Investigation of Fire and Explosion Accidents in the Chemical, Mining, and Fuel-Related Industries— A Manual

By Joseph M. Kuchta

UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary

BUREAU OF MINES Robert C. Horton, Director As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environment and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

Library of Congress Cataloging in Publication Data

Kuchta, J. M.
Investigation of fire and explosion accidents in the chemical, mining, and fuel-related industries.
(Bulletin/U.S. Dept. of the Interior, Bureau of Mines; 680)
Bibliography: p. 68
Supt. of Docs. no.: 128.3:680
1. Chemical industries—Fires and fire prevention. 2. Mine fires. 3. Fuel—Fires and fire prevention. 4. Explosions. I. Title. II. Series: Bulletin (United States. Bureau of Mines) ; 680.
TH9445.C47K8 1985 660.2'804 85—600188

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402

CONTENTS

	Page
Abstract	1
Introduction	2
Acknowledgments	2
Procedures for accident investigators	2
Initial actions	2
Investigative procedures	3
Background information	3
Site inspection	3
Witness interrogation	3
Evidence development and analysis	3
Conclusions and report	5
Theory and definitions	Ğ
Physical gas laws	6
Stoichiometry	7
Thermodynamic relationships	8
Ignition processes	9
General concepts	9
Electrical ignition	10
Thermal ignition	11
Chemical ignition	12
Flame propagation processes	13
Flammable mixtures	13
Prediction of limits	14
Flame temperatures	14
Burning velocities	14
Fundation processes	16
Explosion processes	16
Deflagrations	10
Physical explosions	
Detonations	17
Properties of liquid and gaseous compounds	19
Vapor pressures and flashpoints	19
Saturated hydrocarbons	19
Other combustibles	20
Flammability limits in air and oxygen	25
Saturated hydrocarbons and derivatives	25
Unsaturated hydrocarbons, aromatics,	
and derivatives	28
Inorganic combustibles	29
Flammability limits in other atmospheres	30
Ignition requirements	33
Ignition energies	33
Quenching distances	34
Ignition temperatures	35
Flame temperatures and burning rates	37
Flame temperatures	37
Burning velocities	39
Detonation velocities	40
Liquid burning rates	41

	Page
Properties of gasolines, jet fuels, hydraulic	
fluids, and lubricants	41
Vapor pressures and flashpoints	43
Flammability limits in air	43
Flammability limits in other atmospheres	44
Ignition requirements	45
Ignition energies	45
Ignition temperatures	45
Flame temperatures and burning rates	47
Flame temperatures	47
Burning rates	48
Properties of metal and nonmetal elements	48
Flammability limits in air	48
Flammability limits in other atmospheres	49
Ignition requirements	49
Ignition energies	49
Ignition temperatures	50
Flame temperatures and burning rates	50
Flame temperatures	50
Burning rates	50
Properties of agricultural, carbonaceous,	
chemical, and plastic dusts	51
Flammability limits in air	52
Flammability limits in other atmospheres	53
Ignition requirements	54
Ignition energies	54
Ignition temperatures	54
Spontaneous heating temperatures	55
Flame temperatures and burning rates	57
Flame temperatures	57
Burning rates	57
Properties of fabric and sheet combustibles	58
Ignition temperatures	58
Burning rates	59
Fire and explosion damage	60
Fire temperature and radiation criteria	60
Explosion pressure criteria	62
Blast wave criteria	65
Crater and missile criteria	66
References	68
Appendix A.—Summary of combustion properties	
of liquid and gaseous compounds	71
Appendix B.—Definition of symbols	78
Appendix C.—Conversion factors	80
Subject index	82
Unit of measure abbreviations	84
	01

ILLUSTRATIONS

1.	Compressibility factor as a function of reduced pressure and reduced temperature	6
2.	Variation of pressure ratio with volume ratio in adiabatic and isothermal compression of an ideal gas	8
3.	Temporal and spatial characterization of various ignition sources	9
4.	Spark energy versus fuel-air ratio for ignition of n-butane-air mixtures at 25° C and 1 atm	10
5.	Ignition delay versus temperature for autoignition of n-decane in air at atmospheric pressure	11
6 .	Flammability and vapor pressure diagram for n-decane vapor-air system at various temperatures and atmospheric pressure	13
	Flammability diagram for the aviation gasoline vapor (100/130 grade)-air-nitrogen system at 25° C and 1 atm	13
8.	Flame speed, gas velocity, and burning velocity versus equivalence ratio for methane-air flame	
	propagation at 25° C and 1 atm	15
9.	Pressure history for the explosion of a stoichiometric methane-air mixture in a 3.65-m (12-ft) diam sphere at 25° C and 1 atm	16

ILLUSTRATIONS—Continued

		Page
	Pressure and flame profile histories for spark ignitions of 7.8 pct CH_4 -74.1 pct air-18.1 pct N_2 mixture and 6.9 pct CH_4 -65.8 pct air-27.3 pct N_2 mixture in a 3.65-m (12-ft) diam sphere at 25° C and 1 atm	17
11.	Pressure-time transient for detonation of a stoichiometric acetylene-air mixture in a 45.7-m	18
10	(150-ft) long tunnel with initiation end closed	18
12.	Relation of ideal blast wave characteristics at the shock front to peak overpressure	10
13.	Vapor pressure-temperature curves and flashpoints for five normal paraffins $(C_1 \text{ to } C_5)$	19 20
	Vapor pressure-temperature curves and flashpoints for eight normal paraffins (C_6 to C_{10} , C_{12} , C_{14} , C_{16})	20
	Vapor pressure-temperature curves and flashpoints for eight branched-chain paraffins	20 21
10.	Vapor pressure-temperature curves for eight unsaturated hydrocarbons	$\frac{21}{21}$
	Vapor pressure-temperature curves and flashpoints for seven alicyclic hydrocarbons	21
	Vapor pressure-temperature curves and flashpoints for eight aromatic hydrocarbons	21
	Vapor pressure-temperature curves and flashpoints for eight alcohols or hydroxy compounds	22
	Vapor pressure-temperature curves and flashpoints for six glycols and glycerol	$\tilde{22}$
	Vapor pressure-temperature curves and flashpoints for seven aldehydes	22
	Vapor pressure-temperature curves and flashpoints for seven ketones	22
	Vapor pressure-temperature curves and flashpoints for five acids and three acid anhydrides	23
	Vapor pressure-temperature curves and flashpoints for seven esters	23
	Vapor pressure-temperature curves and flashpoints for eight amines	23
	Vapor pressure-temperature curves and flashpoints for ammonia, cyanogen, two cyanides,	-0
	two hydrazines, and hydrogen peroxide	23
28.	Vapor pressure-temperature curves and flashpoints for seven nitrated hydrocarbons	24
	Vapor pressure-temperature curves and flashpoints for eight alkyl chlorides	24
30.	Vapor pressure-temperature curves and flashpoints for six unsaturated and two aromatic	~ .
	chlorine compounds	24
31.	Vapor pressure-temperature curves and flashpoints for seven brominated compounds	24
	Vapor pressure-temperature curves and flashpoints for six sulfur and two boron compounds	25
	Variation of lower and upper limits of flammability in air with number of carbon atoms for	
	normal paraffins and their derivatives	26
34.	Temperature effect on lower limits of flammability of 10 normal paraffins in air at atmospheric pressure	27
35.	Temperature effect on upper limits of flammability of six normal paraffins and JP-6 jet fuel in air	
	at atmospheric pressure	27
36.	Pressure effect on limits of flammability of natural gas and ethane in air at 25° C	28
37.	Variation of lower and upper limits of flammability in air with number of carbon atoms for	
•	normal alkenes and with number of chlorine atoms for chloroethenes	28
38.	Limits of flammability of various methane-air-inert gas mixtures at 25° C and 1 atm	30
39.	Limits of flammability of methane-, ethane-, propane-, n-butane-, and n-pentane-air-nitrogen mixtures	
40	at 25° C and 1 atm	30
40.	Limits of flammability of methane-, ethane-, propane-, n-butane-, and n-pentane-air-carbon dioxide mixtures	30
41	at 25° C and 1 atm	30
41.	Limits of flammability of hydrogen-air mixtures with added nitrogen and carbon dioxide	01
49	at 25° C and 1 atm Limits of flammability of carbon monoxide-air mixtures with added nitrogen and carbon dioxide	31
42.		31
43	Limits of flammability of methane-air-Halon mixtures at 25° C and 1 atm	31 32
40.	Effect of pressure on minimum oxygen requirements for propagation of natural gas, ethane, and	54
	propane in air-nitrogen mixtures at 25° C	32
45	Spark ignition energy versus combustible vapor concentration for six paraffins in	02
10.	air at atmospheric pressure	33
46	Minimum spark ignition energy of propane-oxygen-nitrogen mixtures as a function of	00
-01	oxygen concentration and mixture pressure	33
47.	Correlation of minimum ignition energy with minimum quenching distance for a large variety of	
	combustibles in air and other oxidant atmospheres	34
48.	Autoignition temperatures and corresponding ignition delays of hydrocarbon fuels under	
	static conditions in air at atmospheric pressure	36
49 .	Hot surface ignition temperatures as a function of heat source surface area for hydrocarbon fuels and	
	an engine oil in air at 1 atm	37
50.	Hot gas (air) ignition temperatures as a function of reciprocal jet diameter for hydrogen and various	
	hydrocarbons at atmospheric pressure	37
51.	Burning velocities of methane-, ethane-, propane-, and n-heptane-air mixtures at	
	atmospheric pressure and room temperature	39
52 .	Burning velocity and vertical flame speed versus added N_2 for combustion of CH_4 -air- N_2 mixtures	
	in a 3.65-m (12-ft) diam sphere at 25° C and 1 atm	39

ILLUSTRATIONS—Continued

53.	Burning velocities of methane-, ethane-, and propane-oxygen mixtures at atmospheric pressure and	Page
	room temperature	39
	Effect of temperature on burning velocities of four paraffins in air at atmospheric pressure Detonation velocities of methane-, ethane-, propane-, butane-, and hexane-oxygen mixtures at	40
	atmospheric pressure	40
56	Linear burning rates of combustible liquids as a function of pool diameter at ambient temperature	41
	Vapor pressure (Reid)-temperature curves and flashpoints for aviation gas and five jet fuels	43
58	Limits of flammability of JP-4 vapor-air-inert gas $(CO_2 \text{ or } N_2)$ mixtures at 25° C and 1 atm	43
50.	Limits of flammability of JP-1 vapor-air-inert gas $(CO_2 \text{ or } N_2)$ mixtures at 25° C and 1 atm	
60 .	Effects of various inerting agents on limits of flammability of gasoline vapor-air mixtures at	45
61.	25° C and 1 atm	45
	atmospheric pressure	46
62.	Correlation of minimum autoignition temperatures of JP-6 fuel-oxygen-nitrogen mixtures with	
	oxygen partial pressure at various mixture pressures	46
63.	Minimum autoignition temperatures of phosphate ester, mineral oil, and water-glycol hydraulic fluids or lubricants in air at elevated pressures	47
64	Autoignition temperatures and corresponding ignition delays for JP-6 fuel under	TI
01.	static and dynamic conditions in air at various pressures	47
65	Variation of hot gas (air) and hot surface ignition temperatures with reciprocal diameter	41
00.	of heat source for JP-6 fuel and MIL-L-7808 oil vapor-air mixtures at atmospheric pressure	477
66		47
00.	Flame spread rate versus liquid fuel temperature for Jet A- and Jet B-type fuels	
67	in air at atmospheric pressure Effect of average particle diameter on explosion parameters for atomized aluminum dust in	47
01.	bin of 25° C read 1 day	40
68	air at 25° C and 1 atm Lower dust explosion limits of oil shale (45 gal/ton), Pocahontas coal, and Pittsburgh coal in	49
00.	methane-air atmospheres with modified Hartmann apparatus	59
60	Calculated limits of explosibility of coal dust-incombustible mixtures for coals of	53
03.		54
70	17, 29, and 36 pct volatility	04
10.	Pittsburgh coal dust in the Godbert-Greenwald furnace	55
71	$CO-\Delta O_2$ ratio versus time in closed-vessel desorption experiments with seven coals of	99
• 1.	10 to 20 mesh in air at 25° C	56
72	Variation of $CO-\Delta O_2$ and $CO-CO_2$ ratios with temperature in a flowing airstream	00
• 2.	(15 cm ³ /min) with three undried coals of 10 to 20 mesh	56
73	Representative gas contents of various ranked coals and their relative hazard potential	00
10.	for self-heating and gaseous explosion	57
74	Variation of burning rate with oxidizer concentration for dried sawdust with various solid oxidizers	58
10.	Effect of oxygen pressure on the flame spread rates of sheet combustibles in oxygen atmospheres	59
10.	Thermal irradiance of gasoline tank fires as a function of a dimensionless distance ratio	61
11.	Effect of fuel concentration on explosion pressures of methane-air mixtures at 25° C and 1 atm	62
10.	Explosion pressure growth for methane-air mixtures in 3.65-m (12-ft) diam sphere at 25° C and 1 atm	63
79.	Explosion pressure growth for 9.5 pct methane-air mixtures and added nitrogen in 3.65-m	
00	(12-ft) diam sphere at 25° C and 1 atm	63
0 0.	Explosion pressure growth for 9.5 pct methane-air mixtures and added bromotrifluoromethane (Halon 1201) in $2.65 \times (12.6)$ diam or here at 25° C and 1 at m	20
Q1	(Halon 1301) in 3.65-m (12-ft) diam sphere at 25° C and 1 atm Calculated pressure rise versus vent ratio (A/V ^{2/3}) for stoichiometric methane-air ignitions	63
01.	with 0, 10, 20, and 30 pct added nitrogen at 25° C and 1 atm	64
80		64
02.	Peak pressure rises and flame temperatures for H ₂ -air mixtures in $3.65 \text{ m} (12.6)$ diam aphaes at 25° C and 1 atm	64
83	3.65-m (12-ft) diam sphere at 25° C and 1 atm	04
00.	Peak pressure rises and flame temperatures for C_4H_{10} -air mixtures in 3.65-m (12-ft) diam sphere at 25° C and 1 atm	65
Q /	Peak overpressure versus scaled distance for hemispherical TNT surface bursts	
	Peak overpressure and approximate material and biological damage effects from	65
00.	hemispherical TNT surface bursts	67
86	Depth of penetration of mild steel versus striking velocity for steel fragments of various weights	
	Velocity-time profile and potential biological damage levels for head or body impacts	67 67
01.	versety-time prome and potential biological damage levels for nead of body impacts	67

TABLES

1.	Critical states and vaporization properties of common gases or liquids	7
2.	Major components of dry air	7
3.	Standard air atmosphere	8
	Heat content (enthalpy) of combustion product gases at various temperatures	

TABLES—Continued

		Page
5.	Shock wave and adiabatic compression temperatures of air	12
6.	Limits of flammability of combustible vapors in air and oxygen at 25° C and 1 atm	25
7.	Equivalence ratios and calorific values of lower limit mixtures of saturated hydrocarbons and	96
0	derivatives in air at 25° C and 1 atm	26
8.	Temperature effects on the flammability limits of four chlorinated hydrocarbons in air and oxygen at 1 atm	27
9	Equivalence ratios and calorific values of lower limit mixtures of unsaturated and	
	aromatic hydrocarbons and derivatives in air at 25° C and 1 atm	29
10.	Lower pressure limits of flammability for combustible vapors capable of propagation	
	without an air atmosphere	29
11.	Minimum oxygen requirements for propagation of combustible vapors in air-nitrogen and air-carbon dioxide mixtures at 25° C and 1 atm	31
19	Inerting requirements to prevent propagation of gaseous combustibles in air with nitrogen,	01
14.	carbon dioxide, Halon 1211, and Halon 1301 inhibitors at 25° C and 1 atm	32
13.	Minimum spark ignition energies of combustible vapors in air and oxygen at 25° C and 1 atm	33
14.	Comparison of minimum spark ignition quenching distances and maximum experimental	
	safe gaps of combustible vapors in air at 25° C and 1 atm	34
	Minimum autoignition temperatures of combustible gases and liquids in air and oxygen at 1 atm	35
10.	Comparison of hot surface and hot gas ignition temperatures of hydrogen, carbon monoxide, and hydrocarbon fuels in air at 1 atm	37
17.	Limit flame temperatures, maximum flame temperatures, and maximum burning	
	velocities of gaseous combustibles in air at 1 atm	38
18.	Calculated flame temperatures and pressure rises for adiabatic combustion of hydrogen,	90
10	methane, and carbon monoxide in air at 25° C	38 40
	Detonation velocities of several combustibles in air at 25° C and atmospheric pressure Detonation velocities of various combustible mixtures at 25° C and atmospheric pressure	40 41
20. 21	Burning rates and radiative characteristics of burning liquid pools	41
22.	Summary of combustion properties of gasolines, diesels, and jet fuels	42
23.	Summary of combustion properties of hydraulic fluids and lubricating oils	42
24.	Effect of temperature on flammability limits of gasolines and jet fuels in air at atmospheric pressure	43
25.	Effect of pressure on flammability limits and minimum oxygen requirements for	
96	propagation of gasolines and jet fuels in air and air-inert mixtures at 25° C	44
20.	Effect of pressure and oxygen concentration on the minimum AIT's of aircraft combustible fluids in oxygen-nitrogen atmospheres	45
27.	Summary of combustion properties of elemental metal and nonmetal dusts	48
	Inerting requirements to prevent propagation of metal and nonmetal dusts in	
	air-nitrogen, air-carbon dioxide, and air-inert dust mixtures (spark ignition)	49
	Ignition temperatures of bulk metals in oxygen at atmospheric pressure	
	Adiabatic combustion temperatures of metals and nonmetals in oxygen at 1 atm	50 51
	Inerting requirements to prevent propagation of combustible dusts in air-nitrogen,	01
	air-carbon dioxide, and air-inert dust mixtures at 25° C (spark ignition)	53
33.	Incombustible requirements to prevent or suppress propagation of Pittsburgh coal dust with	
• •	various dust inhibitors in small and large-scale experiments	54
34.	Comparison of dust cloud minimum autoignition temperatures in	55
35	standard and modified Godbert-Greenwald apparatus \dots Spontaneous heating temperatures and $CO-\Delta O_2$ indexes of various dried coal dusts in air \dots	55 55
36.	Analyses of coals as received	56
37.	Spontaneous heating temperatures of various woods, fibrous materials, and synthetic rubbers in air	57
	Burning rates (horizontal) of flammable granular solids and oxidizer-sawdust mixtures in air at 1 atm	58
39 .	Ignition temperatures of flammable fabric or sheet materials in	
40	air and oxygen at atmospheric pressure	59
40.	Flame spread rates (45° angle) of flammable fabric or sheet materials in air and oxygen at atmospheric pressure	59
41	Flammability data for mine conveyor belts and red oak standard	00
	in Bureau of Mines belt flammability apparatus	60
4 2.	Temperature limits of various textiles	60
	Melting points of metallic and nonmetallic substances	61
44.	Color temperatures of iron or steel	61
40. 46	Threshold radiation intensities for various thermal effects	61 62
47	Properties of explosives	66
	Peak overpressures for failure of structural materials	66
	Scaled distance for building damage from statistical survey of chemical explosions	66

INVESTIGATION OF FIRE AND EXPLOSION ACCIDENTS IN THE CHEMICAL, MINING, AND FUEL-RELATED INDUSTRIES—A MANUAL

By Joseph M. Kuchta¹

ABSTRACT

This Bureau of Mines manual is oriented to the technical needs of an investigation of fire or explosion accidents and includes various practical and theoretical information that is needed in analyzing accidents or evaluating conditions that might lead to an accident. It is applicable to accidents in the chemical, mining, transportation, and other fuel-related industries. Specific procedures for conducting an accident investigation are outlined, and various guidelines are given for developing the fire or explosion evidence. Ignitability, flammability, and physicochemical data are presented for over 500 combustible gases, liquids, and solids; empirical and theoretical expressions are also given for extrapolating the behavior of combustible-oxidant-diluent systems to various environmental conditions. In addition, various data pertinent to damage analysis are summarized to facilitate the task of the investigator in developing plausible accident scenarios.

¹Research scientist, Pittsburgh Research Center, Bureau of Mines, Pittsburgh, PA (retired).

INTRODUCTION

Accidental fires and explosions generally occur when combustibles are produced, transported, or utilized in a hostile environment or under unsafe conditions. Proper investigation of such accidents is essential for determining their cause and assessing life or property loss and for preventing their recurrence. This requires a methodical and thorough investigation, knowledge of the basic properties of pertinent materials, understanding of the ignitability and flammability characteristics of the combustible-oxidant system, and understanding of combustion or explosion principles. The main purpose of this manual is to summarize useful guidelines and provide data that are frequently needed for investigating fires and explosions or evaluating conditions that may be conducive to such events. It is applicable to flammable liquids, gases, and solids that may be encountered in the chemical, mining, transportation, or other mineral-fuel-related industries.

Among the most widely used publications on the flammability characteristics of combustibles are the Bureau's bulletins by Zabetakis $(110)^2$ and Coward (11). However, these bulletins are limited to liquid and gaseous combustibles, and reference must be made to other publications for similar information on combustible solids. Furthermore, other combustion and physicochemical data that may be required in a hazard analysis are even more widely scattered throughout the literature. Some safety handbooks, such as that of the National Fire Protection Association (NFPA) (72), provide various data on many combustibles, but the information is not sufficiently comprehensive for the analysis of an accident; also, the data are rather meager for mining applications. This manual attempts to overcome the scope limitations of the earlier Bureau bulletins and brings together many other essential data for characterizing the reactivity and damage potential of various classes of combustibles.

Ignitability, flammability, and thermochemical data are presented for over 500 combustible gases, liquids, and solids. The main groups of combustibles include hydrocarbons and substituted hydrocarbons, gasolines and lubricating fluids, coals and other mine-related combustibles, and various agricultural, chemical, plastic, metallic, and carbonaceous solids; explosives are beyond the scope of this report, although certain data are included for comparison. Most of the ignitability and flammability data are taken from Bureau publications, but other authoritative sources were also relied upon to complete the data. Generally, the various data represent the most acceptable or conservative values from the standpoint of safety, unless otherwise specified.

This manual is organized to facilitate the task of finding the particular data or information of interest. The initial section outlines specific procedures for accident investigations; the second section presents pertinent definitions and basic concepts for understanding combustion data; the next sections discuss the large compilation of combustion data presented for various combustible classes; and the final section deals with the damage analyses of fire and explosion accidents. The main data compilations are given in summary tables which provide easy access to many useful properties of the combustibles; additional data in the text expand on this data base. Limitations of the experimental data are discussed, and both empirical and theoretical guidelines are given for extrapolating the data to other environmental conditions and for estimating the energy or damage potential of a combustible-oxidant system. Other publications can be referred to for more fundamental knowledge of the combustion processes discussed in this report (21, 24, 66, 93, 98).

ACKNOWLEDGMENTS

The Bureau of Mines data in this manual represent selected contributions of various research groups of the Pittsburgh Research Center over at least four decades. Particular acknowledgment is given to the members of the fire or explosion groups with whom the author was associated in advancing the art of safety technology. The author is especially indebted to Drs. Michael G. Zabetakis, presently with the University of Pittsburgh, Pittsburgh, PA, and David S. Burgess, retired, who provided practical and theoretical guidance in the author's research; Aldo F. Furno, Michael J. Sapko, Ralph W. Cato, and George H. Martindill, who conducted many of the ignitability and flammability studies; and Dr. Martin Hertzberg, who collaborated most recently in developing flammability concepts for combustible gases and dusts. Acknowledgment is also given to John Nagy and coworkers for their important contributions in the area of dust explosions.

PROCEDURES FOR ACCIDENT INVESTIGATION

INITIAL ACTIONS

A formal investigation of an accidental fire or explosion is ordinarily conducted by a cadre of technical specialists and responsible officials. In industrial cases, this typically includes plant representatives, safety officers, fire department officials, and experts in combustion and engineering technologies. Where military or civilian Government agencies have jurisdiction, as in mining and aircraft disasters, the makeup and procedures of the investigating team will necessarily be determined by the requirements of the proper agency. In all cases, the team members should meet as soon as possible to obtain a briefing of the accident, decide upon the plan(s) of action, and establish task groups to accomplish various specific objectives. The head of the investigating team must organize and coordinate these actions to ensure that all aspects of the accident are

 $^{^{2}}$ Italicized numbers in parentheses refer to items in the list of references preceding the appendix.

properly covered. Initial actions that should be taken are-1. Isolation of accident site.

- 2. Protection of evidence.
- 3. Recovery of material evidence.
- 4
- Photographic documentation of evidence. 5.
- Documentation of witness accounts.

Isolation of the accident site is important to ensure recovery and protection of all available evidence and also to minimize unnecessary human exposure to any hazards that may still exist. Confined areas should be entered with caution since flammable or toxic gases may be present even after a fire. Before removal of any fire or explosion debris, the accident area should be photographed, including detailed color exposures of suspect items; also, tagging and mapping of damaged materials is common practice to avoid subsequent confusion. Where materials are fragmented by an explosion, areas beyond the accident site may have to be searched to recover the items. Those involved in these early actions must protect the evidence from being inadvertently tampered with, destroyed, or lost.

Equally important are the accounts of all available witnesses, including those present in the immediate or remote vicinity of the accident and those who arrive later on the scene, such as firemen and medical personnel. Such accounts should be obtained as soon as possible after the accident with the witness calm and at ease. Of particular interest is what the witness saw, heard, or sensed before and after the accident, as well as the proximity and activity of the witness during the course of events. All witness accounts are recorded in writing, and further interrogations are made when necessary in developing the evidence.

INVESTIGATIVE PROCEDURES

The procedures for investigating accidents will vary from one case to another, but all involve the basic elements of factfinding and problem solving to develop a credible accident scenario. Frequently, the cause of an accident is difficult to pinpoint because the available evidence is incomplete, inconsistent, or only circumstantial. Therefore, it is necessary to have a methodical plan for accumulating and developing evidence, both direct and indirect, that will be needed to fully explain an accident. A recommended plan of investigation is summarized herein, including-

- 1. Accumulation of background information.
- 2. Inspection of accident site.
- 3 Interrogation of witnesses.
- Development and analysis of evidence. 4.
- 5 Conclusions and report.

Background Information

At the outset, the investigator should obtain all available background information pertaining to the accident. This includes a description of the accident site and systems or operations involved, conditions and events that led to the accident, performance histories of any suspect systems, and all the available evidence accumulated from any initial actions. Particularly important are what combustibles and oxidants were present and what abnormal or hazardous conditions existed that might account for the accident. A close examination should be made of witness accounts, maintenance records, operational logs and manuals, weather reports, previous accident reports, and other records that may be helpful in developing the evidence. Recent changes in equipment, procedures, or operating conditions can be especially significant. The investigator must be open-minded and reserve any judgment until all human and material factors have been fully considered.

Site Inspection

Inspection of the accident site is one of the most important steps in obtaining physical evidence. Initially, an examination is made of the overall operation involved and damage sustained by the immediate and remote surroundings. The investigator should prepare an areal map on which the damage patterns, including fragments from any explosion, can be spatially defined. Subsequently, a detailed examination is made to obtain evidence on the apparent origin, propagation, and localized damage of the fire or explosion. This should include examination of all electrical and mechanical systems as possible problem sources. The area with the greatest damage is generally given the most initial attention because it is normally the source of the combustible. The following items are typical of the evidence which an investigator must uncover or consider:

- 1. Combustible quantity, distribution, and consumption.
- 2. Combustible leakage or spillage.
- Open flame heat sources. 3.
- 4. Electrical and mechanical heat sources.
- 5. Chemical-type heat sources.
- 6. Fire condition, propagation, and damage.
- 7. Explosion condition, propagation, and damage.
- 8. Material and system failures.
- 9. Operator or human error.

Witness Interrogation

After inspection of the accident site, the investigator should review the witness accounts for consistency with the physical evidence and interrogate any witnesses, as may be necessary, to help clarify any inconsistencies. It is important to recognize that witness accounts of accidents are subject to sight and hearing limitations in resolving a rapid series of events. For example, it is not unusual for a witness to claim hearing two explosions when only one actually occurred, or to give poor estimates of distances to an object or between two moving objects because of confusion during an accident; similarly, the size and velocity of moving objects are frequently exaggerated. Therefore, witnesses should be requested to qualify their observations relative to known landmarks and events to help establish their evidence spatially and temporally. Interrogation of maintenance personnel on any equipment involved should always be included as a standard practice. At this time, the investigator needs to decide what facts are known and what evidence must be substantiated or developed.

Evidence Development and Analysis

Ideally, sufficient evidence should be accumulated to explain all phases of an accident, including the specific cause. The required physical evidence will vary with the type of accident. In fires or explosions, it is particularly important to account for the combustible source, probable ignition source, resultant propagation, and observed damage. The available evidence is analyzed by developing and testing hypotheses that may explain the sequence of events; any assumptions must be consistent with the fully established evidence and basic scientific principles. Some important considerations in developing the evidence are reviewed in the following paragraphs.

1. Combustible Source.-In a fire situation, various combustible classes can be consumed as the fire spreads. These include ordinary combustible solids or dusts (class A), combustible liquids and gases (class B), combustibles of electrical equipment (class C), combustible metals (class D), or other miscellaneous materials; combustible fire classification is that of NFPA (72). Fires that spread rapidly are usually attributable to combustible gases, vapors of highly volatile liquid or solid combustibles, or finely divided solids that are highly flammable. Those that can be initiated without an external heat source are likely to involve pyrophoric, hypergolic, water-reactive, or selfheating combustibles. Soot formation is evidence of hydrocarbon or organic fuel fires, and extremely high temperatures can be indicative of combustion with high-energy fuels or high-strength oxidizers. Any widespread fire will always be accompanied by a wide distribution or dispersion of combustible.

In gaseous or dust explosions, the combustible sources are only those that can form flammable gas, vapor, or dust concentrations in the particular oxidant atmosphere and temperature environment; this implies some degree of confinement. Prime combustible suspects are fuel gases, lowflash-point liquids, gassy solids, and dispersed flammable dusts. The ignitability and flammability characteristics of the suspect combustible-oxidant system should be examined for supporting evidence. When possible, samples of the combustible system are taken for analysis to verify compositions. A likely combustible source also has to be present in sufficient concentration to account for the observed explosion pressure damage. The investigator must realize that relatively low combustible concentrations can be hazardous and that even an "empty" fuel tank may contain sufficient combustible vapor to account for the explosion. Where damage is unusually severe, combustible systems capable of detonation are to be suspected.

2. Ignition Source.—The possible sources of ignition can include electrical, mechanical, chemical, or nuclear forms of energy. Some of the specific types are (1) electrical arcs or sparks from lightning, static electricity, and defective electrical equipment; (2) hot surfaces from mechanical friction, electrical resistance heating, aerodynamic heating, and any vessel or reactor heating; (3) hot gases or flames from pilot burners, combustor exhaust systems, and gaseous compressor systems; and (4) chemical heating from pyrophoric, hypergolic, and spontaneous or selfheating reactions. Most fires or explosions are initiated by electrical sources. The static electricity source should be especially suspected as possible in the pumping of liquids or dusts and similar operations where triboelectrification can occur; this hazard will be greatest in the presence of plastic or nonconductive materials. The most common type of chemical self-heating involves slow oxidation and may be encountered with many combustibles of animal or vegetable oil origin and such ordinary combustibles as coal and charcoal. Self-heating, pyrophoric, and hypergolic ignitions require no external heat source.

In some accidents, the ignition source may be evident from localized heat damage such as weldlike fusion of metals from electrical arcing, discoloration or wear of metals from mechanical friction, and melting of metal materials due to abnormal process temperatures. The heat source in other cases, including electrostatic, self-heating, and hot gas ignitions, is not usually identifiable from the fire or explosion damage; therefore, the investigator must rely upon circumstantial evidence in such cases.

Both the nature of the available heat source and the physical state of the suspect combustible must be considered in determining the ignition source. For example, a flammable gas (such as hydrogen) may have a very low ignition energy but a relatively high ignition temperature; or a flammable liquid spray can have a high ignition energy compared to that possible with homogeneous vapor-air mixtures. Similarly the ignition energy requirements for a solid (such as coal dust) can be excessive for large particles, in which case the ignition temperature can be of greater significance. A proper assessment requires reference to ignition property data.

3. Propagation.—Propagation of a fire or explosion is deduced from the available physical evidence and known flammability properties of the combustible-oxidant system. Gas or dust explosions will propagate only into areas where flammable combustible-oxidant mixtures have accumulated but may then initiate fires of other combustibles. In comparison, fires do not require uniform combustibleoxidant mixtures and can propagate into areas where any concentration of combustible exists; also, the gaseous fire products may be flammable and produce an explosion in a confined environment, as in some coal mine disasters.

To fully characterize the propagation of fires or explosions, the investigator needs to define the consumption rates (burning rates) of the reactants and their flame propagation rates (flame speeds or flame spread rates). Such information may be available in the literature but is necessarily limited to certain temperature, pressure, and combustible-oxidant conditions. Therefore, it is often necessary to extrapolate laboratory data to conditions of interest by the prudent use of empirical rules or laws.

Typically, flame propagation rates of common hydrocarbon gas-air explosions are of the order of several meters per second, or about eight times the burning velocity of the particular mixture composition. In comparison, fires are usually associated with much lower spatial propagation rates, especially in the burning of bulk liquids and solids. However, all fires or flame propagation can accelerate by increased ventilation, turbulence, or wind effects, as in flight vehicles, ventilation ducts, or mine tunnels. The flame spread can be even greater when the fires are supported by strong buoyant forces, such as in a building stairwell or an elevator shaft. Highest propagation rates with liquids and solids will occur when they are finely dispersed or flash vaporized.

Very high propagation rates of the order of a 1,000 m/s or more are possible when deflagrations develop into detonations. Detonations are most likely to be encountered in combustion involving high pressures, high oxygen concentrations, or high-energy fuels. Even ordinary fuel-air systems are capable of detonation, but these require stronger ignition sources or longer flame runup distances.

4. Fire Damage.—Fire damage is largely attributable to the exposure of materials to excessive temperatures or heat. Fire temperatures of ordinary combustibles in air will generally be $1,000^{\circ}$ to $2,000^{\circ}$ C, but temperatures can be much higher in oxygen or with more exotic combustibles. An investigator's analysis of the fire damage should include consideration of such factors as—

1. Combustible loading and ventilation.

2. Size, shape, and distribution of materials.

- 3. Proximity and exposure duration of materials.
- 4. Fire temperatures, burning rates, and heat release.
- 5. Fire resistance properties of damaged materials.

Maximum fire temperatures will normally be evident where the air or oxygen ventilation is optimum for combustion, whereas the heat flux or heat release will depend additionally upon the combustible loading and burning rate. Most constructional materials cannot withstand the fire temperatures and heat loading from a fully developed hydrocarbon or carbonaceous fuel-air fire. Materials of low fire resistance, such as those having low melting points or ignition temperatures, will be consumed or largely destroyed; this will be especially the case for fine wires, sheet materials, or finely divided substances. However, one should also expect highly fire-resistant materials to fail when the fires are of severe intensity. On the other hand, even paper will not ignite if its exposure time to flame is too short or if its proximity to the heat source is too remote.

Ordinarily, material failures will be severest in fires involving large combustible loadings (as in fuel storage facilities), high ventilation or turbulence levels (as in aircraft flight applications), high oxidant concentrations (as in hyperbaric chambers), or high-energy combustibles (as in space rocket applications). Few materials will survive a torchlike fire, particularly one in oxygen; such intense fires are often evidenced by the erosion and fusion of metals. Similar metal damage can also occur in electrical fires, although any metal fusion due to electrical arcing will be more localized and display beadlike welds. Damage to powered equipment (motor, pumps, compressors, etc.) is often attributed to electrical or mechanical malfunctions but can be a result of the fire itself. Temperature limitations of materials and the extent of their fire exposure should be considered in making the fire damage assessment.

5. Explosion Damage.—Explosion damage is caused by the high pressures and winds that are generated by the sudden release of chemical or physical energy. Although the damage analyses may vary with the complexity of the explosions, they should at least include consideration of the following important items:

- 1. Combustible loading and confinement.
- 2. Explosion pressures, propagation rates, and energy release.
- 3. Pressure limitations of containment materials.
- 4. Nature of containment failure.
- 5. Blast wave or far-field effects.
- 6. TNT energy equivalence.

The most common explosions will involve the ignition of flammable vapor-air mixtures in a confined environment. If near-stoichiometric mixtures are present, the explosion pressure in a fully confined system can be approximately eight times the initial pressure $(P_2/P_1 = 8)$. Such internal pressure loading will be evidenced by the rupture of the container unless it can sustain the explosion pressure. Similar damage can result in the absence of combustion, as in the failure of an overpressurized steam boiler, compressed gas cylinder, or cryogenic liquid receiver; the rupture of an evacuated chamber (implosion) or a decompressed aircraft compartment also falls into this category. Other explosions may produce damage from a combination of physical and chemical energy release. These include fuel tank explosions under high-impact conditions, furnace explosions of molten metal and water or combustible liquids, and boiling liquid-expanding vapor explosions

(Bleves). In all cases, the explosion damage will be more severe when combustion involves high oxygen concentrations, elevated pressures, or highly turbulent environments. Detonations are more likely to occur in these situations, in which case the explosion pressure rise ratio (P_2/P_1) can be of the order of 18 to 1 for gaseous systems, or several orders of magnitude greater for condensed explosive systems.

Containment material failure or near-field damage is largely determined by the nature of the pressure loading, the degree of confinement, and the pressure or mechanical limitations of the container, fasteners, and adjacent materials. Explosions in highly confined systems have high damage potential because near-theoretical pressures can develop before any containment failure. In comparison, even an ordinary oven or building can sustain an explosion if it is adequately protected with large pressure relief panels or vent areas. Explosion venting guidelines are available for predicting the safe pressure limits of containments as a function of vent area. The containment failures in ordinary explosions will be evidenced by material stretching or thinning out (tension failure), whereas those in detonations will tend to be more severe and cleaner breaks (shear failure); an implosion will be characterized by a compression-type failure. The pressure limitations of a container can be estimated from a knowledge of the elastic limit or ultimate strength of the container material. However, one must allow for the fact that the dynamic stress is about two to three times the static stress for plastic deformation; pressure ratings of commercial vessels are usually specified for static-type loadings. Any container fragmentation should be expected to be greater for brittle materials than for highly ductile types.

Far-field effects are associated with the explosion damage that results from air blast waves and flying fragments. These effects will be especially evident where strong containments fail owing to detonations or highly energetic deflagrations. Here, the investigator should estimate the TNT energy equivalent of the exploding system from the available chemical energy or potential useful work (gas expansion); apply the cube-root scaling law for predicting blast pressures at any distance from any mass equivalent of TNT; and correlate the estimated blast pressures to published damage thresholds for structural and biological targets. Generally, one can expect a peak overpressure of 1 to 2 psi to cause the failure of most light structural materials, such as nonreinforced wood siding, corrugated steel paneling, or masonry block walls. In comparison, much higher overpressures can be tolerated when the structural design is reinforced, particularly for materials of good ductility. As a rule, pressure thresholds for far-field damage (external loading) will be greater than those for near-field damage, such as a containment failure (internal loading). Where condensed-phase detonable systems are involved, crater formation will also be possible besides far-field damage.

Conclusions and Report

All the available direct and indirect evidence is finally reviewed for accuracy and reliability to define the most likely sequence of events and probable cause(s) of the accident. Any hypotheses proposed to explain the accident should be logically and technically consistent with the established evidence. A proper analysis will include consideration of both material and human factors. To complete the investigation, the investigator should prepare a summary report on the accident. This should include a description of the accident, accounts of witnesses, evidence from field inspection, analysis of evidence, and development of accident scenario to explain the cause of the accident. Most importantly, system malfunctions and hazardous conditions should be identified, and specific recommendations should be made to prevent recurrence of the accident, including both operative and protective measures.

