
Chapter 1

Introduction

These notes are a tutorial on the analysis and computation of shock and
detonation waves with selected applications to explosion and propulsion.
Numerical solution methods are necessary for solving the conservation equa-
tions or jump conditions that determine the properties of shock and detona-
tion waves in a multi-component, reacting gas mixture. Only the idealized
situations of perfect (constant heat-capacity) gases with fixed chemical en-
ergy release can be treated analytically (Appendix B). Although widely used
for simple estimates and mathematical analysis, the results of perfect gas
models are not suitable for analysis of laboratory experiments and carrying
out numerical simulations based on realistic thermochemical properties.

Over the previous 60 years, many numerical solution methods for shock and detonation solutions have
been developed and made available as application software. A brief history of some key events is given in
Appendix A. Some of these packages are still in use today, however there are issues with using the older
software including limited availability due to national security or proprietary concerns and lack of support
for legacy software. In response to this situation, we have developed a library of software tools, the Shock
and Detonation Toolbox, that we are making openly available for academic research. The Toolbox and
associated demonstration programs are based on the Cantera software library to evaluate gas thermodynamic
and transport properties, chemical reaction rates and carry out chemical equilibrium computations.

In Part I of the report, we describe the algorithms used in the toolbox for the numerical solution of shock
and detonation jump conditions in ideal gas mixtures with realistic thermochemical properties. An iterative
technique based on a two-variable Newton’s method is selected as being the most robust method for both
reactive and nonreactive flows. A library of routines is described for Python and Matlab computations of
post-shock conditions and Chapman-Jouguet detonation velocity. Notes and demonstration programs are
provided to illustrate how to use these routines to solve a range of problems. In addition to numerical
methods for realistic thermochemistry, perfect gas analytical solutions are also provided.

In Part II of the report, we describe steady flows and some simple unsteady flows which not in equilibrium
or frozen and chemical reaction must be considered. The steady flows treated are the reaction zones behind
shock and detonation waves moving at constant speed, the reaction zone along the stagnation streamline in
supersonic blunt body flows, flow through a converging-diverging nozzle and quasi-one dimensional flows with
friction and heat transfer modeled as wall functions. The unsteady flows modeled include reaction occurring
under constant temperature, pressure and volume conditions or with prescribed volume or pressure time
dependence.

1.1 Overview and Quickstart

This overview describes situations that are commonly encountered and links to the associated toolbox rou-
tines and demonstration programs. For more details on the input and output parameters for these routines,
see Chapter 9. For a listing and links to demonstration programs that illustrate various applications of the
toolbox, see Chapter 10. In order to use these scripts, the reader must first install the Cantera software and

3

http://www.cantera.org


4 CHAPTER 1. INTRODUCTION

have previously installed Python or Matlab. The toolbox modules, demonstration scripts and instructions
for installation are available on the SDToolbox website.

1. Non-reactive shock wave. If the chemical reactions occur sufficiently slowly compared to translational,
rotational, and vibrational equilibrium,1 then a short distance behind a shock wave flow can be consid-
ered to be in thermal equilibrium but chemical nonequilibrium. This is often referred to as a “frozen
shock” since the chemical composition is considered to be fixed through the shock wave. Computations
of post-shock conditions are used as initial conditions for the subsequent reaction zone and are there-
fore a necessary part of computing shock or detonation structure. Usually, these computations proceed
from specified upstream conditions and shock speed; the aim of the computation is to determine the
downstream thermodynamic state and fluid velocity. On occasion, we consider the inverse problem of
starting from a specified downstream state and computing the upstream state.
Function PostShock fr: Demos - Matlab: demo PSfr.m Python: demo PSfr.py

2. Reactive shock wave. The region sufficiently far downstream from the shock wave is considered in
thermodynamic equilibrium. Thermodynamics can be used to determine the chemical composition,
but this is coupled to the conservation equation solutions since the entropy and enthalpy of each species
is a function of temperature. As a consequence, the solution of the conservation equations and chemical
equilibrium must be self-consistent, requiring an iterative solution for the general case. In the case
of endothermic reactions (i.e., dissociation of air behind the bow shock on re-entry vehicle), there are
no limits on the specified shock velocity and the computation of the downstream state for specified
upstream conditions is straightforward. For exothermic reactions, solutions are possible only for a
range of wave speeds separated by a forbidden region. The admissible solutions are detonation (high
velocity, i.e., supersonic) and deflagration (low velocity, i.e., subsonic) waves, and there are usually two
solutions possible for each case.
Function PostShock eq: Demos - Matlab: demo PSeq.m Python: demo PSeq.py

