/s, defined by

eq. (3.1 O)

kilogram-atoms of element i per kilogram

of mixture, (kg-atom)i/kg, eq. (2.7c)

assigned kilogram-atoms of element i per

kilogram of total oxidant (k = 1) or total

fuel (k = 2), (kg-atom)!k)/kg(k), eq. (9.1)

assigned kilogram-atoms of element i per

kilogram of total reactant, (kg-atom)/kg,

eq. (9.5)

coefficient of thrust, eq. (6.13)

C_j

O
vj

C o

¢p

,e

Cp,eq

Cp,f

Cp,fr

,r

,re

c V

c

Dk_

d6

molar heat capacity at constant pressure
for standard state for species or reactant j,

J/(kg-mole)j(K)

molar heat capacity at constant volume

for standard state for species j,

J/(kg-mole)j(K)

specific heat at constant pressure of total
reactant, J/kg-K, eq. (9.21)

specific heat at constant pressure of

mixture, equilibrium or frozen, J/kg-K

equilibrium specific heat at constant

pressure, J/kg-K, eq. (2.49a)

equilibrium specific heat at constant
pressure for transport properties,

J/kg-K, eq. (5.14)

frozen specific heat at constant pressure,

J/kg-K, eq. (2.49b)

frozen specific heat at constant pressure
for transport properties, J/kg-K, eq. (5.15)

reaction specific heat at constant pressure,

J/kg-K, eq. (2.49c)

reaction specific heat at constant pressure
for transport properties, J/kg-K, eq. (5.16)

specific heat at constant volume of
mixture, equilibrium or frozen, J/kg-K,

eq. (2.70) or (6.39)

characteristic velocity, m/s, eq. (6.11)

binary diffusion coefficient, m2/s,

eq. (5.13)

matrix coefficient in eq. (5.17)

P.gGe,IJ_._ i Jt_iNTENr!ONALLY _}LA,'.)_
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F

%F

f

G

g

gc

AS/r(/)

h

h(k)

h o

r

h"

h*

I

/sp

M

Helmholtz energy of mixture with

constraints, defined by eq. (2.33), J/kg; or

force, N, eq. (6.6)

percent of total fuel in total reactant by

weight or mass

Helmholtz energy of mixture, J/kg,

eqs. (2.30) and (2.31)

Gibbs energy of mixture with constraints,

J/kg, defined by eq. (2.8)

Gibbs energy of mixture, J/kg, eq. (2.5)

conversion factor, eqs. (6.6) to (6.8)

molar standard-state enthalpy for

species j, J/(kg-mole)j

molar enthalpy of reactant j (k = 1 for

oxidant, k = 2 for fuel), J/(kg-mole)} k),
eq. (9.6)

heat of formation at temperature T,

J/kg-mole, eq. (4.2)

heat of reaction at temperature T,

J/(kg-mole), eq. (5.9)

specific enthalpy of mixture, J/kg,

eq. (2.14)

specific enthalpy of total oxidant (k = 1)
or total fuel (k = 2), (J/kg) (k), eq. (9.6)

specific enthalpy of total reactants, J/kg,

eq. (9.7)

term defined by

term defined by

term defined by

right side of eq. (7.32)

fight side of eq. (8.2)

fight side of eq. (7.7)

specific impulse, N/(kg/s) or m/s,

eq. (6.7)

specific impulse with exit and ambient

pressures equal, N/(kg/s) or m/s, eq. (6.8)

vacuum specific impulse, N/(kg/s) or m/s,

eq. (6.9)

molecular weight of mixture, kg/kg-mole,

eqs. (2.3)

atomic weight of chemical element i,

(kg/kg-atom)i, eq. (9.4)

M0

M}jk)

MW

o/f

P

PinelPe

eo
t"

p,,

p*

Pr

R

r

molecular weight of species j, eqs. (2.3b)
and (2.4)

molecular weight of total reactant,

kg/kg-mole, eq. (9.11)

molecular weight of total oxidant (k = 1)
or total fuel (k = 2), (kg/kg-mole) (k), eq.

(9.10)

molecular weight of reactant j (oxidant if

k = 1; fuel if k = 2, (kg/kg-mole)! k),

eqs. (9.4)

molecular weight of mixture, kg/kg-mole,

eqs. (2.4)

Mach number, eq. (6.10)

kilogram-moles of reactant j per kilogram

of total reactant, (kg-mole)j/kg, eq. (9.20)

mass flow rate, kg/s, eq. (6.4)

kilogram-moles of reactant j (oxidant if

k = 1; fuel if k = 2), (kg-mole)} i)

kilogram-moles of mixture per unit mass,

kg-mole/kg, eq. (2.2)

kilogram-moles of species j per kilogram

of mixture, (kg-mole)j/kg, eq. (2.2)

kilogram-mole per kilogram of reactant j

(oxidant if k = 1; fuel if k = 2),

(kg-mole)}k)/kg (k), eq. (9.2) or (9.3)

oxidant-to-fuel weight (or mass) ratio

pressure, N/m 2

ratio of combustion pressure to exit
pressure for IAC model

assigned or initial pressure, N/m 2

term defined by right side of eq. (7.31)

term defined by fight side of eq. (8.1)

term defined by right side of eq. (7.6)