THEORY AND DEFINITIONS

PHYSICAL GAS LAWS

Pressure-volume-temperature (PVT) relationships are important in determining material balances for a gaseous system. In most cases, one can assume *ideal gas behavior* and define the initial (1) and final (2) states of a gas as follows:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$
(1)

where T_1 and T_2 refer to absolute temperature, such as in kelvins (K). The general form of the ideal gas law is given by

$$PV = nRT = \frac{W}{M}RT$$
 (2)

or
$$P = \frac{W}{V} \frac{RT}{M} = \rho \frac{RT}{M}$$
, (3)

where n, W, M, and ρ are the moles, weight, molecular weight, and density of the gas, respectively; R is a universal gas constant equal to 1.987 cal/(K·mol), 0.08205 L·atm/(K·mol), or 8.314 J/(K·mol) depending upon the P-V units. Thus, the volume of gas will vary directly with absolute temperature and inversely with total pressure. In calculating the moles of gas, it is useful to know that the *molar volume* of any ideal gas will occupy 22.414 L at 1 atm and 273 K (0° C).

For mixtures of ideal gases, the total pressure (P_t) is equal to the sum of the component partial pressures $(P_t=p_1+p_2+\ldots)$ and proportional to the total number of moles $(N_t=n_1+n_2+\ldots)$. Hence, the mole fraction (X) of a gaseous component (i) is

$$X_i = n_i / N_t = p_i / P_t, \tag{4}$$

and $100 X_i$ gives the mole or volume percent. For the vapors of ideal liquids, one uses Raoult's law:

$$X_{i} (liquid) = n_{i}/N_{t} (liquid) = p_{i}/p_{i}^{\circ} (vapor), \qquad (5)$$

Figure 1.—Compressibility factor as a function of reduced pressure and reduced temperature.

where p_i is partial pressure of the ith component in solution, p_i° is the vapor pressure of the pure component, and X_i is its mole fraction in solution.

Real gases deviate from ideal behavior, particularly when subjected to high pressures or cryogenic temperatures. In such cases, other equations must be used to determine the P-V-T relationships, such as the equation

$$\mathbf{PV} = \mathbf{n} \mathbf{Z} \mathbf{RT},\tag{6}$$

where Z is a compressibility factor and depends upon the critical properties of the gas (P_c , T_c , and V_c). A fair approximation of the Z factor can be obtained for most gases from the generalized compressibility curves (34, p. 479) shown in figure 1 in terms of reduced pressure ($\pi = P/P_c$) and reduced temperature ($\Theta = T/T_c$); gases difficult to liquefy, such as hydrogen, give a more complex behavior. Critical states and vaporization properties are given in table 1 for a number of common gases and liquids (27, p. 502).

Table 1. — Critical states and vaporization properties of common gases or liquids (27, p. 502)

Substance	Boiling	Heat of	Critical	Critical
	point	vaporization	temperature	pressure
	(T _b),	at T _b ,	(T _c),	(P _c),
	K	kcal/mol	K	atm
Acetylene	184.7	NA	309.1	61.7
	239.8	5.56	405.5	111.5
	353.3	7.40	561.6	47.7
	272.6	5.30	426.0	36.0
	263.0	5.08	407.1	37.0
	NA	NA	304.1	72.9
	81.1	1.41	134.4	34.6
	239.5	4.80	417.0	76.0
	185.9	3.80	305.2	48.8
	169.3	NA	282.8	50.7
	351.6	9.40	516.2	63.1
	20.3	.216	33.2	12.8
	206.2	3.95	363.0	84.0
	189.5	3.60	324.5	81.6
	299.2	5.70	458.6	56.9
	213.4	4.49	373.5	88.9
	111.7	1.95	191.1	45.8
	337.8	8.41	513.2	98.7
	77.3	1.36	126.0	33.5
	121.4	NA	179.0	65.0
	NA	NA	431.0	99.0
	90.2	1.61	454.3	49.7
Propane	231.0	4.50	369.9	42.0
Propylene	226.2	NA	364.8	45.0
Sulfur dioxide	263.2	6.08	430.3	77.7
Water	373.2	9.717	647.3	218.2

NA Not available.

STOICHIOMETRY

Combustion material balances will vary with the composition and concentration of the reactants and the nature of the products at the reaction conditions. Theoretically, the maximum heat release should occur at the *stoichiometric concentration* (C_{st}) that defines the optimum molar concentration of combustible for complete reaction with the particular oxidant; fuel-lean mixtures suffer from oxidant dilution and fuel-rich mixtures from incomplete reaction. The stoichiometry for complete combustion of a simple hydrocarbon in oxygen is given by the expression

$$C_{c}H_{h} + {(c + h) \over 4}O_{2} \rightarrow cCO_{2} + {h \over 2}H_{2}O,$$
 (7)

and for substituted hydrocarbons by the general expression

$$C_{c}H_{h}O_{m}N_{n}X_{x} + \frac{(c + h-x-2m)}{4}O_{2} \rightarrow cCO_{2} + \left(\frac{h-x}{2}\right)H_{2}O + xHX + \frac{n}{2}N_{2}, \qquad (8)$$

where X is any halogen atom. Thus, the $C_{\rm st}$ of methane

 (CH_4) in oxygen $\frac{(100)}{(1 + c + h/4)}$ is 33.3 mol pct. For combustion in air,

$$C_{st} (in air) = \frac{100}{1 + 4.773 (c + h-x-2m)} mol pct,$$
 (9)

where 4.773 is the reciprocal of the molar oxygen concentration in air (0.2095). By this equation, one obtains a $C_{\rm st}$ of 9.48 mol pct for methane in air. Similar expressions may be derived for incomplete or other combustion reactions in which H₂, CO, NO₂, or other possible products are assumed. For example, if NO₂ instead of N₂ is an assumed product, the oxygen term in equations 8 and 9 would be

$$(\mathbf{c} + \mathbf{n} + \frac{\mathbf{h}-\mathbf{x}-2\mathbf{m}}{4}).$$

The volume percentages can be converted to a weight basis from a knowledge of the densities or molecular weights of the mixture components. As an example, the fuel-air weight ratio (F/A) of a stoichiometric mixture is given by

$$(F/A)_{st} = \frac{M}{28.97} \left[\frac{C_{st}(vol pct)}{[100 - C_{st}(vol pct)]} \right],$$
 (10)

where M is the fuel molecular weight and 28.97 is the air molecular weight. Pertinent properties of air are summarized in tables 2 and 3.

Table 2. — Major components of dry air (43, 105)

Constituent	Molecular	Density (0° C),	Specific heat (20° C),	vol
	weight	g/L	cal/(g·° C)	pct
Nitrogen Oxygen Argon Carbon dioxide Air	28.01 32.00 39.94 44.01 28.97	1.251 1.429 1.784 1.977 { 1.293 (0° C) { 1.205 (20° C) }	0.249 .219 .124 .200 .240	78.09 20.95 .93 .033 100.0

Table 3. — Standard air atmosphere (43)

Altitude	Temperature,	Pressure,	Density,
ft	°C	bars	kg/m ³
0 1,000 5,000 10,000 15,000 20,000 30,000 40,000 50,000	15 13 5 -5 -15 -24 -44 -55 -55	1.013 .977 .842 .696 .571 .465 .301 .188 .116	1.225 1.190 1.056 .905 .771 .654 .458 .300
50,000	55	.116	.186
60,000	55	.072	.115

THERMODYNAMIC RELATIONSHIPS

A knowledge of thermodynamic properties is essential in calculating the energy balance of a given system. The energy change may be in the form of work performed or heat transferred relative to the system surroundings. By the first law of thermodynamics (energy conservation), the energy change (ΔE) is

$$\Delta \mathbf{E} = \mathbf{Q} - \mathbf{W}, \tag{11}$$

where Q is the heat absorbed (positive) and W is the work done by the system (positive); heat evolved or work on the system would be negative. For an *isothermal process* $(\Delta E = 0)$, the total mechanical work (W = $\int PdV$) of expansion or compression of an ideal gas is

$$W = n RT \ln V_2/V_1 = n RT \ln P_1/P_2;$$

$$P_1V_1 = P_2V_2.$$
(12)

For an *adiabatic process* (Q = O), the total work ($W = -\int Cv dT$) is

where C_v and C_p are molar heat capacities, γ is C_p/C_v ratio, and their subscripts refer to constant volume (v) or constant pressure (p). Figure 2 shows how much greater the volume change of an ideal gas can be in an isothermal compression as compared to an adiabatic compression at various pressure ratios. In the adiabatic process, the temperature change is

$$T_2/T_1 = (V_1/V_2)^{R/C_v} = (P_2/P_1)^{R/C_p}$$
 (14)

Reactions may occur at constant volume or constant pressure. Under constant volume, where no mechanical work is performed (W = O), the heat change by equation 11 would be $Q_v = \Delta E$; at constant pressure, the heat change

Figure 2.—Variation of pressure ratio with volume ratio in adiabatic and isothermal compression of an ideal gas.

is $\mathbf{Q}_{\mathbf{p}}=\Delta E\,+\,P\Delta V.$ Since the heat content or enthalpy (H) of a system is

$$\mathbf{H} = \mathbf{E} + \mathbf{P}\mathbf{V} \tag{15}$$

and $\Delta H = H_2 - H_1 = Q_p,$ the heat change at constant pressure becomes

$$\Delta H = \Delta E + P \Delta V = \Delta E + \Delta n RT, \qquad (16)$$

where Δn is the change in the moles of gas after reaction of the system. Equations 15 and 16 are very useful because most standard thermodynamic properties are at constant pressure. The molar heat content of a number of common product gases is given at various temperatures in table 4;

Table 4. — Heat content (enthalpy) of combustion product gases at various temperatures¹

Temperature,			ŀ	leat content, kcal/mo	bl		
к	H ₂	O ₂	N ₂	со	CO2	H₂O	NO
298.16	0	0	0	0	0	0	0
400	.71	.72	.71	.71	.94	.82	.73
600	2.10	2.21	2.13	2.14	3.09	2.51	2.19
800	3.51	3.78	3.60	3.63	5.45	4.30	3.72
000	4.94	5.43	5.13	5.18	7.98	6.21	5.31
200	6.40	7.11	6.72	6.79	10.63	8.24	6.96
400	7.91	8.83	8.35	8.45	13.36	10.38	8.64
600	9.45	10.58	10.01	10.13	16.15	12.63	10.36
800	11.04	12.35	11.71	11.84	18.99	14.96	12.09
000	12.66	14.15	13.42	13.56	21.86	17.37	13.84
200	14.31	15.97	15.14	15.30	24.75	19.84	15.60
400	16.00	17.80	16.88	17.05	27.67	22.37	17.37
600	17.71	19.66	18.63	18.81	30.61	24.94	19.14
800	19.45	21.54	20.39	20.58	33.56	27.55	20.93
000	21.21	23.45	22.16	22.36	36.53	30.20	22.72

¹Data from reference 28 rounded off to 2 decimal places.

298.16 is the reference zero enthalpy state. These data are derived from the heat capacity relationship at constant pressure, $C_p = dH/dT$; the corresponding relation at constant volume is $C_v = dE/dT$; C_v is usually obtained from the approximation $C_p - C_v = R$. The constant-pressure heat capacity data are particularly important in calculating the final temperature of a reacting system, as discussed in a later section.

In a chemically reactive system, the reaction may evolve heat (exothermic) or absorb heat (endothermic). The heat of reaction (Δ H) is indicated by the enthalpy change of the reactants from their initial state to the final or product state. Here, the enthalpy change can be calculated by use of the heats of formation (Δ H_f - kcal/mol) of each specie; the standard values are defined at 25° C (298 K) and 1 atm. This is illustrated below for the complete combustion of methane at constant pressure with water formed as a liquid (1) or vapor (g):

$$\begin{array}{cccc} CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O(l); \ \Delta H_{298} = \\ -17.9 & 0 & -94.05 & 2(-68.3) \end{array}$$
(17)

$$\begin{array}{rcl} CH_4 + 2O_2 \rightarrow & CO_2 & + 2H_2O(g); \ \Delta H_{298} = \\ -17.9 & 0 & -94.05 & 2(-57.8) \end{array}$$

$$\begin{array}{rcl} 101.8 & hepl/grad \end{array}$$

$$\begin{array}{rcl} (18) \end{array}$$

–191.8 kcal/mol,

 $\Delta H_{\rm f}$ values are given below each specie, and ΔH is equal to the sum difference of $\Delta H_{\rm f}$ (products) $-\Delta H_{\rm f}$ (reactants); negative ΔH indicates heat is evolved. The variation between the ΔH values (-212.8 versus -191.8) is equal to the latent heat of vaporization of water, i.e.,

$$H_2O(l) \rightarrow H_2O(g); \Delta H_{298} = 10.5 \text{ kcal/mol.}$$
 (19)

Essentially, the larger ΔH represents the gross heat of combustion (ΔH_c) , and the smaller ΔH is a net ΔH_c that is most meaningful when one is concerned with the product state at flame temperatures. Standard ΔH_f and ΔH_c (net) values are compiled in the summary data tables that are presented for each class of combustibles; the ΔH_f values can be used to calculate the ΔH_c values for other reactions of interest.

If the reactions occur under constant volume (closed system), the heats of reaction would not include any PV work ($\Delta V = O$) and would be defined by

$$\Delta \mathbf{E} = \Delta \mathbf{H} - \Delta \mathbf{n} \, \mathbf{RT}. \tag{20}$$

For example, the change in gaseous moles in equation 18 is zero and, therefore, $\Delta E = \Delta H$. However, in the case of equation 17 where $\Delta n = -2$,

$$\Delta E = -212.8 + 2 \times 1.987 \times 10^{-3} \times 298$$

= -211.6 kcal/mol (21)

It is evident that unless Δn is large, differences between heats of reaction at constant volume and constant pressure will be small.

IGNITION PROCESSES

General Concepts

Ignition is usually considered to be a vapor-phase combustion reaction with the evolution of heat and emission of light that may or may not be visible to the naked eye. Such reactions are most often associated with the rapid oxidation of a combustible in air or oxygen. They may also occur with other oxidants, such as the halogens and nitrogen oxides, as well as without any oxidant when the combustible is capable of highly exothermic decomposition. The potential heat release for any reacting system can be calculated from thermodynamic considerations, but the combustion rate or intensity will depend upon the chemical kinetics at the reaction conditions. For example, in the constant-pressure reaction of hydrogen and oxygen,

$$H_2 + 1/2 O_2 \rightarrow H_2O(g); \Delta H_{298} = -57.8 \text{ kcal/mol}, (22)$$

the theoretical heat release is 28.9 kcal per gram of hydrogen. If this heat is produced rapidly and results in a branching chain reaction, high temperatures and flaming combustion are possible. However, if the heat is generated at a slow rate, as in a low-temperature oxidation process, flaming combustion is unlikely to occur unless the slow oxidation can initiate a self-accelerating reaction.

Most combustible-oxidant systems are not capable of sufficient self-reaction at ambient temperature to produce ignition. Generally, they require heating to some critical level by an external temperature or energy source. It is useful to consider the sources in terms of their spatial and temporal characteristics, as illustrated in figure 3. At one extreme (electrical sparks), the source is infinitesimally small and very high in temperature and heating rate; here, one is primarily concerned with energy density and the ignition energy. At the other extreme (heated vessels), the source is large, heating rate is very low, and temperature is also relatively low; here, one is mostly concerned with the concept of an ignition temperature. Thus, it is most meaningful to define ignition requirements in terms of energy for a highly concentrated heat source and in terms of temperature for a distributed heat source; an exception

Figure 3.—Temporal and spatial characterization of various ignition sources.

is a large radiative heat source, which is usually defined in terms of energy.

Basically, ignition sources can be classified as either thermal or chemical types, the former being by far the most predominent type. In practice, electrical ignitions are treated as a separate category, although they are of a thermal nature; also, some ignitions are considered as thermal (self-heating) or chemical (pyrophoricity or hypergolicity) but are unique in that they do not require any external heat source. With this in mind, the various ignition sources may be categorized as follows:

Electrical ignitions:

1. High-voltage sparks or arcs.

2. Low-voltage sparks or arcs.

Thermal ignitions:

1. Hot surfaces:

- a. Heated vessels or walls.
- b. Heated wires or rods.
- c. Heated particles or frictional sparks.
- 2. Self-heating (spontaneous combustion).

3. Hot gases:

- a. Heated gas jets or pilot flames.
- b. Adiabatic or shock compression.

4. Thermal radiation.

Chemical ignitions:

- 1. Catalytic materials.
- 2. Pyrophoric and hypergolic mixtures.

Electrical Ignition

The simplest form of electrical ignition is a thermal process in which excessive surface heating is produced by the resistance to current flow in an electrical circuit. This resistance heating can be calculated from

$$\mathbf{E} = \mathbf{V}\mathbf{I}\mathbf{t} = \mathbf{I}^2\mathbf{R}\mathbf{t}.\tag{23}$$

where E is heat (J), V is potential difference (V), I is current (A), R is resistance (Ω) , and t is time (s); Ohm's law (V = IR) is applied here. Ignitions by such heating may occur within a second or more and fall in the hot surface temperature category that is discussed later.

Other electrical ignitions involve sparks or arcs in which the energy approximates a point source and the heating duration may be as little as a fraction of a microsecond. These can be classified as a high-voltage or electrostatic type and low-voltage or break spark type. In the case of *electrostatic sparks*, they are formed when the electrical charge of a conductor is sufficient to bridge ("jump") the gap to another conductor or nonconductor. The energy of electrostatic discharge is given by

$$E = 1/2 CV^2,$$
 (24)

where E is the stored energy (J), C is capacitance of the charged conductor (F), and V is the potential difference (V); the capacitance is related to the electrical charge (Q) by C = Q/V, where Q is in coulombs. In the case of *break* sparks, they are formed when current-carrying conductors are abruptly separated to result in a collapsing field, such as when an electrical switch is opened. The energy of break sparks or arcs is given by

$$E = 1/2 LI^2,$$
 (25)

where L is the inductance (H). Although such energies can be orders of magnitude greater than those associated with capacitative spark discharges, the differences are not so noticeable when the breaking circuit involves a short gap length, as in the rapid separation of very fine wires.

Capacitative spark-type discharges are generally relied upon to determine the minimum ignition energy (MIE) of a combustible vapor-oxidant system. The MIE value occurs at an optimum spark gap length (electrode separation) and varies with temperature, pressure, and combustible-oxidant concentration; the optimum gap is referred to as the minimum ignition quenching distance. Figure 4 shows how the spark ignition energy can vary with the fuel-air weight ratio (F/A) for the butane-air system (41). Although stoichiometric butane combustion occurs at an F/A of 0.065 (3.12 vol pct), the MIE falls on the rich side of stoichiometric for this fuel. This figure also shows that whereas the minimum spark energy for ignition may be only a few tenths of a millijoule, it tends to be infinitely large as the mixture ratio approaches the limits of flammability.

The minimum ignition quenching distances in this context imply an optimum electrode design that maximizes

Figure 4.—Spark energy versus fuel-air ratio for ignition of n-butane-air mixtures at 25° C and 1 atm.

the spark energy efficiency in a quiescent mixture. They should not be confused with *minimum ignition quenching diameters* since these involve flowing mixtures and larger quenching surfaces; quenching diameters are roughly 1-1/2 times greater than corresponding quenching distances for many ordinary fuels, largely because of greater heat losses. In contrast, the so-called *maximum experimental safe gaps* involve much more severe combustion conditions, including both elevated pressures and large flame runup distances, which result in high turbulence, high flame speeds, and pressure piling (71). Thus, safe gap values tend to be much smaller than the ignition quenching distances that involve combustion at low flame propagation rates.

Generation of static electricity is commonly known to occur by triboelectrification, i.e., from the frictional action of two electrically unlike materials. The materials can be liquids, solids, and/or gases, one of which needs to be a relatively poor conductor for the charge to accumulate. This frequently occurs in the pumping of fluids, pneumatic transport of solids, and processes involving plastics. Even a human body can accumulate hazardous static charges (101). For example, by equation 24, an average human with a capacitance of 300×10^{-12} F and charge of 10,000 V could conceivably produce a static discharge of 0.015 J (15 mJ), which is much greater than the MIE of most combustible-air systems. The ability of a nonconductor (or conductor) to accumulate a static charge will depend upon

its resistivity $\frac{(\text{resistance } \times \text{ area})}{(\text{ length })}$ as well as that of the

surrounding medium. Obviously, charge dissipation will be greater in a liquid than in a dry gaseous medium, indicating the importance of humidity.

Thermal Ignition

Most thermal sources other than sparks or arcs tend to be much less localized spatially and temporally. These are discussed below, together with the concept of an ignition temperature or critical heating, which is basic to thermal ignition theory.

1. Hot Surfaces.—In the simplest terms, thermal ignition is a combustion reaction in which the limiting condition is determined primarily by the rate of chemical heat release versus the rate of heat loss to the surroundings. The rate of chemical heat release (q_1) by the Semenov theory (93), which assumes a uniform temperature distribution, is given by

$$q_1 = VQZ a^n e^{-E/RT}, \qquad (26)$$

where V is vessel volume, Q is heat reaction, Z is rate frequency factor, a is reactant concentration, n is order of reaction, E is activation energy, R is universal gas constant, and T is the reactant absolute temperature. Also, the rate of heat loss (q_2) is defined by

$$\mathbf{q}_2 = \alpha \mathbf{S} \left(\mathbf{T} - \mathbf{T}_0 \right), \tag{27}$$

where α is heat transfer coefficient, S is wall surface area, and T_o is wall temperature. The critical heating condition for ignition is that temperature and pressure at which $q_1 = q_2$. Based on this theory, ignition temperature will be a function of the S/V ratio of the vessel, or roughly its reciprocal diameter (S/V $\propto d^2/d^3 = 1/d$). The variation of

the *time delay to ignition* (τ) with temperature is given by the following useful expression:

$$\tau \mathbf{P}^{\mathbf{n}} = \mathbf{A} \, \mathbf{e}^{\mathbf{E}/\mathbf{RT}},\tag{28}$$

which at constant pressure (P) yields

$$\log \tau = \frac{0.22 \, E}{T} + A' , \qquad (29)$$

where A and A' are system constants and E is the apparent activation energy of the global processes controlling τ , i.e., the temperature coefficient of ignition delay. The lowest temperature that can accelerate the reaction to ignition occurs when the ignition delay (or induction period) is maximized and the vessel S/V ratio is minimized; this temperature is commonly referred to as the *minimum autoignition temperature* (AIT).

Figure 5 illustrates typical AIT data obtained for the n-decane-air system by injecting various quantities of liquid fuel in an open heated vessel; a plot of log τ versus I/T is more useful to define E and A in equation 29. Corresponding data under flowing conditions, where the contact time with the heated surface is shorter (<1 s), would be characterized by smaller τ and greater AIT values. In all such ignitions, the AIT's will be sensitive to fuel composition, fuel-oxygen ratio, pressure, and nature of the container surface. Generally, hot surface ignition temperatures increase with decreasing diameter or area of the heat source, although this dependence may not be uniform over a wide temperature range.

2. Self-heating.—A more rigorous thermal theory is one developed by Frank-Kamenetskii (21, p. 209) in which a nonuniform temperature distribution is assumed. It is particularly suitable for predicting the size of the reactant mass that may undergo self-heating at various ambient temperatures. Here, time delay to ignition can be of the order of hours or days in the case of adiabatic self-heating, as opposed to only minutes or seconds in the case of isothermal heating by an external source. The self-heating

Figure 5.—Ignition delay versus temperature for autoignition of n-decane in air at atmospheric pressure.

rate (q) is defined as the sum of the chemical heat release rate (q_1) and the conductive heat loss rate (q_2) :

$$\begin{split} \rho \, C \frac{\partial T}{\partial t} &= \rho \, Q \, Z \, e^{-E/RT} \, + \, \lambda \nabla^2 T \\ (q) & (q_1) \qquad (q_2) \end{split} \ (30)$$

where ρ is density, C is specific heat, λ is thermal conductivity, ∇^2 is a differential operator, and other quantities have the same meaning as above. For steady state conditions $(\partial T/\partial t=0),\,q_1=q_2$ and the critical mass radius (r_c) that will self-heat is

$$\mathbf{r}_{c} = \left[\frac{\delta_{c}\lambda \ RT^{2}}{\rho \ E \ Q \ Z \ e^{-E/RT}}\right]^{1/2},\tag{31}$$

where δ_c is a shape factor that is equal to 3.33 for a sphere, 2.0 for a cylinder, and 0.88 for plane-parallel slabs. For adiabatic conditions ($\partial T/\partial x = 0$), $q = q_1$ and the critical temperature rise rate for self-heating is

$$dT/dt = \frac{QZ}{C} e^{-E/RT}$$
(32)

Thus, autoignition by self-heating is strongly dependent upon the dimensions of the reactant mass, whereas autoignition by external heating depends more upon the dimensions of the heat source (heated vessels, wires, rods, etc.). In real self-heating situations, convective heat transport cannot be fully neglected as done in equation 30. For example, the self-heating of conical coal piles is due in part to the favorable "chimney effect" that can occur during the weathering of coal; furthermore, the *heat of wetting* itself can be greater than the heat of oxidation at ambient temperature. In all ignitions of combustible solids, the reactions will be particularly sensitive to particle size, bed porosity, moisture conditions, and the air ventilation rate.

3. Hot Gases.—As with heated surfaces, ignitions by hot gas sources also differ in their temporal and spatial characteristics. Shock wave heating (nonisentropic) is the most localized in space and time (e.g., <1 ms), whereas adiabatic compression heating (isentropic) is more spatially distributed and, therefore, should effect ignitions of combustible mixtures at lower temperatures. Table 5 compares the air temperatures possible in shock wave and adiabatic compression heating at various pressure ratios; it is apparent that shock compression temperatures are noticeably greater than adiabatic compression temperatures at a given pressure ratio. According to this table, it would appear that a combustible-air mixture with an AIT of 200° C could be ignited at a shock pressure ratio of at least 5 or an adiabatic compression ratio of 10. However, in both cases, much higher pressure ratios would be required because of the short duration of heating involved (milliseconds) as opposed to those associated with minimum AIT's (minutes). Essentially, ignition will not

Table 5. — Shock wave and adiabatic compression temperatures of air (66, p. 516)

 $(P_1 = 14.7 \text{ psia}; T_1 = 0^\circ \text{ C})$

Compression ratio (P ₂ /P ₁)	Gas compressi	on temperature (T ₂)
	Shock wave °C	Adiabatic compression °C
2	62	57
5	208	152
10	432	242
50	1,988	521
100	3,588	677
1,000	18,840	1,435

occur unless the elevated heating conditions are maintained for a duration that exceeds the ignition delay at the given temperature.

Other hot gas ignitions can involve *heated jets* of air, inert gas, or gaseous combustion products, including luminous and nonluminous flames. They are intermediate on the temporal and spatial scale of heating by hot gases. Although these ignitions involve more complex heat and mass transport processes than in hot surface ignitions, they are also a thermal type and depend upon the enthalpy or heat flux of the heat source. The heat flux of the hot gas jet will depend upon its temperature, diameter, velocity, and composition. Reported ignition temperatures by hot gas jets tend to be higher than those by hot surfaces, but the differences are not likely to be great when compared at the same heat source.

4. Thermal Radiation.—Ignitions under this category include those in which a combustible is raised to its AIT by exposure to the thermal radiation of a hot gas, hot surface, or other infrared heat sources, including a fire. Solid or condensed combustibles have the greatest capacity to absorb radiative heating and, therefore, are most likely to be ignited by this heating mode. The radiative ignition requirements for any combustible are usually defined in terms of a critical heat flux. For ordinary combustible solids, the critical radiant heat flux for ignition can be a relatively small value (1 to 2 cal/($cm^2 \cdot s$)), depending upon the ignition temperature of the solid. Such critical radiation intensities can be easily encountered when the combustible is exposed to a nearby flame source since the maximum radiation intensity can be 10 to 30 cal/(cm²·s) near the flame surface. Generally, approximately 15 to 40 pct of the theoretical thermal output of a large flame source will be radiated to the surroundings (7). Assuming spherical geometry and a flame point source, the radiant heat flux (h_x) at various distances (x) from a flame source, such as a burning pool of radius r, can be estimated by

$$h_{x} = \frac{h_{r} \pi r^{2}}{4 \pi x^{2}},$$
(33)

where h_r is the maximum radiative heat flux at the flame surface. The assumption of a hemispherical pool fire model will yield twice the irradiances predicted by equation 33. Factors that can determine the level of thermal flame radiation include fuel-oxidant stoichiometry, soot formation (fuel-rich hydrocarbon flames), and radiative properties of the gaseous combustion products. Hydrogen flames are typical of a low-radiative emitter, and benzene flames, which tend to produce considerable soot, are representative of a high-radiative emitter.

Chemical Ignition

This category represents a special case of autoignition in which the heat of chemical reaction alone can produce ignition at or below ambient temperature. One type is a *pyrophoric reaction* where the combustible ignites spontaneously upon mere exposure to air, as in the self-reaction of alkali metals, metal alkyls, or metal hydrides. Such reactions are usually promoted by the presence of moisture and can involve the formation and ignition of a flammable gas; the combustibles in this case are also referred to as water-reactive substances.

Another type is a *hypergolic reaction* where spontaneous ignition occurs when a combustible is intimately mixed with a highly reactive oxidizer. These ignitions can occur with ordinary and high-energy fuels and particularly with such high-strength oxidizers as fluorine, hydrogen peroxide, nitrogen tetroxide, and concentrated acids. Their heats of reaction can be calculated from available heats of formation. In the case of acid-base systems, heats of neutralization are typically about 13 to 14 kcal/mol for a strong acid and strong base in aqueous solution. If one also considers the heats of solution, the total heat release can be about 25 to 35 kcal/mol and sufficient to initiate a combustion reaction.

Chemical ignitions also result from *catalytic reactions*. The most common catalysts in organic reactions are finely divided metals, but many different substances can serve as catalysts, depending upon the chemical reactants. Contaminants that accumulate on the walls of a reaction vessel may serve as either ignition catalysts or inhibitors.

FLAME PROPAGATION PROCESSES

Flammable Mixtures

A flammable gaseous mixture of combustible and oxidant is one that, when ignited, will propagate flame beyond the influence of the ignition source. All combustible gases and combustible vapors of liquids or solids form flammable mixtures over a limited range of combustible concentrations, depending upon temperature, pressure, and nature of the oxidant. The critical combustible concentrations are known as the limits of flammability or explosion limits of the system and are defined as the fuel-lean or lower limit (L) and the fuel-rich or upper limit (U). These limits are usually in volume percent and refer to homogeneous combustible vapor-oxidant mixtures. Since the flammability limits vary with temperature and since the vapor formation of a combustible in its liquid or solid state is strongly dependent on temperature, it is useful to construct a flammability concentration-temperature diagram of the type shown in figure 6. A three-dimensional plot to include the pressure effect would be required to completely define the flammability domains.

As shown in figure 6, the flammable mixtures of a combustible liquid-air system may consist of mists (droplets + saturated vapor + air), saturated vapor-air mixtures (vapor pressure curve), or neat vapor-air mixtures (region beyond saturated vapor temperatures). The temperature range over which the liquid can form flammable vapor concentrations is defined by its *temperature limits* of flammability (T_L and T_U); intersections of these temperature limits with the vapor pressure curve define the *concentration limits* of flammability (L and U) at liquid-vapor equilibrium conditions. At higher temperatures, flammability domains for the neat vapor-air mixtures become widened, particularly on the fuel-rich side. Eventually, the temperature can be sufficient to produce autoignition of the mixtures, as illustrated in figure 6.

The lower temperature limit (T_L) is of great practical interest because it defines the minimum temperature to which a combustible liquid or solid must be heated to form a flammable vapor-air mixture, i.e., the lower limit of flammability (L). In practice, this temperature corresponds approximately to the *flashpoint* of the combustible, which is determined under less ideal conditions (downward flame propagation and nonuniform mixtures) than those used in flammability limit determinations (upward propagation and uniform mixtures). Closed cup flashpoints are the most reliable values. It is evident from figure 6 that flammable mists, sprays, or foams can form below the flashpoint or $T_{\rm L}$ of the combustible. However, their ignition energy requirements are much more severe than for neat vapor-air mixtures. The flammability characteristics of mists can be expected to approximate their vapor behavior when the droplet size of the mist is less than about 10 μm .

Various flammability diagrams are used to present complete limit of flammability data for combustible vaporoxidant-inert systems (110). Most data are presented in the form of a rectangular plot, as in figure 7 for the aviation gasoline vapor-air-nitrogen system (42). In this plot, the flammability limits in the oxidant alone (air) are found on the ordinate (1.3 and 7.1 pct combustible); also, the variations of these limits with added inert (N₂) are indicated

Figure 6.—Flammability and vapor pressure diagram for n-decane vapor-air system at various temperatures and atmospheric pressure.

Figure 7.—Flammability diagram for the aviation gasoline vapor (100/130 grade)-air-nitrogen system at 25° C and 1 atm.

by the lower and upper boundaries defining the complete range of possible flammable mixtures for the total system. Any mixture composition point is defined by the following relation:

Pct oxidant (air) = 100 pct
$$-$$

pct combustible (C) $-$ pct inert (I) (34)

The variation of a composition by the addition or reduction of any mixture component is illustrated for a composition (P) outside the flammable zone. Note that additions of air to this composition point could result in the formation of flammable mixtures (see dashed line), but that additions of combustible or inert could not form mixtures that fall into the flammable zone.

Also of great practical interest are the *minimum oxy*gen concentration (minimum O_2) and critical combustibleinert ratio (critical C/I) below which flammable mixtures cannot form. The minimum O_2 is obtained by drawing a constant oxidant tangent line of negative slope (dC/ dI = -1) to the nose of the flammability diagram, whereas the critical C/I is found by constructing a tangent line from the origin to the lean side of the nose of the curve. The former is important in determining inerting requirements, and the latter in assessing fire extinguishing requirements.

Generally, limits of flammability are widened by increased temperature, pressure, oxygen concentration, and energy of the ignition source. The limits are also widened by turbulence and buoyancy effects, which increase the flame propagation rate. Essentially, flammability limits may be classified according to their propagation mode, upward or downward. Upward limits have the greatest practical value because they include the buoyancy effect and reflect the maximum flammability hazard; downward limits exclude buoyancy and are of greater fundamental significance. In addition to buoyancy, the differences between molecular diffusivities of the combustible and oxidant can contribute to the wide variations often observed between these limits; recent papers by Burgess (5) and Hertzberg (30) provide in-depth discussions of the relevant processes of "selective diffusional demixing" and buoyancy. As with ignition limits, flammability limits are narrowed by heat losses to vessel walls, and propagations can become impossible at some quenching diameter.

Prediction of Limits

If the flammability limits of the components of a mixture are known, the limits of the mixture may be calculated by Le Chatelier's law (65). The specific form of this law for lower limits of complex mixtures in air is

$$L = \frac{100}{C_1/L_1 + C_2/L_2 + \dots C_i/L_i},$$
(35)

where C_1, C_2 --- C_i are the proportions of each combustible gas in the mixture, free from air, L_1 , L_2 --- L_i are the lower limits of each combustible gas in air, and L is the lower limit of the complex mixture in volume percent. Although this law predicts fairly reliable lower limits for mixtures of many common fuel gases, it tends to be less reliable for upper-limit calculations because of the more complex reactions. Also, its application to limits of upward propagation that are greatly influenced by preferential diffusion (H_2 air) and to limits of materials that involve chemical flame inhibition (extinguishing agents) presents uncertainties (5). The application of Le Chatelier's law to mixtures that

include various added inerts is much more complicated and is given in a comprehensive treatment by Coward (\mathcal{I}) .

One of the most useful expressions for predicting the variation of lower flammability limits with temperature is a modified Burgess-Wheeler law suggested by Zabetakis (110) for combustible-air mixtures:

$$L_T/L_{25} = 1 - \frac{0.75}{L_{25}\Delta H_c} (T - 25^\circ) ,$$
 (36)

where L_T and L_{25} are the lower limits (vol pct) at temperatures $T(^{\circ} C)$ and 25° C, ΔH_c is net heat of combustion (kcal/mol), and 0.75 is essentially a molar heat capacity

constant \times 100. If the combustion heat release $\frac{(L_{25}\Delta H_C)}{(-100-)}$

can be assumed to be a constant value, as it is for many hydrocarbons, the lower limits of the combustibles should decrease linearly with increasing temperature and converge at some limit temperature which corresponds to zero concentration $(L_T = 0)$. For hydrocarbons, this limit temperature is about 1,300° C. (See "Flame Temperatures," below). Equation 36 can also be used to calculate the ideal flashpoint of a combustible if its L₂₅ value and vapor pressure-temperature relationship are known; construction of a flammability diagram such as figure 6 facilitates this determination. A similar expression is also proposed for upper limits that increase drastically with temperature. However, these calculated values are not always reliable because of cool flames, soot formation, or other incomplete combustion modes associated with fuel-rich flames.

Flame Temperatures

Flames are formed when the gaseous reaction products are heated above some critical temperature that can produce luminous combustion. Those formed by homogeneous gaseous mixtures are defined as premixed flames and have well-defined flame temperatures and propagation rates. The maximum flame temperature, $(T_f)_M$, of a mixture is found under adiabatic conditions at or near stoichiometric fuel-oxidant concentrations. In comparison, the limit flame temperature, $(T_f)_L$, is the minimum temperature at which a normal flame can be sustained and is, therefore, the value for a lower limit mixture. A simple expression for estimating the flame temperature of a lower limit mixture (L, volume percent) in air under constant pressure is given by

$$(T_{\rm f})_{\rm L} = T_1 + \Delta T = T_1 + \frac{{\rm L}\Delta {\rm H}_{\rm c}}{100 \, \overline{\rm C}_{\rm p}},$$
 (37)

where T_1 is ambient temperature, ΔT is temperature rise, ΔH_c is heat of combustion, and \overline{C}_p is average molar heat capacity of the gaseous products between T and the flame temperature $(T_f)_L$. Note that this equation can <u>be</u> derived from Zabetakis' equation 36 by substituting 100 C_p for the 0.75 constant and letting L_T/L_{25} equal zero. A general procedure for obtaining reliable estimates of flame temperatures for combustible-oxidant-diluent systems is outlined below.

For the lower limit mixture of methane (5 pct) in air at 25° C (298 K), the reaction for complete combustion of 1 mol (n) of mixture may be written as

(

The heat of reaction (combustion) is defined from standard heats of formation (ΔH_f) at 298 K as

$$\Delta H_{298} = \Sigma n \Delta H_{f} (\text{products}) - \Sigma n \Delta H_{f} (\text{reactants}) \quad (39)$$

where ΔH_{298} is the heat release per mol of reactant (kcal/mol). The approximate temperature rise of the product gases for constant pressure combustion is

$$\Delta T(\text{products}) = \frac{\Delta H_{298}}{\Sigma_n Cp(\text{products})} \cong \frac{\Delta H_{298}}{\overline{C_p}(\text{mixture})}$$
(40)

where

$$\overline{C}_{p} \text{ (mixture)} = 0.05 \ \overline{C}_{p} \text{ (CO}_{2} \text{)} + 0.10 \ \overline{C}_{p} \text{ (H}_{2}\text{O} \text{)} + 0.10 \ \overline{C}_{p} \text{ (H}_{2}\text{O} \text{)} + 0.10 \ \overline{C}_{p} \text{ (O}_{2} \text{)} + 0.75 \ \overline{C}_{p} \text{ (N}_{2} \text{)}.$$

$$(41)$$

The heat content (H) data in table 3 can be used to deter-

mine the average heat capacity values $\frac{(H_2\,-\,H_1)}{(T_2\,-\,T_1)} that$ will

satisfy equation 40 at the assumed T_2 flame temperature. Since the lower limit combustion enthalpy (ΔH_{298}) of many C-H-O-N combustibles is 10 to 11 kcal per mol of mixture and \overline{C}_p of their products is about 8×10^{-3} kcal/(mol·K), their limit flame temperature can be assumed to be close to 1,300° C. Noticeable deviations from this generalization occur for combustible systems of very high or very low reactivity. Rigorous solutions are necessary for precise flame temperature calculations (24, p. 283; 66, p. 590).