3. Chapman-Jouguet (CJ) detonation. This is the limiting case of the minimum wave speed for the su-
personic solutions to the jump conditions with exothermic reactions. The Chapman-Jouguet solution
is often used to approximate the properties of an ideal steady detonation wave. In particular, detona-
tion waves are often observed to propagate at speeds within 5-10% of their theoretical CJ speeds in
experimental situations where the waves are far from failure.
Function CJSpeed: Demos - Matlab: demo CJ.m Python: demo CJ.py

4. Reflected shock wave. When a detonation or shock wave is incident on a hard surface, the flow behind
the incident wave is suddenly stopped, creating a reflected shock wave that propagates in the opposite
direction of the original wave. If we approximate the reflecting surface as rigid, then we can compute
the speed of the reflected shock wave given the incident shock strength. This computation is frequently
carried out in connection with estimating structural loads from shock or detonation waves.
Function reflected eq and reflected fr:
Demos - Matlab: demo reflected eq.m and demo reflected fr.m
Python: demo reflected eq.py and demo reflected fr.py

5. ZND Model Detonation Structure Computation. The idealized reaction zone behind a steady shock
or detonation wave is one-dimensional reactive flow. The model equations and properties were first
explored by Zel’dovich (1940), von Neumann (1942), and Doering (1943). The solution method used
in the toolbox is to convert the differential-algebraic equations representing the conservation of mass,
momentum, energy and species evolution to a fully differential system of ODE and integral these with
a method suitable for stiff equations.
Function ZND:
Demos - Matlab: demo ZNDCJ.m, demo ZNDshk.m and demo ZND CJ cell.m
Python: demo ZNDCJ.py, demo ZNDshk.py and demo ZND CJ cell.py

1The structure of shock waves with vibration non-equilibrium is discussed at length by Clarke and McChesney (1964) and
Vincenti and Kruger (1965)

http://shepherd.caltech.edu/EDL/PublicResources/sdt
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSfr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSfr.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSeq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_PSeq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_CJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_eq.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_reflected_fr.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZND_CJ_cell.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZNDshk.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_ZND_CJ_cell.py


1.1. OVERVIEW AND QUICKSTART 5

6. CV Model Explosion Structure Computation. The time-evolution of a mass of fluid reacting at constant
volume is frequently used as a surrogate for the reaction process behind incident and reflected shock
waves, as well as detonations. The model equations are based on the first law of thermodynamics for
an adiabatic, constant-volume system. The ordinary differential equations for energy conservation and
species evolution are integrated with a stiff ODE solver.
Function CV:
Demos - Matlab: demo cv.m, demo cv comp.m, demo cvCJ.m, demo cvshk.m
Python: demo cvCJ.py, demo cvshk.py

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv_comp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvCJ.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/Python3/demo/demo_cvshk.py


Chapter 9

Functions

A summary is provided of the major functions of the toolbox. The basic
syntax, input, and output are provided for Matlab and Python. For each
function, links are given to both the Matlab and Python implementations.
See the website to download and install the complete software package.
There are a number of auxiliary files that are required but are not described
here.

Core Functions

The core functions for Matlab are in subdirectories in the SDToolbox subdirectory of the Matlab toolbox
directory, for Python the functions are contained within Python scripts in the sdtoolbox subdirectory of
the Python site-packages directory. Each function contains a header that describes the input and output
variables as well as optional parameters.

PostShock CJ speed, frozen and equilibrium state following shock waves

CJSpeed Calculates CJ detonation velocity for a given pressure, temperature, and composition and
gas object.

CJSpeed.m

FUNCTION SYNTAX:

If only CJ speed required:

U_cj = CJspeed(P1,T1,q,mech)

If full output required:

[U_cj, curve, goodness, dnew, plot_data] = CJspeed(P1,T1,q,mech)

INPUT:

P1 = Initial Pressure (Pa)

T1 = Initial Temperature (K)

q = string of reactant species mole fractions

mech = cti file containing mechanism data (i.e. ’gri30.cti’)

OUTPUT:

cj_speed = CJ detonation speed (m/s)

curve = cfit object of LSQ fit

goodness = goodness of fit statistics for curve

dnew = CJ density ratio

plot_data = structure containing additional parameters to use

CJSpeed in PostShock.py

105

http://shepherd.caltech.edu/EDL/PublicResources/sdt
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/CJspeed.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py


106 CHAPTER 9. FUNCTIONS

FUNCTION SYNTAX:

If only CJ speed required:

cj_speed = CJspeed(P1,T1,q,mech)

If full output required:

[cj_speed,R2,plot_data] = CJspeed(P1,T1,q,mech,fullOutput=True)

INPUT:

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OPTIONAL INPUT:

fullOutput = set True for R-squared value and pre-formatted plot data

(the latter for use with sdtoolbox.utilities.CJspeed_plot)

OUTPUT

cj_speed = CJ detonation speed (m/s)

R2 = R-squared value of LSQ curve fit (optional)

plot_data = tuple (rr,w1,dnew,a,b,c)

rr = density ratio

w1 = speed

dnew = minimum density

a,b,c = quadratic fit coefficients

PostShock eq Calculates equilibrium post-shock state for a specified shock velocity, pressure, tem-
perature, and composition and gas object.