Prandtl number, eqs. (5.19)

universal gas constant, 8314.51 J/

(kg-mole)(K)

equivalence ratio based on oxidation

states, eq. (9.18)
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s

s o

T

v;

p
u

u'(k)

I

u 0

V

v+

V-

w(k)

v-(k)

w

w R

molar entropy of species j,

J/(kg-mole)j(K), eq. (2.17)

molar standard-state entropy for species j,

J/(kg-mole)j(K)

specific entropy of mixture, J/kg-K,

eq. (2.16)

specific entropy of total reactants, J/kg-K,

eq. (9.22)

temperature, K

molar standard-state internal energy for

species j, J/kg-mole, eq. (2.38)

molar internal energy of reactant j

(oxidant if k = l; fuel if k = 2),

(J/kg-mole)} k), eq. (9.8)

velocity (in shock problems, velocity
relative to incident or reflected shock

front), m/s, eqs. (6.5) and (7.1)

specific internal energy of mixture, J/kg,

eq. (2.38)

specific internal energy of total oxidant
(k = 1) or total fuel (k = 2), (l/kg) (k),

eq. (9.8)

specific internal energy of total reactant,

J/kg, eq. (9.9)

specific volume, m3/kg, eq. (2.1a)

positive oxidation state of total reactant,

eq. (9.16)

negative oxidation state of total reactant,

eq. (9.17)

positive oxidation state of total oxidant

(k = 1) or total fuel (k = 2), eq. (9.14)

negative oxidation state of total oxidant

(k = 1) or total fuel (k = 2), eq. (9.15)

actual velocity of gases in shock tube,

m/s, eq. (7.1)

weight offlh reactant (oxidant if k = 1;

fuel if k -- 2), kg}_), eq. (9.2)

shock front velocity, m/s, eq. (7.1)

reflected shock front velocity, m/s,

eq. (7.4)

w S

xi

x i

(tik

_k

Y

"fli

rlij

_' 1,_'2,

_,3,_,4

_,eq

_'fr

incident shock front velocity, m/s,

eq. (7.2)

unknowns in eq. (5.16)

mole fraction of species i relative to all

species (gaseous and condensed) in eq.
(2.4a) and relative to NM gaseous species

used for thermal transport property

calculations in eqs. (5.3), (5.4), (5.12),
(5.15), (5.16), and (5.18)

stoichiometric coefficients of species k in

reaction i for transport property

calculations, eq. (5.10)

parameter defined by equation (8.16)

specific heat ratio, eq. (2.72)

isentropic exponent, eqs. (2.71) and (2.73)

viscosity of species i, laP, eq. (5.3)

viscosity interaction parameter, laP,

eq. (5.7)

viscosity of mixture, paP, eq. (5.3)

control factor, eqs. (3.3) and (7.22);

thermal conductivity, eq. (5.1)

Lagrangian multipliers, eqs. (2.8) and
(2.33); thermal conductivity of species i,

laW/cm-K, eq. (5.4)

control factors, eqs. (3.1), (3.2), (7.20),

and (7.21)

equilibrium thermal conductivity of
mixture, laW/cm-K, eq. (5.2)

frozen thermal conductivity of mixture,

laW/cm-K, eq. (5.4)

variables in eqs. (5.8) and (5.11)

reaction thermal conductivity of mixture,

laW/cm-K, eq. (5.8)

chemical potential of species j,

J/(kg-mole)j, eqs. (2.11) and (2.35)

standard-state chemical potential of

species j, J/(kg-mole)j, eq. (2.11)

Lagrangian multiplier for ions divided by
RT
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/t i

P

Po

p(k)

qx0

%

Subscripts:

a

¢

e

g

inf

inj

k

m

Lagrangian multiplier for element i P
divided by RT, eqs. (2.18), (2.19), (2.40),
and (2.41) s

stoich
density of mixture, kg/m 3, eq. (2.1b)

T
density of total reactant, kg/m 3, eq. (9.13)

t
density of total oxidant (k = 1) or total
fuel (k = 2), (kg/m3) (k), eq. (9.12) 0

density of reactant j (oxidant if k = 1; fuel 1,2,5

if k = 2), (kg/m3)J k), eq. (9.12)

frozen thermal conductivity interaction

coefficient between species i and j,

eqs. (5.4) and (5.6)
k

equivalence ratio based on fla ratios,
eq. (9.19) Indices:

viscosity interaction coefficient between Q

species i and j, eqs. (5.5) and (5.7)

pressure

entropy

stoichiometric

temperature

throat

total reactant; zeroth iteration

stations

Superscripts:

o symbol for standard state; an assigned or
initial condition

1 if oxidant, 2 if fuel

NG
ambient; assigned

end of combustion chamber; condensed NM

exit; electrons

gas NR

combustor station assuming infinite
chamber area NREAC

combustor inlet or injector station for NS
finite-area combustor

iteration k

melting

number of chemical elements (if ions are
considered, number of chemical elements

plus one)

number of gaseous species in thermo-

dynamic data for current chemical system

number of gaseous species for transport

property calculations

number of reactions for transport property
calculations

number of reactants

number of species, gaseous and con-

densed, in thermodynamic data for current

chemical system
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