The temperature rise for constant volume combustion is given by

$$\Delta T(\text{products}) \cong \frac{\Delta E_{298}}{\overline{C}_{v}(\text{mixture})} = \frac{\Delta H_{298} - \Delta n RT_{1}}{\overline{C}_{v}(\text{mixture})}$$
(42)

where ΔE_{298} is constant volume heat release, Δn is molar change of gaseous reactants and products, and $\overline{C}_v = \overline{C}_p - R$. These temperature rises tend to be at least 20 pct higher than those found under constant pressure.

Another category of flaming combustion is *diffusion flames*, which are encountered in most fires, such as burning of a liquid pool, solid surface, or flared fuel gas. These heterogeneous flames have a wide spectrum of combustible concentrations and, therefore, do not have definitive flame temperatures or flammability limits, per se. Flames of dispersed dusts also involve diffusional and heterogeneous burning. However, if they are uniformly mixed in air, their flames can have some of the fundamental properties of premixed flames even though they may be less well defined. No simple theory is available for predicting dust flame temperatures, but the values for carbonaceous dusts are roughly equivalent to those of the hydrocarbon vapors that can form as a result of heating of the dust.

Cool flames are also a special category of combustion and are usually associated with low-temperature oxidations and two-stage ignitions. They are formed by many hydrocarbons including ethers, aldehydes, alcohols, and paraffins. These flames are ordinarily pale blue and are believed to result from aldehyde and/or peroxide formation. They are most often found with fuel-rich mixtures that are outside the normal flammability domain of the fuel vaporair system. Because only a small fraction of the available enthalpy is used to form cool flames, their temperatures are very low, typically of the order of a few hundred degrees Celsius. They cannot be ignored because they may produce normal ignitions if brought into contact with flammable vapor-oxidant compositions.

Burning Velocities

The linear rate at which a laminar combustion wave (reaction zone) propagates relative to the unburned gas of a flammable mixture is the *burning velocity* (S_u). This velocity is a fundamental property of the mixture and depends primarily upon the thermal diffusivity $\frac{(\lambda)}{(\rho C_p)}$, chemical reaction rate, and heat of combustion. Although the mechanism of flame propagation is very complex, it is well known that certain physical processes can quench propagation and account for the existence of a limit burning velocity and corresponding limit of flammability. For example, if only natural convection and buoyancy effects are considered, the *limit burning velocity*, (S_u)_L, for a lower

$$(S_{u})_{L} = (2 \alpha g \rho_{b} / \rho_{\mu})^{1/3}, \qquad (43)$$

where g is gravitational constant, α is thermal diffusivity, and ρ_b/ρ_{μ} is density ratio of burned and unburned gas. This equation defines the horizontal propagation limit where the buoyancy force just balances the combustion force of the product gases and predicts $(S_u)_L$ values to be less than 10 cm/s for a variety of fuel-air mixtures.

limit mixture can be predicted with reasonable accuracy

by the equation proposed by Hertzberg (30):

Of great practical interest is the *flame speed* (S_f) associated with combustion, i.e., the flame velocity sensed by an observer. It may be defined as

$$\mathbf{S}_{\mathbf{f}} = \mathbf{S}_{\mathbf{u}} + \mathbf{S}_{\mathbf{g}} \,, \tag{44}$$

where S_g is a gas velocity component associated with the expansion and buoyancy of the product gases. Figure 8, which was obtained by Andrews (3), illustrates the expected relationship between S_u , S_f , and S_g for spherical CH₄-air

Figure 8.—Flame speed (S_f), gas velocity (S_g), and burning velocity (S_u) versus equivalence ratio for methane-air flame propagation at 25° C and 1 atm.

propagations as a function of equivalence ratio (fraction of stoichiometric). Note that maximum S_f and S_u values occur on the rich side of stoichiometric and their ratio (S_f/S_u) is about 6. Under adiabatic conditions, the maximum S_f/S_u ratio is closer to approximately 7.5, which is typical of the combustion product *expansion ratio* (E) for most combustibles. Thus, the flame speed may be calculated from the following expressions:

$$\mathbf{S}_{\mathbf{f}} = \mathbf{S}_{\mathbf{u}}\mathbf{E} \tag{45}$$

$$S_{f} = S_{u} \rho_{u} / \rho_{b} = S_{u} \frac{M_{u} T_{b} P_{u}}{M_{b} T_{u} P_{b}}$$

$$\tag{46}$$

where the u and b subscripts refer to the unburned and burned states, respectively. The burning velocity itself generally increases consistently with increasing initial temperature, whereas the pressure effect is usually positive in oxygen but negative in air for many combustibles. In oxygen, burning velocities are considerably greater because of increased reaction rates and heats of reaction, particularly at stoichiometric combustible concentrations, which are much higher in oxygen than in air.

The foregoing discussion is applicable primarily to laminar flame propagation of mixtures initially at rest. With the mixtures under dynamic conditions, S_u can be expected to vary with the degree of turbulence and S_f will increase from the combined effects of turbulence and any added flow. If the propagations occur in a long tube or duct, the flames can accelerate and may even develop into detonations (see next section), depending upon the lengthdiameter ratio. Since turbulent flames involve severe velocity gradients and distorted flame fronts, they are not amenable to simple generalizations like laminar flames.

In the case of burning liquid pools, the burning rate (regression rate) is a strong function of the pool diameter because of the radiation feedback effect. With increased heat feedback, the rates of vaporization and reaction are enhanced. Zabetakis (*III*) has shown that the burning rate for large pools (v_{∞} , cm/min) is given by

$$\mathbf{v}_{\infty} = \mathbf{k}_{\infty} \,\Delta \mathbf{H}_{\mathbf{c}} / \Delta \mathbf{H}_{\mathbf{v}},\tag{47}$$

where ΔH_c is net heat of combustion, ΔH_v is sensible heat of vaporization, and k_{∞} is a constant that is 0.0076 for hydrocarbon fuels.

EXPLOSION PROCESSES

Deflagrations

The term "explosion" is best defined as a sudden release of pressure or energy. One of the most common types is the deflagration of a flammable mixture which is characterized by subsonic propagation rates relative to the unburned gas. The *explosion pressure* (P₂) of a deflagration is greatest in adiabatic combustion under total confinement, i.e., constant volume. By applying equation 42 to calculate the temperature rise (Δ T), the pressure rise ratio (P_b/P_u = P₂/P₁) for constant-volume adiabatic combustion of a mixture can be obtained from

$$P_2/P_1 = \frac{n_2 T_2}{n_1 T_1},\tag{48}$$

This equation predicts that the maximum P_2/P_1 ratio for the confined deflagration of most combustible-air systems is about 8:1 to 9:1. Assuming ideal propagation after central ignition in a spherical enclosure, the pressure rise (ΔP) may be estimated from the expression suggested by Zabetakis (110):

$$\Delta \mathbf{P} = \mathbf{K} \mathbf{P}_1 \mathbf{S}_u^3 \mathbf{t}^3 / \mathbf{V}, \tag{49}$$

where t is time, V is enclosure volume, and K is a constant that includes an expansion term and is obtained from an evaluation of the P-V data. Actual pressure rises are less than those predictable by equation 49 because flame propagation rarely is uniformly spherical, heat losses increase with proximity of the flame front to the vessel walls, and S_u is not constant nor maximum throughout constantvolume combustion. Nevertheless, this equation is fairly reliable for rapid-burning mixtures, such as stoichiometric mixtures, which can readily form spherical flames and are least affected by wall and buoyancy effects. Figure 9 (47) illustrates the pressure history for the deflagration of a stoichiometric CH₄-air mixture in the Bureau's large spherical vessel (3.65-m diam); here, an Su of 45 cm/s is appropriate for determining the K factor applicable in equation 49. In such spherical explosions, where propagation is near ideal, the time to reach maximum pressure (\mathbf{P}_2) is approximated by the following expression:

$$t_{2} = \frac{\text{vessel radius}}{S_{f}} = \frac{\text{vessel radius}}{E S_{u}}$$
(50)

where the E and S_u values for constant-pressure combustion may be used.

Explosion pressures of mixtures less optimum than stoichiometric are generally lower because of decreased enthalpy and burning velocity, but also because of the restricted mode of flame propagation—upward, horizontal, or downward. As shown by Sapko (92), the spatial mode of propagation varies greatly with mixture composition and is strongly related to buoyancy effects. Figure 10 shows the flame and pressure histories obtained in the Bureau's large vessel for a partly inerted CH_4 -air- N_2 mixture (upward and only slight downward propagation) and a near-limit

Figure 9.—Pressure history for the explosion of a stoichiometric methane-air mixture in a 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

Figure 10.—Pressure and flame profile histories for spark ignitions of (A) 7.8 pct CH₄-74.1 pct air-18.1 pct N₂ mixture and (B) 6.9 pct CH₄-65.8 pct air-27.3 pct N₂ mixture in a 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

 CH_4 -air- N_2 mixture (only upward propagation). Buoyant velocities of the highly inerted flames will vary roughly with the square root of the fire ball radius, which is predicted by theory for rising gas bubbles.

The maximum work output or energy release of a combustible explosion is given by equation 12 or 13, depending upon whether an isothermal or adiabatic condition is assumed. Since neither condition is fully attained in real situations, the actual energy release will fall somewhere between the values for the two possible cases.

Physical Explosions

Many explosions are the physical type in which no combustion takes place. These would include outward burstings of confined gas systems due to overpressurization by mere physical processes; inward burstings (implosions) due to insufficient pressurization are also a physical type. The potential energy release associated with such physical eruptions may be treated simply as the thermodynamic expansion or compression of an inert gas. Some explosions involve a combination of physical and chemical energy release, such as in a boiling liquid-expanding vapor explosion, which culminates in a large fireball. Liquefied petroleum gases are normally involved in these explosions and result when the fuel container is excessively heated by an external fire and ruptures from overpressurization. The fireball diameter may be estimated by the following expression (32):

$$d = 3.86 W^{0.32}, (51)$$

where d is fireball diameter (m) and W is fuel weight (kg).

Detonations

The most severe type of explosion is a detonation that is characterized by supersonic propagation rates relative to the unburned reactant. Detonations are commonly associated with liquid or solid explosives but can also occur with many gaseous fuel-oxidant systems under certain initiation or propagation conditions. Detonations are unique in that their combustion wave is coupled to a shock wave which results in very high pressures under either confined or unconfined conditions. The *detonation pressure* (P₂) for gaseous mixtures can be estimated by the following expression:

$$\mathbf{P}_2 = 2 \mathbf{P}_{\mathbf{v}} \tag{52}$$

where P_v is the maximum pressure for constant-volume combustion (equation 48). Thus, the maximum pressure rise ratio (P_2/P_1) for gaseous detonations is about 18:1, depending upon the energy of the mixture.

Figure 11 by Burgess (6) is typical of the pressure history that can result in a well-developed gaseous detonation; these data are for a stoichiometric acetylene-air mixture in a 45.7-m-long tunnel (0.61-m diam) with one end open. Three pressure levels are worth noting here: C-the initial spike (Von Neumann) or shock front, which is of very short duration with an insignificant impulse ($\int Pdt$); D-the welldefined Chapman-Juguet (C-J) pressure, which corresponds to complete combustion within the detonation front but which also produces little impulse; and E-the static pressure, which reflects the expansion of gas and beyond which the pressure remains at a plateau until relieved.

Figure 11.—Pressure-time transient for detonation of a stoichiometric acetylene-air mixture in a 45.7-m (150-ft) long tunnel with initiation end closed. Instrument station 18.3 m (60-ft) from initiator point.

The pressure at the C-J condition is the detonation pressure (P_2) referred to in equation 52. In comparison, the reflected pressure is often about 2.5 times the C-J detonation pressure. Although detonation pressures are of great concern, it is the static pressures (E-H plateau) of the expanded gases that produce the greatest pressure energy because of their much greater duration and impulse; this is fully realized in a closed system.

Many more rigorous expressions than equation 52 are available for calculating detonation parameters. The following expression (106) relates the pressure rise ratio (P_2/P_1) across the C-J detonation front with the *detonation velocity* (v*):

$$P_2/P_1 = \frac{1 + \gamma_1 (v^*/c_1)^2}{1 + \gamma_2},$$
(53)

where γ_1 is ratio of specific heats (C_p/C_v) and c_1 is sonic velocity $(\gamma_1 R T_1)^{1/2}$ of the reacting gas; γ_2 refers to the molecular and dissociated products and varies somewhat with any shifting product composition. Although precise γ_2 values require elaborate thermochemical computations, they may be roughly estimated from specific heat tables for any assumed reaction products and their adiabatic flame temperatures; the latter temperature is usually a few hundred degrees less than the detonation temperature. The term v*/c₁ is the *Mach number* (M) of the detonation wave, which theoretically propagates at a constant velocity as it moves through the unreacted gas, usually several times the sonic velocity of the unburned gas. For most practical applications, the estimation of P₂ by equation 52 is sufficiently reliable and adequate.

Any strong explosion that discharges into the free atmosphere, as in a detonation or deflagration failure of an enclosure, propagates for some distance as an *air blast wave*, which is characterized as an *air* shock wave ($M \ge 1$). Blast waves associated with detonations propagate over much greater distances and at greater velocities than those of deflagrations. The damage potential of an *air* blast wave can be characterized by its overpressure (ΔP_s), which is

Figure 12.—Relation of ideal blast wave characteristics at the shock front to peak overpressure.

the static or side-on shock pressure (P_s) minus the ambient pressure $(P_o).$ By air shock theory (26),

$$\Delta P_{\rm s} = P_{\rm o} \, \frac{2\gamma (M_{\rm o}^2 - 1)}{\gamma - 1}, \qquad (54)$$

where γ is the specific heat ratio of air (~ 1.4) and M_o is the ratio of the shock wave velocity (v_s) to the sonic velocity of air (v_s/c_o); c_o is 331 m/s at 0° C. The total pressure that is sensed by an object exposed to a shock wave is the sum of the static shock pressure (ΔP_s) and the dynamic pressure ($1/2 \rho v^2$) associated with the wind velocity (particle velocity, v). Figure 12 (26, p. 123) shows the normal relationship of such pressure and velocity parameters for an ideal air blast wave. Note that the dynamic pressure is negligible for weak shocks but becomes equal to the peak static overpressure of a strong shock at approximately 70 psi.

The blast wave pressure at various distances from the explosion source should be proportional to the cube root of the explosion energy yield if the chemical energy conversion to pressure energy is ideal, as in the case of TNT and other high explosives. The *TNT equivalence* of a strong

explosion can be computed by invoking the cube root scaling law (26, p. 127) that relates the blast pressure potential to the exploding charge weight (W) and distance (d) from the exploding charge, relative to TNT:

$$d/d_{o} = (W/W_{o})^{1/3}, (55)$$

where d_o and W_o refer to TNT. It is convenient to express W_o in terms of unit TNT mass, such as 1 ton or 1 gram, which is defined to yield about 10⁹ cal/ton or 1,100 cal/g (101); thus $d = d_o W^{1/3}$ for a unit mass of TNT ($W_o = 1$). Corresponding blast pressures can then be compared in terms of a scaled distance ($d/W^{1/3}$).

TNT equivalents of solid and liquid explosives can be reliably estimated from their calculated heats of detonation and the value for TNT. However, in the case of gaseous explosions, the fraction of available chemical energy (ΔH_c) that is converted into blast energy or pressure energy can vary greatly with the degree of confinement and ability of

the gas mixture to detonate (6). Assuming adiabatic expansion, the work that can be converted into blast pressure energy is given approximately by

$$W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1},$$
(56)

where P_2 is elevated pressure of the gaseous products and P_1 is ambient pressure of the gases after expansion. In weakly confined gaseous deflagrations where the container walls fail before the maximum potential combustion pressure is achieved, P_2 will be small and little of the chemical energy (<10 pct) will result in blast pressure energy. In strongly confined deflagrations in which the containment fails, a small fraction of the chemical energy (~10 pct) will be used to cause wall failure, and the pressure energy will be slightly less than ΔH_c . The TNT equivalent for such strong gaseous deflagrations, as well as gaseous detonations, can be assumed to approximate the ΔH_c of the mixture for constant-volume combustion.

PROPERTIES OF LIQUID AND GASEOUS COMPOUNDS

This section covers selected combustion properties of a great number of liquid and gaseous organic compounds, as well as some common inorganic fuels. Pertinent physical properties of the combustibles and their flashpoints, autoignition temperatures, and flammability limits in air are given in the summary tabulations in appendix A. The data are grouped according to the chemical class of combustible to make apparent the effects of chemical structure within a homologous series and between chemical families of combustibles. These data are summarized in the text and supplemented with other data of interest for evaluating ignitability and flammability hazards.

VAPOR PRESSURES AND FLASHPOINTS

Since the flashpoint of a combustible liquid or solid depends upon its volatility and the vapor concentration required to form a lower limit of flammability in air, vapor pressure-temperature curves are important in assessing the flammability hazard. Accordingly, vapor pressure curves and flashpoint data are presented herein for selected combustibles of each chemical class of compounds. Flashpoints obtained by closed cup methods, which best approximate the lower temperature flammability limit (T_L) , are reported here provided such data were available. Any reported open cup values may be assumed less conservative, particularly if the vapor concentration indicated by the flashpoint is appreciably higher than the lower limit (L) obtained from limit-of-flammability experiments.

Saturated Hydrocarbons

Vapor pressure curves and flashpoint data are given in figures 13 and 14 for the straight-chain paraffins and in figure 15 for branched-chain paraffins; the vapor pressures are predominantly from Stull (99) and the flashpoints from Bureau, NFPA, and other references cited in appendix A. Corresponding vapor concentrations, assuming 1 atm total pressure (76 cm Hg), are also included in the figures to permit estimation of lower flammability limits from the flashpoints. According to these data, normal alkanes with more than eight carbon atoms (above octane) will not form flammable vapor-air mixtures below 30° C and atmospheric pressure; also chain branching increases the volatility and decreases the flashpoint, as evident in comparing the values for n-octane (14° C) and 2,2,4-trimethylpentane or isooctane (-12° C). Generally, flashpoints of a paraffin series increase with increasing molecular weight, whereas the corresponding vapor pressures and lower flammability limits vary inversely.

Figure 13.—Vapor pressure-temperature curves and flashpoints for five normal paraffins (C_1 to C_5).

Figure 14.—Vapor pressure-temperature curves and flashpoints for eight normal paraffins (C₆ to C₁₀, C₁₂, C₁₄, C₁₆).

Figure 15.—Vapor pressure-temperature curves and flashpoints for eight branched-chain paraffins.

Based on similar data, Affens (1) has derived the following expressions for predicting the flashpoints (T_F, $^\circ$ C) of the normal paraffins:

$$(T_F + 277.3)^2 = 10,410 \text{ n},$$
 (57)

$$(\mathbf{T}_{\mathbf{F}} + 277.3)^2 = 741.7/\mathbf{P}_{\mathbf{F}},\tag{58}$$

and

$$(T_{\rm F} + 277.3)^2 = 77,291 (1/L_{25}) - 3,365,$$
 (59)

where n is number of carbon atoms, P_F is vapor pressure (atm) at $T_{\rm F},$ and L_{25} is the lower flammability limit (vol pct) in air at 25° C. Agreement between calculated and literature values is good except for methane. Additional correlations of this type can be made by substituting known relationships between number of carbon atoms and molecular weights, boiling points, or heats of combustion. The method proposed by Zabetakis (110) is equally reliable and is based upon equation 36, which predicts lower limits of mixtures as a function of their calorific values $(L_{25}\Delta H_c)$ and temperature. This method also requires vapor pressure data but is attractive in that either actual calorific values or an assumed constant may be used in calculating the flashpoint.

Other Combustibles

Vapor pressure curves and flashpoint data for other families of combustibles are presented in figures 16-32. As with the paraffins, the flashpoints of each homologous series generally increase with increasing number of carbon atoms and decrease with chain branching. Ellis (17) finds the correlations with carbon atoms and heats of combustion to be practically linear for certain normal alkyl compounds (paraffins, cyclohexanes, ketones, alcohols, acetates) and alkyl benzenes but not for their isomers. The addition of functional groups can have a large and varied effect on flash point as illustrated below:

For butane: ° C	For benzene: ° C
C_4H_{10}	C_6H_{10} 11
$C_4H_9NH_2$	C ₆ H ₅ Cl 29
C_4H_9Cl	C ₆ H ₅ Br 51
$C_{3}H_{7}CHO$	C ₆ H ₄ Cl ₂ 66
C_4H_9SH	$C_6H_5NH_2$
C_4H_9Br 18	C ₆ H ₅ OH 79
C ₄ H ₉ OH 29	$C_6H_5NO_2$
C ₃ H ₇ COOH 72	

The effects of any functional group on the flashpoint will depend upon the changes produced in both volatility and the lower flammability limit. As a rule, the flashpoints of such hydrocarbon derivatives will be noticeably greater than those of their parent hydrocarbons.

For blends of any combustible liquids, flashpoint predictions are more complex and will depend upon their deviations from ideal mixture laws (equations 4 and 5) and Le Chatelier's mixture flammability law (equation 35). Anomalous behavior is most likely to occur with dissimilar molecular species, such as mixtures of a hydrocarbon and a halogenated, oxygenated, or nitrated hydrocarbon. Ellis (17) has shown that the flashpoints of many solvent blends are often lower than expected because of polarity, hydrogen bonding, or solubility parameter differences. In practice, the greatest concern is necessarily for the liquid mixture component of highest volatility. Where a highly volatile component is present in only small concentrations as an additive or contaminant, the flashpoint will be subject to the evaporative history of the mixture. Depending upon the evaporation period, the actual flashpoint hazard may be underestimated when the volatile additive is nonflammable and overestimated when the additive is more flammable than the main liquid components. Such uncertainties are often encountered in evaluating cleaning solutions, paint mixtures, water-based lubricants, and modified fuels or chemicals. In the case of controversy, their flashpoints should be confirmed by limit-of-flammability-type experiments.

Figure 16.—Vapor pressure-temperature curves for eight unsaturated hydrocarbons.

Figure 18.—Vapor pressure-temperature curves and flash-points for eight aromatic hydrocarbons.

Figure 17.—Vapor pressure-temperature curves and flashpoints for seven alicyclic hydrocarbons.

Figure 19.—Vapor pressure-temperature curves and flashpoints for eight alcohols or hydroxy compounds.

Figure 20.—Vapor pressure-temperature curves and flashpoints for six glycols and glycerol.

Figure 22.—Vapor pressure-temperature curves and flashpoints for seven aldehydes.

Figure 21.—Vapor pressure-temperature curves and flash-points for eight ethers.

Figure 23.—Vapor pressure-temperature curves and flashpoints for seven ketones.

Figure 24.—Vapor pressure-temperature curves and flashpoints for five acids and three acid anhydrides.

Figure 26.—Vapor pressure-temperature curves and flashpoints for eight amines.

Figure 25.—Vapor pressure-temperature curves and flashpoints for seven esters.

Figure 27.—Vapor pressure-temperature curves and flashpoints for ammonia, cyanogen, two cyanides, two hydrazines, and hydrogen peroxide.

Figure 28.—Vapor pressure-temperature curves and flash-points for seven nitrated hydrocarbons.

Figure 30.—Vapor pressure-temperature curves and flashpoints for six unsaturated and two aromatic chlorine compounds.

Figure 29.—Vapor pressure-temperature curves and flash-points for eight alkyl chlorides.

Figure 31.—Vapor pressure-temperature curves and flashpoints for seven brominated compounds.

Figure 32.—Vapor pressure-temperature curves and flashpoints for six sulfur and two boron compounds.

FLAMMABILITY LIMITS IN AIR AND OXYGEN

Lower limits (L_{25}) and upper limits (U_{25}) of flammability of individual gases or vapors in air are systematically tabulated in appendix A for the members of many families of combustibles. These limits define the range of flammable vapor-air concentrations for ignitions of quiescent uniform mixtures at atmospheric pressure and 25° $\pm 5^{\circ}$ C and with propagation in the *upward* optimum mode; some data are given at temperatures higher than 25° C. mostly because of vapor pressure limitations. Unless otherwise specified, these data and those presented in the text were taken largely from compilations of earlier Bureau bulletins (11, 110) and other cited Bureau publications; most Bureau flammability limit determinations were made in cylindrical tubes of at least 5-cm diameter with an electrical spark ignition source, as described in reference 117. Any data uncertainties because of possible inadequate ignition energies or apparatus dimensions (wall effects) would be greatest for combustibles having large ignition energies and quenching distances, such as the halogenated hydrocarbons. Typically, the reported limits have a precision of \pm 0.1 at 1 vol pct and \pm 0.5 at 10 vol pct, which is adequate for most safety applications. Thus, previously accepted data were not rejected because of subtle differences observed in later studies.

Limits of flammability in oxygen or other oxidizers are much less complete than those in air for most families of combustibles. A comparison of limit data in air and oxygen is made in table 6 for a number of hydrocarbons, halogenated hydrocarbons, and other combustibles at atmospheric pressure and 25° C (or the indicated temperature). The range of flammable concentrations for each combustible is considerably greater in oxygen than in air, except for acetylene, which can propagate flame even in the absence of air. The increased hazard with oxygen is reflected primarily by the great increase of upper limits of

	Fla	mmability	limits, vol	pct			
Combustible	A	ir	Оху	gen			
	L ₂₅	U ₂₅	L ₂₅	U ₂₅			
HYDROC	ARBONS						
Methane Ethane Propane n-Butane n-Hexane n-Heptane	5.0 3.0 2.1 1.8 1.2 1.1	15.0 12.4 9.5 8.4 7.4 6.7	5.0 3.0 2.3 1.8 1.2 .9	61 66 55 49 ² 52 ² 47			
Acetylene Ethylene Propylene α-Butylene	2.5 2.7 2.4 1.6	100 36 11 10	≤2.5 2.9 2.1 1.8	100 80 53 58			
Cyclopropane Benzene	2.4 ² 1.3	10.4 ² 7.9	2.5 ≤1.3	60 NA			
HALOGENATED HYDROCARBONS							
Methyl chloride Ethyl chloriden-Butyl chloride	10.7 3.8 1.8	17.4 15.4 ² 10	~8.0 4.0 1.8	~66 67 ²52			
Methylene chloride Ethylene chloride Methyl chloroform Trichloroethylene Vinyl chloride Isocrotyl chloride	² 15.9 6.0 6.8 ³ 12.0 3.6 2.9	² 19.1 ² 17.3 NA ² 41 33 9.3	13.6 5.6 6.6 7.5 4.0 4.2	² 68 ² 68 ² 57 ² 91 70 ⁴ 66			
Ethyl bromide	6.7 6.4	11.3 12	6.7 6.4	44 ⁴50			
OTHER COMBUSTIBLES							
Acetaldehyde Acetone Ammonia Carbon monoxide Ethyl ether Hydrogen Isopropyl ether Wethanol Vinyl ether	4.0 2.6 15.0 12.5 1.9 4.0 1.4 6.7 1.7	60 13 28 74 36 75 7.9 ⁵36 27	4.0 ≤2.6 ~15 ≤12.5 2.0 4.0 ≤1.4 ≤6.7 ≤1.7	$93 \\ {}^{2}60 \\ {}^{7}79 \\ 94 \\ {}^{4} {}^{8}2 \\ 94 \\ {}^{4}69 \\ {}^{4}93 \\ {}^{4} {}^{9}3 \\ {}^{4} {}^{8}5 \\ \end{array}$			
NA Not available.							

¹Based upon data in references 11, 54, 78, and 110.

²Data at 100° C. ³Data at 30° C.

⁴Temperature unknown but >25° C.

5Data at 60° C

flammability (U₂₅). Although lower limits (L₂₅) in oxygen should be equal to or less than those in air, some of the reported data are inconsistent in this respect; this is not totally unexpected since all data were not obtained from a single source or by the same apparatus. The flammability limits in such oxidants as chlorine and nitrogen tetroxide also tend to be wider than in air, although these data are meager (54, 110). Flammability trends of the different classes of combustibles are briefly summarized in the next sections.

Saturated Hydrocarbons and Derivatives

The lowest member of the paraffin series is methane, which has a lower limit of 5 pct and an upper limit of 15 pct in normal ambient air. For most homologous series of organic combustibles, their flammability limits in air or oxygen decrease with increasing molecular weight or number of carbon atoms. This is illustrated in figure 33 where lower and upper limits are plotted versus carbon atoms for the vapor-air mixtures of the normal paraffins and their corresponding alcohols, aldehydes, amines, and chlorides; the curves approximate the limits given in table 6 or appendix A at 1 atm and $\geq 25^{\circ}$ C. The indicated limits

Table 6. — Limits of flammability of combustible vapors in air and oxygen at 25° C and 1 atm¹

Figure 33.—Variation of lower and upper limits of flammability in air with number of carbon atoms for normal paraffins and their derivatives. Data at 25° C or reported temperature.

for the straight-chain paraffins can be assumed to be practically the same as for their branched-chain isomers and only slightly wider than for their cyclic homologs.

In comparison, many other paraffin derivatives have a wider range of flammability than their parent hydrocarbons, particularly because of large differences between

their upper limits. Such derivatives include the primary or simple aldehydes, alcohols, and ethers, many of which form cool flames readily and have substantially wider limits than their corresponding paraffins; primary amines and certain esters (formates), which have a flammability range roughly comparable to that of the ethers; alkyl nitrates, nitrites, and hydrazines, which may undergo highly exothermic decomposition with or without air; and the alkyl mercaptans. Other derivatives such as the primary acids and simple ketones have flammability limits comparable to or slightly wider than those of the normal paraffins, whereas those of the halogenated homologs are narrower or wider, depending upon the number of carbon and halogen atoms. As a rule, the effect of a monosubstituted group tends to be minimum at a carbon chain length of about four or more; for example, compare the limits of n-butane (C_4H_{10}) and n-butyl chloride (C_4H_9Cl) in table 6.

The lower limit (L_{25} , volume percent) of paraffin combustibles in air may be approximately predicted by the expression suggested by Lloyd (70):

$$\mathbf{L}_{25} \cong 0.55 \, \mathbf{C}_{\mathrm{st}},\tag{60}$$

where C_{st} is the volume percent for stoichiometric combustion to CO_2 and H_2O . Limit equivalence ratios (L_{25}/C_{st}) given in table 7 show that this equation is fairly reliable for the normal paraffins (n-alkanes), as well as for many of their isomeric, cyclic, and substituted derivatives. However, most aldehydes, alkane bromides, alkane dichlorides, and nitroalkanes have L_{25}/C_{st} values that are much lower or higher than those for paraffins; C_{st} values for all the combustibles are included in appendix A for calculating

Formula	L ₂₅ , vol pct	L ₂₅ /C _{st}	L ₂₅ ∆H _c /100, kcal/mol	Formula	L ₂₅ , vol pct	L ₂₅ /C _{st}	L ₂₅ ΔH _c /100 kcal/mol
n-ALKANES	(PARAFFIN	S)		ALKYL	THERS	•	•
CH ₄ C ₂ H ₆ C ₃ H ₈ C ₄ H ₁₀ C ₅ H ₁₂	5.0 3.0 2.1 1.8 1.4	0.53 .53 .52 .58 .55	9.6 10.2 10.3 11.4 10.9	$\begin{array}{c} (CH_3)_2O \\ (C_2H_5)_2O \\ (C_4H_9)_2O \\ (C_5H_{11})_2O \\ \end{array}$	3.4 1.9 1.5 .7	0.52 .56 .87 .51	10.7 11.5 17.9 10.5
C_6H_{14}	1.2	.56	11.1	N-ALKYL /	MINES		
$C_{7}H_{16}^{-1}$	1.1 1.95	.59 .58	11.8 11.6	$\begin{array}{c} CH_{3NH_{2}}\\ C_{2H_{5}NH_{2}}\\ \end{array}$	4.9 3.5	0.58 .66	11.4 13.3
	KANES			$\begin{bmatrix} C_3 H_7 N H_2 \\ C_4 H_9 N H_2 \end{bmatrix}$	2.0	.52	10.5 11.4
C_4H_{10} C_5H_{12}	1.8 1.4	0.58 .55	11.4 10.9	ALKYL E			
C ₈ H ₁₈ CYCLOA	.95 LKANES	.58	11.6	HCOOCH ₃ HCOOC₂H₅	5.0 2.8	0.53 .50	10.9 10.3
C ₃ H ₆ C ₄ H ₈ C ₅ H ₁₀ C ₆ H ₁₂ C ₇ H ₁₄	2.4 1.8 1.5 1.3 1.1	0.54 .53 .55 .57 .56	11.2 11.1 11.1 11.5 11.4	HCOOC4H9 CH3COOCH3 CH3COOC9H5 CH3COOC9H5 CH3COOC3H7 CH3COOC4H9	1.7 3.2 2.2 1.8 ¹ 1.4	.54 .57 .55 .58 .55	11.1 11.5 11.1 11.7 11.0
		.00	11.4	n-ALKYL H	ALIDES		r
СН ₃ ОН С2H ₅ OH С3H7OH С4H9OH С4H9OH С5H11OH С6H13OH	6.7 3.3 ¹ 2.2 ¹ 1.7 ¹ 1.4 ¹ 1.2	0.55 .51 .49 .50 .51 .53	10.7 10.1 9.9 10.1 10.4 10.7	CH ₃ CI C ₂ H ₅ CI C ₃ H ₅ CI C ₄ H ₉ CI CH ₃ Br C ₂ H ₅ Br C ₄ H ₉ Br	7.0 3.8 2.6 1.8 10.0 6.7 ¹ 2.5	0.56 .58 .59 .53 .82 1.03 .74	10.7 11.4 11.6 10.7 15.2 19.9 14.8
ALKYL AL	DEHYDES			ALKANE DICH	ILORIDES		
HCHO	7.0 4.0 2.9	0.40 .52 .58	8.7 10.6 11.9	$\begin{array}{c} CH_2 CI_2 \\ C_2 H_4 CI_2 \\ C_3 H_6 CI_2 \end{array}$	¹ 15.9 ¹ 4.5 3.4	0.92 .58 .68	18.3 11.7 13.7
C ₃ H ₇ CHO 2.5 .68 13.9 ALKYL KETONES			NITROALKANES				
ALKYL K (CH ₃) ₂ CO (C ₂ H ₅) ₂ CO ¹ Limits at elevated temperatures.	2.6 1.9	0.52 .52	10.5 10.4	$\begin{array}{c} CH_{3}NO_{2} \\ C_{2}H_{5}NO_{2} \\ C_{3}H_{7}NO_{2} \end{array}$	¹ 7.3 3.4 ¹ 2.2	0.33 .40 .42	11.9 10.5 10.0

Table 7. — Equivalence ratios (L_{25}/C_{st}) and calorific values ($L_{25}\Delta H_c/100$) of lower limit mixtures of saturated hydrocarbons and derivatives in air at 25° C and 1 atm

¹Limits at elevated temperatures.

other limit equivalence ratios. Corresponding correlations of upper limits with $C_{\rm st}$ values are less consistent or more difficult to quantify. Excluding possible cool flames, the upper limits (U₂₅, volume percent) of normal paraffins obey the following expression given in Bulletin 627 (*110*):

$$U_{25} = 4.8 C_{st}^{1/2}.$$
 (61)

The limits of these hydrocarbons in air can also be correlated with the number of carbon atoms per molecule (n) as follows (1):

$$1/L_{25} = 0.1347 n + 0.04353;$$

 $1/U_{25} = 0.01337 n + 0.05151.$ (62)

For most saturated hydrocarbons, their lower limits on a weight basis are approximately 45 ± 5 mg per liter of air at standard conditions (0° C and 1 atm); upper limits typically fall between 200 and 400 mg/L, excluding methane (110).

With increased temperature, the lower limits of saturated hydrocarbon vapor-air mixtures decrease in the manner shown in figure 34 for 10 paraffins (110); AIT data are included, as is an updated value for methane (630° C). Limits in this figure are extrapolated from room temperature to 1,300° C, assuming the White concept of a constant limit flame temperature (107). Applying the modified Burgess-Wheeler law (equation 36), Zabetakis (110) assumed a constant calorific value for both lower and upper limits and obtained the following correlations for predicting temperature effects:

$$L_{\rm T}/L_{25} = 1 - 0.000721 \,({\rm T} - 25^{\circ}) \tag{63}$$

$$U_{\rm T}/U_{25} = 1 + 0.000721 \, ({\rm T} - 25^{\circ}) \tag{64}$$

where T refers to elevated temperature in ° C. Equation 63 is fairly reliable for the lower limits of the paraffins and many of their derivatives, although a calorific value $(L_{25}\Delta H_c/100)$ closer to 11 kcal/mol would be more representative of the data given in table 7; most inconsistencies with calorific values occur with the aldehyde, bromide, and dichloride derivatives. Upper limit predictions based on ideal $U_{25}\Delta H_c/100$ values (not shown) are more tenuous

Figure 34.—Temperature effect on lower limits of flammability of 10 normal paraffins in air at atmospheric pressure.

because of incomplete combustion and possibility of cool flames. Data by Cato (9) indicate that the upper limits of paraffins above n-butane can increase by much greater amounts than predictable by equation 64 (fig. 35). This behavior appears likely to occur with low-AIT hydrocarbons or other combustibles highly capable of cool or blue flames. Temperature effects reported by Kuchta (54) for the flammability limits of four chlorinated hydrocarbons in air and oxygen are summarized in table 8.

Table 8. — Temperature effects on the flammability limits of four chlorinated paraffins in air and oxygen at 1 atm (54)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Tama	Flammability limits, vol pct					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		∣ Temp, °C	A	vir	Oxygen			
$\begin{array}{c ccccc} (C_4H_9Cl) & \dots & \begin{array}{ccccccccc} 25 & {}^11.9 & 8.4 & 1.8 & 49 \\ 100 & 2.0 & 10.3 & 1.7 & 52 \\ 200 & 1.8 & 12.0 & 1.6 & 56 \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ (CH_2Cl_2) & \dots & \begin{array}{ccccccccccccccccccccccccccccccccccc$			L ₂₅	U ₂₅	L ₂₅	U ₂₅		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		n-B	UTYL CHL	ORIDE				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(C ₄ H ₉ Cl)	100	2.0	10.3	1.7	52		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	METHYLENE CHLORIDE							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(CH ₂ Cl ₂)	100	15.9	19.1	11.7			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ETHYLENE CHLORIDE							
$(C_2H_3CI_3)$ 25 $\begin{bmatrix} 16.8 \\ 100 \end{bmatrix}$ $\stackrel{2>10.5}{6.6}$ $\begin{bmatrix} 6.6 \\ 13.0 \end{bmatrix}$ $\begin{bmatrix} NA \\ 5.5 \end{bmatrix}$ $\begin{bmatrix} 57 \\ 57 \end{bmatrix}$	$(C_2H_4Cl_2)$	100	4.5	17.3	4.0	NA 67.5 69		
100 6.3 13.0 5.5 57	METHYL CHLOROFORM							
200 5.9 14.3 4.1 60	(C ₂ H ₃ Cl ₃)					NA 57 60		

NA Not available.

¹Interpolated values from flammability diagrams.

²Value limited by vapor pressure of fuel.

Figure 35.—Temperature effect on upper limits of flammability of six normal paraffins and JP-6 jet fuel in air at atmospheric pressure.

Flammability limits of hydrocarbon vapor-air mixtures vary only slightly with reduced pressure except at very low pressures, such as below 1/4 atm, where ignition energy or quenching distance becomes the most critical factor. Thus, limits of combustibles which are sensitive to ignition energies can be substantially narrowed by reduced pressures. At elevated pressures, the lower limits of combustibles generally decrease slightly, but the upper limits tend to increase greatly. Figure 36 illustrates the effect of high pressures on the limits of natural gas (85 pct CH_4 and 15 pct C_2H_6) and ethane in air at 25° C, as reported by Kennedy (44). For such combustibles, the upper limits are increased at least threefold at 500 psig, above which the pressure effect diminishes; in comparison, the lower limits at 500 psig are decreased by only 1/10 or less of their values at atmospheric pressure.