PostShock eq.m

FUNCTION SYNTAX:

[gas] = PostShock_eq(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

gas = gas object at equilibrium post-shock state

PostShock eq in PostShock.py

FUNCTION SYNTAX:

gas = PostShock_eq(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/PostShock_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py


107

gas = gas object at equilibrium post-shock state

PostShock fr Calculates frozen post-shock state for a specified shock velocity, pressure, temperature,
and composition and gas object.

PostShock fr.m

FUNCTION SYNTAX:

[gas] = PostShock_fr(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

gas = gas object at frozen post-shock state

PostShock fr in PostShock.py

FUNCTION SYNTAX:

[gas] = PostShock_fr(U1,P1,T1,q,mech)

INPUT:

U1 = shock speed (m/s)

P1 = initial pressure (Pa)

T1 = initial temperature (K)

q = reactant species mole fractions in one of Cantera’s recognized formats

mech = cti file containing mechanism data (e.g. ’gri30.cti’)

OUTPUT:

gas = gas object at frozen post-shock state

Reflections Calculated state behind a shock or detonation after reflection from a rigid surface.

reflected eq Calculates equilibrium post-reflected-shock state.

reflected eq.m

FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_eq(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at equilibrium post-reflected-shock state

reflected eq in reflections.py

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/PostShock_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/reflected_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/reflections.py


108 CHAPTER 9. FUNCTIONS

FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_eq(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at equilibrium post-reflected-shock state

reflected fr Calculates frozen post-reflected-shock state.

reflected fr.m

FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_fr(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at frozen post-reflected-shock state

reflected fr in reflections.py

FUNCTION SYNTAX:

[p3,UR,gas3] = reflected_fr(gas1,gas2,gas3,UI)

INPUT:

gas1 = gas object at initial state

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

UI = incident shock speed (m/s)

OUTPUT:

p3 = post-reflected-shock pressure (Pa)

UR = reflected shock speed (m/s)

gas3 = gas object at frozen post-reflected-shock state

ZND Model Detonation Structure Computation1

zndsolve.m

FUNCTION SYNTAX:

[output] = zndsolve(gas,gas1,U1)

1For a detailed exposition of the constant volume (CV) explosion, stagnation reaction zone and one-dimensional detonation
structure (ZND) models see the companion document (Browne et al., 2005) from the Shock and Detonation Toolbox website.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/reflections.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/ZND/zndsolve.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt


109

INPUT:

gas = Cantera gas object - postshock state

gas1 = Cantera gas object - initial state

U1 = Shock Velocity

OPTIONAL INPUT (name-value pairs):

t_end = end time for integration, in sec

rel_tol = relative tolerance

abs_tol = absolute tolerance

advanced_output = calculates optional extra parameters

such as induction lengths

OUTPUT:

output = a dictionary containing the following results:

time = time array

distance = distance array

T = temperature array

P = pressure array

rho = density array

U = velocity array

thermicity = thermicity array

species = species mass fraction array

M = Mach number array

af = frozen sound speed array

g = gamma (cp/cv) array

wt = mean molecular weight array

sonic = sonic parameter (c^2-U^2) array

tfinal = final target integration time

xfinal = final distance reached

gas1 = a copy of the input initial state

U1 = shock velocity

and, if advanced_output=True:

ind_time_ZND = time to maximum thermicity gradient

ind_len_ZND = distance to maximum thermicity gradient

exo_time_ZND = pulse width (in secs) of thermicity (using 1/2 max)

ind_time_ZND = pulse width (in meters) of thermicity (using 1/2 max)

max_thermicity_width_ZND = according to Ng et al definition

CV Model Explosion Computation

cvsolve.m

FUNCTION SYNTAX:

output = cvsolve(gas,varargin)

INPUT:

gas = working gas object

OPTIONAL INPUT (name-value pairs):

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/CV/cvsolve.m


110 CHAPTER 9. FUNCTIONS

t_end = end time for integration, in sec. If not included

as an input, set to 10^-3 by default.%

rel_tol = relative tolerance

abs_tol = absolute tolerance

OUTPUT:

output = a structure containing the following results:

time = time array

T = temperature profile array

P = pressure profile array

speciesY = species mass fraction array

speciesX = species mole fraction array

gas = working gas object

exo_time = pulse width (in secs) of temperature gradient (using 1/2 max)

ind_time = time to maximum temperature gradient

ind_len = distance to maximum temperature gradient

ind_time_10 = time to 10% of maximum temperature gradient

ind_time_90 = time to 90% of maximum temperature gradient

Stagnation Reaction zone structure computation for blunt body flow using the approximation of linear
gradient in mass flux = rho u

stgsolve.m

SYNTAX

[output] = stgsolve(gas,gas1,U1,Delta)

INPUT

gas = Cantera gas object - postshock state

gas1 = Cantera gas object - initial state

U1 = Shock Velocity

Delta = shock standoff distance

OPTIONAL INPUT (positional argument):

t_end = end time for integration, in sec. If not included

as an input, set to 10^-3 by default.

OUTPUT

Structure

output.time = time array

output.distance = distance array

output.T = temperature array

output.P = pressure array

output.rho = density array

output.U = velocity array

output.thermicity = thermicity array

output.M = Mach number array

output.af = frozen sound speed array

output.g = gamma (cp/cv) array

output.wt = mean molecular weight array

output.sonic = sonic parameter (c^2-U^2) array

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Stagnation/stgsolve.m


111

Thermo Computation of sound speed and Grüneisen coefficent.

soundspeed eq Computes the equilibrium sound speed by using a centered finite difference approx-
imation. Directly evaluating pressure at two density/specific volume states along an isentrope
requires use of equilibrate(’SV’). However, this may not always converge at high pressure. Instead,
a more robust method using equilibrate(’TP’) is used that employs thermodynamic identities de-
tailed further in Appendix G2 of the report.

soundspeed eq.m

FUNCTION SYNTAX:

aequil = soundspeed_eq(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

aequil = equilibrium sound speed = sqrt({d P/d rho)_s, eq) (m/s)

soundspeed eq in thermo.py

FUNCTION SYNTAX:

ae = soundspeed_eq(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

ae = equilibrium sound speed = sqrt({d P/d rho)_s, eq) (m/s)

soundspeed fr Computes the frozen sound speed by using a centered finite difference approximation
and evaluating frozen composition states on the isentrope passing through the reference (S, V)
state supplied by the gas object passed to the function.

soundspeed fr.m

FUNCTION SYNTAX:

afrozen = soundspeed_fr(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

afrozen = frozen sound speed = sqrt({d P/d rho)_{s,x0})

soundspeed fr in thermo.py

FUNCTION SYNTAX:

afrz = soundspeed_fr(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

afrz = frozen sound speed = sqrt({d P/d rho)_{s,x0})

gruneisen eq Computes the equilibrium Grüneisen coefficient by using a centered finite difference
approximation and evaluating equilibrium states on the isentrope passing through the reference

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/soundspeed_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/thermo.py


112 CHAPTER 9. FUNCTIONS

(S, V) state supplied by the gas object passed to the function.

gruneisen eq.m

FUNCTION SYNTAX:

G_eq = gruneisen_eq(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

G_eq = equilibrium Gruneisen coefficient [-de/dp)_{v,eq} =

-(v/T)dT/dv)_{s,eq} = + (rho/T)(dT/d rho)_{s,eq}]

gruneisen eq in thermo.py

FUNCTION SYNTAX:

G_eq = gruneisen_eq(gas)

INPUT:

gas = working gas object (restored to original state at end of function)

OUTPUT:

G_eq = equilibrium Gruneisen coefficient [-de/dp)_{v,eq} =

-(v/T)dT/dv)_{s,eq} = + (rho/T)(dT/d rho)_{s,eq}]

gruneisen fr Computes the frozen Grüneisen coefficient by using a centered finite difference approx-
imation and evaluating frozen states on the isentrope passing through the reference (S, V) state
supplied by the gas object passed to the function.

gruneisen fr.m

FUNCTION SYNTAX:

G_fr = gruneisen_fr(gas)

INPUT:

gas = working gas object (not modified in function)

OUTPUT:

G_fr = frozen Gruneisen coefficient [-de/dp)_{v,x0} =

-(v/T)dT/dv)_{s,x0} = + (rho/T)(dT/d rho)_{s,x0}]

gruneisen fr in thermo.py

FUNCTION SYNTAX:

G_fr = gruneisen_fr(gas)

INPUT:

gas = working gas object (not modified in function)

OUTPUT:

G_fr = frozen Gruneisen coefficient [-de/dp)_{v,x0} =

-(v/T)dT/dv)_{s,x0} = + (rho/T)(dT/d rho)_{s,x0}]

Internal Functions called as part of iteration process.