Unsaturated Hydrocarbons, Aromatics, and Derivatives

The main classes of unsaturated hydrocarbons are alkenes (olefins) and alkynes (acetylenes). Flammability limits of the alkene series decrease with increasing number of carbon atoms (fig. 37), similar to the alkane series, but tend to be wider because of higher upper limits; note especially the U_{25} values in air or oxygen for ethylene (C_2H_4) versus ethane (C_2H_6) in table 6. The equivalence ratios

Figure 36.—Pressure effect on limits of flammability of natural gas and ethane in air at 25 $^\circ$ C.

and calorific values of their lower limits in air at 25° C are in fair agreement with those of the normal paraffins, except for ethylene, which gives noticeably lower values (table 9); values for two alkadienes, propadiene (C_3H_4) and butadiene (C_4H_6), are also included in table 9.

Many of the alkene derivatives also have wide flammability ranges, including the ethers, amines or imines, and chlorine derivatives. Data in figure 37 for three chloroethylenes show that the lower limits in air increase consistently with the number of chlorine atoms; however, their upper limits display an anomalous behavior, namely those corresponding to ethylenes with two and three chlorine atoms, i.e., dichloroethylene (C₂H₂Cl₂) and trichloroethylene (C₂HCl₃), respectively. Differences in heats of formation (appendix A) of these chloroethenes cannot account for this anomaly. Instead, differences in test temperatures (25° versus 100° C) and vessel diameters (5 versus 20 cm), which were more favorable for trichloroethylene, are more likely to explain these results; such variables can greatly affect the flammability of halogenated combustibles. The diameter effect is best illustrated in the flammability evaluation of trichloroethylene by Perlee (82). The dichloroethenes and trichloroethenes, as well as bromoethenes, have lower limit equivalence ratios and calorific ratios for combustion in air that are markedly higher than the values for their unsubstituted alkenes (table 9). Other ethene derivatives, particularly allyl alcohol (C₃H₅OH) and allyl amine (C₃H₅NH₂), are more consistent with the data for normal alkenes.

Alkynes present a greater flammability hazard than alkenes because of their greater thermal instability and ability to form decomposition flames with or without air. For example, acetylene vapors have a flammable range from 2.5 to 100 pct in air at 25° C and atmospheric pressure, provided the vessel diameter is at least about 15 cm (110); upper limits of 75 or 80 pct are occasionally given in the literature for this fuel, but these represent quenched limits from determinations in small-diameter tubes (11). The

Figure 37.—Variation of lower and upper limits of flammability in air with number of carbon atoms for normal alkenes and with number of chlorine atoms for chloroethenes. Data at 25° C or reported temperature.

Formula	L ₂₅ , vol pct	L ₂₅ /C _{st}	L ₂₅ ∆H _c /100, kcal/moł	Formula	L ₂₅ , vol pct	L ₂₅ /C _{st}	L ₂₅ ΔH _c /100 kcal/mol	
n-ALKENES OI	R ALKADIEI	NES		n-ALK	YNES			
C_2H_4 C_3H_6	2.7 2.4	0.41 .54	8.5 11.0	$\begin{array}{c} C_2H_2 \ldots \\ C_2HCH_3 \end{array}$	2.5 1.7	0.32 .34	7.5 7.5	
C_3H_4 C_4H_8	2.2 1.6	.44 .47	9.8 9.7	ALKYNE (PROPAR	ALKYNE (PROPARGYL) DERIVATIVES			
C_4H_6 C_5H_{10}	2.0 1.4	.54 .52	11.5 10.6	C ₃ H ₃ OH	2.2 3.0	0.39 .53	9.0 11.7	
ALKENE DE	RIVATIVES	3		ALKYL BE	INZENES			
C ₂ H ₄ O C ₂ H ₄ NH C ₂ H ₃ Cl C ₂ H ₂ Cl ₂ C ₂ H ₂ Cl ₂	3.6 3.6 3.6 9.7 12.0	0.47 .60 .47 1.02 .98	10.5 13.0 9.9 22.5 25.2	$\begin{array}{c} \hline C_6H_6 & . & . \\ C_6H_5CH_3 & . & . \\ C_6H_5C_2H_5 & . & . \\ C_6H_5C_2H_5 & . & . \\ C_6H_5C_4H_9 & . & . \\ \end{array}$	² 1.3 ² 1.2 ² 1.0 ² .82	0.48 .53 .51 .54	9.8 10.8 10.5 11.0	
C ₂ HCl ₃ C ₃ H ₅ Cl	2.9	.58	23.2 12.2 18.4 12.1 10.6 10.8 9.3	BENZENE DERIVATIVES				
C ₃ H ₅ Br C ₃ H ₅ OH C ₃ H ₅ OH C ₃ H ₅ OH C ₃ H ₅ NH ₂ (C ₂ H ₃) ₂ O	4.4 2.8 2.5 2.2 1.7	.89 .56 .50 .52 .42		$\begin{array}{c} C_{6}H_{5}NH_{2} \\ C_{6}H_{5}NO_{2} \\ C_{6}H_{5}CI \\ C_{6}H_{4}CI_{2} \\ C_{6}H_{4}CI_{2} \\ C_{6}H_{5}Br \\ (C_{6}H_{5})_{2}NH \\ (C_{6}H_{5})_{2}O \\ \end{array}$	² 1.2 ² 1.8 1.4 ² 2.2 ² 1.6 .7 .8	0.46 .56 .48 .71 .55 .50 .54	9.4 12.8 10.0 14.8 11.4 10.5 11.3	

Table 9. — Equivalence ratios (L_{25}/C_{st}) and calorific values ($L_{25}\Delta H_c/100$) of lower limit mixtures of unsaturated and aromatic hydrocarbons and derivatives in air at 25° C and 1 atm

¹Limit at 30° C. ²Limits at elevated temperatures.

lower limit equivalence ratios for acetylene (C_2H_2) and methyl acetylene (C_2HCH_3) in table 9 are in good agreement but much lower than found for alkenes or alkanes. Halogenated alkynes such as propargyl bromide ($C_{2}H_{3}Br$), propargyl chloride (C_3H_3Cl), and chloroacetylene (C_2HCl) are capable of propagating flame without air at substantially lower pressures than acetylene. Even ethylene and ethylene oxide (C_2H_4O) can propagate a decomposition flame, although ethylene requires relatively high pressures $(\sim 1,000 \text{ psia})$. Table 10 summarizes the lower pressure limits that were reported in references 20 and 110 for various hazardous combustibles. For the hydrocarbon combustibles, their pressure limits correlate with their heats of formation $(\Delta H_{\rm f})$ and are lowest for the most endothermic (positive $\Delta H_f)$ compounds. Consistency of such correlations for any combustible will vary with the complexity of the decomposition products.

Table 10. — Lower pressure limits of flammability for combustible vapors capable of propagation without an air atmosphere¹

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Combustible	ΔH _f (25°C), kcal/mol	Vessel diameter, cm	Lower pressure limit (25° ± 5°C), cm Hg
Propadiene 45.9 20.3 169 Methylacetylene 44.3 10.2 300	Chloroazide	NA 22.8 - 36.8 NA 51.1 - 12.6 54.2 45.9	~6.4 2.5 ² 5.3 20.3 5.1 20.3 15.2 20.3	.2 1.2 ≪2.5 3.0 6.0 52.5 ~76 169

NA Not available.

Selected data from references 20 and 110.

²Flat flame burner data.

Aromatic hydrocarbons have flammability limits that are comparable to or narrower than the values for their paraffin homologues with the same number of carbon atoms. Thus, their L_{25}/C_{st} and $L_{25\Delta}H_{c}/100$ values in table 9 tend to approximate the data for normal paraffins in table 7; data for dichlorobenzene $(C_6H_4Cl_2)$ are the most inconsistent in these correlations.

Inorganic Combustibles

Some inorganic fuels have much wider flammability limits in ambient air than the saturated and unsaturated hydrocarbons, excluding those of high thermal instability such as the acetylenes. Such inorganics include hydrogen and carbon monoxide, which have flammability ranges of 4.0 to 75 pct and 12.5 to 74 pct, respectively, in air at 25° C and atmospheric pressure. The lower limit of 4.0 pct for hydrogen is thermodynamically impossible but is consistent with the greater diffusivity of hydrogen relative to oxygen or air. As shown by Burgess (5), preferential diffusion effects can account for the wide difference of upward and downward lower limits for hydrogen (4.0 versus 8.5 pct) and the small differences of such limits for carbon monoxide and methane. Earlier data by Furno (22) showed that similar diffusional effects can also explain the widening of upper limits of such hydrocarbons as normal butane; in this case, the greater diffusivity of oxygen allows greater fuel concentrations to be burned.

Of the nitrogen-containing inorganics, hydrazine has the widest flammability range (4.7 to 100 pct) in air and ammonia the narrowest (15 to 28 pct). As noted in table 10, hydrazine can form a decomposition flame at very low pressures, 1.2 cm Hg in a 2.5-cm-diameter tube. The flammability limits of cyanogen (6.6 to 32 pct) are nearly as wide as those for ethylene, and those for hydrogen cyanide (5.6 to 40 pct) are somewhat wider. It is worth noting that some organic nitrates and nitrites also have wide flammability limits; see appendix A and table 10. Other inorganic fuels with a wide flammability range are hydrogen sulfide (4.0 to 44 pct), carbon disulfide (1.3 to 50 pct), and diborane (0.8 to 88 pct).

The difference between the flammability limits of all combustibles tend to be less pronounced in oxygen than in air. This is evident by the available data in table 6. Similarly, the difference will be much less at highly elevated pressures, which in effect correspond to higher oxygen partial pressures.

FLAMMABILITY LIMITS IN OTHER ATMOSPHERES

The flammability limits of combustible vapors are of interest in various oxidant-inert or diluent atmospheres for defining inerting and extinguishing requirements. Complete flammability diagrams have been reported by Bureau investigators for many combustible-oxidant-inert systems. Figure 38 shows the flammability diagram given by Zabetakis (110) for the methane-air system with various added inerts at 25° C and atmospheric pressure. As expected, the flammability range is progressively narrowed by the addition of inert, particularly on the fuel-rich side, until propagation is not possible at some inert concentration. Helium is seen to be the least effective inert, and the halogenated hydrocarbons (CH₃Br and CCl₄) are the most effective "inerting" agents; the order of effectiveness of the other agents $(CO_2 > H_2O > N_2)$ is of greater interest because of their wider use. Composites of the flammability data obtained by Coward (11) for five paraffin hydrocarbons are shown in figures 39 (air + N_2) and 40 (air + CO_2). These data are representative of the variations in N_2 and CO_2 inerting requirements for hydrocarbon-type combustibles, excluding such thermally unstable materials as the acetylenic hydrocarbons. Similar flammability diagrams by Jones (40) are given in figures 41 and 42 for hydrogen and carbon monoxide, respectively; their inerting requirements with N_2 and CO_2 are substantially greater than for most hydrocarbons.

Figure 38.—Limits of flammability of various methane-air-inert gas mixtures at 25° C and 1 atm.

Figure 39.—Limits of flammability of methane-, ethane-, propane-, n-butane-, and n-pentane-air-nitrogen mixtures at 25° C and 1 atm.

Figure 40.—Limits of flammability of methane-, ethane-, propane-, n-butane-, and n-pentane-air-carbon dioxide mixtures at 25° C and 1 atm.

Figure 41.—Limits of flammability of hydrogen-air mixtures with added nitrogen and carbon dioxide at 25° C and 1 atm.

Figure 42.—Limits of flammability of carbon monoxide-air mixtures with added nitrogen and carbon dioxide at 25° C and 1 atm.

It is beyond the scope of this manual to reproduce all the complete flammability diagrams that are available for many other combustibles. Instead, such data are summarized here by listing the minimum oxygen concentrations, as defined in figure 7, below which propagation will not occur (table 11) and corresponding inert concentrations above which propagation is prevented (table 12). For the saturated hydrocarbons, their minimum O_2 values fall between 11 and 12 pct in air- N_2 mixtures and between 13.5 and 14.5 pct in air- CO_2 mixtures. Practically the same range of values is found for most unsaturated hydrocarbons and hydrocarbon derivatives; those that differ significantly tend to have somewhat lower minimum O_2 values except for most of the halogenated hydrocarbons (excluding trichloroethylene). Combustibles such as hydrogen, carbon monoxide, carbon disulfide, hydrogen sulfide, and unsymmetrical dimethyl hydrazine (UDMH) stand out by their very low oxygen requirements (5 to 7.5 pct) for propagation.

Essentially the same data trends are expected in comparing the corresponding inert concentrations at the critical oxygen concentrations. The available data in table 12 for the N₂ and CO₂ inerts are consistent in this respect, except for the CO₂ value (29 pct) listed for hydrogen sulfide; this unexpected low value appears questionable. This table also includes inerting data with two Halon extinguishants, both of which are much more effective than CO₂ or N₂. Excluding ethylene, CO₂ is roughly 1-1/2 times more effective (volume basis) than N₂ in inerting the vapor-air mixtures of the saturated and unsaturated hydrocarbons. For

Table 11. — Minimum oxygen requirements for propagation of combustible vapors in air-nitrogen and air-carbon dioxide mixtures at 25° C (unless otherwise indicated) and 1 atm¹

Combustible	Minimum oxygen c	oncentration, vol pct
Combustible	Air-N ₂	Air-CO ₂
HYDRO	DCARBONS	
Methane Ethane Ethane Propane n-Butane Isobutane Isobutane Isobutane n-Pentane Isopentane n-Hexane n-Hexane n-Heptane Network	12 11 11.5 12 12 12 12 12 12 12 12 12 11.5	14.5 13.5 14.5 15 14.5 14.5 14.5 14.5 14.5 14.5
Ethylene Propylene α-Butylene Isobutylene Butadiene 3-Methyl-I-butene	10 11.5 11.5 12 10.5 11.5	11.5 14 14 15 13 14
Benzene Cyclopropane Gasoline (70/100) Gasoline (115/145)	11 11.5 12 12	14 14 15 14.5
Kerosene JP-1 fuel JP-3 fuel JP-4 fuel Natural gas (Pittsburgh)	10 (150°C) 10.5 (150°C) 12 11.5 12	13 (150°C) 14 (150°C) 14.5 14.5 14.5 14.5
HALOGENATE	HYDROCARBONS	
n-Butyl chloride Methylene chloride Ethylene chloride Methyl chloroform Trichloroethylene	14 17 (100°C) 13 14 9 (100°C)	NA NA NA NA
OTHER CO	OMBUSTIBLES	
Acetone	11.5 NA 5.5 9.5 (150°C) 10.5 5 7.5 12.5 10 11 10.5 10 11 7	.14 16.5 (150°C) 7.5 27 (5.5) 13 NA 13 26 (5.2) 213 (11.5) 15 12 13.5 13 13.5 13 13.5 13.5 NA

NA Not available.

¹Based upon data in references 11, 42, 54, 68, and 110. ²Figure in parentheses is value at upper limit in air alone.

Table 12. — Inerting requirements to prevent propagation of gaseous combustibles in air with nitrogen (N_2) , carbon dioxide (CO_2) , Halon 1211 (CF₂CIBr) and Halon 1301 (CF₃Br) inhibitors at 25° C (unless otherwise indicated) and 1 atm

Combustible	Minimum inerting concentration, vol pct			
Combustible	N_2^{1}	CO21	Halon 1211 ²	Halon 1301 ²
	HYD	ROCARE	BONS	
Methane Ethane Propane n-Butane Isobutane n-Pentane n-Hexane n-Heptane	36 44 42 40 40 42 41 42	23 31 28 27 26 28 28 28 28	³ 4.0 (5.3) 5.8 5.9 5.2 ⁴ 4.5 5.8 6.5 (50° C)	³ 2.0 (4.7) NA 6.5 ⁴ 2.9 8.0 NA NA 8.0
Ethylene Propylene α-Butylene Isobutylene Butadiene	48 42 43 39 47	39 28 30 26 34	9.6 6.2 NA NA NA	11.0 NA NA NA NA
Cyclopropane Cyclohexane Benzene Gasoline Kerosene JP-4	41 NA 44 41 43 43	30 NA 28 28 28 28 29	NA 5.7 4.8 ⁴ 4.2 ⁴ 4.2 NA	NA NA 4.3 NA ⁴ 2.8 6.6
	OTHER	COMBU	STIBLES	
Acetone Carbon disulfide Carbon monoxide Ethanol Ethyl acetate Hydrogen Hydrogen sulfide Methanol Methyl ether Methyl formate	41 72 58 44 NA 48 71 NA 46 47 45 45	28 59 41 31 NA 33 57 29 32 33 32 32 32	4.9 ⁴ 2.7 NA 6.2 (50° C) ⁴ 6 NA 27 NA 24.7 (50° C) NA 5.8 NA	5.3 12.0 *1.0 4.6 6.3 20 NA NA NA NA NA

NA Not available

Beferences 11, 47, and 110.

References 79 and 80; includes 10-pct safety factor.

³Data in parentheses from reference 47. ⁴Data for flame extinguishment (less conservative value).

the same combustibles, Halon 1211 (CF_2ClBr) is about five times more effective than CO_2 and roughly comparable in effectiveness to Halon 1301 (CF₃Br). The effectiveness of the Halons is attributable to their chemical flame inhibiting action, whereas that of CO_2 and N_2 is due merely to their capacity to absorb heat. Data discrepancies are most likely to occur with the Halons because their propagations are more sensitive to vessel size and ignition energy effects. Bureau of Mines investigators (47) showed that the parenthetical values of 5.3 pct Halon 1211 and 4.7 pct Halon 1301 in table 12 for methane-air mixtures are more realistic than the given NFPA data (79-80). Figure 43 shows the complete flammability diagrams obtained by the Bureau authors with such Halons, including Halon 1202 (CF₂Br₂), in a 10-cm-diam tube (spark ignition). With a very strong and diffuse ignition source, such as an incendiary, the Halon requirements can be substantially greater. Thus, some reservation is appropriate in the use of these Halon data.

Data on the effects of temperature and pressure on inerting requirements are rather meager. The modified Burgess-Wheeler law (equation 63) may be used to obtain rough estimates of temperature effects on minimum O_2 values in air-N₂ or air- O_2 mixtures, but its reliability for different combustibles and temperature ranges is uncertain. Ordinarily, the oxygen requirements with N_2 or CO_2 inerts decrease only slightly with moderate increases of temperature or pressure. Figure 44 (110) is representative

Figure 43.-Limits of flammability of methane-air-Halon mixtures at 25° C and 1 atm.

Figure 44.-Effect of pressure on minimum oxygen requirements for propagation of natural gas, ethane, and propane in air-nitrogen mixtures at 25° C.

of the pressure effect on the minimum O_2 requirements for saturated hydrocarbons in air- N_2 mixtures.

With Halon-type agents, their effectiveness may decrease greatly in propagations at even moderate pressures, depending upon their thermal stability. Both Halons and inert gases are least likely to be effective against combustibles that can propagate flame without an oxidant, such as those in table 10. Also, one must bear in mind that the inerting data are primarily applicable to the prevention of flame propagation or explosion and not for fire extinguishment, which can require much greater concentrations of extinguishants.

IGNITION REQUIREMENTS

Ignition Energies

Electrical spark ignition energies provide a measure of the thermal requirements for ignition by a highly localized source. Figure 45 presents such data from the classic studies summarized by Lewis (66, p. 323) for the vapor-air mixtures of six normal paraffins at 25° C and atmospheric pressure. The minimum ignition energies (MIE) for these saturated hydrocarbons are approximately 0.25 mJ and occur at fuel-air ratios greater than stoichiometric, except for methane; see also figure 4. Differences in fuel diffusivities account largely for the variation of optimum fuel-air ratios for ignition with increasing molecular weight. Lewis (66), Litchfield (67-69), and Calcote (8) have reported ignition energy data in air and oxygen for various combustibles, many of which are summarized in table 13. The MIE values of most combustibles fall between 0.1 and 0.3 mJ in normal ambient air. Combustibles with much lower values are acetylene, hydrogen,

Table 13. — Minimum spark ignition energies of	
combustible vapors in air and oxygen at 25° C	
(unless otherwise indicated) and 1 atm ¹	

Combustible	Minimum ignition energy, mJ		
Combustible	Air	Oxygen	
HYDRO	CARBONS		
Methane Ethane Propane n-Butane n-Hexane	0.30 .26 .26 .26 .26 .29	0.003 .002 .002 .009 .006	
Acetylene Ethylene Propylene	.017 .07 .28	.0002 .001 NA	
Cyclopropane Benzene	.18 .22	.001 NA	
HALOGENATED	HYDROCARBONS		
n-Butyl chloride Methylene chloride Ethylene chloride Methyl chloroform Trichloroethylene	0.33 133 (88° C) 2.37 NI 295 (88° C)	0.007 (88°C) .124 (88°C) .011 (88°C) .092 (88°C) 18.0 (88°C)	
OTHER CO	OMBUSTIBLES		
Acetaldehyde Acetone Ammonia Carbon disulfide Ethyl ether Ethylene oxide	0.38 1.15 > 1,000 .015 .20 .062	NA 0.0024 NA NA .0013 NA	
Hydrogen Hydrogen sulfide Methanol Propylene oxide	.017 .077 .14 .14	.0012 NA NA NA	

NA Not available. NI No ignition.

¹Based upon data in references 8, 66 (p. 323), and 67-69; mixture composition stoichiometric or near-optimum for ignition. and carbon disulfide, and those with much higher values are ammonia and halogenated hydrocarbons, excluding butyl chloride; the MIE value for acetone is also very high but is suspect.

Corresponding MIE's in oxygen are at least an order of magnitude lower than in air. They are also very sensitive to pressure. Figure 46 shows the effects of both pressure and oxygen concentration on the MIE's of propane-oxygennitrogen mixtures (66, p. 333). The MIE's generally vary

Figure 45.—Spark ignition energy versus combustible vapor concentration for six paraffins in air at atmospheric pressure.

Figure 46.—Minimum spark ignition energy of propaneoxygen-nitrogen mixtures as a function of oxygen concentration and mixture pressure.

inversely with approximately the square of pressure. With increasing temperature, they decrease roughly by a factor of 2 for a 100° C temperature change (69). The low ignition energy requirements of combustible vapor mixtures are of great concern since sparks or arcs from ordinary electrical equipment have much greater energies (order of joules); even spark energies from static electricity are often greater (order of tens of millijoules) than MIE values, as discussed under theory and definition. Applications of spark ignition data to safety engineering, including intrinsic safety, are elaborated on by Litchfield (67).

Quenching Distances

Minimum ignition quenching distances for the combustible vapors in normal ambient air or oxygen are included in table 14. These data were obtained by the above-cited authors and refer to quenching of the spark flame kernel between flat plate electrodes. As with MIE values, minimum quenching distances occur at near-stoichiometric fuel-air ratios and fall in a narrow range (~ 1.5 to 2.5 mm) for many combustibles. Notable exceptions again are acetylene, carbon disulfide, and hydrogen, which are the most readily ignitable; other exceptions are ammonia and some of the halogenated materials, which are least ignitable.

Although corresponding data in oxygen are less available, the minimum quenching distances are much lower, being only a few tenths of a millimeter for hydrocarbons and hydrogen (table 14). For most combustibles, quenching distances vary inversely with the first power of pressure but with an ill-defined power of temperature (69). A useful correlation for estimating the minimum ignition quenching

Table 14. — Comparison of minimum spark ignition quenching
distances and maximum experimental safe gaps (MESG)
of combustible vapors in air at 25° C and 1 atm ¹

•		
Combustible	Ignition quenching ² distance, mm	MESG ³ , mm
HYDRO	CARBONS	
Methane Ethane Propane n-Butane n-Hexane	$\begin{array}{c} 2.03 (0.30 \text{in} \text{O}_2) \\ 1.5 \\ 1.75 \\ 2.4 (0.15 \text{in} \text{O}_2) \\ 1.5 (0.20 \text{in} \text{O}_2) \end{array}$	1.14 .91 .92 .98 .93
Acetylene Ethylene 1,3-Butadiene	.64 (0.18 in O_2) 1.22 (0.23 in O_2) 1.25	.37 .65 .79
CyclopropaneBenzene	NA 1.95	.91 .99
HALOGENATED	HYDROCARBONS	
Allyl chloride n-Butyl chloride Methylene chloride Ethylene chloride Vinyl chloride	<2.75 2.2 5.46 4.57 NA	1.17 1.06 NA 1.8 .96
OTHER CO	OMBUSTIBLES	
Ammonia Carbon disulfide Carbon monoxide Ethyl ether Isopropyl ether Ethylene oxide Hydrogen Methanol Methyl amine Propylene oxide Vinyl acetate	NI .55 NA 1.85 3.0 1.18 .64 (0.25 in O ₂) 1.5 NA 1.3 2.35	3.18 .20 .91 .83 .94 .59 .20 .92 1.10 .70 .94

Not available. NI No ignition at 1 J.

distance from the MIE, or vice versa, is given graphically by figure 47 (102). This figure is a composite of Bureau data for various combustible-oxidant-diluent mixtures over a wide range of pressures and oxygen concentrations; here, the MIE varies approximately with the square of the quenching distance. Quenching diameters obtained in tubes are about 1.5 times greater than these flat plate quenching distances.

Such ignition quenching data are useful in predicting flame propagation hazards of combustible mixtures and designing flame arresting devices. An effective flame arrester must quench the propagating flame at the arrester face and remove sufficient heat from the product gases to prevent ignition beyond the arrester; thus, both flame velocity and arrester physical specifications are important. In practice, flame velocities can be much greater than those developed in the above quenching distance experiments. Palmer (*81*) found the approach velocity of the flame to be most critical and developed semiempirical expressions for predicting the effectiveness of various flame arresters.

Figure 47.—Correlation of minimum ignition energy with minimum quenching distance for a large variety of combustibles in air and other oxidant atmospheres.

¹Mixture composition—stoichiometric or near-optimum for ignition. ²Reference 8, 66 (p. 323), and 67-69. ³Reference 71.

Based on this work and others, a simple relationship is given in a British guide (73) for predicting the critical approach velocity:

$$v = 0.5 a y/d^2$$
, (65)

where v is flame velocity (ft/s), y is arrester thickness (in), d is diameter of apertures (in), and a is the face area not blocked by the arrester material (wire gauze, metal ribbon, etc.). This expression is primarily applicable to ordinary flame propagations and to moderate pressures.

In the case of explosionproof enclosures, ignition quenching distance data are not sufficiently conservative to protect against the high-velocity jets of flame or hot gas that can be produced at high explosion pressures. Instead, it is necessary to use the maximum experimental safe gap (MSEG) data, which are designed to prevent ignition by any jets of hot gas escaping through the flange gap of such enclosures; hot gas ignition temperatures are given in the next section. The MSEG values included in table 14 are proposed by British Government laboratories (71) and were obtained at an initial pressure of 1 atm and gap passage length of 2.54 cm (1 in). Underwriters' Laboratories (15) in this country reports lower MSEG values for some of the combustibles, particularly acetylene, hydrogen, carbon disulfide, and ammonia. Their lower values reflect the effects of a shorter gap length (3/4 in) and more severe explosion pressures that were developed by using turbulent mixtures and a long flame runup to simulate pressure piling.

Ignition Temperatures

Minimum autoignition temperatures (AIT's) are widely relied upon for assessing the ignitability hazard of combustible vapors in a heated environment without an external ignition source. Relatively complete listings of AIT's for liquid and gaseous compounds in atmospheric air are given in appendix A. These listings also update any previously reported data that could not be confirmed, including the widely cited values for methane (540° C) and hydrogen (400° C). The data refer to ignitions under static conditions that were obtained in open glass vessels, usually of at least 200 cm³ volume and with induction or contact times (ignition delays) of the order of minutes; data obtained in smaller vessels or with shorter contact times are less conservative for safety applications. Appearance of any flame was normally used as the criterion of ignition in such determinations. Precision of these data can be assumed to be approximately $\pm 10^{\circ}$ at 300° C. They should not be confused with flashpoints, which relate to the volatility and not the ignitability of the combustible.

AIT's of combustibles are lower in oxygen than in air. but the differences are not great for most hydrocarbon combustibles. Selected data from Bureau (23, 110, 112) and NFPA (72, 78) compilations are given in table 15 for some representative organic and inorganic combustibles at atmospheric pressure. The effects of chemical structure are evident from the data in this table and appendix A. Generally, the AIT's of straight-chain hydrocarbons decrease with increasing number of carbon atoms and increase with chain branching (note isobutane) and ring formation (note cyclopropane); Zabetakis (112) showed they can be correlated with the average chain length. Similar trends occur with the various families of hydrocarbon derivatives, although the data are less consistent, depending upon the functional group. The AIT's of most hydrocarbons and their derivatives in air fall between the values for

Table 15. — Minimum autoignition temperatures (AIT's of
combustible gases and liquids in air and oxygen at 1 atm

Combustible	Minimum AIT, °C		
Compustible	Air ¹	Oxygen ²	
HYDRC	CARBONS		
Methane	630	555	
Ethane	515	505	
Propane	450	NA	
n-Butane	370	285	
	460	320	
n-Pentane	260	260	
n-Hexane n-Heptane	225 225	220 210	
	220	210	
n-Decane	210	200	
Acetylene	305	295	
Ethylene	490	485	
Propylene	460	425	
1,3-Butadiene	420	335	
Cyclopropane	500	455	
Gasoline (100/130)	440	315	
Kerosene	230	215	
HALOGENATED	HYDROCARBON	S	
Ethyl chloride	520	470	
n-Butyl chloride	250	245	
Methylene chloride	615	535	
Ethylene chloride	440	430	
Methyl chloroform	485	470	
Frichloroethylene	420	405	
OTHER CC	MBUSTIBLES		
Acetaldehyde	175	160	
n-Amyl acetate	360	235	
Carbon disulfide	~100	<105	
	610	590	
Ethyl ether	195	180	
	370 270	320	
Hydrazine Hydrogen	520	~400	
	260	220	
lydrogen sulfide			
Hydrogen sulfide	440	330	

NA Not available. ¹References 72, 110, and 112. ²References 23 and 78.

methane (630° C) and n-decane (210° C); notable exceptions are acetaldehyde, methyl hydrazine, and various alkyl ethers, nitrites, or nitrates, which can autoignite below 200° C. Among inorganic compounds, the AIT's are lowest for carbon disulfide and diborane (<100° C) and highest for carbon monoxide and ammonia (>600° C); the updated values for hydrogen are 520° C in air and 400° C in oxygen. With nitrogen tetroxide as the oxidant, the AIT's are comparable to those in oxygen for such paraffins as butane, hexane, and heptane, but lower by 100° to 200° C for hydrogen and highly chlorinated hydrocarbons (23); also, hydrazine fuels are hypergolic with this oxidant.

Figure 48 (57) illustrates the dependence of ignition delays on autoignition temperatures in stagnant air for various hydrocarbon fuels, including cyclics and aromatics. Although the data display an exponential dependence as predicted by the Semenov theory (equation 29), the temperature dependence for each fuel changes to a less sensitive one (decreased slope) at some high temperature; this indicates a change in reaction mechanisms or rate-controlling factors. Global activation energies (E) derived from the slopes and use of equation 29 are 11 to 22 kcal/mol in the high-temperature region and 33 to 46 kcal/mol in the lowtemperature region for most of these fuels. Similar data under flow conditions, where contact times can be of the order of milliseconds, are rather meager for individual compounds. The following expressions from the above Bureau work (57) give the approximate variation of ignition delay

36

Figure 49.—Autoignition temperatures and corresponding ignition delays of hydrocarbon fuels under static conditions in air at atmospheric pressure.

(τ , ms) with temperature $(h, R_2 + h)$ uppentane (C_5H_{12}) and decalin ($C_{10}H_{18}$) in heated air streams at 2 atm:

Pentane (350 -0.00° C) .. In $\tau = 5406/RT + 1.13$ (66)

Decalin (370°-600° C) .. $\ln \tau = 6600/\text{RT} - 0.37$ (67)

where R is $2 \text{ cal/}(K \cdot \text{mol})$. The low gross activation energies indicate that physic -, does rather than chanles! factor were rate controlling

Autoignition tem. ares decrease with increasing pressure, but the decrease is often small for moderate pressure changes, depending upon the combustible and oxidant. Accord to data for high-molecular-weight hydrocarbens (57 teir AIT's in air at 5 atm roughly approximate their corresponding values in oxygen at atmospheric pressure (table 10), i.e., an atmosphere of equivalent oxygen partial pressure. Also, the values in air for hydrocarbons of low AIT ($\sim 250^{\circ}$ C) are as proximately doubled then the pressure is reduced to 0.5 atm (57, 112). However, as shown by Furno (23) for selected paraffins, chlorinated hydrocarbons, and hydrazine fuels, the pressure effect is greatly diminished by the use of large vessels $(4,900 \text{ cm}^3).$

Ignitions by any $\ln z$ ad surface are a function of the heat source dimensions. For autoignitions in heated vessels, a vessel diameter of at least 5 cm or conface-conce ratio (S/V) less than 1 cm^{-1} is required to obtain the AlT values given in appendix A. With larger vessels, Setchkin (94) has shown that the AIT's do not decrease greatly, although the size effect can still be significant for some combustibles. Heated wire, rod, or tube ignition temperatures are normally much higher than the heated vessel AIT's; such data are compared in trible 16 for some representative combustibles. Figure 49 was obtained by Undera (50) and illustrates the dependence of ignition temperature on surface area of the heat source with different sources and combustibles; heat source diameters ranged from 0.8 to 7.5 cm for the vessels (cylindrical) and from 0.04 to 2.5 cm for the wires or rods. For the three paraffins in this figure, their ignition temperatures (T, °C) in air are given by the following expressions for heat source surface areas (A, cm^2) less than 80 cm²:

n-Hexane	$T = 951 - 98.5 \ln A;$	(68)
n-Octane	$T = 921 - 96.0 \ln A;$	(69)
n-Decane	$T = 893 - 89.5 \ln A.$	(70)

	Ignition temperature, ° C				
Combustible	Heated ¹ glass vessel (~4.5-cm diam)	Heated ² Inconel wire (1-cm diam)	Heated ³ Nichrome wire (0.1-cm diam)	Heated ⁴ air jet (1-cm diam)	
Methane	630 515 450 370 225 220 210	NA NA NA 670 660 650	1,220 980 1,050 1,010 900 860 835	1,040 840 885 910 765 755 750	
Acetylene Ethylene Propylene Isobutylene	305 490 460 445	NA NA NA	850 900 1,090 1,060	655 765 930 960	
Carbon monoxide Hydrogen JP-6 fuel MIL-L-7808 oil	610 520 230 390	NA NA 695 585	780 750 930 695	785 640 805 750	

Table 16. — Comparison of hot surface and hot gas ignition temperatures of hydrogen, carbon monoxide, and hydrocarbon fuels in air at 1 atm

NA Not available.

AIT data from table 15 and appendix A.

²Reference 50.

³References 50 and 103. ⁴References 51 and 103.

Linear correlations extending to the larger surface areas $(\sim 180 \text{ cm}^2)$ associated with heated vessel AIT's appear to occur only with combustibles requiring high autoignition temperatures; note data for the engine oil.

Heat source dimensions are equally important in ignitions by jets of hot gases that may come into contact with a combustible vapor-air mixture. Comprehensive studies on hot gas ignitions have been made by Vanpee and Wolfhard (103-104, 108). Their results on the effect of jet diameter on ignition temperature with heated laminar air jets are shown in figure 50 for hydrogen and the lower members of the alkane and alkene series; similar data for higher alkane members are also available (51). Minimum ignition temperatures obtained with a 1-cm-diam heated air jet are included in table 16 for the various combustibles. As noted, the hot gas ignition temperatures correlate best with the heated wire or rod ignition temperatures, all of which are noticeably higher than the heated vessel AIT's. In comparing all such ignition temperatures for a given combustible, Kuchta (51) found the differences are not necessarily great

Figure 49.—Hot surface ignition temperatures as a function of heat source surface area for hydrocarbon fuels and an engine oil in air at 1 atm.

when they are compared at the same heat source diameter. Hot gas ignition temperatures are especially useful in evaluating the ignition hazard of possible hot gases evolved from flame arrestors, explosionproof seals, and permissible explosive firings in mines.

FLAME TEMPERATURES AND BURNING RATES

Flame Temperatures

Assessment of the potential heat release and pressure development in the combustion of gaseous mixtures requires a knowledge of flame temperatures. Table 17 includes such data for the constant-pressure combustion of various combustibles in ambient air at atmospheric pressure; the

Figure 50.—Hot gas (air) ignition temperatures as a function of reciprocal jet diameter for hydrogen and various hydrocarbons at atmospheric pressure.

Combustibles	Limit flame temperature, $(T_f)_L$		Maximum flame ¹ temperature, (T _f) _M		Maximum burning ²
Combustibles	Diffusion ³ °C	Premixed ⁴ , °C	Measured, °C	Calculated, °C	velocity (S _u), cm/s
		HYDROCARBO	NS		
Methane	1,518 1,363 1,422 1,434 NA NA	1,377 (1,260) 1,327 (1,230) 1,367 (1,310) 1,492 (1,390) 1,362 ~1,400 (1,370)	1,875 1,895 1,925 1,895 NA NA NA	1,927 1,922 1,967 2,007 2,002 2,002	45 47.5 45.5 46 44.5 42.5
Acetylene Ethylene Propylene Butylene 1,3-Butadiene	NA 1,335 1,489 1,494 NA	1,002 1,202 1,337 NA 1,317	2,325 1,975 1,935 1,930 NA	2,307 2,067 2,047 2,104	157 74.5 51 43 54.5
Cyclopropane Cyclohexane Benzene Natural gas	NA NA 1,540 NA	1,377 NA 1,442 ∼1,350	NA NA NA NA	2,077 1,952 2,092 1,950	55.5 43.5 48 38.5
		OTHER COMBUST	IBLES		
Acetone Acrolein Carbon monoxide Ethanol Ethyl ether Ethyl ether Ethylene oxide Methanol Propylene oxide	NA NA 1,177 1,405 1,386 NA 811 1,258 NA	1,427 1,267 NA 1,337 1,242 712 NA 1,282	NA NA 2,100 NA NA 2,045 NA NA	1,934 2,067 2,032 NA 2,032 2,152 2,072 1,862 2,087	42.5 66 52 NA 50 89.5 326 57 67

Table 17. — Limit flame temperatures, maximum flame temperatures, and maximum burning velocities of gaseous combustibles in air at 1 atm

NA Not available

¹References 66, p. 705 (measured values) and 2, 18, and 95 (calculated values); values for near-stoichiometric mixtures. ²References 2, 25, and 95; values for near-stoichiometric mixture. ³Reference 103 (diffusional burner flame method).

⁴Reference 18 (flammability tube method); parenthetical values from reference 115.

maximum flame temperatures were obtained with nearstoichiometric mixtures. Measured values by Lewis (66, p. 628) differed only slightly (<100° C) from calculated values for common hydrocarbons in spite of the lack of adiabatic conditions in measuring such temperatures. Calculated data by Fenn (18), Simon (95), and others (2) are included in table 17. Excluding acetylene (2,325° C), the maximum flame temperatures of hydrocarbons and their derivatives fall in a narrow range, nominally between 1,900° and 2,100° C; hydrogen and carbon monoxide also fall within this temperature range. Corresponding flame temperatures under constant-volume conditions are about 20 pct higher, largely because of the heat capacity differences of the gaseous products under constant volume and constant pressure;

see equations 40 and 42. Limit flame temperatures for the constant-pressure propagation of combustible vapor-air mixtures (lower limit mixtures) are also included in table 17. It is evident that the premixed flame data by Fenn (18) and Zabetakis (115) are more conservative than the diffusional flame data by Vanpee (103). A temperature of at least 1,200° C is required by most of these combustibles, excluding acetylene (~1,000° C) and hydrogen ($\sim 800^{\circ}$ C). Lowest flame temperatures occur at the lower flammability limit that correspond to upward propagation and constant-pressure combustion. However, in the special case of hydrogen, which has a very high diffusivity coefficient, the calculated flame temperature for its lower limit in air with upward propagation (4.0 pct) would be less than 400° C. Thus, a value of 700° to 800° C is more meaningful and would be characteristic of the concentration required for downward propagation (~ 8 pct). The variation of theoretical flame temperatures and pressure rises for the adiabatic combustion of hydrogen, methane, and carbon monoxide in atmospheric air is shown in table 18 as a function of combustible concentration. Furno (22) and Burgess (5) showed that the experimental and theoretical explosion pressures come into agreement only when upward and downward propagation can occur. Knowing the flame temperature at constant volume, the explosion pressure can be estimated by use of equation 48. Thus, for a 5 pct methane-air mixture, the calculated explosion pressure is

$$P_2 = P_1 \frac{n_2}{n_1} \frac{T_2}{T_1} = 1 \times 1 \times \frac{1,810}{300} = 6.03 \text{ atm},$$
 (71)

where P is in atm, T is in K, and n_2/n_1 is 1. A maximum P2/P1 ratio of approximately 8 is typical of nearstoichiometric mixtures.