shk calc Calculates frozen post-shock state using Reynolds iterative method (see Section 4.2).
Matlab Function - shk calc.m
Python Function - shk calc (in PostShock.py)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/gruneisen_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/gruneisen_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/shk_calc.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py


113

SYNTAX:

[gas] = shk_calc(U1,gas,gas1,ERRFT,ERRFV)

INPUT:

U1 = shock speed (m/s)

gas = working gas object

gas1 = gas object at initial state

ERRFT,ERRFV = error tolerances for iteration

OUTPUT:

gas = gas object at frozen post-shock state

shk eq calc Calculates equilibrium post-shock state using Reynolds iterative method (see Section 4.2).
Matlab Function - shk eq calc.m
Python Function - shk calc (in PostShock.py)

SYNTAX: [gas] = shk_eq_calc(U1,gas,gas1,ERRFT,ERRFV)

INPUT:

U1 = shock speed (m/s)

gas = working gas object

gas1 = gas object at initial state

ERRFT,ERRFV = error tolerances for iteration

OUTPUT:

gas = gas object at equilibrium post-shock state

FHFP
Uses the momentum and energy conservation equations to calculate error in current pressure and
the enthalpy guesses (see (4.17) & (4.16)). In this case, state 2 is frozen.
Matlab Function - FHFP.m
Python Function - FHFP (in PostShock.py)

SYNTAX:

[FH,FP] = FHFP(U1,gas,gas1)

INPUT:

U1 = shock speed (m/s)

gas = working gas object

gas1 = gas object at initial state

OUTPUT:

FH,FP = error in enthalpy and pressure

FHFP reflected fr
Uses the momentum and energy conservation equations to calculate error in current pressure and
the enthalpy guesses (see (4.17) & (4.16)). In this case, state 3 is frozen.
Matlab Function - FHFP reflected fr.m
Python Function - FHFP reflected fr (in reflections.py)

SYNTAX:

[FH,FP] = FHFP_reflected_fr(u2,gas3,gas2)

INPUT:

u2 = current post-incident-shock lab frame particle speed

gas3 = working gas object

gas2 = gas object at post-incident-shock state (already computed)

OUTPUT:

FH,FP = error in enthalpy and pressure

CJ calc
Calculates the wave speed for the Chapman-Jouguet case using Reynolds’ iterative method (see
Section 4.2).
Matlab Function - CJ calc.m
Python Function - CJ calc (in PostShock.py)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/shk_eq_calc.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/FHFP.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/FHFP_reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/reflections.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/CJ_calc.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py


114 CHAPTER 9. FUNCTIONS

SYNTAX:

[gas,w1] = CJ_calc(gas,gas1,ERRFT,ERRFV,x)

INPUT:

gas = working gas object

gas1 = gas object at initial state

ERRFT,ERRFV = error tolerances for iteration

x = density ratio

OUTPUT:

gas = gas object at equilibrium state

w1 = initial velocity to yield prescribed density ratio

state
Calculates frozen state given T and ρ.
Matlab Function - state.m
Python Function - state (in Thermo.py)

SYNTAX:

[P,H] = state(gas,r1,T1)

INPUT:

gas = working gas object

r1,T1 = desired density and temperature

OUTPUT:

P,H = pressure and enthalpy

eq state
Calculates equilibrium state given T and ρ.
Matlab Function - eq state.m
Python Function - eq state (in Thermo.py)

SYNTAX:

[P,H] = eq_state(gas,r1,T1)

INPUT:

gas = working gas object

r1,T1 = desired density and temperature

OUTPUT:

P,H = equilibrium pressure and enthalpy at constant temperature and specific volume

hug eq
Algebraic expressions of equilibrium (product) Hugoniot pressure and enthalpy. Passed to root
solver ’fsolve’.
Matlab Function - hug eq.m
Python Function - hug eq (in PostShock.py)

SYNTAX:

[x,fval] = fsolve(@hug_eq,Ta,options,gas,array)

INPUT:

Ta = initial guess for equilibrium Hugoniot temperature (K)

options = options string for fsolve

gas = working gas object

array = array with the following values

vb = desired equilibrium Hugoniot specific volume (m^3/kg)

h1 = enthalpy at state 1 (J/kg)

P1 = pressure at state 1 (Pa)

v1 = specific volume at state 1 (m^3/kg)

OUTPUT:

x = equilibrium Hugoniot temperature corresponding to vb (K)

fval = value of function at x

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/state.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/Thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Thermo/eq_state.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/Thermo.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/PostShock/hug_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/Postshock.py


115

hug fr
Algebraic expressions of frozen (reactant) Hugoniot pressure and enthalpy. Passed to root solver
’fsolve’.
Matlab Function - hug fr.m
Python Function - hug fr (in Thermo.py)

SYNTAX:

[x,fval] = fsolve(@hug_fr,Ta,options,gas,array)

INPUT:

Ta = initial guess for frozen Hugoniot temperature (K)

options = options string for fsolve

gas = working gas object

array = array with the following values

vb = desired frozen Hugoniot specific volume (m^3/kg)

h1 = enthalpy at state 1 (J/kg)

P1 = pressure at state 1 (Pa)

v1 = specific volume at state 1 (m^3/kg)

OUTPUT:

x = frozen Hugoniot temperature corresponding to vb (K)

fval = value of function at x

LSQ CJspeed
Determines least squares fit of parabolic data.
Matlab Function - N/A
Python Function - LSQ CJspeed (in Thermo.py)

SYNTAX:

[a,b,c,R2,SSE,SST] = LSQ_CJspeed(x,y)

INPUT:

x = independent data points

y = dependent data points

OUTPUT:

a,b,c = coefficients of quadratic function (ax^2 + bx + c = 0)

R2 = R-squared value

SSE = sum of squares due to error

SST = total sum of squares

PostReflectedShock eq
Calculates equilibrium post-reflected-shock state for a specified shock velocity.
Matlab Function - PostReflectedShock eq.m
Python Function - PostReflectedShock eq (in reflections.py)

\begin{verbatim}

FUNCTION SYNTAX:

[gas3] = PostReflectedShock_eq(u2,gas2,gas3)

INPUT:

u2 = current post-incident-shock lab frame particle speed

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

OUTPUT:

gas3 = gas object at equilibrium post-reflected-shock state

PostReflectedShock fr
Calculates frozen post-reflected-shock state for a specified shock velocity.
Matlab Function - PostReflectedShock fr.m
Python Function - PostReflectedShock fr (in reflections.py)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Postshock/hug_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/Postshock.py
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/PostShock.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/PostReflectedShock_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/reflections.py
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/Reflections/PostReflectedShock_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/reflections.py


116 CHAPTER 9. FUNCTIONS

SYNTAX:

[gas3] = PostReflectedShock_fr(u2,gas2,gas3)

INPUT:

u2 = current post-incident-shock lab frame particle speed

gas2 = gas object at post-incident-shock state (already computed)

gas3 = working gas object

OUTPUT:

gas3 = gas object at frozen post-reflected-shock state

Utilities Plotting and output routines

znd plot Creates four plots from the solution to a ZND detonation Temperature, pressure, Mach
number, and thermicity vs. distance. Optionally, also creates plots of species mass fraction vs.
time, for given lists of major or minor species. If major species= ’All’, all species will be plotted
together.

znd fileout Creates 2 formatted text files to store the output of the solution to a ZND detonation.
Includes a timestamp of when the file was created, input conditions, and tab-separated columns
of output data.

cv plot Creates two subplots from the solution to a CV explosion: Temperature vs. time, and
pressure vs. time. Optionally, also creates plots of species mass fraction vs. time, for given lists
of major or minor species. If major species=’All’, all species will be plotted together.

CJspeed plot Creates two plots of the CJspeed fitting routine: both display density ratio vs. speed.
The first is very ”zoomed in” around the minimum, and shows the quadratic fit plotted through
the calculated points. The second shows the same fit on a wider scale, with the minimum and its
corresponding speed indicated.

Error Control and Limits Setting iteration error and volume limits

Three parameters control the convergence and bounds on the specific volume for the Newton-Raphson
iteration used to solve the jump conditions. These are specified in files located in the SDToolbox
directory:

Matlab Function - SDTconfig.m
Python Function - config.py

The default values of these parameters are:

ERRFT = 1e-4;

ERRFV = 1e-4;

volumeBoundRatio = 5;

The values of the error parameters represent the maximum relative errors allowed for convergence of
shock and detonation jump condition computations, see the discussion in Section 4.1. Iteration ceases
and the solution is returned when the conditions ∆T/T < ERRFT and ∆v/v < ERRFV are both met.

The value of volumeBoundRatio is the lower bound on specific volume ratio v1/v2 used as a start-
ing point for the iteration. For shock waves in gases with a high specific heat, higher values of
volumeBoundRatio may be required in order to get solutions but care must be taken not to select
volumeBoundRatio larger than the maximum value possible on the Hugoniot. The perfect gas analyt-
ical solution for strong shock is a useful estimate if the ratio of specific heats γ is known.

v1

v2,min
≥ γ + 1

γ − 1
(9.1)

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/SDToolbox/SDTconfig.m
http://shepherd.caltech.edu/EDL/PublicResources/SDToolbox/Python3/sdtoolbox/config.py


Chapter 10

Demonstration Programs

A number of demonstration programs are provided with the Shock and Detonation Toolbox. These show
how Cantera and the SDT routines can be used to carry out a variety of calculations. The programs are
available in the demos subdirectories in the Python and Matlab branches of the distribution. The links to
the Matlab versions are in given in the following list. Python version of all demonstration programs are also
available and have identical names except for the extension .py instead of .m.