Fuel	Pressure	Flame temperature (T _f), K	
concentration, vol pct	rise (ΔP), psig	Constant volume	Constant pressure
H ₂ -air:			
4	21.4	746	628
	30.9	951	788
6 8	39.8	1,151	944
12	56.2	1,528	1,249
15	67.2	1,794	1,472
CH₄-air:			
4.5	68.5	1,688	1,382
5	74.6	1,810	1,485
6	86.0	2,040	1,683
7	96.4	2,248	1,870
8	105.4	2,425	2,043
CO-air:			
10	53.2	1,450	1,194
11	57.4	1,547	1,275
12	61.5	1,643	1,355
13	65.4	1,736	1,434
14	69.2	1,828	1,512

Table 18. — Calculated flame temperatures and pressure rises for adiabatic combustion of hydrogen, methane, and carbon monoxide in air at 25° C (5)

Burning Velocities

Like flame temperatures, burning velocity $(\boldsymbol{S}_{\boldsymbol{u}})$ of a flammable mixture is a fundamental property and depends primarily upon the temperature, pressure, and composition of the mixture. The burning velocities of limit vapor-air mixtures are only a few centimeters per second and become maximum at near-stoichiometric combustible concentrations. Figure 51 illustrates the combustible concentration effect obtained by Gibbs (25) for several paraffins in air at ambient temperature and pressure. Maximum $\mathbf{S}_{\mathbf{u}}$ values are given for these and other combustibles in table 17. The maximum values for the paraffins and most of their derivatives fall in the 40- to 50-cm/s range, whereas those for unsaturated hydrocarbons are usually greater. Values for acetylene (155 cm/s), hydrogen (325 cm/s), ethylene (75 cm/s), and ethylene oxide (90 cm/s) stand out among the fast-burning combustibles.

With the addition of inert diluents, burning velocities decrease depending upon the concentration and heat capacity of the diluent. Figure 52 (92) shows the effect of added nitrogen on both burning velocity (S_u) and flame speed (S_r) of methane-air- N_2 mixtures. Greater S_u reduction occurs with inerts of greater heat capacity than N_2 and even more so with diluents that are chemical flame inhibitors; Johnson (39) found that 2.4 pct Halon 1301 (CF₃Br) gave approximately the same S_u reduction (~85 pct) as 34 pct N_2 for CH₄-air flames at near-atmospheric pressure. Assuming nonturbulent flames, the maximum flame speeds of most combustibles at optimum fuel-air ratios can be roughly estimated by

$$\mathbf{S}_{\mathbf{f}} = \mathbf{8} \; \mathbf{S}_{\mathbf{u}},\tag{72}$$

where 8 approximates the expansion ratio (see equation 45) for combustion at 25° C and atmospheric pressure.

Burning velocities are much higher in oxygen than in air. For the paraffins, the maximum values at normal ambient conditions are about an order of magnitude greater in oxygen, as shown in figure 53 from the work by Singer (96). For such fuels as acetylene, hydrogen, and carbon monoxide, the corresponding values are about 7, 4, and 2-1/2 times greater, respectively, in oxygen than in air.

Figure 51.—Burning velocities of methane-, ethane-, propane-, and n-heptane-air mixtures at atmospheric pressure and room temperature.

These data are summarized in the comprehensive works by Lewis (66, p. 705) and Gaydon (24, p. 56), who have developed basic theories on flame propagation. With increasing temperature, the burning velocities increase (fig.

Figure 52.—Burning velocity and vertical flame speed versus added N₂ for combustion of CH₄-air-N₂ mixtures in a 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

Figure 53.—Burning velocities of methane-, ethane-, and propane-oxygen mixtures at atmospheric pressure and room temperature.

54). The following expression by Dugger (16) has been found reliable for at least paraffinic hydrocarbons in ambient air:

$$S_{\rm n} = 10 + 0.000342 \,{\rm T}^2 \tag{73}$$

where S_u is in cm/s and T is in K. Pressure effects on S_u are more difficult to predict. Data summaries (24, 66, 110) indicate that S_u decreases with increased pressure for lowburning-velocity mixtures (<50 cm/s) and increases for high-velocity mixtures (>100 cm/s); intermediate mixtures display little effect of pressure.

Detonation Velocities

Detonations involve supersonic propagation rates and are more likely to occur in oxygen than in air. Figure 55 gives the detonation velocities obtained by Morrison (74) for vapors of various paraffins in oxygen as a function of combustible concentration. Maximum velocities are 2,500 to 2,700 m/s for these combustibles. For acetylene, hydrogen, and ammonia, the maximum values are closer to 3,000 m/s or more (66, p. 524). In all cases, the maximum values occur at combustible concentrations greater than stoichiometric.

Many combustibles can also undergo detonation in air, although this requires much higher initiation energies, higher pressures, or conditions that promote turbulent combustion and pressure piling. Propagations in long tunnels, especially with irregular wall surfaces, offer favorable conditions for detonations. Although detonations of the paraffins are obtained most readily with the higher members, even methane-air mixtures have been found detonable in recent work. Table 19 lists the detonation velocities obtained by Burgess (6) in an air atmosphere for a few hydrocarbon fuels; data for methane and hydrogen are taken from references 46 and 66, p. 524. Although the velocities in air are lower than in oxygen, they are all above 1,500 m/s over the given range of concentrations, below or above which they decrease as the detonability limits are approached; detonability limits normally fall within flammability limits but can be wider for some combustibles with the use of large booster (initiator) charges. In addition to the initiator strength, the length and diameter (or l/d ratio) of the explosion container can be critical for the development of a detonation at a given pressure; detailed discussions of these factors are given in references 66 and 110.

Table 19. — Detonation velocities of several combustibles in air at 25° C and atmosphere pressure

Combustible	Combustible concentration, vol pct	Initiator	Detonation velocity, m/s
Acetylene Ethylene oxide .	19-77 10-18 20.5-22	10 g PETN 10 g tetryl 100 g tetryl	1,950-2,100 1,890-1,910 2,300-2,350
Hydrogen Methane Propane MAPP gas ²	~30 7-13 4-7 6-8	NA 50-70 g Amatol . 10 g PETN 10 g PETN	1,975 1,550-1,600 1,800-1,890 1,800-1,850

NA Not available

¹Based upon data in references 6, 46, and 66, p. 524. ²Methylacetylene, propadiene, and propane of near-equal fractions.

Additional detonation velocities for various combustible mixtures are listed in table 20. Although these data were compiled by Laffitte (61) almost 50 years ago, they are in fair to good agreement with more recent data, including those given in figure 55 for the paraffins. Where data

Figure 54.—Effect of temperature on burning velocities of four paraffins in air at atmospheric pressure.

Figure 55 .--- Detonation velocities of methane-, ethane-, propane-, butane-, and hexane-oxygen mixtures at atmospheric pressure.

discrepancies occur, the values in table 20 are on the low side. It is worth noting that the detonation velocities of benzene and ethyl alcohol at stoichiometric oxygen concentrations are comparable to those of most hydrocarbons, excluding acetylene. Other combustibles such as carbon monoxide and carbon disulfide have relatively low detonation velocities in oxygen even at stoichiometric concentrations; the value for carbon monoxide (1264 m/s) is near marginal for a true detonation. Because of the magnitude of detonation velocities, explosion protection systems designed to protect against deflagrations (subsonic) can hardly be expected to be effective against detonations (supersonic).

Mixture	Detonation velocity, m/s	Mixture	Detonation velocity, m/s
$\begin{array}{c} 2H_2+O_2\\ 2\ CO+O_2\\ CS_2+3\ O_2\\ CH_4+2\ O_2\\ CH_4+2\ O_2\\ CH_4+3\ O_2\\ C_2H_6+3.5\ O_2\\ C_2H_4+3\ O_2\\ C_2H_4+3\ O_2\\ C_2H_4+2\ O_2+8\ N_2\\ C_2H_2+1.5\ O_2\\ C_2H_2+1.5$	2,821 1,264 1,800 2,146 1,880 2,363 2,209 1,734 2,716 2,414	$ \begin{array}{c} C_{3}H_{8}+3\ O_{2} \\ C_{3}H_{8}+6\ O_{2} \\ i-C_{4}H_{10}+4\ O_{2} \\ i-C_{4}H_{10}+4\ O_{2} \\ C_{5}H_{12}+8\ O_{2} \\ C_{5}H_{12}+8\ O_{2}+24\ N_{2} \\ C_{6}H_{6}+7.5\ O_{2} \\ C_{6}H_{6}+22.5\ O_{2} \\ C_{2}H_{5}OH+3\ O_{2} \\ C_{2}H_{5}OH+3\ O_{2}+12\ N_{2} \\ \end{array} $	2,600 2,280 2,613 2,270 2,371 1,680 2,206 1,658 2,356 1,690

Table 20. — Detonation velocities of various combustible mixtures at 25° C and atmospheric pressure (61)

Liquid Burning Rates

Whereas burning velocities of combustible gases are relevant to explosion hazard evaluations, burning rates of combustible liquids—including liquefied gases—are important in assessing their fire hazards. The burning rate of a liquid pool is normally defined as a linear regression rate but can also be expressed as a mass or molar consumption rate per unit area. Data uncertainties are greatest for cryogenic fuels, which represent the extreme in vaporization rates.

Burgess (7) defined the liquid regression rates of various combustibles in ambient air as a function of pool diameter (fig. 56). With increasing pool diameter, the regression rates increase because of increased radiation feedback to the burning pool, resulting in greater vaporization and reaction. A pool diameter of about 1 m is required before the rates become maximum and level off for most of the fuels. Burgess gives the following expression for predicting the maximum burning rates:

$$\mathbf{v}_{\infty} = 0.0076 \ \Delta \mathbf{H}_{c} / \Delta \mathbf{H}_{v}, \tag{74}$$

where v_{∞} is the extrapolated rate at infinite pool diameter (cm/min) and $\Delta H_c/\Delta H_v$ is the ratio of net heat of combustion and sensible heat of vaporization (ΔH_v) . For most hydrocarbon fuels, $\Delta H_c/\Delta H_v$ is about 100. This equation has been found to underestimate the burning rates of liquefied natural gas (LNG) in full-scale tests with 6-m-diam pools.

Table 21 (7) lists the calculated or experimental v_{∞} values for various liquid fuels and the corresponding fractions of thermal energy that may be radiated in largediameter pool fires. For hydrocarbon flames, the fraction of heat radiated to the surroundings can be expected to be between 25 and 40 pct, as compared to only 17 pct for methanol flames. Note that the burning rate of LNG is roughly comparable to that of butane, hexane, and gasoline. (See also figure 56.) The data for liquid hydrogen, which has by far the highest burning rate (1.4 cm/min), indicate that only about 25 pct of the thermal energy is radiated; however, these data are uncertain because of the limited range of testing. The special hazards associated with liquid hydrogen fires and explosions are summarized by Zabetakis (111).

Table 21. — Burning rates and radiative characteristics of burning liquid pools (7)

	Linear burning	Thermal output					
Combustible	rates ¹ $(v_{\infty}),$	Total,	Radiative	Radiative			
	cm/min	kcal/(cm²·min)	kcal/(cm ² ·min)	pct			
n-Butane n-Hexane Ethylene Benzene Xylene Gasoline LNG Methanol Hydrogen UDMH	0.79 .73 NA .60 .58 NA (~0.8) .66 (~0.9) .17 1.40 .38	5.1 5.1 NA 5.0 NA 3.2 .64 2.8 2.2	1.4 2.0 NA 1.8 NA NA .8 .11 .7 .6	28 39 38 35 NA 25 17 25 27			

NA Not available

¹Computed rates for infinite diameter; parenthetical values from tests with 3-m diam pools.

Figure 56.—Linear burning rates of combustible liquids as a function of pool diameter at ambient temperature.

PROPERTIES OF GASOLINES, JET FUELS, HYDRAULIC FLUIDS, AND LUBRICANTS

This section summarizes the combustion properties of composite liquid fuels, hydraulic fluids, and lubricating oils. Most of the data are derived from Bureau studies sponsored by the Air Force. Table 22 gives some of the common physical and combustion properties of various gasolines, diesels, and jet fuels. Table 23 gives corresponding combustion data for hydraulic fluids and lubricating oils. The flashpoints, minimum AIT's, and limits of flammability were determined by the same or modified methods previously described for the neat organic and inorganic combustibles.

	Mol Sp gr		BP	C _{st} ²	ΔH _c		Flash-	Minimum	Flammable limits	
Fuel	wt (av)	(water = 1)	(90 pct),	(in air),	(net, 2	25° C)	point,	AIT,	L ₂₅ ,	U ₂₅ ,
		(mator /)	°C	vol pct	Btu/lb	cal/g	°C	°C	vol pct	vol pct
JP-1	151	0.81	210	1.3	18,480	10,265	46	230	NA	NA
JP-3	112	.76	227	(2.6)	18,710	10,395	NA	240	1.4	7.9
JP-4	125	.78	199	(2.4)	18,710	10,395	- 18	240	1.3 ³ .6	8.2
JP-5	169	.83	238	`1.1´	18,440	10,245	66	225	³ .6	³ 4.5
JP-6	147	.84	260	(1.3)	18.620	10,345	38	230	³ .7	³ 4.8
JP-8	164	.8	238	ŇÁ	18,400	10,225	46	225	NA	NA
Jet A	NA	.8	249	NA	18,590	10,328	47	225	(4)	(4)
Jet B	NA	.8	199	NA	18,780	10,435	-7 to -18	230	(5)	(5)
Kerosene	NA	.8	254	(1.3)	18,600	10,335	52	230	³ .7	³ 4.8
Gasoline 100/130	NA	.7	116	(2.4)	19,000	10,555	45	440	1.3	7.1
Gasoline 115/145	NA	.7	120	(2.2)	19,000	10,555	- 45	470	1.2	7.1
Diesel fuel (60 cetane)	NA	.8	~325	ŇÁ	NA	NA	40 to 55	225	NA	NA

Table 22. — Summary of combustion properties of gasolines, diesels, and jet fuels: Gaseous combustion in air at atmospheric pressure¹

NA Not available. ¹Flammability data from references 41-42, 47, and 114; physical property values are average or typical. ²Values in parentheses calculated by $C_{st} = L_{25}/0.55$. ³Values at 100° to 150° C. ⁴Similar to JP-5. ⁵Similar to JP-4.

Table 23. — Summary of combustion properties of hydraulic fluids and lubricating oils¹

Fluid	Sp gr (water = 1)	Flash- point, °C	Fire point, °C	Minimum AIT, °C
	MINER	AL OILS		
MIL-H-5606 (oii)	0.9 .86 .88 .92 NA	90 232 196 199 NA	107 NA 221 NA NA	225 350 370 370 >315
	GLY	COLS		
ropylene glycol oughto-Safe 271 (water-glycol) con 50 HB-260 (polyglycol)	NA 1.05 1.04	110 NA 235	113 NA 260	445 410 395
	PHOSPHA	TE ESTERS		
Cellulube 220 (ester base) Skydrol (ester base) Ydraul 150 (ester base) Ydraul AC (ester base) houghto-Safe 1055 (aryl ester) ricresyl phosphate	1.15 NA 1.13 1.35 1.15 1.17	235 182 193 232 263 243	352 243 243 396 360 NA	560 >700 525 595 550 600
	POLYOL AND DIB	ASIC ACID ESTERS		
AIL-L-7808 (acid diester) AIL-L-9236 (polyol ester) ALO-54-581 (acid diester) Plexol 201 (acid diester)	NA NA NA .91	225 221 224 216	238 246 246 232	390 390 390 ~380
	SILA	NES		
LO-56-280 (diphenyl-dodecyl)	NA NA	291 279	329 302	415 400
	SILICATES AN	ND SILICONES		• •
MLO-54-540 (silicate) MLO-54-856 (silicate) Dronite 8200 (silicate) /ersilube F-50 (silicone) Dow Corning 400 (siloxane) Dow Corning 500 (siloxane) Dow Corning 500 (siloxane) Dow Corning 550 (silicone)	NA NA .93 1.05 NA ≤.95 1.07	163 157 196 288 124 243 316	221 227 227 338 138 NA NA	375 380 380 480 320 480 NA
C	HLORINATED SILICONE	S AND HYDROCARBONS		
ILO-53-446 (silicone) rachlor 1248 (diphenyl) ydraul A-200 (hydrocarbon)	NA 1.41 1.42	304 193 177	377 >315 360	420 ~640 650
	AROMATI	CETHERS		
P4E (polyphenoxy) S-124 (polyphenyl) CS-293	NA 1.20 1.19	293 288 220	349 349 270	610 600 490
· · · · · · · · · · · · · · · · · · ·	MISCELLANE	OUS FLUIDS		
AE No. 10 lube oil AE No. 60 lube oil inseed oil NA Not available.	<1.0 <1.0 .95	171 249 224	193 327 279	380 380 440

NA Not available. ¹Based upon data in references 47 and 52 and vendors' literature.

VAPOR PRESSURES AND FLASHPOINTS

Jet aircraft fuels can be classified as low- or highvolatility petroleum mixtures. The low-volatility grades are typically kerosenes, such as JP-1, JP-5, JP-6, and JP-8, which have a 10 pct boiling point of at least 177° C (350° F); commercial Jet A fuel also falls in this category. The high-volatility grades are blends of kerosene and highoctane aviation gasoline, such as JP-3 and JP-4, which have a 10 pct boiling point of about 110° C (230° F) or lower; commercial Jet B fuel and motor gasolines also fall in this category. In practice, the compositions of the different grades of fuels can vary with the sources and seasonal period of production. Their vapor compositions will necessarily depend upon the fractional distillation of the lighter ends that comprise such fuels.

Reid vapor pressure curves and flashpoint data are given for representative grades of aviation gasoline and five jet fuels in figure 57 (47). The Reid vapor pressures are normally determined at 38° C (100° F) and are slightly lower than true vapor pressures because the vapor-liquid ratio is not ideal in Reid determinations. The flashpoints are at least 38° C $(100^\circ\mbox{ F})$ for the low-volatility fuels and about $-18^{\circ} C (0^{\circ} F)$ or less for high-volatility fuels. Diesel fuels fall in the flashpoint range of the low-volatility fuels. Thus, the vapors of the low-volatility fuels, including Jet A, which is used on most commercial passenger aircraft, will not form homogeneous flammable vapor-air mixtures at a normal ambient temperature of 20° C (68° F) and atmospheric pressure. However, flammable mists can form below the flashpoints of the liquids; see figure 6 and discussion. Assuming ideal behavior, the lower limit fuel concentrations at the flashpoint temperatures can be calculated

Figure 57.—Vapor pressure (Reid)-temperature curves and flashpoints for aviation gas and five jet fuels.

from the vapor pressure data and equation 4. These may be compared to the experimental values given in table 22, which generally represent the limits of the completely vaporized fuels.

Both flashpoint and firepoint data are listed in table 23 for the hydraulic fluids and lubricating oils. The firepoint is the temperature at which flame can be sustained after the vapors have been ignited; differences between flashpoints and firepoints tend to be great for combustible liquids of low volatility and high fire resistance (high AIT). The flashpoints of hydraulic fluids and lubricating fluids are much higher than those of gasolines and jet fuels. Flashpoints of about 200° C or more are typical of the highly fire-resistant fluids for each chemical class of fluids. In the case of mineral-oil-based fluids, their flashpoints will be largely determined by the paraffinic and naphthenic constituents that are present; MIL-H-5606 oil, which has a flashpoint of only 90° C, is largely paraffinic and presents the greatest flammability hazard among these fluids. In the case of water-glycols, flashpoints will not exist until the excessive water has been removed. It is evident from these data that a high-temperature environment is required to realize a flashpoint hazard with the vapors of these fluids at normal pressure conditions.

FLAMMABILITY LIMITS IN AIR

Limits of flammability of completely vaporized fuel blends can differ from those obtained only with their lighter fractions, as in flashpoint determinations, since the limits vary inversely with the molecular weights of the combustible vapors. Data reported here are mainly those obtained with all fractions of the composite fuel present. As with flashpoint, the flammability limits of the gasolines and jet fuels in table 22 fall into two separate groups. The fuels of high volatility have a flammability range of approximately 1.3 (L_{25}) to 8 (U_{25}) vol pct or less in normal ambient air; those of low volatility have a limiting range of approximately 0.6 to 5 vol pct at ambient temperatures (100° or 150° C) above their flashpoints. These limits are comparable to those found for high-molecular-weight paraffins (>C₄) and the benzenes or naphthalenes (appendix A).

Bureau investigators have determined the flammability limits of aircraft-type fuels in air under various environmental conditions. Their data on the effects of mixture temperature and pressure for various gasolines and jet fuels are summarized in tables 24 and 25, respectively. Table 24 shows that the flammability limits of such fuel vapor-air mixtures on a weight basis vary only slightly with a moderate temperature increase; the lower limits at 25° C were at least 48 mg/L and the upper limits were at

Table 24. — Effect of temperature on flammability limits of gasolines and jet fuels in air at atmospheric pressure¹

	Flammability limits, mg/L ²				
Fuel	25	°C	150° C		
	Lower	Upper	Lower	Upper	
Av gas 100/130 Av gas 115/145 JP-1	56 56 NA	350 330 NA	53 48 48	348 337 380	
JP-3 JP-4 JP-6	61 48 NA	370 330 NA	48 47 ³ 46	387 330 290	

NA Not available

¹Based upon data in references 41, 57, and 114. ²Mg fuel per liter of air at 0° C and at 1 atm. ³Data at 100° C.

44

Fuel		Flammability limits, vol pct (in air)	Minimum oxygen, vol pct		
Fuei	Press, atm	Lower	Upper	Air-CO ₂	Air-N ₂
Motor gasolines ²	1	1.4	7.6	14.9	12.1
Av gas 100/130	i	1.3	7.15	14.8	11.9
3	.53	1.25	6.75	14.1	11.2
	.27	1.3	6.85	14.1	11.6
	.13	1.4	7.6	14.8	11.9
v gas 115/145	1	1.2	7.1	14.6	11.9
-	.53	1.25	6.9	14.6	11.6
	.27	1.25	7.0	14.8	11.6
	.13	1.5	7.85	14.9	12.0
IP-1	1	NA	NA	³ 13.9	12.0 ³ 10.5
P-3	1	1.45	7.95	14.3	11.8
P-4	1	1.3	8.2	14.3(³ 13.8)	11.5 (³ 10.9)
	.5	1.3	7.85	14.5	11.4
	.27	1.35	8.05	14.6	11.7
	.13	1.35	8.1	14.9	12.4

Table 25. — Effect of pressure on flammability limits and minimum oxygen requirements for propagation of gasolines and jet fuels in air and air-inert mixtures at 25° C

NA Not available.

¹Based upon data in references 11, 41, and 42.

²73-100 octane ratings. ³Data at 150° C.

least 330 mg/L, which are consistent for fuels containing hydrocarbons. Conversion of weight concentration limits to volume percent can be made by equation 10; a fuel molecular weight of about 100 or more is a reasonable assumption for the vapors of these combustibles. Equations 63 and 64 may be used to estimate the volume concentration limits of these fuels at other temperatures. However, the AIT limitation on upper limit predictions cannot be neglected, as shown in figure 35 for the JP-6 fuel.

Pressure effects on the flammability limits of aircraft fuel vapor-air mixtures are similar to those observed for the neat hydrocarbons. Jones data (table 25) at 25° C showed little effect of reduced pressure down to nearly 1/10 atm or a pressure altitude of about 15 km (50,000 ft). Below such pressures, the ignition energy source becomes a serious limitation on flame propagation. At elevated pressures, the limits can be assumed to be widened similarly to that shown in figure 36 for hydrocarbon combustibles.

Meager flammability limit data are available for hydraulic fluids and lubricating oils. Although these fluids require rather high temperatures to form flammable vaporair mixtures, their flammability limits can differ widely, depending upon the thermal stability and combustibility of the organic compounds that comprise the fluids. For example, the Oronite 8515 hydraulic fluid (silicate ester) is reported to have a lower limit of 64 mg/L, compared to 45 mg/L for the MIL-L-7808 engine oil (dibasic acid ester) in ambient air at 260° C (52). The lower limits of these fluids in air may be roughly estimated by use of equations 9 and 60 if the chemical formula of the fluid is known.

FLAMMABILITY LIMITS IN OTHER ATMOSPHERES

Jones and Zabetakis (41-42, 114) have published complete flammability diagrams for the vapors of various gasolines and jet fuels in air atmospheres diluted with nitrogen or carbon dioxide. Such flammability diagrams are shown in figure 58 for the highly volatile JP-4 fuel and in figure 7 for 100/130 grade aviation gasoline at 25° C and atmospheric pressure. A flammability diagram is also shown in figure 59 for the low-volatile JP-1 fuel at 150° C on a weight basis; the corresponding diagram for JP-4 did not differ greatly. Consistent with the data for hydrocarbons, the flammability limits are progressively narrowed with increased inert and more effectively with carbon dioxide than with nitrogen. For the fuels listed in table 25, the minimum oxygen concentrations required for flame propagation are 14 to 15 pct for air-CO₂ mixtures and 11.5 to 12 pct for air-N₂ mixtures at 25° C. Data in table 25 also indicate that the minimum oxygen values are lower at 150° C and are only slightly greater, if at all, at subatmospheric pressures to 0.13 atm. Such data are especially useful in evaluating the explosion hazard and inerting requirements of aircraft fuels in flight applications.

Inerting requirements for gasoline vapor-air mixtures are greatly reduced by the use of halogenated-type materials. The flammability diagram of figure 60 compares the effectiveness of various inerting agents for motor-type

Figure 58.—Limits of flammability of JP-4 vapor-air-inert gas (CO₂ or N₂) mixtures at 25° C and 1 atm.

Figure 59.—Limits of flammability of JP-1 vapor-air-inert gas (CO₂ or N₂) mixtures at 150° C and 1 atm.

Figure 60.—Effected of various inerting agents on limits of flamourbility of gasoline vapor-air mixtures at 25° C and 1 atm.

gasolines (11); this figure to presents the averaged data for motor gasolines of 73, 92, and 100 octane rating $M_{\rm c}$ innucoxygen values are 11.6 pct with nitrogen, 14.4 p = th carbon dioxide, and at least 17.2 pct with the halogenated methanes. Water vapor would be expected to be less effective than carbon dioxide and more effective than nitrogen or the evaluat gas (85 pct N₂ + 15 pct CO₂). Other ing data for pasoline, kerosen, and JP-4 fuels are compared in table 12 with nitrogen, carbon dioxide. Halon 1211 (CF₂ClBr), and Halon 1301 (CF₃Br) as the inerting agents. As previously mentioned, the inerting requirements for premixed flames are not as severe as the extinguishing requirements for fully established fires of the same fuels.

IGNITION REQUIREMENTS

Ignition Energies

Few data are available on the precise determination of the minimum spark ignition energies of gasoline-type fuels. Nevertheless, since such fuels are comprised of hydrocarbons, the MIE values of their optimum vapor-air mixtures can be safely assumed to be about 0.2 to 0.3 mJ at 25° C and atmospheric pressure; note data of table 13. If the fuel is in the form of a fine spray or mist, the MIE will tend to be of the order of several millijoules, depending upon temperature (48). At temperatures greater than the flashpoint of the fuel, the spark ignition energies of the fuel sprays become drastically reduced and closer to that of the fuel vapor.

Ignition Temperatures

Autoignition temperatures of composite combustible liquids have been determined in heated vessels by the same procedures previously described for neat organic combustibles. As noted in table 22, minimum AIT's in quiescent air at atmospheric pressure are between 225° and 250° C for all the jet fuels and diesel fuels, whereas those for aviation gasolines are closer to 450° C. Although these combustibles contain a wide variety of hydrocarbons, their AIT variation may be compared to that observed for normal octane (220° C) and isooctane (415° C) or ethylcyclohexane (260° C) and ethylbenzene (430° C). The effect of chemical structure on AIT is also evident in comparing the data for the hydraulic fluids and lubricants (table 23). Those classified as aromatic ethers, phosphate esters, and chlorinated hydrocarbons have the highest AIT's, $\sim 500^{\circ}$ to 700° C; mineral oils have the lowest values, ~225° to 370° C, and depend greatly upon their paraffinic and naphthenic content; and glycols, silanes, silicates, ordinary silicones, and dibasic acid esters have intermediate values, $\sim 350^{\circ}$ to 475° C. Generally, the autoignition hazard for each chemical class is increased with the addition of aliphatic groups as opposed to aromatic groups.

The AIT's of aircraft liquid fuels, lubricants, and hydraulic fluids have been investigated by Zabetakis and coworkers under various environmental conditions. As with other combustibles, the minimum AIT's of the aircraft combustibles generally increase with decreasing pressure and oxygen concentration; such data are summarized in table 26 (53, 113-114, 116) for ignitions in air and oxygen.

Table 26 ---- Effect of pressure and sigen concentration on the minimum AIT's of airs abustible fluids in oxygen-nitrogen aurospheres¹

	Minimum AIT, ° C					
Combustible			Oxygen			
	1/4 atm	1/2 atm	1 atm	1 atm		
		UELS				
Kerosene Av gas 100/130 Av gas 115/145 JP-1 JP-3 JP-4	NA NA NA NA NA S71 012	NA 553 573 462 449 444 496	230 440 470 228 238 242 232	215 315 NA NA NA 222		
HYDF	RAULIC FLUI	DS AND LUB	RICANTS			
1-5606 53-446 MLO-54-540 MLO-54-681 MLO-54-645 MLO-54-856 MLO-520 ML-1-7000	56 442 510 548 520 516 522 NA	438 424 448 480 452 460 450 NA	225 419 373 390 380 380 380 380 402	408 230 274 256 266 244 270		

NA Not available.

¹Based upon data in references 53, 113-114, and 116.

The effect of reduced pressure on AIT's in air is greatest for the aircraft combustibles having the lowest AIT's at atmospheric pressure. Conversely, the effect of increased oxygen concentration is greatest for the combustibles of high AIT in normal atmospheric air. An exception is the MLO-53-446 chlorinated silicone hydraulic fluid, which was not sensitive to the above pressure and oxygen variations. Figure 61 (116) shows the oxygen effect on AIT for seven hydraulic fluids. Kuchta (48) found that the oxygen and pressure effects on AIT for jet fuels and lubricants or hydraulic fluids correlate well with the oxygen partial pressure of the atmosphere. Such a correlation is shown in figure 62 (49) for the JP-6 fuel in various oxygen-containing

Figure 61.—Minimum autoignition temperatures of seven hydraulic fluids in oxygen-nitrogen mixtures at atmospheric pressure (glass vessels).

Figure 62.—Correlation of minimum autoignition temperatures of JP-6 fuel-oxygen-nitrogen mixtures with oxygen partial pressure at various mixture pressures.

atmospheres at reduced and moderately elevated pressure. Below an oxygen partial pressure of about 0.2 atm (\sim 3 psia), the AIT can be expected to increase sharply for organic fuels or fluids of this type.

At highly elevated pressures, the AIT's of aircraft fluids are noticeably lower than at 1 atm but tend to become constant. In figure 63 (110), the AIT's of phosphate ester, mineral oil, and water-glycol fluids in air are reduced by up to one-half with a pressure increase to about 100 atm; above this pressure, the AIT's varied only slightly. Similar pressure effects were observed for the MIL-L-7808, Mobil DTE-103, and Houghto-Safe-1055 lubricants in autoignitions at pressures to 1000 atmospheres (48); their AIT's (interpolated values) were approximately 200°, 230°, and 275° C, respectively, at 150 atm, above which they leveled off. The compression ignition hazard of these fluids in air can be assessed from such AIT data and adiabatic compression temperature data (table 5) at the pressures of interest.

All of the above-cited AIT data were obtained under static conditions with maximum contact times with the heated surface of the vessel. The much higher AIT's that can result with shorter contact times (ignition delays) are illustrated in figure 48; note data for JP-6, kerosene, and the petroleum fractions. A similar plot obtained for the JP-6 fuel in heated air streams at various pressures is shown in figure 64 (57); data in static air are also included. The AIT (T, K) variation with ignition delay (τ , ms) under flow conditions at 2 atm is given by

JP-6 (370-600° C)
$$\ln \tau = 5800/RT + 0.44,$$
 (74)

where R is in cal/(K·mol); in these experiments, the air velocity was between 6 and 50 m/s in a 5-cm-diam tube. With increasing pressure, the ignition delays at a given temperature decrease and, therefore, increase the autoignition hazard.

With small heated surfaces such as wires or rods, the ignition temperatures are also higher than heated vessel AIT's and follow the data trends displayed by JP-6 jet fuel and MIL-L-7808 engine oil in table 16 and figure 49 (50). The wire ignition temperatures (T, °C) of such aircraft combustibles in air under near-stagnant conditions are given by the following expressions as a function of the heat source surface area (A, cm²):

JP-6	$T = 985 - 112 \ln A; A < 80 cm^2$	(75)
------	------------------------------------	------

MIL-L-7808 T =
$$752 - 64 \ln A$$
; A < 190 cm² (76)

or in terms of radius of the heat source (r, cm):

JP-6	$\ln r = 12,000/T - 12.9; r < 0.7 cm$	(77)
MIL-L-7808	$\ln r = 14,000/T - 17.7; r < 1.3 cm$	(78)

where T is in K. These data indicate the importance of the heat source dimensions in comparing ignition temperatures. So-called hot manifold or hotplate ignition temperatures are also higher than vessel AIT's, depending upon the size of the heated surface and the flow or convective conditions that determine the contact time. For jet fuels and the MIL-H-5606 fluid, the hotplate-type ignition temperatures tend to be about double their vessel AIT's in quiescent air. Reference 48 summarizes these and other ignition properties of jet fuels and various aircraft fluids.

Ignitions of fuels and lubricants by jets of hot gases are not common but can occur as a result of seal failures or pinhole leaks in pressurized systems. They are also of interest in designing flame arrestors and explosionproof equipment. Ignition temperature data obtained with hot air jets for the JP-6 fuel and MIL-L-7808 oil (51) have been replotted in figure 65, together with wire and vessel ignition temperatures, as a function of heat source diameters. As with neat hydrocarbons, the highest ignition temperatures occur with the hot air jets, depending upon their diameter; see also table 16. The fact that vessel AIT's become greater than wire ignition temperatures at small heat source diameters is due to increased wall quenching.

Figure 63.—Minimum autoignition temperatures of phosphate ester, mineral oil, and water-glycol hydraulic fluids or lubricants in air at elevated pressures.

Figure 64.—Autoignition temperatures and corresponding ignition delays for JP-6 fuel under static and dynamic conditions in air at various pressures.

FLAME TEMPERATURES AND BURNING RATES

Flame Temperatures

Maximum flame temperatures of the optimum vaporair mixtures of petroleum-derivable combustibles can be assumed to be comparable to those of the neat hydrocarbons, $1,900^{\circ}$ to $2,000^{\circ}$ C (table 17). Similarly, their limit

Figure 65.—Variation of hot gas (air) and hot surface ignition temperatures with reciprocal diameter of heat source for JP-6 fuel and MIL-L-7808 oil vapor-air mixtures at atmospheric pressure.

Figure 66.—Flame spread rate versus liquid fuel temperature for Jet A- and Jet B-type fuels in air at atmospheric pressure.

flame temperatures should be in the 1,200° to 1,300° C range. Such flame temperature estimates are fairly reliable for gasolines, jet fuels, and the mineral oil hydraulic fluids.

Burning Rates

The liquid burning rates (regression rates) of petroleum-based fuels are necessarily dependent upon the size of the burning pool. At an infinite pool diameter, the rate for a gasoline-type fuel should be about 0.6 to 0.8 cm/min (table 21). For smaller pools, the rates for xylene in figure 56 are most relevant for the gasoline or jet fuels. This figure also indicates that higher rates will occur for fuels containing higher concentrations of low-molecularweight paraffins. The burning rates may be estimated by equation 74.

Flame spread rates of liquid fuels are strongly dependent upon their volatility or flashpoint. Figure 66 (47) shows the reported variation of flame spread rate (horizontal) with fuel temperature for Jet A and Jet B-type fuels. It is important to note that the flame spread rates increase drastically when the fuel temperature is above the flashpoint of the given fuel. Also, the maximum rates are of the order of flame speeds (~10 ft/s) encountered with premixed hydrocarbon vapor-air systems. The indicated maximum rates can be realized in real situations when the liquid fuel is heated substantially above its flashpoint, or when it is finely dispersed to produce flash vaporization, as in an aircraft crash situation. The rates are also enhanced when the fuel is in the form of a thin liquid film. Much higher rates than those in figure 66 are possible under windy conditions.

PROPERTIES OF METAL AND NONMETAL ELEMENTS

Physical properties of elemental metals and nonmetals are given in table 27 together with ignition temperature and explosion limit (flammability limit) data for the combustion of their dusts. The dust combustion data were taken from the comprehensive compilations by Nagy, Jacobson, and other Bureau coworkers but were limited primarily to the elemental substances of relatively high purity. Their data for various combustibles are conveniently summarized in an NFPA handbook (72).