1. demo CJ.m Computes CJ speed.

2. demo CJ and shock state.m Computes 2 reflection conditions. 1) equilibrium post-initial-shock state
behind a shock traveling at CJ speed (CJ state) followed by equilibrium post-reflected-shock state 2)
frozen post-initial-shock state behind a CJ wave followed by frozen post-reflected-shock state

3. demo CJstate.m Computes CJ speed and CJ state.

4. demo CJstate isentrope.m Computes CJ speed, CJ state, isentropic expansion in 1-D Taylor wave,
plateau state conditions.

5. demo cv comp.m Generates plots and output files for a constant volume explosion simulation where
the initial conditions are adiabaically compressed reactants.

6. demo cvCJ.m Generates plots and output files for a constant volume explosion simulation where the
initial conditions are given by the postshock conditions for a CJ speed shock wave.

7. demo cvshk.m Generates plots and output files for a constant volume explosion simulation where the
initial conditions are given by the postshock conditions for shock wave traveling at a user specified
speed.

8. demo detonation pu.m Computes the Hugoniot and pressure-velocity (P − U) relationship for shock
waves centered on the CJ state. Generates an output file.

9. demo equil.m Computes the equilibrium state at constant (T, P ) over a range of temperature for a
fixed pressure and plots composition.

10. demo EquivalenceRatioSeries.m - An example of how to vary the equivalence ratio over a specified
range and for each resulting composition, compute constant volume explosion and ZND detonation
structure. This example creates a set of plots and an output file.

11. demo exp state.m Calculates mixture properties for explosion states (UV,HP, TP).

12. demo ExplosionSeries.m How to compute basic explosion parameters as a function of concentration of
one component for given mixture. Creates plots and output file.

13. demo g.m Compares methods of computing ratio of specific heats and logarithmic isentrope slope using
several approaches and compares the results graphically.

117

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJ_and_shock_state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_CJstate_isentrope.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cv_comp.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_cvshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_detonation_pu.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_equil.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_EquivalenceRatioSeries.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_exp_state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ExplosionSeries.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_g.m


118 CHAPTER 10. DEMONSTRATION PROGRAMS

14. demo GasPropAll.m Mixture thermodynamic and transport properties of gases at fixed pressure as a
function of temperature. Edit to choose either frozen or equilibrium composition state. The mechanism
file must contain transport parameters for each species and specify the transport model ’Mix’.

15. demo oblique.m Calculates shock polar using FROZEN post-shock state based the initial gas properties
and the shock speed. Plots shock polar using three different sets of coordinates.

16. demo overdriven.m Computes detonation and reflected shock wave pressure for overdriven waves. Both
the post-initial-shock and the post-reflected-shock states are equilibrium states. Creates output file.

17. demo OverdriveSeries.m This is a demonstration of how to vary the Overdrive (U/UCJ)) in a loop for
constant volume explosions and ZND detonation simulations.

18. demo PrandtlMeyer.m Calculates Prandtl-Meyer function and polar. Creates plots of polars.

19. demo PrandtlMeyer CJ.m Calculates Prandtl-Meyer function and polar expanded from CJ state. Cre-
ates plots of polars and fluid element trajectories.

20. demo PrandtlMeyerDetn.m Calculates Prandtl-Meyer function and polar originating from CJ state.
Calculates oblique shock wave moving into expanded detonation products or a specified bounding
atmosphere. Creates a set of plots, evaluates axial flow model for rotating detonation engine.

21. demo PrandtlMeyerLayer.m Calculates Prandtl-Meyer function and polar originating from lower layer
postshock state. Calculates oblique shock wave moving into expanded detonation products or a spec-
ified bounding atmosphere. Two-layer version with arbitrary flow in lower layer (1), oblique wave in
upper layer (2). Upper and lower layers can have various compositions as set by user.

22. demo precompression detonation.m Computes detonation and reflected shock wave pressure for over-
driven waves. Varies density of initial state and detonation wave speed. Creates an output file.

23. demo PressureSeries.m Properties computed as a function of initial pressure for a constant volume
explosions and ZND detonation simulations Creates a set of plots and an output file.

24. demo PSeq.m Calculates the equilibrium post shock state based on the initial gas state and the shock
speed.

25. demo PSfr.m Calculates the frozen postshock state based on the initial gas state and the shock speed.