FLAMMABILITY LIMITS IN AIR

Lower explosion limits of the dusts in table 27 (36, 76) were determined in normal ambient air by the widely known Hartmann apparatus (13), equipped with a 7-cmdiam explosion tube (1.23 L) and a high-voltage spark source (~ 24 W) for ignition. A dust particle size of less than 74 µm (minus 200 mesh) was used to obtain most of these limits. These data show that a dust explosion hazard may arise with a wide variety of metallic or nonmetallic elements, including aluminum, tin, iron, zinc, and silicon. Aluminum, magnesium, titanium, and sulfur are among the widely used substances having a relatively low dust explosion limit, less than 0.1 g/L or 0.1 oz/ft³. In comparison, the dusts of such elemental substances as carbon and copper could not be ignited under the given conditions. Because of apparatus limitations, including the lack of uniform dust dispersions, the reported limits cannot be

	At	Density	MP,	ΔH _c ² (25° C),	Ignition te	mperature ³	1
Combustible	wt	Density, g/cm ³	° C	(25° Č), kcal/mol	Layer, °C	Cloud, °C	Lower explosion ³ limit (L ₂₅), g/L
Aluminum, atomized	26.98	2.70	660	199.5 (Al ₂ O ₃)	490	670	0.075
Antimony (96 pct), milled	121.75	6.68	631	83.3 (Sb ₂ O ₃)	330	420	.420
Barium	137.34	3.51	725	133.0 (BaO)	NA	NA	NA
Boron (85 pct), amorphous	10.82	2.32	2,300	151.0 (B ₂ O ₃)	400	470	<.100
Cadmium (98 pct), atomized	112.40	8.64	321	60.9 (CđO)	250	570	NI
Carbon, lampblack	12.01	2.27	>3.500	94.1 (CO ₂)	NA	730	NI
Chromium (97 pct), milled	52.00	7.20	1,857	134.9 (Cr ₂ Ó ₃)	400	580	.230
Cobalt (97.8 pct), milled	58.93	8.90	1,495	57.2 (CoO)	370	760	NI
Copper (99.5 pct), electrolytic	63.55	8.92	1.083	37.1 (CuO)	NA	700	NI
ron (98 pct)	55.85	7.86	1,535	98.3 (Fe ₂ O ₃)	290	320	.120
_ead (99 pct), atomized	207.20	11.34	328	52.4 (PbO)	270	710	NI
ithium	6.94	.53	181	71.2 (Li ₂ O)	ŇĂ	NĂ	NÄ
Agnesium, milled	24.31	1.74	649	143.8 (MgO)	430	560	.030
Manganese	54.94	7.20	1,244	124.5 (MnO ₂)	240	460	.125
Nolybdenum (99.8 pct)	95.94	10.20	2,617	180.3 (MoO ₃)	360	720	NI
lickel	58.71	8.90	1,453	58.4 (NiO)	NA	NĂ	NĂ
Phosphorus, white	30.97	1.83	44	180.0 (P ₂ O ₅)	NA	NA	NA
Potassium	39.10	.86	64	43.2 (K ₂ O)	NA NA	NA	NA
Silicon (96 pct), milled	28.06	2.40	1,420	205.4 (SiO ₂)	950	780	.160
Sodium	22.99	.97	98	49.7 (Na ₂ O)	NA	NA NA	NA
Sulfur	32.06	~2.0	113	71.0 (SO ₂)	220	190	.035
antalum	180.95	>14.0	300	$250.0 (Ta_2O_5)$	300	630	<.200
horium (1.2 pct O_2)	232.04	11.70	1,750	292.0 (ThO ₂)	280	270	.075
in (96 pct), atomized	118.69	>5.0	232	138.8 (SnO ₂)	430	630	.190
itanium (99 pct)	47.90	4.5	1,660		510	330	.045
ungsten	183.85	19.35	3.410	183.5 (Ti ₂ O ₃) 136.3 (WO ₂)	430	NA NA	.045 NI
Iranium	238.03	19.05	1,132		100	20	.060
anadium (86.4 pct)	238.03	5.96		250.0 (UO ₂)	490	500	.060
(inc (97 pct)	50.94 65.38	5.96	1,890 420	$145.0(V_2O_3)$		690	.220
Zirconium (97 pct)	91.22	6.49	1.852	83.2 (ZnO)	540	190	
	91.22	0.49	1,652	258.2 (ZrO ₂)	20	190	.045

Table 27. — Summary of combustion properties of elemental metal and nonmetal dusts: Dust combustion in air at atmospheric pressure

NA Not available. NI No ignition with electric spark source.

¹Flammability data from references 36 and 76. ²Values calculated from ΔH_{f} (25° C) data of reference 105. ³Combustible particle size less than 74 μ m (–200 mesh); g/L equates to oz/ft³.

assumed as absolute. Sample purity itself can have a large effect on these limits.

The ignition and explosion parameters of dusts are strongly dependent upon their particle size. Figure 67(36)shows the effect of average particle diameter on the lower explosion limit and other parameters for atomized aluminum-air mixtures in the Hartmann apparatus; the minus 200-mesh data in table 27 would correspond to those for a 30-µm average particle diameter. Note that the explosion limit increases greatly when the average particle diameter is greater than approximately 50 µm. Also, the maximum explosion pressures are not any greater than those previously cited for organic combustible vapor-air mixtures. However, dusts do not necessarily have welldefined upper flammability limits and are capable of high explosion pressures even with highly fuel-rich mixtures. Data by the above authors indicate that, for most metals, dust concentrations of 1 to 2 g/L (1 to 2 oz/ft³) are required to achieve near-maximum explosion pressures in an air atmosphere. With increasing ignition energies, the range of possible explosive concentrations will tend to widen.

FLAMMABILITY LIMITS IN OTHER ATMOSPHERES

Explosion limits of the elemental dusts are narrowed by the reduction of oxygen concentration, addition of inert gas, or addition of inert dust. Table 28 summarizes some explosion inerting data from the Bureau studies (77) for the dusts of several metals or nonmetals in normal air at atmospheric pressure; these data apply to electrical spark ignitions. With an inert dust of fuller's earth of less than 74 µm (minus 200 mesh) or 44 µm (minus 325 mesh), the more reactive substances require about 80 wt pct or more of inert to prevent an explosion; only 30 to 50 pct inert dust is required for the much less reactive substances. Gaseous inerts are not any more effective in preventing their explosions. For the more reactive metal dusts, the critical oxygen concentrations in air-CO₂ atmospheres extend down to less than 1 vol pct; note that the magnesium, titanium, and zirconium dusts ignited in the diluent alone. Corresponding minimum O₂ values in air-N₂ atmospheres tend to be higher than those for air-CO₂ atmospheres for

Table 28. — Inerting requirements to prevent propagation of elemental metal and nonmetal dusts in air-nitrogen, air-carbon dioxide, and air-inert dust (fuller's earth) mixtures (spark ignition) (77)

Combustible	Lower explosion limit (L ₂₅), kg/m ³	limit,	m oxygen vol pct Air-CO ₂	Minimum inert dust limit, wt pct
Aluminum, atomized, <74 μm.	0.075	9	3	80
Aluminum, atomized, $<44 \ \mu m$.	.045	NĂ	2	90
Iron, 98 pct, <53 μm	.12	NA	11	50
Magnesium, milled, <74 µm	.03	2	1<1	90
Silicon, 98 pct, milled, $< 74 \ \mu m$.	.11	11	12	70
Sulfur, 99 pct, <44 µm	.035	NA	12	85
Tin, 96 pct, atomized, $<53 \mu m$.	.19	NA	16	30
Titanium, 96 pct, $<44 \ \mu m$.045	4	¹ <1	85
Zinc, 95 pct, <74 μ	.50	10	10	35
Zirconium, 97 pct. <44 µm	.045	2	1<1	90 +

NA Not available.

¹Reported ignitions with only diluent present.

these materials. With all such dusts, the inerting requirements will vary with their particle size and purity or contamination.

IGNITION REQUIREMENTS

Ignition Energies

Available ignition energy data for combustible dusts are not as precisely defined as those for combustible gases because of great experimental uncertainties. Nevertheless, the reported data in the above cited works provide a relative estimate of the spark ignition energy requirements for various dusts. The minimum ignition energies of dustair clouds are one or more orders of magnitude greater than those of combustible gas-air mixtures, depending greatly upon the dust particle size. Figure 67 includes the variation of minimum spark ignition energy with average particle diameter for an atomized aluminum dust cloud. For metal dusts of minus 200 mesh ($<74 \mu m$), the minimum ignition energies are as low as several millijoules for the most reactive metals and as high as several joules for the least reactive ones; those of moderate reactivity have values mostly of about 100 mJ or more.

Figure 67.—Effect of average particle diameter on explosion parameters for atomized aluminum dust in air at 25° C and 1 atm.

Ignition Temperatures

The dust ignition temperatures given in table 27 were determined largely by Jacobson (36) using the Godbert-Greenwald apparatus, 3.65-cm-diam furnace. As noted, ignition temperatures of the metallic and nonmetallic dusts in air are generally lower when the heated dust is a layered mass, as opposed to a dispersed mass (cloud); most obvious exceptions are titanium and uranium. Most of these ignition temperatures were obtained with dusts of less than 74 µm (minus 200 mesh) but do not necessarily represent the lowest possible ignition temperatures for finer size dusts or for large dust layers that approximate adiabatic conditions. The most temperature sensitive materials are those that can undergo pyrophoric reaction at room temperature; these include uranium, zirconium, sodium, potassium, lithium, and white phosphorus. Their reaction is normally enhanced by increased humidity.

Metals in bulk form are much more difficult to ignite than those that are finely divided and, therefore, their ignition temperatures are usually found in an oxygenenriched atmosphere. Ignition temperatures of metals in oxygen are given in table 29 (29, 62) with samples in rod or block form that have been preheated in oxygen or argon. Although all data are not consistent, the ignition temperatures tend to be near or above the melting point of the pure metal; also, most values are higher when the metals are preheated in oxygen, rather than an inert gas (argon). The oxygen preheating reflects the effect of the formation of metal oxides on the surface, thereby making ignition usually more difficult because of higher melting points and lower reactivities of the oxide coatings. This effect is least for metals of low melting point or for metals whose oxides are of similar or lower melting point.

FLAME TEMPERATURES AND BURNING RATES

Flame Temperatures

Maximum flame (or combustion) temperatures of metals and nonmetals are difficult to calculate precisely because the oxide species may be uncertain at the high temperatures and because thermodynamic data may be unavailable. Table 30 lists the calculated adiabatic temperatures by Grosse (29) for the combustion of such substances in an atmosphere of oxygen. These temperatures are necessarily above the melting point and boiling points of the oxides that may be formed by the elemental substances. Also, the values are roughly consistent with the variation of the molar heats of combustion (table 27) of the elements. As with hydrocarbons, the combustion temperatures are greatly reduced by any dissociation of the reaction products; the high heat capacities of metal oxides are also a contributing factor.

Table 29. — Ignition temperatures of bulk metals in oxygen at atmospheric pressure (metal sample in rod or block form) (29,62)

	Me	lting point, ° C	Metal ignition temperatures, ° C		
Metal	Metal	Oxide	Preheated in oxygen (62)	Preheated in argon (<i>29</i>)	
Aluminum	660	2,045 (Al ₂ O ₃)	NA	>1,000	
Antimony	631	656 (Sb ₂ O ₃)	NA	720	
Barium	725	1,923 (BaO)	550	175	
Bismuth	271	820 (Bi ₂ O ₃)	735	775	
Cadmium	321	¹ 900 (CdO)	NA	760	
Calcium	839	2,580 (CaO)	790	550	
ron	1,535	1,565 (Fe ₂ O ₃)	1,315	930	
ead	328	888 (PbO)	850	870	
.ithium	181	>1,700 (Li ₂ O)	NA	190	
Magnesium	649	2,800 (MgO)	635	625	
Molybdenum	2,617	795 (MõO ₃)	780	750	
Potassium	64	¹ 350 (K ₂ O)	NA I	69	
Sodium	98	460 (Na ₂ Ó)	NA	118	
Strontium	769	2,430 (SrÓ)	1,075	720	
horium	1,750	3,050 (ThO ₂)	NA	500	
ïn	232	1,127 (SnO ₂)	940	865	
Zinc	420	1,975 (ZnO)	905	900	

NA Not available.

¹Decomposition.

Table 30. — Adiabatic combustion temperatures of metals and nonmetals in oxygen at 1 atm (29)

Substance	Adiabatic combustion temperature, K	Substance	Adiabatic combustion temperature, K
Aluminum	3,800	Magnesium	3,350
Antimony	1,700	Manganese	3,400
Barium	3,000	Molybdenum	3,000
Beryllium	4,300	Potassium	1,700
Bismuth	2,000	Silicon	2,500
Boron	2,900	Sodium	2.000
Cadmium	1,700	Strontium	3,500
Calcium	3,800	Thorium	4,700
Iron	3,000	Tin	2,700
Lead	1,800	Titanium	3,300
Lithium	2,600	Zinc	2,200
		Zirconium	4,800

Burning Rates

The burning rates of granular combustibles are usually determined in the horizontal burning mode, although both rates of consumption and flame spread are greater in the upward burning mode. Most of the available data for elemental metals or nonmetals are limited to substances that are readily ignitable. Bureau investigators (60) reported horizontal burning rates in air of about 200 cm/min for such granular materials as titanium and phosphorus (red) of 100 to 200 mesh; in comparison, the rates for magnesium ranged from 2 to 75 cm/min, depending upon the dust particle size. For comparison with other flammable solids, these data are included in the burning rate tabulations of the next section for various industrial dusts.

PROPERTIES OF AGRICULTURAL, CARBONACEOUS, CHEMICAL, AND PLASTIC DUSTS

This section covers combustion properties of various industrial dusts that are classified as agricultural, carbonaceous, chemical, and plastic types. Coal, which is a carbonaceous material, is given special emphasis because of the high fire or explosion risks in the coal mining industry and because of the great usefulness of the many mine safety data that have been generated. Table 31 summarizes selected ignition and flammability data that were obtained

Table 31. — Summary of combustion properties of agricultural carbonaceous, chemical, and plastic dusts ¹

Combustible		nition perature	Lower explosion_		
	Layer, °C	Cloud, °C	limit (L ₂₅), ² g/L		
AGRICULTUF	RAL DUSTS	······································			
Alfalfa meal	NA	530	0.105		
	270	480	.055		
Cereal grass	230 250	620 400	.20 .055		
Cornstarch (minus 325-mesh)	350	390	.035		
Cotton linter, raw	NA	520	.50		
Cottonseed meal	310	540	.055		
Grain (wheat, corn, oats, barley)	230	430	.055		
Gum, arabic	260	500	.06		
Lycopodium	310 260	480 560	.025 .05		
Potato starch, dextrinated	NA	440	.045		
Rice	450	510	.085		
Soybean meal	340	550	.06		
	400	370	.045		
Fobacco stem	230	420	NI		
Wheat, untreated Nood, birch bark	220 250	500 450	.065 .020		
Nood flour, white pine	260	430	.020		
CARBONACEC					
Asphalt, brown petroleum resin	500	510	0.025		
Carbon, activated, petroleum sludge	490	760	NI		
Carbon black, acetylene	900	NA	NI		
Charcoal, activated, lignite	370	670	2.00		
Charcoal, hardwood mixture	180	530	.14		
Coke, bituminous coal	440 NA	710	NI 1.00		
ilsonite, Utah	500	580	.02		
Dil shale (17 gal/ton), Colorado	350	440	NI		
Dil shale (10 gal/ton), Tennessee	260	630	NI		
Pitch, coal tar	NA	650	.045		
Pitch, petroleum	NA	630	.045		
Coal, lignite, California	200	450	.03		
Joal, lignite, North Dakota	180	440	.045		
Coal, bituminous, Fox Hill, CO	180	440	.045		
Coal, bituminous, No. 7, Illinois Coal, bituminous, Whitesburg, KY	160 190	600 595	.04 .05		
Coal, bituminous, Bruceton, PA	170	610	.055		
Coal, bituminous, Pocahontas No. 3. West Virginia	220	640	NI		
Coal, bituminous, Laramie No. 3, Wyoming	180	575	.04		
CHEMICAL	DUSTS				
Acetoacetanilide	NA NA	560 550	0.03 .035		
Inthranilic acid	NA	580	.03		
zealic acid					
	NA	610	.025		
enzoic acid	NA	610 620	.025 .03		
enzoic acid	NA NA	610 620 440	.025 .03 .03		
ienzotriazole 	NA NA NA	610 620 440 640	.025 .03 .03 .035		
ienzoic acid	NA NA NA NA	610 620 440 640 430	.025 .03 .03 .035 .035		
enzoic acid	NA NA NA NA	610 620 440 640 430 480	.025 .03 .03 .035		
ienzotriazole -Chloroacetoacetanilide Jehydroacetic acid Jiallyl phthalate	NA NA NA NA	610 620 440 640 430	.025 .03 .03 .035 .03 .03		
enzoic acid	NA NA NA NA NA NA NA	610 620 440 640 430 480 580 570 460	.025 .03 .035 .03 .03 .03 .03 .025 .03 .05		
enzoic acid	NA NA NA NA NA NA NA NA	610 620 440 640 430 480 580 570 460 630	.025 .03 .03 .035 .03 .03 .025 .03 .05 .015		
enzoic acid	NA NA NA NA NA NA NA NA NA	610 620 440 640 430 480 580 570 460 630 390	.025 .03 .035 .035 .03 .03 .025 .03 .05 .015 .02		
enzoic acid	NA NA NA NA NA NA NA NA	610 620 440 640 430 480 580 570 460 630	.025 .03 .03 .035 .03 .03 .025 .03 .05 .015		
ienzotriazole -Chloroacetoacetanilide Pehydroacetic acid Dimethyl isophthalate Dimethyl terephthalate -5-Dinitrobenzoic acid Diphenyl Lityl hydroxyethyl cellulose Lexamethylenetetramine Iydroxyethyl cellulose	NA NA NA NA NA NA NA NA NA NA	610 620 440 640 430 480 580 570 460 630 390 520 410 410	.025 .03 .035 .03 .03 .03 .025 .03 .025 .015 .02 .015 .025		
ienzotriazole -Chloroacetoacetanilide behydroacetic acid imethyl isophthalate imethyl isophthalate .5-Dinitrobenzoic acid iphenyl thyl hydroxyethyl cellulose umaric acid lexamethylenetetramine lydroxyethyl cellulose satoic anhydride	NA NA NA NA NA NA NA NA NA NA NA NA NA	610 620 440 640 430 480 580 570 460 630 390 520 410 410 410 700	.025 .03 .035 .035 .03 .025 .03 .05 .015 .022 .085 .015 .025 .025 .025 .035		
ienzotriazole Chloroacetoacetanilide Jehydroacetic acid jiallyl phthalate jimethyl isophthalate jimethyl isophthalate johenyl thyl hydroxyethyl cellulose umaric acid Jexamethylenetetramine lydroxyethyl cellulose satoic anhydride	NA NA NA NA NA NA NA NA NA NA NA NA NA	610 620 440 640 430 480 580 570 460 630 390 520 410 410 700 270	.025 .03 .03 .035 .03 .025 .03 .05 .015 .025 .015 .025 .035 .025		
ienzotriazole -Chloroacetoacetanilide Vehydroacetic acid viallyl phthalate vimethyl isophthalate vimethyl isophthalate vimethyl terephthalate 5-Dinitrobenzoic acid viphenyl thyl hydroxyethyl cellulose umaric acid lexamethylenetetramine lydroxyethyl cellulose satoic anhydride itrosoamine araformaldehyde	NA 224 224 224 224 224 224 224 224 224 224	610 620 440 640 430 480 580 570 460 630 390 520 410 410 700 270 410	.025 .03 .03 .035 .03 .025 .03 .025 .015 .025 .015 .025 .025 .025 .025 .025 .04		
Jenzoic acid	NA NA NA NA NA NA NA NA NA NA NA NA NA N	610 620 440 640 430 480 580 570 460 630 390 520 410 410 700 270 410 380	.025 .03 .03 .035 .03 .03 .025 .03 .015 .015 .025 .015 .025 .035 .025 .035 .025 .035 .025 .035 .025 .04 .02		
enzoic acid	NA 224 224 224 224 224 224 224 224 224 224	610 620 440 640 430 480 580 570 460 630 390 520 410 410 700 270 410	.025 .03 .03 .035 .03 .025 .03 .025 .015 .025 .015 .025 .025 .025 .025 .025 .04		
Jenzoic acid	NA NA NA NA NA NA NA NA NA NA NA NA	610 620 440 640 430 580 570 460 630 390 520 410 410 700 270 410 380 620 450 650	.025 .03 .03 .035 .03 .03 .025 .03 .015 .025 .015 .025 .015 .025 .035 .025 .025 .025 .025 .04 .02 .025 .03 .025 .03 .025 .03 .025		
ienzotriazole -Chloroacetoacetanilide Jehydroacetic acid jiallyl phthalate jimethyl isophthalate jimethyl isophthalate johenyl thyl hydroxyethyl cellulose umaric acid lexamethylenetetramine lydroxyethyl cellulose satoic anhydride litrosoamine 'araformaldehyde 'araphenylenediamine entaerythritol 'hthalinica hydride 'hthalic anhydride	NA NA NA NA NA NA NA NA NA NA NA NA NA N	610 620 440 640 430 480 580 570 460 630 390 520 410 410 700 270 410 380 620 450 650 630	.025 .03 .03 .035 .03 .025 .03 .025 .03 .05 .015 .025 .035 .025 .035 .025 .035 .025 .035 .025 .04 .025 .03 .025 .03 .025 .03 .025 .03 .025 .03 .03 .03		
Jenzoic acid	NA NA NA NA NA NA NA NA NA NA NA NA NA N	610 620 440 640 430 480 570 460 630 390 520 410 410 410 700 270 410 380 620 450 650 630 630 610	.025 .03 .03 .03 .03 .03 .025 .03 .025 .015 .025 .025 .025 .04 .025 .04 .025 .03 .04 .025 .03 .035 .04 .025 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03		
Jenzoic acid	NA NA NA NA NA NA NA NA NA NA A30 AA NA A30 AA A40	610 620 440 640 430 480 580 570 460 630 390 520 410 410 410 410 700 270 410 380 620 450 650 650 630 610 470	.025 .03 .03 .035 .03 .03 .025 .03 .015 .025 .015 .025 .015 .025 .015 .025 .025 .025 .025 .04 .02 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .035 .015 .025 .035 .025 .015 .025 .035 .025 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .025 .035 .015 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .04 .025 .035 .025 .04 .025 .035 .025 .04 .025 .035 .025 .035 .025 .035 .025 .035 .035 .035 .035 .035 .035 .035 .03		
Benzoic acid	NA NA NA NA NA NA NA NA NA NA NA NA NA N	610 620 440 640 430 580 570 460 630 390 520 410 410 700 270 410 380 620 450 650 650 630 610 470 420	.025 .03 .03 .035 .03 .025 .03 .025 .03 .015 .025 .015 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .03 .015 .03 .015		
Jenzoic acid	NA NA NA NA NA NA NA NA NA NA A30 AA NA A30 AA A40	610 620 440 640 430 480 580 570 460 630 390 520 410 410 410 410 700 270 410 380 620 450 650 650 630 610 470	.025 .03 .03 .035 .03 .03 .025 .03 .015 .025 .015 .025 .015 .025 .015 .025 .025 .025 .025 .04 .02 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .03 .025 .015 .025 .035 .015 .025 .035 .025 .015 .025 .035 .025 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .015 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .035 .025 .04 .025 .035 .025 .04 .025 .035 .025 .035 .025 .035 .025 .035 .035 .035 .035 .035 .035 .035 .03		

Combustible		lition erature	Lower explosion_		
	Layer, °C	Cloud, °C	limit (L ₂₅), ² g/L		
PLASTIC DUSTS (RESINS AN	D MOLDING COMPO	UNDS)			
Acetal, linear, polyformaldehyde Acrylamide polymer Acrylonitrile polymer Acrylonitrile polymer Cellulose acetate Cellulose triacetate. Cellulose triacetate. Ethyl cellulose (5- to 10-µm) Ethylene-maleic anhydride copolymer Ethylene oxide polymer Methyl cellulose Methyl cellulose Methyl cellulose Methyl cellulose. Methyl cormaldehyde, 1-step. Phenol formaldehyde, 2-step. Phenol formaldehyde, 2-step. Phenol formaldehyde, 2-step. Phenol formaldehyde, 2-step. Phenol furfural. Polyethylene, high-pressure process. Polyethylene, carboxy. Polymethylene, carboxy. Polymethylene, carboxy. Polyurethane foam, non-fire-retardant. Polyurethane foam, fire-retardant. Polyurithane foam, fire-retardant. Polyvinyl acetate alcohol. Polyvinyl acetate alcohol. Polyvinyl chloride, fine.	NA NA A60 NA NA NA 350 NA NA NA 340 NA NA NA NA NA NA NA NA NA A40 390 NA NA A40 390 NA NA A40 390 NA NA A40 A40 A40 A40 A40 A40 A40 A40 A40 A4	$\begin{array}{c} 440\\ 480\\ 500\\ 420\\ 420\\ 430\\ 460\\ 540\\ 370\\ 540\\ 350\\ 790\\ 360\\ 440\\ 640\\ 640\\ 640\\ 640\\ 580\\ 530\\ 710\\ 450\\ 400\\ 520\\ 420\\ 490\\ 510\\ 550\\ 550\\ 550\\ 550\\ 550\\ 390\\ 660\\ \end{array}$	0.035 .03 .025 .04 .04 .025 .025 .095 .03 .035 .03 .035 .04 .025 .025 .025 .025 .025 .025 .025 .025		
Styrene-butadiene latex Urea formaldehyde molding compound Vinylidene chloride molding compound	NA NA NA	440 460 900	.025 .085 NI		
OTHER D	USTS	-			
Nylon, polyamide Rayon flock, viscose Rosin, DK Rubber, crude, hard Rubber, synthetic, hard (33 pct S) Rubber, chlorinated Shellac	430 250 NA NA 290 NA	500 520 390 350 320 940 400	0.03 .055 .015 .025 .03 NI .02		

Table 31. — Summary of combustion properties of agricultural carbonaceous, chemical, and plastic dusts¹ — Continued

NA Not available. NI No ignition with electric spark source.

 1 Flammability data from references 14, 37-38, and 76. 2 Combustible particle size less than 74 μm (-200 mesh); g/L equates to oz/ft³.

by Nagy, Jacobson, and coworkers (14, 37-38, 76) for the various classes of combustible dusts in a normal ambient air atmosphere.

FLAMMABILITY LIMITS IN AIR

It is evident from tables 31 and 27 that practically all industrial dusts are capable of forming flammable dust-air mixtures. The table 31 data were also obtained with the previously described Hartmann apparatus (1.23 L) and spark ignition source using largely particle size dusts of less than 74 µm (minus 200 mesh). With some exceptions, particularly among carbonaceous dusts, the lower explosion limits (L_{25}) of the various classes of dusts are less than 0.06 g/L (0.06 oz/ft³). Many of the chemical and plastic dusts have lower limits as low as 0.02 or 0.03 g/L. Because the dust dispersions in this apparatus were not uniform, the assumed concentration limits in tables 27 and 31 should be regarded as nominal values. As with metal dusts, the organic combustible dusts have no well-defined upper limits.

The lower explosion limits of high-volatile bituminous coal dusts are 0.04 to 0.06 g/L in air by the above spark ignition method. Recent work by Hertzberg (31) with a modified Hartmann apparatus-larger volume (8 L), stronger ignition source, and more uniform dust dispersionyielded limit values that were 2 or more times greater for such coals. They reported a limit of 0.135 g/L for Pittsburgh (Bruceton) coal dust of minus 200 mesh using electrical match ignition energies of the order of 200 J. This dust concentration was verified by optical measurements, whereas the earlier values represent gross concentrations derived from the mass loadings that were dispersed. Nevertheless, full-scale experiments in the Bruceton Experimental Mine indicate explosions can occur with a Pittsburgh coal dust loading of 0.049 g/L or more (90). Thus, the limit data in table 31, which were obtained by the standard Hartmann apparatus, are not overly conservative for safety purposes.

The lower limits of carbonaceous dust-air mixtures decrease greatly with increased volatility of the dust or increased methane content of the atmosphere. Figure 68 shows such data for the high-volatile (\sim 35 pct) Pittsburgh coal, low-volatile (~16 pct) Pocahontas coal, and an oil shale assayed at 45 gal/ton. These data were reported by Richmond (90) and refer to electrical match ignitions in the modified Hartmann apparatus. With the standard apparatus and spark ignition source, the Pocahontas coal and most coals of lower volatility gave ignitions in oxygen but not in air (76). For the more volatile coals given in table 31, their lower explosion limits in oxygen were at least 1/2 lower than their listed values in air. Anthracite coal dusts also do not ignite in air with ordinary electrical spark sources.

Figure 68.—Lower dust explosion limits of oil shale (45 gal/ ton), Pocahontas coal, and Pittsburgh coal in methane-air atmospheres with modified Hartmann apparatus.

FLAMMABILITY LIMITS IN OTHER ATMOSPHERES

Selected inerting data for the various classes of organic industrial dusts are given in table 32. These data were obtained by Nagy and other Bureau investigators in electrical spark ignition experiments with near-optimum concentrations of the dispersed dusts in air; dust particle size was nominally less than 74 $\mu m.$ With CO_2 as the inert, the minimum oxygen values to prevent propagation ranged from 11 to 18 pct. The values for cornstarch, acetal resin, and methyl methacrylate dusts were lowest (11 pct), and those for carbonaceous dusts were consistently highest (15 to 18 pct). The data with N_2 as the inert are meager but clearly indicate the smaller effectiveness of this agent. Similar to the lower limits, the minimum oxygen values are greatly dependent upon the volatiles and pyrolysis products that can be formed by the combustible dusts.

Dust explosions can also be prevented by adding a dry powder inert or inhibitor to the combustible dust. With an inert such as calcined fuller's earth, the above Bureau investigators found that except for melamine formaldehyde at least 60 wt pct is required for inerting the combustible dusts in table 32 that have lower explosion limits (L_{25}) of less than 0.1 g/L in air; the most reactive dusts required about 90 pct. For the combustible dusts with lower limits greater than 0.1 g/L, the inert dust limit was between 25 and 55 pct. The Pittsburgh coal dust from the Bruceton Mine $(L_{25} = 0.055 \text{ g/L})$ required 60 pct inert to prevent propagation in these laboratory experiments. The effectiveness of the calcined fuller's earth is comparable to that of a limestone rock dust (CaCO₃).

Certain salts of alkali metals and other chemical flame inhibitors are more effective than purely inert materials in preventing or suppressing dust explosions. Table 33 (*31*,

Table 32. — Inerting requirements to prevent propagation of combustible dusts in air-nitrogen, air-carbon dioxide, and air-inert dust (fuller's earth) mixtures at \sim 25° C (spark ignition)¹

			-
Combustible	Lower explosion limit (L ₂₅), g/L	Minimum oxygen limit, vol pct air-CO ₂	Minimum inert dust limit, wt pct
AGRICULT	JRAL DUSTS		
Cellulose Cornstarch	0.055 .045 .055 .025 .06 .045 .035	13 11 15 13 15 14 (10 in N ₂) 17	80 90 75 90 + 65 85 80
CARBONAC	EOUS DUSTS		
Asphalt, brown petroleum Charcoal, hardwood Gilsonite, Utah Pitch, coal tar Coal, lignite, California Coal, bituminous, Pratt, AL Coal, bituminous, No. 7, Illinois Coal, bituminous, Whitesburg, KY Coal, bituminous, Bruceton, PA	0.025 .14 .02 .035 .03 .045 .12 .04 .04 .05 .055	NA 17 NA NA 15 18 15 NA 17	90 55 90 75 85 75 40 75 60 60
CHEMICAL AND	PLASTIC DUSTS		
Acetal resin, polyformaldehyde Acrylonitrile polymer Ascorbic acid Cellulose acetate Diallyl phthalate Epoxy resin (no additives) Ethylene-maleic anhydride copolymer Ethylene oxide polymer Hexamethylenetetramine Melamine formaldehyde (no plasticizer) Methyl methacrylate polymer Nylon polyamide Paraformaldehyde, 1-step Phenolformaldehyde, 1-step Phthalic anhydride Polyethylene, high-pressure process Polystyrene, clear Rubber, crude, hard Urea formaldehyde, spray-dried	0.035 .03 NA .04 .03 .02 .095 .03 .015 .085 .03 .03 .03 .04 .025 .015 .025 .015 .02 .02 .02 .04 .025 .135	$\begin{array}{c} 11 \\ 13 \\ 15(12 \text{ in } N_2) \\ 13(9 \text{ in } N_2) \\ \text{NA} & (10 \text{ in } N_2) \\ 12 \\ 14(11 \text{ in } N_2) \\ 12 \\ 14(11 \text{ in } N_2) \\ 12 \\ 14 \\ 17 \\ 13 \\ 12(8 \text{ in } N_2) \\ 14 \\ 14 \\ 13 \\ 14 \\ 17 \\ 15 \\ 16 \end{array}$	90 + 90 + NA 85 NA 90 70 90 + 55 80 90 90 90 90 90 + 90 + 75 90 + 75 90 + 25

NA Not available.

¹Based upon data in references 37, 38, 76, and 77.

54	

	NH₄H₂PO₄ (ABC powder)	NaCl (salt)	KCI	NaHCO ₃	CaCO ₃ (rock dust)	KHCO ₃ (Purple K)
Hartmann apparatus ²	NA	50	NA	NA	60	>60
Large gallery ³	25	30	35	>60	70	~75
Experimental mine ³	NA	<50	NA	NA	75	>75

Table 33. — Incombustible requirements to prevent or suppress propagation of Pittsburgh coal dust with various dust inhibitors in small- and large-scale experiments, weight percent¹

¹Includes inhibitor and ash in coal (6 to 8 pct) ²Data from reference 31 with modified apparatus.

³Data from reference 88; gallery values taken from graph.

88) compares the effectiveness of six dry powder-type extinguishants against Pittsburgh coal dust explosions in recent small- and large-scale Bureau experiments; note that agent effectiveness was least in the full-scale mine experiments. These data indicate the following ratings for the extinguishants:

$$NH_4H_2PO_4 > NaCl > KCl >> NaHCO_3 > CaCO_3 > KHCO_3.$$

The poor effectiveness of purple K (KHCO₃) relative to rock dust (CaCO₃) contradicts many earlier data that were obtained under marginal ignition or apparatus-limited conditions; therefore, such data are not reported here. The ABC powder (NH₄H₂PO₄ - orthoammonium phosphate) has proved to the most effective dust explosion suppressant. Similar inerting or extinguishing effectiveness of these agents may be assumed applicable to the other combustibles in table 32 that have chemical constituents like those of coal.

Inerting requirements for dust explosions vary with the coal volatility. Figure 69 shows a calculated explosibility diagram by Richmond (89) for three coal dusts of different volatility and varying incombustible content; the incombustible included rock dust and ash content (6 to 8 pct) of the coal dusts. The predicted inerting limits from the nose of each curve are 63, 76, and 80 pct for pulverized coals of 17 pct (Pocahontas), 29 pct (Sewell), and 36 pct (Pittsburgh) volatility, respectively. Corresponding limits for such volatile coals in the Bureau's mine experiments were 43, 65, and 73 pct rock dust with a relatively "weak" ignition source; a weak source was defined as a methaneair zone plus coal dust which produces a flame speed of

Figure 69.—Calculated limits of explosibility of coal dust-incombustible mixtures for coals of 17, 29, and 36 pct volatility. about 50 m/s and flame travel of about 15 m. Calculated values are reported to give best agreement with experimental values obtained with "strong" ignition sources, which are also encountered in mine explosions.

IGNITION REQUIREMENTS

Ignition Energies

As with metal dusts, spark ignition energy data for organic dusts are subject to great experimental uncertainties, particularly in the measurement of absolute minimum values. The most complete data for the various classes of combustible dusts are included in the previously cited reports by Nagy, Jacobson, and coworkers. In summary, their data with dust clouds in air indicated that the minimum spark ignition energies of many agricultural, carbonaceous, chemical, and plastic dusts (minus 74 µm) are about 100 mJ or less. Those that required much higher ignition energies included low-volatility carbonaceous materials, fire-resistant chemicals and plastics, and materials with mineral fillers. Coals of high volatility typically had ignition energies of about 50 mJ in air and 10 mJ in oxygen. Coals of low volatility appear to have ignition energies of the order of joules in air and millijoules in oxygen; most such coals did not ignite in air under the spark ignition conditions of the particular study (76).

Ignition Temperatures

Bureau data on the minimum ignition temperatures of the various organic dusts in air are also summarized in table 31 (14, 37-38, 76). These data were obtained using layered and dispersed dusts (minus 74 µm) in the Godbert-Greenwald apparatus (0.3 L). The dust cloud ignition temperatures are between 400° and 600° C for most of the combustibles investigated; sulfur (190° C), nitrosamine (270° C), and synthetic or crude rubber (320°-350° C) are the few materials that have noticeably lower values. The dust layer ignition temperatures should be noticeably lower than the dust cloud values, although some data are inconsistent. These data are primarily applicable to heating durations of the order of a second for dust clouds and a few minutes for dust layers. Lower ignition temperatures result when the heating duration (residence times) are longer. Table 34 shows the reductions of dust cloud autoignition temperatures that are possible by increasing the volume of the Godbert-Greenwald furnace to 1.2 L and the dust residence time to several seconds. In the case of the dust layer ignition temperatures, these should not be confused with spontaneous heating temperatures that are associated with extended reaction times and adiabatic conditions.

The effectiveness of various dry powder inhibitors on the ignition temperature of Pittsburgh coal dust (minus

Table 34. — Comparison of dust cloud minimum autoignition temperatures in standard and modified Godbert-Greenwald apparatus

	Autoignition temperature, ° C				
	Standard apparatus ¹ (0.3 L)	Modified apparatus ² (1.2 L)			
Anthracite coal	840 (4 pct	780 (6.6 pct			
	volatile)	volatile)			
Bituminous coal (Pocahontas)	640	625			
Bituminous coal (Pittsburgh)	610	560			
Subbituminous coal (Wyoming)	NA	455			
Gilsonite (Utah)	580	490			
Lycopodium	480	435			
Polyethylene	450	400			

NA Not available. ¹References 37-38, 76.

²Reference 10.

74 μ m) was determined in the Godbert-Greenwald apparatus by Liebman and Richmond. Their data are shown in figure 70, which was taken from reference 10. These data provide an explanation for the greater effectiveness of NaCl, KCl, and NH₄H₂PO₄ as compared to CaCO₃, NaHCO₃, and KHCO₃ in suppressing coal dust explosions; note the agreement between this figure and table 33.

Spontaneous Heating Temperatures

Agricultural and carbonaceous dusts are the most common types of organic materials that may undergo spontaneous heating at normal or slightly elevated temperatures. Spontaneous heating is also referred to as selfheating or spontaneous combustion. It is usually associated with slow oxidation (days) of a combustible under near-adiabatic conditions, as in a large storage bin or pile. Agricultural dusts containing vegetable oils or other highly oxidizable oils are particularly susceptible to self-oxidation. Many coals and charcoals present a similar hazard.

Of the organic combustibles capable of spontaneous heating, coals by far have been the most completely investigated. The most recent and comprehensive study on various U.S. coals was that by Kuchta (58), who used a small adiabatic-type apparatus to determine the actual spontaneous heating temperatures. The data showed that dried

Figure 70.—Effectiveness of various powdered inhibitors on the furnace autoignition temperature of Pittsburgh coal dust in the Godbert-Greenwald furnace.

lignite and subbituminous coals of 100 to 200 mesh could readily self-heat in moist air at 30° C, as compared to 60° to 70° C for western bituminous coals and 80° to 100° C for eastern coals (table 35); heating durations were generally limited to a maximum of about 2 days. Although some western bituminous coals showed a slight tendency to selfheat at 30° C, the exothermic reactions were not sustainable in this apparatus. The heat of wetting (condensation) is believed to be important as a triggering mechanism in these reactions; temperature rises of at least 10° C were reported in experiments with a dried coal and moist nitrogen. Sondreal (97) found that the calorific heats of wetting can be as high as 26, 20, 7 and 1 cal/g for dried lignite, subbituminous, Illinois bituminous, and Pittsburgh bituminous coals, respectively. Thus, the weathering of coals increases their spontaneous combustion hazard.

Table 35. — Spontaneous heating temperatures and $CO-\Delta O_2$ indexes of various dried coal dusts in air (58)

Coal	Spontaneous heating ¹ temperature, °C	CO/ΔO ² ₂ , ppm/vol pct						
LIGNITE								
Beluga, Alaska Gascoyne strip, North Dakota Husky strip, North Dakota Sandow strip, Texas	32 198 30 244 30 246 30 228							
SUBBITU	IMINOUS							
Dravo, seam No. 80, Wyoming Jim Bridger, Wyoming Sarpy Creek, Rosebud, Montana Sarpy Creek, Stray No. 2, Montana .	30 285 32 188 30 178 30 216							
BITUM	INOUS							
Pittsburgh, Pennsylvania Pocahontas No. 3, West Virginia Powhatan, No. 3, Ohio Sahara, No. 20, Illinois Scotia, Kentucky Somerset No. 1, Colorado Sunnyhil No. 9, Ohio Sunnyside No. 1, Utah	80 90 105 60 70 60 70 70 70	74 66 49 75 48 119 110 178						

1100- to 200-mesh coals.

²10- to 20-mesh coals.

The tendency of coals to self-heat may be roughly predicted from their $CO-\Delta O_2$ index, which is a measure of the coal's ability to adsorb oxygen from the atmosphere and form or evolve carbon monoxide. Closed vessel desorption experiments (58) showed that the $CO-\Delta O_2$ index is greatest for dried crushed coals and becomes near-maximum after several days' exposure in air (fig. 71). Table 35 includes the $CO-\Delta O_2$ index values that were obtained in such experiments after 7 days with 10- to 20-mesh samples of the coals in air at 25° C; here, the CO formation or desorption is in parts per million, and oxygen reduction (ΔO_2) is in volume percent. Essentially, the most reactive coals have a CO- ΔO_2 index close to 200 or more, and the least reactive ones less than about 100. Proximate and ultimate analyses of the coals are included in table 36. The $CO-\Delta O_2$ ratios correlate best with the oxygen content of the coals. They are strongly dependent upon temperature and about an order of magnitude less than corresponding CO-CO₂ ratios (fig. 72) (58). Such data can be useful in predicting the temperature of the given coals during their incipient combustion before autoignition. In a mining environment, the $CO-\Delta O_2$ index is often found to be at least 1/2 lower than the laboratory closed-vessel value; this is attributable to experimental artifact or complex dilution effects in mine ventilation networks.

Table 36. — Analyses of coals as received

		Heating	Proxir	nate analys	is, wt pct			Ultimate	analysis, v	vt pct		_
Mine	Mine Location	value, Btu/lb	Mois- ture	Volatile matter	Fixed carbon	Ash	Hydro- gen	Carbon	Nitro- gen	Oxy- gen	MAF ¹ oxygen	Sul- fur
				LIGNITE								
Beluga Gascoyne strip Husky strip Monticello Center strip Darco strip Sandow strip	Alaska North Dakota North Dakota Texas North Dakota Texas Texas	7,000 7,150 7,280 7,430 7,660 7,850 8,940	24.5 34.0 34.1 29.4 32.0 31.1 21.1	31.1 29.5 30.7 31.9 32.5 30.5 39.5	28.9 30.2 29.0 27.7 30.9 32.5 29.1	15.5 6.3 6.2 11.0 4.6 5.9 10.3	5.9 6.7 7.0 6.4 6.7 6.6 6.4	42.0 43.0 42.7 43.3 46.1 46.1 50.8	0.7 .8 1.2 .7 .8 .9	35.8 41.9 42.8 37.6 41.5 39.7 30.6	23.3 19.6 20.9 19.2 20.6 19.1 17.3	0.1 1.3 .6 .6 .4 1.0 1.0
			SUB	BITUMINO	JS							
Sarpy Creek, Rosebud Sarpy Creek, Stray No. 2 Dravo, seam No. 82 Jim Bridger	Montana Montana Wyoming Wyoming Wontana Wyoming	9,330 9,460 10,620 10,740 11,130 11,190	22.0 18.5 14.7 15.7 11.2 11.7	32.5 33.5 33.0 31.6 38.2 38.0	39.4 37.8 47.7 49.9 46.9 46.9	6.1 10.2 4.6 2.8 3.7 3.4	6.2 5.9 5.8 5.8 5.4 6.0	54.6 54.5 61.7 62.6 65.9 64.1	0.7 .7 1.4 1.0 1.1 1.7	31.9 27.9 25.6 27.4 23.5 24.2	17.2 16.1 15.7 16.4 16.0 16.2	0.5 .8 .9 .4 .4 .6
			BI	TUMINOUS								
Sunnyhill No. 9 Inland No. 6 Prince Sahara No. 21 Sahara No. 20 Napoleon Sunnyside No. 1 Somerset No. 2 Somerset No. 1 York Canyon Allison Powhatan No. 3 Vail Scotia Bruceton Pocahontas No. 3	Ohio	11,520 12,370 12,580 12,650 12,760 13,060 13,250 13,680 13,680 13,680 13,690 13,780 13,850 14,500 14,360	8.2 6.2 3.2 4.5 6.2 4.7 2.7 3.8 1.4 2.5 2.9 4.1 1.6 2.7	35.9 30.5 35.1 32.7 33.8 43.3 37.4 37.6 39.1 35.9 43.5 41.5 41.5 41.2 35.1 38.9 16.3	46.3 55.4 52.4 52.4 52.4 45.1 53.2 53.7 54.2 53.9 46.3 50.7 50.3 54.1 55.8 75.9	9.6 7.9 9.3 8.6 7.3 5.0 4.7 6.0 2.9 8.8 7.7 4.9 4.4 9.2 3.8 5.1	5.4 5.2 4.9 5.2 5.7 5.5 5.4 5.6 5.6 5.6 5.6 4.5	65.5 70.8 69.7 71.1 71.5 70.6 73.5 74.4 76.5 75.7 75.7 73.2 76.3 75.6 76.0 79.7 84.1	1.3 1.6 1.3 1.6 1.4 1.5 1.6 1.5 1.6 1.3 1.7 1.6 1.2 1.8 1.1	15.7 14.0 10.1 11.2 12.3 14.2 12.6 12.2 12.6 8.2 7.1 9.2 10.2 7.9 7.9 7.9 7.9 4.6	10.2 9.8 8.2 7.5 9.8 10.3 10.7 9.9 7.6 5.6 7.1 7.3 7.3 7.3 6.9 2.6	2.5 .5 4.7 2.4 2.1 3.1 1.2 .5 .6 .4 5.3 2.3 2.6 .1.2 .6

¹Moisture and ash free.

Figure 72.—Variation of $CO_{\Delta}O_{2}$ and $CO-CO_{2}$ ratios with temperature in a flowing airstream (15 cm₃/min) with three undried coals of 10 to 20 mesh.

The total gas content of a coal can be useful in predicting both spontaneous heating and explosion hazards, even though methane or other gases in the coal are not known to be vital to the spontaneous combustion process. Figure 73 illustrates this point with ASTM designations for coal rankings. The gas content data are average values of gas desorption measurements by Diamond (12) for virgin core samples from 125 coalbeds; they represent total gas desorptions of cored and crushed samples for periods up to 1 month or when the degasification rates become very low. Of practical significance is that the self-heating hazard increases whereas the gas explosion hazard decreases with decreasing gas content or rank of the coal; the coals in table 36 are listed in the order of increasing calorific value, which also indicates their approximate ASTM coal ranking. Although all coals are capable of self-heating at some threshold temperature, the incidence rate is small for those with a gas content of about 4 cm³/g or greater; this corresponds to a high-volatile A bituminous or higher rank coal. In evaluating the gas explosion potential of any coal, one can assume that most of its gases will be released during the mining stage; also, the residual gases will be released at a slower rate for the higher rank coal.

Other organic dusts that are widely known to undergo self-heating at normal ambient temperature are those containing linseed, cottonseed, rapeseed, or olive-type vegetable oils. Cereal grains, hay, and even grass clippings have this capability during their curing or storage. Most other organic solids require elevated temperatures to selfheat and present a potential ignition hazard. Table 37 lists the spontaneous heating temperatures that were obtained by the National Bureau of Standards (72) for various woods, fibrous materials, and synthetic rubbers. The data for rubber materials indicate the great effect of particle size or physical form of the combustible solid.

Table 37. — Spontaneous heating temperatures of	
various woods, fibrous materials, and synthetic rubbers in	ı air

Material	Sample type	Spontaneous heating temperature, °C			
WOODS A	ND FIBROUS MATERIA	ALS			
Douglas fir	Shavings Shavings Shavings	260 261 230 228 264 232 230 266 230 240 475 570 280 205 240 ~220			
SYI	SYNTHETIC RUBBERS				
GR-S, black GR-S, black GR-S (R-60), black GR-S (R-60), black GR-S, indulin	Buffings Coagulum Buffings Coagulum Crumb	160 295 190 310 440			

¹Data from reference 72, 13th ed., 1969, sec. 5, p. 213.

Sulfide ores, such as iron sulfide, are well known to oxidize spontaneously in moist air. Temperatures in such reactions can be sufficient to ignite timbers, coals, and other organic material.

Figure 73.—Representative gas contents of various ranked coals and their relative hazard potential for self-heating and gaseous explosion.

FLAME TEMPERATURES AND BURNING RATES

Flame Temperatures

The flame temperatures of most organic dusts have not been determined, and those that have been are not as precisely defined as for organic liquid vapors or gases. Nevertheless, their flame temperatures should be comparable to those of the hydrocarbons or other classes of chemical constituents that are present. For example, Hertzberg (31) obtained a maximum flame temperature of approximately 2,100° C in explosions of Pittsburgh coal dust-air mixtures, which is comparable to the constant-volume combustion values calculated for many stoichiometric hydrocarbon vapor-air mixtures. The maximum value of 2,100° C was found at a coal dust concentration of 300 mg/L, and a near-lower-limit value of $1{,}300^\circ$ to $1{,}400^\circ$ C was obtained at a dust concentration of 150 mg/L. Corresponding flame temperatures for other carbonaceous or organic dusts should roughly fall in this temperature range if their chemical constituents are largely hydrocarbons or hydrocarbon derivatives similar to those found in coals. For any composite dust, the flame temperature will decrease with increasing amounts of incombustible material.

Burning Rates

Compared to hydrocarbon vapor-air mixtures, the fundamental burning velocities (S_u) of organic dust-air mixtures appear to be noticeably lower, although only meager data are available. For Pittsburgh coal dust-air mixtures, the calculated S_u values from measured flame speeds ranged from 4 to 18 cm/s for dust concentrations of 150 to 500 mg/L (31). The maximum S_u of 18 cm/s is at least 1/2 lower than those reported for gaseous hydrocarbons (table 17).

In the case of fires with combustible solids, their burning rates or flame spread rates are useful in determining how rapidly the fires may propagate. Table 38 gives horizontal burning rates that were obtained by Bureau investigators for small beds of various flammable granular

Table 38. — Burning rates (horizontal) of flammable granular solids and oxidizer-sawdust mixtures in air at 1 atm (decreasing order of flammability)

Material	Particle size, mesh	Burning rate, cm/min
FLAMMABLE SOLIDS (1.25- BY 1.	.25- BY 12.5-CM	BED) (<i>60</i>)
Phosphorus sesquisulfide Phosphorus, red Titanium Camphor Magnesium Sodium methylate Picric acid, 10 to 20 pct H_2O 2,4-Dinitroaniline Ammonium dichromate Phthalic anhydride Sodium borohydride Caturn of the service Sodium borohydride Charcoal, willow wood	50-150 100-200 10-200 10-30 ≥80 70-150 10-50 40-70 30-100 20-70 10-30 50-200 40-50	¹ 290 225 190 89 ¹ 76 74 19 16.5 10.2 ¹ 9.7 8.6 6.9 1.8
OXIDIZERS + SAWDUST (2.5- E	BY 5- BY 18-CM E	BED) (55)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	40-150 20-100 20-100 20-100 20-100 40-100 40-150 20-70 20-100 50-150 30-150 30-150	2,160 305 290 230 105 76 71 61 48 30 12 10 8.9
REFERENCE SAWDUST (2.5-	BY 5- BY 18-CM	BED)
Red oak, select grade (dried)	20-50	6.9
¹ 0.65- by 1.25- by 12.5-cm bed		

¹0.65- by 1.25- by 12.5-cm bed.

solids (60); these data actually represent flame spread measurements over the burning surface. Although particle size was not held constant, the data provide a good indication of the flame spread potential of each material, including such hazardous metal dusts as magnesium and titanium. Higher burning rates are normally expected with finer dusts, provided particle agglomeration does not occur. Materials having a burning rate less than 10 cm/min are considered to present a low flame spread hazard. With the exception of sodium borohydride, the flame spread ratings found by these authors were consistent with ignitability ratings by a flame source.

Table 38 also includes burning rates for mixtures of dried sawdust of a select grade red oak with a number of oxidizers (55). The rates are maximum values obtained at optimum oxidizer concentrations: oxidizer concentration effect is shown in figure 74. These data are indicative of the increased fire hazard that may result when a cellulosic

Figure 74.—Variation of burning rate with oxidizer concentration for dried sawdust (red oak) with various solid oxidizers.

packaging material, such as wood, is involved in fires with oxidizer cargoes. Note that the burning rate of the sawdust $(\sim 7 \text{ cm/min})$ is substantially increased with the addition of most oxidizers, including the alkali metal nitrates, chlorates, and perchlorates. The highest rate (2,160 cm/ min) by far was obtained with the very strong oxidizer of sodium peroxide. In any application of these data, one must allow for the increased flame spread that can result from scaling and ventilation effects.

PROPERTIES OF FABRICS AND SHEET COMBUSTIBLES

IGNITION TEMPERATURES

Combustibles in sheet form can require relatively high temperatures for their ignition. Bureau data (56) for 10 representative fabric- or sheet-type combustibles are given in table 39. Such common materials as paper drapes and cotton or rubber sheeting require about 400° C for ignition in air when uniformly heated (vessel ignitions); other sheet combustibles such as wool, cellulose acetate, polyvinyl chloride, and Nomex require over 500° C for ignition; Nomex is a fire-resistant nylon. When the heating is nonuniform, as with a hotplate, the ignition temperatures are substantially higher than the vessel ignition temperatures; also, they are lower in oxygen than in air, as one would predict. Although fire-retardant additives usually increase the ignition temperature, some may actually increase the ignition hazard; note data for the treated cotton sheeting that contained an ammonium salt fire retardant. In addition, the values in oxygen (1 atm) were found comparable to or less than those in air at 6 atm, indicating the dependence on oxygen partial pressure.

Ignition temperature, °C Density, g/m² Material Heated vessel Hotplate with air Oxygen Air Cellulose acetate sheet 363 500 NA 550 >600 425 390 415 480 360 NA Conductive rubber sheeting . NA Conductive Tygon tubing ... 160 NA 102 Cotton sheeting 360 310 385 465 Cotton sheeting, fire retardant 430 575 Nomex sheeting 520 515 >600 Paper drapes ... Plexiglass sheet 53 807 470 595 410 430 400 450 Polyvinyl chloride sheet 495 560 >600 390 Wool blanket 712 540 >600 500

Table 39. — Ignition temperatures of flammable fabric or sheet materials in air and oxygen at atmospheric pressure (56)

NA Not available.

BURNING RATES

Flame spread rates of sheet combustibles provide a measure of their surface burning rates. Such data are given in table 40 from the above-cited work (56) where the upward flame propagations were determined with small samples (5- by 25-cm) at a 45° angle in air and oxygen at atmospheric pressure. Under these conditions, many of the combustibles failed to sustain propagation in air. Even in oxygen, only the paper drapes (19.6 cm/s) and wool blanket (100 cm/s) gave relatively high rates; the high value for wool is attributable to "nap" burning. The rates in oxygen partial pressures (fig. 75); the pressure dependence was greatest for cotton sheeting (rate $\alpha P^{0.95}$) and least for rubber sheeting (rate $\alpha P^{0.55}$). In comparison, the rates in various oxygen-nitrogen atmospheres were not as sensitive to oxygen partial pressure.

Flame spread rates are always greater when the combustibles are burned in a vertical orientation in the upward mode. For example, upward verticle rates for cotton sheeting in air were 20 times greater than horizontal rates and 40 times greater than vertical downward rates. The rates can also be greatly influenced by the combustible loading, combustible distribution, air ventilation rate, and other fire enhancement factors. Hence, the laboratory-scale data cannot be assumed to provide a measure of the maximum fire hazard that may be encountered in a large-scale fire situation.

The fire resistance characteristics of several mine conveyor belts are given in table 41. These data were obtained by the Bureau (59) in a moderately scaled apparatus (48 by 48 by 168 cm) with a flame ignitor input of 50 kcal/min

Table 40. — **Flame spread rates (45**° angle) of flammable fabric or sheet materials in air and oxygen at atmospheric pressure (*56*)

Material	Density,	Flame spread rate, cm/s		
	g/m²	Air	Oxygen	
Cellulose acetate sheet	363	NP	2.8	
Conductive rubber sheeting	500	NP	3.3	
Cotton sheeting	160	2.0	8.1	
Cotton sheeting, fire-retardant .	NA	NP	4.3	
Nomex sheeting	102	NP	4.3	
Paper drapes	53	5.1	19.6	
Plexiglass sheet	807	.5	1.3 (42 pct O ₂)	
Polyvinyl chloride sheet	495	NP	2.5	
Wool blanket	712	NP NP	100	
Wood strips, white pine	1,670	.5	2.8	
NA Not available NR	No custaino	d propos	tion	

A Not available.

No sustained propagation.

 $(\sim 1.6 \text{ cal/(cm}^2 \cdot \text{s}))$ and air velocity of 30 m/min. Horizontal flame spread rates under such conditions ranged from 0 to 12 cm/min depending upon the type of belt, as compared to 21 cm/min for a red oak standard. To define the overall fire resistance rating for each belt, a flammability index (FI) is given that includes the contributions of the flame spread rate (FS), heat release rate (Q_f) , and critical ignitor input (I, time-integrated heat flux); this index (FI = FS \times Q/I) is also normalized with respect to red oak. The fire resistance ratings by this method were found to be more reliable than those obtained by small laboratory-scale methods. The use of air velocities greater than 30 m/min can give higher flame spread rates, although ignitions become increasingly difficult to achieve. Also, a belt heightchamber height ratio of about 0.75 appears optimum for sustained propagation in a tunnel-type fire. Both ignition and flame propagation stages must be considered in determining belt fire resistance.

Figure 75.—Effect of oxygen pressure on the flame spread rates of sheet combustibles in oxygen atmospheres.

Combustible	Flame spread rate (FS), cm/min	Heat release rate (Q _t), cal/(cm ² ·min)	Critical ignitor input (I), cal/cm ²	Flammability index ² (FI)	Normalized flammability index (FI*)
R	EFERENCE STAN	IDARD MATERIAL			
Red oak	20.8	230	145	33	100
	CONVEYO	R BELTS		-	
Non-fire-resistant rubber (Goodyear) Neoprene (Goodyear-A) Polyvinyl chloride (Fenner America) Fire-resistant rubber (Goodyear) Neoprene (Goodyear-B) Polyvinyl chloride (Scandura) Polyvinyl chloride (Georgia Duck) Polyvinyl chloride ³ (German Clouth) Neoprene (German Clouth)	10.9 10.6 12.2 5.8 7.2 7.3 NI 0-4.6 NI	213 165 122 60 76 75 NI 0-71 NI	145 240 335 820 1,295 >1,440 ≥865 >2,400	16 7.3 4.4 1.0 .7 .4 0 0.4 0	48 22 13 3.0 2.1 1.2 0 0-1.2 0

Table 41. — Flammability data for mine conveyor belts and red oak standard in Bureau of Mines belt flammability apparatus (59)¹

NI No ignition at given ignitor input.

¹Ignitor input — 50 kcal/min (1.6 cal/(cm²·s), Air velocity — 30 m/min.

 ${}^{2}\mathsf{FI} = \frac{\mathsf{FS} \times \mathsf{Q}_{\mathsf{f}}}{\mathsf{FS}}$

³Only 1 ignition in 4 trials.

FIRE AND EXPLOSION DAMAGE

FIRE TEMPERATURE AND RADIATION CRITERIA

Fire damage to materials results primarily from exposure to the high levels of temperature and thermal radiation produced by the fire. Qualitative guidelines for analyzing fire damage are summarized in the section on investigative procedures. Supporting data for such analyses are found in this section and in the other sections that characterize the fire properties of various materials. Considering that maximum flame temperatures of many combustibleoxidant systems can be 2,000° C or more, as in table 17, constructional and appurtenant materials cannot withstand a large-scale fire for long durations without being consumed or severely damaged. Fortunately, most fires involve diffusional flames, which are less severe than premixed flames. The extent of any fire damage will be largely determined by the fire loading on the exposed material and its meltability, combustibility, and massiveness or fineness. Fire loading itself is the temperature and heat flux generated by the fire under the particular static or dynamic environmental conditions.

Some useful temperature limits of various textile fibers and metallic or nonmetallic composite materials are given in tables 42 and 43, respectively. Melting points of pure elements and compounds are included in the summary tables of this manual for each class of combustibles; the ignition temperature data are also useful in determining temperature limitations of materials. Among the highest melting point substances are graphite (3,700° C), molybdenum (2,617° C), tantalum (2,996° C), tungsten $(3,410^{\circ} \text{ C})$, and the refractory compounds. Steel is one of the most common materials of construction and has a melting point of about $1,400^{\circ} \text{ C}$ or more. The brightness or color of such metals in a fire can be used to estimate their temperatures (table 44).

Damage may occur even in the absence of flaming combustion, as in the self-heating of coals, which may result in a loss of their calorific values. Generally, if the temperature rise from self-heating is small ($\sim 10^{\circ}$ C), any calorific loss of the coal that does occur will be very small. However, if the temperature rise is about 30° or more, the calorific loss can be noticeable, depending upon the heating duration and maximum resultant temperature. Proximate and ultimate coal analyses on a moisture-free basis are most useful in determining the self-heating effect on calorific values.

Thermal radiation from a fire can cause property damage and human injury if the incident radiant flux is of sufficient intensity. Data by Lawson (64) define the threshold radiation intensities required for igniting various combustible solids and for sensing pain by a human body (table 45). These data are for relatively moderate exposure times and, therefore, do not necessarily represent the lowest values possible for extended exposure periods. For example, the value for ignition of wood (0.8 cal/(cm²·s)) is higher than the usually accepted value of approximately 0.5 cal/(cm²·s) for exposure times of many minutes. The value of 0.1 cal/(cm²·s) for sensing pain can also be considered as an approximate threshold for second-degree burns at exposure times of minutes.

Fiber	Temp, °C	Effect	Fiber	Temp, °C	Effect
Acetate Asbestos Cotton Flax Glass Jute Nylon	260 810 150 135 730 135 215-260	Melts. NS. Decomposes. NS. Softens. NS. Melts.	Polyester Polyethylene Polypropropylene Silk Viscose rayon Wool	250 110-120 160-170 150 175-205 135	Melts. Melts. Decomposes. Decomposes. Decomposes.

NS Not specifically defined.

¹Rounded values.

Table 43. — Melting points of metallic and nonmetallic substances¹

Substance	Melting point, °C
METAL	
Aluminum alloy 38 Aluminum alloy 3003 Aluminum bronze, ASTM B36 Bismuth solder Carbon steel, SAE 1020 Cast iron, gray, ASTM A48 Cast iron, ductile, ASTM A339 Brass, red, ASTM B30 Brass, yellow, ASTM B36 Cupronickel, constantan Hastelloy C Inconel X, annealed Magnesium alloy, AZ 3113 Monel K Nickel-silver alloy, 18 pct Stainless steel, type 304 Tin solder Titanium, commercial	$\begin{array}{r} 565\\ 650\\ 1,040\\ 95\text{-}130\\ 1,515\\ 1,175\\ 1,150\\ 995\\ 930\\ 1,260\\ 1,290\\ 1,290\\ 1,400\\ 625\\ 1,330\\ 1,110\\ 1,425\\ 135\text{-}175\\ 1,815\end{array}$
NONMETAL	
Borax Glass, borosilicate Graphite India rubber Paraffin Porcelain Quartz, clear Spermaceti (wax) Stearine (wax)	560 2820 3,700 125 55 1,550 2∼1,660 50 50

¹Based upon data in references 4, 83, 105; rounded values. ²Softening point.

Table 44. — Color temperatures of iron or steel (4)¹

-	
Metal color	Temp, °C
Dark blood red, black red	530
Dark red, blood red	565
Dark cherry red	635
Medium cherry red	675
Cherry, full red	745
Light cherry, light red	845
Orange	900
Light orange	940
Yellow	995
Light yellow	1.080
White	1.205

¹Rounded values.

Table 45. — Threshold radiation intensities for various thermal effects (64)

Effect	Threshold radiation intensity		
	cal/(s•cm²)	Btu/(h·ft ²)	
Wood ignites spontaneously Hemp, jute, and flax ignite spontaneously . Textiles ignite spontaneously Fiberboard ignites spontaneously Wood ignites by flying brands Painted wood ignites by flying brands Humans feel pain after a short time	0.8 1.0 .85 .75 .1 .4 .1	10,600 13,300 11,300 10,000 1,300 5,300 1,300	

The fire radiation received by an object is a function of its distance from the fire source and the size and intensity of the radiant energy source. Yumoto (109) defined the irradiance (I) of hydrocarbon-type fuel fires (gasolines) as a dimensionless function of the irradiance distance and diameter of the burning fuel tank. These data are replotted in figure 76 and extrapolated to an ignition threshold for wood (0.45 cal/ (cm²·s)) and to the radiant intensity at a dimensionless ratio (d_o/r_o) of 1 (~5 cal/(cm²·s)), which theoretically corresponds to the source intensity; d_o is the irradiance distance and r_o is the radius of the fuel tank. The negative slope of 2 indicated by these data is consistent with the inverse square dependence with distance that is predicted by equation 33. Thus, if the ignition radiant thresholds are known for hydrocarbon- or carbonaceoustype combustibles as in table 45, figure 76 can be applied to obtain a rough estimate of the distance from a gasoline pool fire source at which ignition could occur. Similar estimates for other liquid fuels can be made using equation 33 and the data in table 21. The variations of irradiances with windy conditions, nonuniform flame symmetry, and different flame emissivities are important in any rigorous treatment.

Figure 76.—Thermal irradiance of gasoline tank fires as a function of a dimensionless distance ratio (irradiance distance-tank fire radius).

EXPLOSION PRESSURE CRITERIA

Pressure damage from combustible gas explosions (deflagrations) will depend upon the explosion pressure of the combustible mixture, strength of the confinement material (including fasteners), and degree of any venting. Expressions for calculating explosion temperatures and pressures are given in the section on theory and definitions. Although maximum pressures occur with nearstoichiometric combustible concentrations for complete combustion, even near-limit concentrations yield explosion pressures that may exceed the pressure limits of the confinement material. The methane-air data in figure 77 (47)are typical of the fuel concentration effect on explosion pressure for many hydrocarbon combustibles. They are characterized by a maximum pressure rise ratio (P_2/P_1) of about 8 at near-stoichiometric concentrations, as predicted by theory; some calculated adiabatic values are given in table 18.

Failure of a cylindrical or spherical container in such explosions may be estimated from the equations for the two possible types of stress failure:

Hoop stress (tangential) $S_h = Pr/t$ (79)

Tensile stress (longitudinal) $S_t = Pr/2t$ (80)

where S is stress (psi), P is pressure (psi), r is container radius (in), and t is container thickness (in); efficiency of any welds is neglected in the above equations but is usually near unity. The most severe explosions will involve hoop stress failure with minimum "thinning down" of the container in areas adjacent to the failure. Table 46 gives the yield and tensile strengths of various metals and alloys that define the maximum stresses for deformation and failure of the materials, respectively. These values are for uniform static loadings; for dynamic loadings, they are at least twice as large.

Figure 77.—Effect of fuel concentration on explosion pressures of methane-air mixtures at 25° C and 1 atm.

Material	Condition	Yield strength, kpsi	Tensile strength, kpsi
Numinum alloy (1100)	Annealed	5	13
Juminum alloy (1100)	Cold-rolled-H 18	22	24
Numinum alloy (5052)	Annealed	13	28
Numinum alloy (5052)	Cold-rolled stabilized-H 38	37	42
Numinum alloy (380)	Die-cast	26	43
Numinum bronze (612)	Hard	65	105
Brass, red (230)	Cold-rolled	60	75
Copper (102)	Cold-drawn	40	45
Cupronickel (55-45)	Cold-drawn	50	65
Duranickel	Annealed	45	100
lastellov (B)	Rolled	56	120
lastelloy (G)	Sheet	46	102
	Annealed	40	90
		100	130
	Cold-drawn	38	80
nconel (610)	As-cast	30	48
on, wrought	Hot-rolled	NA	¥0 ≥25
on, gray cast	As-cast		
lagnesium alloy (AZ80A)	Extruded	36	49
lonel (400)	Cold-drawn	80	110
ickel alloy (220)	Annealed	20	70
ermanickel	Annealed, age-hardened	125	175
tainless steel (201)	Annealed, strip	50	115
tainless steel (304)	Annealed	30	85
tainless steel (304)	Cold-rolled	≤160	≤185
tainless steel (321 and 347)	Cold-rolled	≤120	≤150
tainless steel (420)	Heat-treated	200	250
tainless steel (cast 12 Cr)	Tempered at 315° C	150	200
tainless steel (cast 20 Cr)	Annealed	60	95
teel, carbon (SAE 1020)	Hot-rolled	42	68
antalum (10W)	Annealed	158	160
in	As-cast	NA	2
itanium (pure)	Annealed	75	85
	Annealed	50	75

NA Not available.

In the case of containments equipped with bolt or screw fasteners, their failure will be determined by the uniform or nonuniform distribution of the pressure loading on all the bolts; the root thread area is used in calculating the loading on a threaded fastener. One should not neglect the stress due to tightening a bolt since this initial load can exceed the tensile strength of ordinary carbon steel material (~60,000 psi) in bolts of less than about 1.25 cm (1/2 in) diameter.

The time at which a vessel or confining structure will fail owing to a gaseous explosion can vary greatly with the combustible-oxidant-diluent mixture and container volume. Figures 78, 79, and 80 (39) show the explosion pressure growth rates obtained by Bureau investigators (Johnson, Furno, and Kuchta) in a 3.65-m (12-ft) diameter sphere. In this size vessel, the time to achieve maximum pressure was less than 1 s for the optimum CH₄-air mixture, compared with about 20, 12, and 6 s for near-limit compositions of CH₄-air, CH₄-air-N₂, and CH₄-air-CF₃Br, respectively; note that the effectiveness of the CF_3Br inhibitor tends to be minimal when the pressure rises are above about 30 psig. For ideal spherical explosions at constant flame speeds, the maximum pressure rise rates (dP/ dt) or times (t) to maximum pressure may be approximately extrapolated to larger vessel volumes (V) as follows:

$$\frac{(dP/dt)_1}{(dP/dt)_2} = \frac{t_2}{t_1} = \left(\frac{V_2}{V_1}\right)^{1/3}$$
(81)

where the subscripts 1 and 2 refer to the small and large size vessels, respectively. However, this cubic dependence on volume becomes unreliable with the less optimum mixtures or nonspherical propagations, as discussed earlier in connection with equation 49.

Figure 78.—Explosion pressure growth for methane-air mixtures in 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

Figure 79.—Explosion pressure growth for 9.5 pct methane-air mixtures and added nitrogen in 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

Figure 80.—Explosion pressure growth for 9.5 pct methane-air mixtures and added bromotrifluoromethane (Halon 1301) in 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

Where such explosions are vented, the maximum pressures developed can be limited to a few pounds per square inch or less if the vent area is at least as large as the cross-sectional area of the particular enclosure. The following expression derived by Bureau investigators (92) predicts the unrestricted venting requirements for ignitions of hydrocarbon vapor-air-nitrogen mixtures in large spherical or cubical enclosures:

A = 13.03 × 10⁻³V^{2/3}(E-1)S_u/c_d (
$$\frac{E\rho_u}{P-P_o}$$
)^{1/2} (82)

where A is vent area (m²), V is enclosure volume (m³), E is expansion ratio of combustion products, S_u is mixture burning velocity (cm/sec), c_d is vent discharge coefficient, ρ_u is density of unburned gas mixture (g/cm³), P_o is initial pressure (psig), and P is vent control pressure (psig). Predicted pressure rise (P-P_o) as a function of the vent ratio (A/V^{2/3}) is shown in figure 81 for methane-air ignitions with 0 to 30 pct added nitrogen; a c_d value of 0.8 is assumed. The calculated venting requirements are most reliable for enclosures with a length-diameter ratio close to unity and are at least as conservative as those found experimentally for deflagrations of hydrocarbon-air systems. They are particularly useful in the venting of large enclosures or buildings which can tolerate at most a few pounds per square inch of overpressure before structural failure.

Rasbash (86) developed the following expression for venting large buildings using propane-air mixtures:

$$P_{\rm m} = 1.5 P_{\rm v} + 0.5 K; K = 1 \text{ to } 5$$
 (83)

where P_m (psi) is maximum pressure during venting, P_v (psi) is pressure when venting starts, and K is ratio of smallest cross-sectional area of building to total vent area. The expression is limited to building length-width ratios of up to 3 and vent materials that rupture or open below 1 psi. For venting ducts, the maximum pressure (P_m , psi) is given by

$$P_m = 1.8 \text{ K}$$
; K = 2 to 32 (84)

$$P_{\rm m} = 0.35 \text{ L/D} + 0.9 \text{ K}; \text{ K} = 1 \text{ to } 2$$
 (85)

where L/D is length-diameter ratio of duct and K is ratio of duct cross-sectional area to vent area. These equations were derived by Rasbash (85) and limited to unobstructed ducts, gas mixture flame speeds of less than 3 m/s, and L/D ratios between 6 and 30; higher pressures result with obstructed ducts. In both ducts and buildings or enclosures, the maximum pressure will tend to be minimal when the area vent ratio (K) is unity or less.

In vented and unvented systems, explosion pressures will be greater with turbulent mixtures than with quiescent ones. On the other hand, the explosion pressure hazard is greatly reduced when the mixture is of borderline flammability and only capable of upward flame propagation. Furno's data (22) for lean H₂-air mixtures (fig. 82) and rich C₄H₁₀-air mixtures (fig. 83) are classic examples; note that pressure rises are minimal until fuel concentrations are capable of both upward and downward propagation. In comparison, lean CH₄-air or CO-air mixtures do not have greatly different upward limits and downward limits of propagation. Burgess (5) found such trends consistent with preferential diffusion effects and showed the stoichiometric ratio of upward-downward limits to correlate with the square root ratio of the oxygen-fuel diffusivities.

Gaseous detonations may be assumed to produce explosion pressures of about twice the values for constantvolume deflagrations (equation 52) and maximum pressure rise ratios (P_2/P_1) of about 18:1; reflected pressures are higher but are not greatly destructive because of their very short duration. Container failures due to detonations will be typically characterized by fine fragmentation of brittle materials, shear or hoop stress failures of ductile materials, "peeling back" of failed ductile materials as in tube failures, and relatively far field damage due to flying fragments and blast waves. Blast wave damage is treated in the next section. One should understand that gaseous deflagrations at high pressures can produce localized material damage that can be as severe as that of gaseous detonations.

Figure 81.—Calculated pressure rise versus vent ratio ($A/V^{2/3}$) for stoichiometric methane-air ignitions with 0, 10, 20, and 30 pct added nitrogen at 25° C and 1 atm.

Figure 82.—Peak pressure rises and flame temperatures for H_2 -air mixtures in 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

Figure 83.—Peak pressure rises and flame temperatures for C₄H₁₀-air mixtures in 3.65-m (12-ft) diam sphere at 25° C and 1 atm.

BLAST WAVE CRITERIA

The blast wave pressures from weakly confined gaseous deflagrations are small because a large fraction of the available chemical energy is not converted to pressure energy before the container walls fail (see equation 56). In such cases, any pressure energy will be largely dissipated by convection, and the TNT equivalent will be small and not very meaningful. In the case of strongly confined gaseous deflagrations and particularly detonations, their blast pressure energy and TNT equivalence will tend to approximate the energy yield given by their heats of combustion (ΔH_c) . By application of the cube root scaling law (equation 55), the blast overpressures of TNT charges are normally plotted as a function of a scaled distance (λ),

$$\lambda = \mathbf{d}/\mathbf{W}^{D3}, \tag{86}$$

where d is distance (ft) and W is charge weight (lb). Figure 84 shows the plot obtained by Kingery (45); the peak overpressures refer to the static or side-on pressures of the blastwave. Thus, if a combustible mixture has a TNT equivalence of 454 g (1 lb), the peak overpressure (static) would be approximately 10 psi at a distance of 3.1 m (10 ft); the theoretical chemical energy of the mixture or equivalent TNT (1,100 cal/g) would be 499 kcal (454 g \times 1,100 cal/g). Detonation properties of TNT and other explosives are summarized in table 47 (63); the listed heat of detonation for TNT (1,400 cal/g) is a high value because of a high TNT density and assumption of condensed H₂O(1) in the explosion products.

Blast wave damage that may occur to structural materials or buildings is given in table 48 (26, p. 163) in

Figure 84.—Peak overpressure versus scaled distance (λ) for hemispherical TNT surface bursts.

terms of peak overpressure and in table 49 (19) as a function of scaled distance (λ) . Figure 84 can be invoked to assess the damage potential in each case as a function of both overpressure and scaled distance relative to TNT. It is important to note in table 48 that most ordinary constructional materials can fail with only a few pounds per square inch overload; these values refer to external pressure loading but can even be lower for internal loading, as in a vessel explosion. Other data by the same author (26, p. 253) indicated that an average sized aircraft would suffer severe damage at a blast overpressure of approximately 3 psi and only light damage at 1 psi. With any structural material, the greatest pressure damage will occur to components of minimum thickness and maximum width or length without any material supports or reinforcement.

Biological effects of blast overpressures by Richmond (87) are included in figure 85. Note that the lethal overpressure values are for a 400-ms pulse duration and that about 50 psig would be lethal at a 50-pct probability level for a human or animal target. However, since the biological damage is impulse sensitive, the values for both lethal and other biological damage will vary with the pressure pulse duration. Accordingly, the indicated overpressures for biological damage can be substantially greater when the pulse duration is of much shorter duration than 400 ms.

66

Nominal Heat of¹ Detonation Detonation¹ Molecular Explosive detonation. density, g/cm³ velocity. pressure. weight cal/g m/s kbar PRIMARY HIGH EXPLOSIVES Lead azide, PbN_6 Lead styphnate, $PbC_6HN_3O_8$. Mercury fulminate, $C_2N_2O_2Hg$ 291.3 4.8 5,180 NA 367 450.3 284.6 3.1 457 427 5,200 5,000 NA NA 4.4 SECONDARY HIGH EXPLOSIVES Baratol, 24 pct TNT + 76 pct Ba $(NO_3)_2$ Comp B, 36 pct TNT + 63 pct RDX LX-04-1, 85 pct HMX + 15 pct Viton A Nitrocellulose, guncotton (\geq 13.35 pct N) 4,870 7,990 NA 2.55 560 140 295 360 1,530 NA 1.72 8,460 NA 1.86 1.420 7,300 210 1.20 1,260 274.1 Nitroglycerine, propanetriol trinitrate 1,590 1,940 253 140 1.60 7,700 227.1 1.13 1.76 61.0 6.320 PETN, pentaerythritol tetranitrate 316.2 1,650 8,300 305 Pentolite, 50 pct TNT + 50 pct PETN RDX, Trinitrotriazacyclohexane NA 222.1 1.67 1,520 7.470 248 338 8,640 Tetranitromethane 550 NA 144 196.0 1.65 Tetryl, trinitrophenylmethylnitramine 250 220 287.0 1.71 1 520 7 850 TNT, trinitrotoluene 1,400 6,930 227 1 1.64

Table 47. — Properties of explosives (63)

¹Calculated or observed values; heats of detonation refer to maximum calculated values with water formed as liquid; detonation pressures refer to Chapman-Jouquet state.

Structural material	Usual failure	Peak blast overpressure, psi
Glass windows Corrugated asbestos siding Corrugated steel or aluminum paneling Wood siding panels (standard house construction) Concrete or cinderblock walls, 8 or 12 in thick (not reinforced) Brick walls, 8 or 12 in thick (not reinforced)	Shattering	0.5-1.0 1.0-2.0 1.0-2.0 1.0-2.0 2.0-3.0 7.0-8.0

Table 49. — Scaled distance for building damage from statistical survey of chemical explosions (19)

Category	Building damage	Scaled distance (λ)	
Galegory	Dunding damage	ft/lb ^{1/3}	m/kg ^{1/3}
A B C D	Demolished, not standing	7.4 16.6 25.0	2.9 6.6 9.9
F	Shingles or siding off Minor damage to glass or miscellaneous small items	28.1	11.2
	(similar to that resulting from high wind)	42.7	17.0

An overpressure of 1 psi is reported by Glasstone (26) for knocking over a human body but again would be overly conservative for combustible explosions where pressure pulse durations are relatively short.