26. demo quasi1d eq.m Computes ideal quasi-one dimensional flow using equilibrium properties to deter-
mine exit conditions for expansion to a specified pressure. Carries out computation for a range of
helium dilutions.

27. demo reflected eq.m Calculates post-relected-shock state for a specified shock speed speed and a spec-
ified initial mixture. In this demo, both shocks are reactive, i.e. the computed states behind both the
incident and reflected shocks are equilibrium states.

28. demo reflected fr.m Calculates post-relected-shock state for a specified shock speed speed and a spec-
ified initial mixture. In this demo, both shocks are frozen, i.e. there is no composition change across
the incident and reflected shocks.

29. demo RH.m Creates arrays for Rayleigh Line with specified shock speed, Reactant, and Product Hugo-
niot Curves for H2-air mixture. Options to creates output file and plots.

30. demo RH air.m Creates arrays for Rayleigh Line with specified shock speed and frozen Hugoniot Curve
for a shock wave in air. Options to create output file and plot.

31. demo RH air eq.m Creates arrays for Rayleigh Line with specified shock speed in air, frozen and
equilibrium Hugoniot curves. Options to create output file and plot.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_GasPropAll.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_oblique.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_overdriven.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_OverdriveSeries.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyer.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyer_CJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyerDetn.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PrandtlMeyerLayer.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_precompression_detonation.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PressureSeries.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSeq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_PSfr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_quasi1d_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_eq.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_reflected_fr.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_eq.m


119

32. demo RH air isentropes.m Creates arrays for frozen Hugoniot curve for shock wave in air, Rayleigh
Line with specified shock speed, and four representative isentropes. Options to create plot and output
file.

33. demo RH CJ isentropes.m Creates plot for equilibrium product Hugoniot curve near CJ point, Shows
Rayleigh Line with slope UCJ and four isentropes bracketing CJ point. Creates plot showing Gruneisen
coefficient, denominator in Jouguet’s rule, isentrope slope.

34. demo rocket impulse.m Computes rocket performance using quasi-one dimensional isentropic flow using
both frozen and equilibrium properties for a range of helium dilutions in a hydrogen-oxygen mixture.
Plots impulse as a function of dilution.

35. demo RZshock.m Generate plots and output files for a reaction zone behind a shock front traveling at
a user specified speed.

36. demo shock adiabat.m Generates the points on a frozen shock adiabat and creates an output file.

37. demo shock point.m This is a demonstration of how to compute frozen and equilibrium postshock
conditions for a single shock Mach number. Computes transport properties and thermodynamic states.

38. demo shock state isentrope.m Computes frozen post-shock state and isentropic expansion for specified
shock speed. Create plots and output file.

39. demo ShockTube.m Calculates the solution to ideal shock tube problem. Three cases possible: con-
ventional nonreactive driver (gas), constant volume combustion driver (uv), CJ detonation (initiate at
diaphragm) driver (cj).

40. demo STGshk.m Generate plots and output files for a steady reaction zone between a shock and a
blunt body using the model of linear profile of mass flux ρu on stagnation streamline.

41. demo STG RZ.m Compare propagating shock and stagnation point profiles using transformation method-
ology of Hornung.

42. demo TP.m Explosion computation simulating constant temperature and pressure reaction. Reguires
function tpsys.m for ODE solver

43. demo TransientCompression.m Explosion computation simulating adiabatic compression ignition with
control volume approach and effective piston used for compression. Requires adiasys.m function for
ODE solver.

44. demo vN state.m Calculates the frozen shock (vN = von Neumann) state of the gas behind the leading
shock wave in a CJ detonation.

45. demo ZNDCJ.m Solves ODEs for ZND model of detonation structure. Generate plots and output files
for a for a shock front traveling at the CJ speed.

46. demo ZNDshk.m Solves ODEs for ZND model of detonation structure. Generate plots and output files
for a for a shock front traveling at a user specified speed U .

47. demo ZND CJ cell.m Computes ZND and CV models of detonation with the shock front traveling at
the CJ speed. Evaluates various measures of the reaction zone thickness and exothermic pulse width,
effective activation energy and Ng stability parameter. Estimates cell size using three correlation
methods: Westbrook; Gavrikov et al; and Ng et al.

http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_air_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RH_CJ_isentropes.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_rocket_impulse.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_RZshock.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_shock_adiabat.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_shock_point.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_shock_state_isentrope.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ShockTube.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_STGshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_STG_RZ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_TP.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_TransientCompression.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_vN_state.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDCJ.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZNDshk.m
http://shepherd.caltech.edu/EDL/PublicResources/sdt/SDToolbox/MATLAB/Demo/demo_ZND_CJ_cell.m