CRATER AND MISSILE CRITERIA

Ground craters can result only from high-energy explosions, as with solid or condensed-phase explosives that are detonated near the ground surface. By the cube root scaling law, the crater diameter (d) is given by

$$d = d_0 W^{1/3}, (87)$$

where W is charge weight and d_o is scaled diameter for a unit weight of the reference explosive. According to Van Dolah (101), d_o is approximately 1.5 for a 1-lb charge of TNT with the diameter dimensions in feet. The crater dimensions will depend upon the physical nature of the ground surface and depth of the exploding charge. The crater depth is nominally 1/4 the crater diameter. Many potentially explosive materials such as black powder, smokeless gun propellants, and even ammonium nitrate do not readily detonate and form craters. However, both ammonium nitrate and black powder are capable of detonation and crater formation when they are combusted in massive quantities under high degrees of confinement or with a high explosive ignition stimulus.

Missile damage from the fragmentation of a vessel involving gaseous explosions will depend upon the mass, shape, and velocity of the fragment(s) and the nature of the target material. In such assessments, it is often necessary to assume what fraction of the available chemical energy (strong confinement) or pressure energy (weak confinement) will be converted into kinetic energy (E = 1/2mv²) for propelling the fragment; the average velocity (v) of the fragment (gravitational mass m) can then be calculated. High (33) gives the following guidelines for estimating the distribution of available energy:

In practice, the pressure energy for estimating kinetic energies gives more realistic values than the chemical energy when the vessel shatters before maximum explosion pressures are realized. Chemical energy refers to theoretical

Figure 85.—Peak overpressure and approximate material and biological damage effects from hemispherical TNT surface bursts.

heats of combustion (ΔH_c) or detonation, and pressure energy refers to calculated work outputs (W) assuming adiabatic expansion of products to atmospheric pressure, as given by equation 56,

$$W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1}$$

The initial velocity (v_o) of an explosion fragment can be estimated from its distance from the exploding vessel, which is its range (R). From equations of motion, the maximum range is obtained when the trajectory angle (α) of the missile is 45°:

$$R = \frac{v_o^2 \sin 2\alpha}{g}; \qquad (88)$$

also, the maximum height (h) is

$$h = \frac{v_o^2 \sin^2 \alpha}{2g} , \qquad (89)$$

where g is the gravitational constant (980 cm/s² or 32 ft/s²). The final or striking velocity of the fragment will be less than v_o because of air drag effects, which are greatest for materials with the largest face areas; this effect will be noticeable over small trajectory ranges.

A useful equation (Demarre's) for predicting the penetration of irregular steel fragments into mild steel plates or similar targets is

$$P_{d} = k W^{1/3} \left(\frac{v}{1000} \right)^{4/3}$$
(90)

Figure 86.—Depth of penetration of mild steel versus striking velocity for steel fragments of various weights.

Figure 87.—Velocity-time profile and potential biological damage levels for head or body impacts.

where k is 0.112 for mild steel when the dimensions of the penetration depth (P_d , in), fragment weight (W, oz), and striking velocity (v, ft/s) are in the specified English units. Figure 86 (84) shows the predicted values by this equation for fragment weights of 1/8 oz (~3.5 g) to 1 oz (~28 g). The velocity range of 2,000 to 3,000 ft/s (~600 to 900 m/s) is comparable to the muzzle velocity of a '30-caliber rifle weapon. Compared to a concrete-type target, steel may be considered to offer about 10 times greater penetration resistance (101).

Human targets have low impact-velocity thresholds for biological damage. Figure 87 (87) compares the blastinduced translational velocities of a nylon sphere (1/8-in diam) with various velocity damage thresholds that can result from head or total body impacts; the sphere data reflect the velocity change for the impacts. Of particular significance is that the threshold impact velocity is only about 15 ft/s (~4.5 m/s) for a skull fracture and 30 ft/s (~9 m/s) for a 100-pct lethal probability. Because of many uncertainties in making such correlations, the human damage levels should not be considered as precise values but as approximate values that are generally on the conservative side on the basis of available data.

In the case of cased explosives, the prediction of kinetic energy velocities is complicated by the distribution of energy to the case material and the explosive products. The conversion of available energy to kinetic energy is much greater than in gaseous deflagrations and can be 60 pct or so. Damage by explosives, which is beyond the scope of this report, has been summarized by Van Dolah and other Bureau investigators (*101*).

1. Affens, W.A. Flammability Properties of Hydrocarbon Fuels. Part I-Interrelations of Flammability of n-Alkanes in Air. U.S. Nav. Res. Lab., NRL Rep. 6270, May 25, 1965, 24 pp.

2. American Gas Association. Combustion of Gas. Catalog H20010, Sept. 1967, pp. 2-48 to 2-61.

3. Andrews, G.E., and D. Bradley. The Burning Velocity of Methane-Air Mixtures. Combust. and Flame, v. 19, 1972, pp. 275-288

4. Baumeister, T., and L.S. Marks. Standard Handbook for Mechanical Engineers. McGraw-Hill, 7th ed., 1969, sec. 4, 89 pp.

5. Burgess, D.S., A.L. Furno, J.M. Kuchta, and K.E. Mura. Flammability of Mixed Gases. BuMines RI 8709, 1982, 20 pp.

6. Burgess, D.S., J.N. Murphy, N.E. Hanna, and R.W. Van Dolah. Large-Scale Studies of Gas Detonations. BuMines RI 7196, 1968, 53 pp.

7. Burgess, D.S., and M.G. Zabetakis. Fire and Explosion Hazards Associated With Liquefied Natural Gas. BuMines RI 6099, 1962, 34 pp.

8. Calcote, H.F., C.A. Gregory, C.M. Barnett, and R.B. Gilmer. Spark Ignition: Effect of Molecular Structure. Ind. and Eng. Chem., v. 44, 1952, pp. 2656-2662.

9. Cato, R., W.H. Gilbert, and J.M. Kuchta. Effect of Temperature on Upper Limits of Flammability of Hydrocarbon Fuel Vapor-Air Mixtures. Fire Technol., v. 3, No. 1, 1967, pp. 14-19.

10. Conti, R.S., K.L. Cashdollar, M. Hertzberg, and I. Liebman. Thermal and Electrical Ignitability of Dust Clouds. BuMines RI 8798, 1983, 40 pp

11. Coward, H.F., and G.W. Jones. Limits of Flammability of Gases and Vapors. BuMines 503, 1952, 155 pp.

12. Diamond, W.P., and J.R. Levine. Direct Method Determination of the Gas Content of Coal: Procedures and Results. BuMines RI 8515, 1981, 36 pp.

13. Dorsett, H.G., Jr., M. Jacobson, F.J. Nagy, and R.P. Williams. Laboratory Equipment and Test Procedures for Evaluating Explosibility of Dusts. BuMines RI 5624, 1960, 21 pp.

14. Dorsett, H.G., Jr., and J. Nagy. Dust Explosibility of Chemicals, Drugs, Dyes and Pesticides. BuMines RI 7132, 1968, 23 pp.

15. Dufour, R.E., and W.C. Westerberg. An Investigation of 15 Flammable Gases or Vapors With Respect to Explosionproof Electrical Equipment. Fire J v. 62, No. 4, 1968, p. 8

16. Dugger, G.L., R.C. Weast, and S. Heimel. Effect of Preflame Reaction on Flame Velocity of Propane-Air Mixtures. Paper in Fifth Symposium (International) on Combustion. Reinhold, 1955, pp. 589-595.

17. Ellis, W.H. Solvent Flash Points-Expected and Unexpected. J. Coat. Technol., v. 48, No. 614, 1976, pp. 44-57.

18. Fenn, J.B. Lean Flammability Limit and Minimum Spark Ignition Energy. Ind. and Eng. Chem., v. 43, 1951, pp. 2865-2869.

19. Filler, W.S., J.M. Rossi, and H.R.J. Walsh. Barricade Effectiveness Evaluated From Records of Accidental Explosions. Armed Services Explosives Safety Board Work Group, Rep. AD 487554 L, July 1966, 56 pp.

20. Forshey, D.R., J.C. Cooper, G.H. Martindill, and J.M. Kuchta. Potential Hazards of Propargyl Halids and Allene. Fire Technol., v. 5, No. 2, 1960, pp. 100-111.

21. Frank-Kamenetskii, D.A. Diffusion and Heat Exchange in Chemical Kinetics. Princeton Univ. Press, 1955, 370 pp.

22. Furno, A.L., E.B. Cook, J.M. Kuchta, and D.S. Burgess. Some Observations on Near-Limit Flames. Paper on Thirteenth Symposium (International) on Combustion. The Combustion Institute, 1971, pp. 593-599.

23. Furno, A.L., A.C. Imhof, and J.M. Kuchta. Effect of Pressure and Oxidant Concentration on Autoignition Temperatures of Selected Combutibles in Various Oxygen and Nitrogen Tetroxide Atmospheres. J. Chem. and Eng. Data, v. 13, No. 2, 1968, pp. 243-249.

24. Gaydon, A.G., and H.G. Wolfhard. Flames, Their Structure, Radiation, and Temperature. Chapman and Hall, 2d ed., 1960, 383 pp.

25. Gibbs, G.J., and H.F. Calcote. Effect of Molecular Structure on Burning Velocity. J. Chem. and Eng. Data, v. 4, July 1959, pp. 226-237.

26. Glasstone, S. The Effects of Nuclear Weapons. U.S. Atomic Energy Commission, Apr. 1962, 730 pp.

. Thermodynamics for Chemists. Van Nostrand, 27. 1947, 522 pp.

28. Gordon, J.S. Thermodynamics of High Temperature Gas Mixtures and Application to Combustion Problems. WADC Tech. Rep. 57-33, Jan. 1957, 172 pp.

29. Grosse, A.V., and J.B. Conway. Combustion of Metals in Oxygen. Ind. and Eng. Chem., v. 50, 1958, pp. 663-672.

30. Hertzberg, M. The Theory of Flammability Limits. Radiative Losses and Selective Diffusional Demixing. BuMines RI 8607, 1982, 38 pp.

31. Hertzberg, M., K.L. Cashdollar, and J.J. Opferman. The Flammability of Coal Dust-Air Mixtures. Lean Limits, Flame Temperatures, Ignition Engines, and Particle Size Effects. BuMines RI 8360, 1979, 70 pp. 32. High, R.W. The Saturn Fireball. Ann. NY Acad. Sci., v. 152,

art. 1, 1968, pp. 441-451. 33. High, W.G. The Design and Scale Model Testing of a Cubicle

To House Oxidation or High Pressure Equipment. Chem. and Ind., 1967, pp. 899-910.

34. Hougen, O.A., and K.M. Watson. Chemical Process Principles. Part II. Wiley, 1947, pp. 437-804.

35. Humphrey, H.B., and G. Morgis. Safety With Solvents. BuMines IC 7757, 1956, 25 pp.

36. Jacobson, M., A.R. Cooper, and J. Nagy. Explosibility of Metal Powders. BuMines RI 6516, 1964, 25 pp.

37. Jacobson, M., J. Nagy, and A.R. Cooper. Explosibility of Dusts Used in the Plastics Industry. BuMines RI 5971, 1962, 30 pp.

38. Jacobson, M., J. Nagy, A.R. Cooper, and F.J. Ball. Explosibility of Agricultural Dusts. BuMines RI 5753, 1961, 23 pp.

39. Johnson, A.L., A.L. Furno, and J.M. Kuchta. Infrared Spectral Radiances and Explosion Properties of Inhibited Methane-Air Flames. BuMines RI 8246, 1977, 22 pp.

40. Jones, G.W., and G. St. J. Perrot. Oxygen Required for the Propagation of Hydrogen, Carbon Monoxide, and Methane Flames. Ind. and Eng. Chem., v. 19, 1927, pp. 985-989.

41. Jones, G.W., M.G. Zabetakis, J.K. Richmond, G.S. Scott, and A.L. Furno. Research on the Flammability Characteristics of Air-

craft Fuels. Wright Air Dev. Cent., Tech. Rep. 52-35, 1952, 93 pp. 42. _. Wright Air Development Center Technical Report 52-35. Supplement I, 1954, 57 pp.

43. Keenan, J.H., and J. Kaye. Gas Tables. Wiley, 1949, 238 pp. 44. Kennedy, R.E., I. Spolan, W.K. Mock, and G.S. Scott. Effect

of High Pressures on the Explosibility of Ethane, Air, and Carbon Dioxide and of Ethane, Air, and Nitrogen. BuMines RI 4751, 1950, 11 pp

45. Kingery, C., and B. Pannill. Peak Overpressure Versus Scaled Distance for TNT Surface Burst (Hemispherical Charges). Ballistics Res. Lab., Aberdeen, MD, BRL Memo. Rep. 1518, 1964, 22 pp.

46. Kogarko, S.M. Detonation of Methane-Air Mixtures and the Detonation Limits of Hydrocarbon-Air Mixtures in a Large Diameter Pipe. Soviet Phys., Tech Phys., v. 3, 1958, pp. 1904-1916.

47. Kuchta, J.M. Fire and Explosion Manual for Aircraft Accident Investigators. Wright-Patterson Air Force Base, Tech. Rep. AFAPL-TR-73-74, 1973, 117 pp.

Summary of Ignition Properties of Jet Fuels 48. and Other Aircraft Combustible Fluids. Air Force Aeropropulsion Lab., Wright-Patterson Air Force Base, Tech. Rep. AFAPL-TR-75-70, Sept. 1975, 54 pp.

49. Kuchta, J.M., A. Bartkowiak, and M.G. Zabetakis. Autoignition of Hydrocarbon Jet Fuel. BuMines RI 6654, 1965, 25 pp.

. Hot Surface Ignition Temperatures of Hydro-50.carbon Fuel Vapor-Air Mixtures. J. Chem. and Eng. Data, v. 10, 1965, pp. 282-288.

51. Kuchta, J.M., and R.J. Cato. Hot Gas Ignition Temperatures of Hydrocarbon Fuel Vapor-Air Mixtures. BuMines RI 6857, 1966, 14 pp.

. Ignition and Flammability Properties of Lub-52.ricants. SAE Trans., v. 77, 1968, pp. 1008-1020.

53. Kuchta, J.M., R.J. Cato, G.H. Martindill, and W. Gilbert. Ignition Characteristics of Fuels and Lubricants. Air Force Aeropropulsion Lab., Tech. Rep. AFAPL-TR-66-21, Mar. 1966, 71 pp.

54. Kuchta, J.M., A.L. Furno, A. Bartkowiak, and G.H. Martindill. Effect of Pressure and Temperature on Flammability Limits of Chlorinated Combustibles in Oxygen-Nitrogen and Nitrogen Tetroxide-Nitrogen Atmospheres. J. Chem. and Eng. Data, v. 13, 1968, pp. 421-428.

55. Kuchta, J.M., A.L. Furno, and A.C. Imhof. Classification Test Methods for Oxidizing Materials. BuMines RI 7594, 1974, 13 pp.

56. Kuchta, J.M., A.L. Furno, and G.H. Martindill. Flammability of Fabrics and Other Materials in Oxygen-Enriched Atmospheres. Part I. Ignition Temperatures and Flame Spread Rates. Fire Technol., v. 5, 1969, pp. 203-216.

57. Kuchta, J.M., S. Lambiris, and M.G. Zabetakis. Flammability and Autoignition of Hydrocarbon Fuels Under Static and Dynamic Conditions. BuMines RI 5992, 1962, 21 pp.

58. Kuchta, J.M., V.R. Rowe, and D.S. Burgess. Spontaneous Combustion Susceptibility of U.S. Coals. BuMines RI 8474, 1980, 37 pp.

59. Kuchta, J.M., M.J. Sapko, F.J. Perzak, and K.E. Mura. Improved Fire Resistance Test for Belt Materials. Fire Technol., v. 17, No. 2, 1981, pp. 120-130.

60. Kuchta, J.M., and A.F. Smith. Classification Test Methods for Flammable Solids. BuMines RI 7593, 1972, 13 pp.

61. Laffitte, P. Science of Petroleum. Oxford Univ. Press, v. 4, 1938, p. 2995.

62. Laurendeau, N.M., and I. Glassman. Ignition Temperatures of Metals in Oxygen Atmospheres. Combus. Sci. and Technol., v. 3, 1971, pp. 77-82.

63. Lawrence Radiation Laboratory. Properties of Chemical Explosives. Univ. CA, Livermore, CA, AEC Contract W-7405-eng-48, Rep. WCRL-14952, Dec. 16, 1965, 75 pp.

64. Lawson, D.I., and D. Hird. Radiation From Burning Buildings. Fire Office Committee, London Fire Protection Assoc., June 1953, 12 pp.

65. Le Chatelier, H., and O. Boudouard. Limits of Flammability of Gaseous Mixtures. Bull. Soc. Chim. (Paris), v. 19, 1898, pp., 483-488.

66. Lewis, B., and G. von Elbe. Combustion, Flames and Explosions of Gases. Academic, 2d ed., 1961, 731 pp.

67. Litchfield, E.L. Minimum Ignition-Energy Concept and Its Application to Safety Engineering. BuMines RI 5671, 1960, 10 pp.

68. Litchfield, E.L., J.M. Kuchta, and A.L. Furno. Flammability of Propellant Combinations. BuMines Explosives Res. Rep. 3958, June 30, 1965, 83 pp.; available from BuMines library, P.O. Box 18070, Cochran Mills Rd., Pittsburgh, PA 15236: attention Ms. K. Stabryla.

69. ______. Flammability of Propellant Combinations. BuMines Explosives Res. Rep. 3997, Oct. 30, 1966, 69 pp.; available from BuMines library, P.O. Box 18070, Cochran Mills Rd., Pittsburgh, PA 15236: attention Ms. K. Stabryla.

70. Lloyd, P. The Fuel Problem in Gas Turbines. Inst. Mech. Eng. Proc., War Emergency Issue No. 41, v. 159, 1948, p. 220.

71. Lunn, G.A., and H. Phillips. A Summary of Experimental Data on the Maximum Experimental Safe Gap. Safety in Mines Research Establishment (Sheffield, England), SMRE Rep. R2, 1973, 39 pp.

72. McKinnon, G.P., and K. Towers (eds.). Fire Protection Handbook. National Fire Protection Assoc., Boston, MA, 14th ed., 1977, sec. 3, 210 pp.

73. Ministry of Labour, United Kingdom. Guide to the Use of Flame Arrestors and Explosion Reliefs. New Series No. 34, H.M. Stat. Office, Aug. 1965, 55 pp.

74. Morrison, R.B. A Shock Tube Investigation of Detonative Combustion. Univ. of MI, UMM-97, 1955, 121 pp.

75. Nagy, J. The Explosion Hazard in Mining. MSHA, IR 1119, 1981, 69 pp.

76. Nagy, J., H.G. Dorsett, Jr., and A.R. Cooper. Explosibility of Carbonaceous Dusts. BuMines RI 6597, 1965, 30 pp.

77. Nagy, J., H.G. Dorsett, Jr., and M. Jacobson. Preventing Ignition of Dust Dispersions by Inerting. BuMines RI 6543, 1964, 29 pp. 78. National Fire Protection Association. Fire Hazards in Oxygen-Enriched Atmospheres. NFPA 53 M, 1979, 94 pp.

79. ______. Halogenated Extinguishing Agent Systems— Halon 1211. NFPA 12 B, 1972, 45 pp.

80. ______. Halogenated Extinguishing Agent Systems— Halon 1301. NFPA 12 A, 1971, 70 pp.

81. Palmer, K.N. The Quenching of Flame by Wire Gauzes. Paper in 7th Symposium (International) on Combustion. Butterworths, 1959, pp. 497-503.

82. Perlee, H.E., G.S. Scott, and G.H. Martindill. Flammability Characteristics of Trichloroethylene. BuMines RI 6766, 1966, 8 pp.

83. Perry, R.H., and C.H. Chilton (eds.). Chemical Engineer's Handbook. McGraw-Hill, 5th ed., New York, 1973, sec. 23, 74 pp.

84. Petes, J. Blast and Fragmentation Characteristics, Prevention of and Protection Against Accidental Explosion of Munitions, Fuels, and Other Hazardous Materials. Ann. NY Acad. Sci., v. 152, Oct. 1968, p. 283-316.

85. Rasbash, D.J., and Z.W. Rogowski. Relief of Explosions in Duct Systems. Paper in Proceedings Symposium on Chemical Process Hazards. Inst. Chem. Eng., London, 1961, pp. 58-68.

86. Rasbash, D.J., and K.L. Stretch. Explosions in Domestic Structures. Structural Eng., v. 47 No. 10, 1969, pp. 403-411.

87. Richmond, D.R., and C.S. White. Biological Effects of Blast and Shock. Lovelace Foundation, DASA-1177, Apr. 1966, p. 39.

88. Richmond, J.K., I. Liebman, A.E. Bruszak, and L.F. Miller. A Physical Description of Coal Mine Explosions. Part II. Paper in 17th Symposium (International) on Combustion. The Combustion Institute, 1978, pp. 1257-1268.

89. Richmond, J.K., I. Liebman, and L.F. Miller. Effect of Rock Dust on Explosibility of Coal Dust. BuMines RI 8077, 1975, 34 pp.

90. Richmond, J.K., M.J. Sapko, and L.F. Miller. Fire and Explosion Properties of Oil Shale. BuMines RI 8726, 1982, 39 pp.

91. Rossini, F.D., and others. Selected Values of Properties of Hydrocarbons. NBS Circ. C461, 1947, 483 pp.

92. Sapko, M., A.L. Furno, and J.M. Kuchta. Flame and Pressure Development of Large-Scale CH_4 -Air- N_2 Explosions: Buoyancy Effects and Venting Requirements. BuMines RI 8176, 1976, 32 pp.

93. Semenov, N.N. Thermal Theory of Combustion and Explosion. Nat. Advisory Committee for Aeronautics, Tech Memo 1024, Aug. 1942, 55 pp.

94. Setchkin, N.P. Self-Ignition Temperatures of Combustible Liquids. J. Res. NBS, v. 53, 1954, Res. Paper 2516, pp. 49-66.

95. Simon, D.M. Flame Propagation. Ind. and Eng. Chem., v. 43, 1951, p. 2718.

96. Singer, J.M., J. Grumer, and E.B. Cook. Burning Velocities by the Bunsen-Burner Method. Paper in Proceedings, Aerothermochemical Gas Dynamics Symposium. Northwestern University, 1955, pp. 139-150.

97. Sondreal, E.A., and R.C. Ellman. Laboratory Determination of Factors Affecting Storage of North Dakota Lignite: Computer Simulation of Spontaneous Heatings. BuMines RI 7887, 1974, 83 pp.

98. Spalding, D.B. Some Fundamentals of Combustion. Butterworth, 1955, 250 pp.

99. Stull, D.R. Vapor Pressure of Pure Substances-Organic Compounds. Ind. and Eng. Chem., v. 39, 1947, pp. 517-536.

100. Stull, D.R., E.F. Westrum, and G.C. Sinke. The Chemical Thermodynamics of Organic Compounds. Wiley, 1969, 865 pp.

101. Van Dolah, R.W., and D.S. Burgess. Explosion Problems in the Chemical Industry. ACS, 1970, 172 pp.

102. Van Dolah, R.W., M.G. Zabetakis, D.S. Burgess, and G.S. Scott. Review of Fire and Explosion Hazards of Flight Vehicle Combustibles. BuMines IC 8137, 1963, 80 pp.

103. Vanpee, M., and A.E. Bruszak. The Ignition of Combustible Mixtures by Laminar Jets of Gases. BuMines RI 6293, 1963, 84 pp.

104. Vanpee, M., and H.G. Wolfhard. Ignition by Hot Gases. BuMines RI 5627, 1960, 12 pp.

105. Weast, R.C. (ed.). Handbook of Chemistry and Physics. Chemical Rubber Co., Cleveland, OH, 53d ed., 1972-73, sec. B, 551 pp; sec. C, 777 pp; sec. D, 235 pp; sec. F, 309 pp.

106. Weir, A., Jr., and R.B. Morrison. Equilibrium Temperature and Composition Behind a Detonative Wave. Ind. and Eng. Chem., v. 46, 1954, p. 1056.

107. White, A.G. Limits for the Propagation of Flame in Inflammable Gas-Air Mixtures III. The Effect of Temperature on the Limits. J. Chem. Soc., v. 127, 1925, pp. 672-684. 108. Wolfhard, H.G. The Ignition of Combustible Mixtures by

Hot Gases. Jet Propulsion, v. 28, 1958, pp. 798-804.

109. Yumoto, T. Fire Spread Between Two Oil Tanks. J. Fire and Flammability, v. 8, 1977, pp. 494-505.

110. Zabetakis, M.G. Flammability Characteristics of Combustible Gases and Vapors. BuMines B 627, 1965, 121 pp.

111. Zabetakis, M.G., and D.S. Burgess. Research on the Hazards Associated With the Production and Handling of Liquid Hydrogen. BuMines RI 5707, 1961, 50 pp.

112. Zabetakis, M.G., A.L. Furno, and G.W. Jones. Minimum Spontaneous Ignition Temperatures of Combustibles in Air. Ind. and Eng. Chem., v. 46, 1954, pp. 2173-2178.

113. Zabetakis, M.G., A.L. Furno, and J.J. Miller. Research on

the Flammability Characteristics of Aircraft Hydraulic Fluids. Wright Air Devel. Cent., Tech. Rep. 57-151, 1957, pp. 28.

114. Zabetakis, M.G., G.W. Jones, G.S. Scott, and A.L. Furno. Research on the Flammability Characteristics of Aircraft Fuels. Wright Air Devel. Cent., Tech. Rep. 52-35, Supplement 4, 1956, 85 pp.

115. Zabetakis, M.G., S. Lambiris, and G.S. Scott. Flame Temperatures of Limit Mixtures. Paper in 7th Symposium (International) on Combustion. Butterworth, 1959, pp. 484-487.

116. Zabetakis, M.G., G.S. Scott, A.C. Imhof, and S. Lambiris. Research on the Flammability Characteristics of Aircraft Hydraulic Fluids. Part II. Wright Air Devel. Cent., Tech. Rep. 57-151, 1959, p. 29.

117. Zabetakis, M.G., G.S. Scott, and G.W. Jones. Limits of Flammability of Paraffin Hydrocarbons in Air. Ind. and Eng. Chem., v. 43, 1951, pp. 2120-2124.

		Mo	Snor	ď	C C	ΔH	ΔH _c	Flash-	Minimum	Flammable limits	le limits
Combustible	Formula	wt	air = 1	ှိပ	(in air), vol pct	(25°C), kcal/mol	(net, 25°C), kcal/mol	point, C	ς, ΑΤ,	L ₂₅ , volpct	U ₂₅ , vol pct
	PARAFFINIC	HYDROCARBONS	-	(STRAIGHT-	-CHAIN AL	ALKANES)					
Methane Ethane Propane	00000 11 11 11 11 11 11 11 11 11 11 11 1	16.04 30.07 44.11 58.12	0.55 1.04 2.01	- 164 - 89 - 42 - 5	9.48 5.65 3.12 3.12	- 17.9 - 20.2 - 30.2	191.8 341.3 488.5 635.4	$2^{2}-188$ $2^{2}-135$ $2^{2}-104$ $2^{2}-74$	630 515 450 370	5.0 3.0 8	15.0 9.5 4.5 4.5
	0000 11 2 1 4 2 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	72.15 86.18 100.21	2.49 3.46 3.46	30 88 88 88	2.55 2.16 1.87	8644	782.0 928.9 1,075.8	2 - 49 - 23 - 33 - 49	260 225 225	4.01-	6.7 7.8 6.7
	Contraction 2000 100 100 100 100 100 100 100 100 10	114.23	6.4.4.1 4.6.4.4 4.6.10	151	1.65	59 59	1,222.8 1,369.7 1,516.6	31 4 31 46 31 4	2220 205 210	4.95 4.75	0.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
n-Dodecane	C ₁₂ H ₂₆ C ₁₄ H ₃₀ C ₁₆ H ₃₄	1/0.33 198.38 226.45	5.88 6.85 7.82	215 253 287	1.12 .97 .85	6 <u>7</u> 83	1,810.5 2,104.3 2,398.2	107 2126	205 205	43 .50 .50 .50 .60	AAA ZZZ
	PARAFFINIC	HYDROCAF	RBONS (BI	(BRANCHED-CHAIN		ALKANES)					
2-Methylpropane (isobutane) 2-Methylbutane (isopentane) 2-Methylpentane	CC4H 54H 64H 64H 200	58.12 72.15 86.18	2.07 2.49 3.0	- 28 60	3.12 2.55 2.16	- 32.2 - 36.9 - 41.7	634 780 927	2 - 81 - 50 NA	460 420 306	60 4 Ci	8.8 7.6 7.0
2,2-Dimethylpropane (neopentane)	C6H12 C6H12 C1H2	72.15 86.18 100.21	0.02 0.02 0.02	9 2 1 9 2 4	2.55 2.16 1.87	- 39.7 - 44.4 - 47.6	777 925 1.073	- 48 148 148	450 425 335	407	7.5 7.0 6.8
2,2,3-Trimethylbutane 2,2,4-Trimethylpentane (isooctane) 2,2,3,3,3-Tetramethylbentane		100.21 114.23 128.26	3.946 9.99 9.99	81 99 134	1.87	- 49.0 - 53.6 - 56.7	1,219	NA NA NA NA	420 415		0.0 0 0 0 0 0 0 0 0 0 0 0 0 0
3,3-Diethylpentane		28.26	4.4	146	6		1,369	AN	290	7.70	e5.7
			NOGHAO		AND	Ū				-	
Ethylene (ethene)		28.05 42.08 56.12 56.12	0.97 1.94 1.94	- 104 - 47 - 6.3 3 7	6.53 3.37 3.37	12.5 4.9 - 1 7	316.2 460.4 607.7	AAAA ZZZZ	490 385 385	22.7	10 10 10
n-Amylene (1-pertene) 3-Methyl-1-butene	c T S C C T S C C C	70.14	2.42	ີ່ ອູ ດ	2.72		754.3 752.3	- 18 oc	275 365	 - 4 rù	8.7 9.1
Propadiene (allene)	ີ ຊີ້ຊີ້ຊີ້ ບັບບັບ	40.07 54.09 68.11	1.38 1.87 2.40	- 35 - 4.4 34	4.97 3.67 2.90	45.9 26.3 18.1	443.7 576.3 720	- 54 NA	NA 420 460	005	۹ ^۲ ۵۵
	UNSAT	URATED HY	YDROCAR	BONS (ACI	ETYLENE	S I					
Acetylene (ethyne)	C₂H₂ C₃H₄	26.04 40.07	0.91 1.40	- 84 - 23	7.73 4.97	54.2 44.3	300.1 442.1	AA	305 340	2.5 1.7	100 NA
	CY	CLIC HYD	ROCARBO	ONS (SATUI	IRATES)						
Cyclopropane (trimethylene) Cyclobutane Cyclopentiane Cycloheptiane	င္လင္လင္လင္လင္လင္လင္လင္လင္လင္လင္လင္လင္လင	42.08 56.12 70.14 84.16 98.19	1.45 1.94 2.91 3.39	- 33 12 81 18	4.45 3.37 2.72 2.27 1.96	12.7 - 18.5 - 29.4 - 28.5	465 614 740.8 881.7 1,034	292 NA NA NA	500 880 880 880 880 880 880 880 880 880	2 1 1 1 3 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	10.4 10.7 10.4 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6
Ethylcyclobutane Ethylcyclobutane Ethylcyclopentane Ethylcyclohexane Ethylcyclohexane Diefhylcyclohexane Diefhylcyclohexane	00000 21412 2144 2144 2144 2000	84.16 98.19 98.19 112.21 140.26	2.91 3.39 3.39 NA	71 104 132 174	2.27 1.96 1.71 1.38	– 30.4 – 37.0 – 41.1 NA	880 1,033 1,174 1,174 NA	A 1 A 4 3 5 4 4 8 5 4 9 5 7 4 9 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	210 260 250 240	3.95 80 80 80	7.7 6.9 6.0 0.0
Pinane Bicyclohexyl	C ₁₀ H ₁₈ C ₁₂ H ₂₂	138.26 166.31	5.7 NA	169 238	1.42	NA - 77.6(I)	NA 1,687	NA 74	NA 245	⁹ .74 7.65	97.2 105.1

APPENDIX A. — SUMMARY (GASEOUS COM	OF COMBUS BUSTION IN	AIR A	PROPER T ATMO	ЦО	TIES OF I SPHERIC	PRESS	NUD G SURE) -	GASEOUS Continu		COMPOUNDS	DS
Combustible	Formula	Mo	Spgr (air = 1)	မ္မီဝံ	C _{st} (in air), vol pct	∆H, (25°C), kcal/mol	ΔH _c (net, 25°C), kcal/mol	Flash- point, °C	Minimum AIT, °C	Flammable limits	le limits U ₂₅ , vol nct
	CYC	CYCLIC HYDROCARBONS (UNSATURATES)	DCARBON	S (UNSATI	JRATES)						
Methylcyclopentadiene	LL LL SCOO	80.10 82.15 136.24 136.24	2.8 2.8 4.7	NA 83 178 156	2.55 2.40 1.47 1.47	NA - 1.3 - 13.2() - 4.1()	799 852 1,390	84 N 49	445 310 255 255	71.3 71.2 7.75 7.75	77.6 NA 06.1 NA
	A	ROMATIC HYI	DROCARB	ONS	(BENZENES)						
Benzene (benzol) Toluene Ethylbenzene o-Xylene (1.2-dimethylbenzene o-Xylene (1.2-dimethylbenzene D-Xylene (isopropylbenzene) P-Cymene (isopropylbenzene tert-Burylbenzene isobutylbenzene P.Diethylbenzene P.Diethylbenzene Stvrene (virbenzene)	ᢞᢞᡱᡭ᠊ᡷᡷᡷᢜᢩᡟᠮᡱᠯ ᠴᡘᠽᠴᠴᠴᠴᠴᠴᠴ ᢗ᠔᠐ᡃᢆ᠐᠐᠐᠐᠐᠐᠐᠐᠐᠐	78.15 92.15 92.15 106.17 106.17 106.17 134.22 134.22 134.22 134.22 134.22 134.22 134.22 134.22 134.22	22 24 24 24 24 24 24 24 24 24 24 24 24 2	855555555555555555555555555555555555555	2272 2272 2272 2272 2272 2272 2272 227	001-01-00 001-01-00 001-01-00 001-01-00 000004000 000014000 000014000	757.5 901.5 901.5 1,046 1,046 1,046 1,342 1,342 1,342 1,342 1,342 1,340 1,340 1,340 1,019 1,019	1 2555557444228335441 25555574442283355	868 868 868 868 868 868 868 868 868 868	20111111111111111111111111111111111111	、 、 、 、 、 、 、 、 、 、 、 、 、
Methylstyrene			B.18 4.1 4.1 HYDROCARRONS		163 1.79 1.79		1,164	57 00	495	6.7	AN
Naphthalene 1-Methylnaphthalene Tetralin (tetrahydronaphthalene) Dieatin (decahydronaphthalene) Diphenyl (biphenyl) Diphenyl (biphenyl) 2-Isopropylbiphenyl Anthracene P-Terphenyl (diphenylbenzene)	00000000000000000000000000000000000000		6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15		000LEAN 1.71 1.53 1.58 1.58 1.58 1.58 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	- 236.1 27.9 27.9 27.9 27.9 27.9 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3	1,208 1,208 1,291 1,294 1,208 1,420 1,661 1,583 1,661 1,661 1,661	79 71 71 71 71 71 71 71 71 71 70 70 70 70 70 70 70	528 528 538 538 538 538 538 538 538 538 538 53	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	80.07 80.07 80.07 80.050
	ALCOHOLS		(ALKANOLS AND		CYCLOALKANOLS	()					
Methanol Ethanol n-Propanol (2-propanol) Isopropanol (2-propanol) Isopropanol (2-propanol) n-Butanol sec-Butanol rert-Bettanol Isobutanol (2-methyl-1-putanol) isobettanol (3-methyl-1-butanol) n-Hexanol Isopertanol (3-methyl-1-butanol) n-Hexanol Disobutyl carbinol Disobutyl carbinol Disobutyl carbinol Disobutyl carbinol Disobutyl carbinol Disobutyl carbinol	9.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	32.04 46.07 66.011 60.111 60.111 74.12 74.12 74.12 74.12 88.15 88.15 88.15 88.15 88.15 88.15 102.18 102.18 100.16 114.19	3350 3350 3350 3350 3350 3350 3350 3350	827922222222222222222222222222222222222	1225 6.533 6.533 7.527 7.722 7.727 7.727 7.727 7.727 7.727 7.7277 7.7277 7.7277777777	- 48.1 - 56.1 - 56.1 - 61.6 - 61.6 - 63.6 - 63.6 - 63.6 - 63.6 - 63.6 - 79.7 - 79.7 - 73.3 - 73.2 - 73.3 - 73.2 -	159 306 306 448 595 595 595 586 742 586 892 885 738 892 892 892 892 8975	568874468888446888446888446888446888446888446888448888844888888	385 365 365 365 365 365 365 300 427 300 300 300 300 300 300 300 300 300 30	8.6 9.6 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		ALCC	ALCOHOLS (GI	(GLYCOLS)							
Ethylene glycol (1,2-ethanediol) Propylene glycol Trimethylene glycol Butylene glycol Bentamethylene glycol	C2H4(OH)2 C3H6(OH)2 C3H6(OH)2 C3H6(OH)2 C4H6(OH)2 C4H6(OH)2 C5H10(OH)2 C5H10(OH)2	62.07 76.11 76.11 90.12 90.12 104.15	2:52 2.6 3.1 8 3.1 8 8 8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8	198 214 235 204 260	7.73 4.97 3.67 3.67 2.90	-93.1 -119.3() NA NA -122.9() -105.1()	268 394 NA 712 712	111 99 121 129	400 4100 3950 3355 3355 3355 3355 3355	² 3.5 23.5 7.1.7 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7 7.9 7 7.9 7 7 7 7	612.5 NA NA NA

		W	Soor	å	ပိ	ΔH,	ΔH _e		Minimum	Flammable limits	ole limits
Combustible	Formula	wt	air = 1)	ှင့်	(in air), vol pct	(25°C), kcal/mol	(net, 25° C), kcal/mol	point, °C	°C,	L ₂₅ , vol pct	U ₂₅ , volpct
	1	ALCOHOLS	(GLYCOLS)		continued						
Triathylene glycol	C ₆ H ₁₂ O ₂ (OH) ₂ C ₃ H ₅ (OH) ₃	150.17 92.11	5.17 3.17	278 290	2.72 5.65	- 191.4(l) - 159.8(l)	777 354	156 160	371 370	100.9 NA	9.2 NA
	ALCOHOLS	HOLS (UNS	(UNSATURATES	AND	AROMATICS)						
Propargyl alcohol (2-propynol)	C ₃ H ₃ OH C ₃ H ₂ OH	56.07 58.08	1.93 2.0	114 97	5.65 4.97	10.1 - 31.6	408 424	36 oc 21	NA 378	42.2 2.5	714 18
Aldol (3-hydroxybutanal)	C2H2OHC2H3O CH2OHC4H3O	88.12 98.10	33.0 9.4	A1 17	4.02 3.67	-102.9(l) -66.1(l)	504 578	66 oc 75 oc	390 390	22.0 31.8	716 NA
Phenol (carbolic acid)	CeH5OH C7H7OH C7H7OH	94.11 108.15 108.15	3.72 3.72 3.72	182 205 202	2.90 2.40 2.40	- 23.0 - 38.5(l) - 31.6	715 851 858	94 101 94	NA 436 559	NAN 1.1	A A A Z Z Z
		ET	HERS	(ALKYLS)							
Methyl ether (dimethyl ether)	(CH ₃)20 CH ₃ OC,H ₅ Cc,H ₂ 20	46.07 60.10 74.12	1.59 2.1 2.56	- 23 11 35	6.53 4.44 3.37	- 44.0 - 51.7 - 60.3	316 462 605	NA - 37 - 45	350 190	ю0+ 400	27 107
Ethyl propyl ether Isopropyl ether	C2H50C3H7	88.15 102.18	3.28 3.53 3.53	88 7 89	2.72	- 76.2	750	208	AN	1 1	ۍ مو
Buryl ether Amyl ether (dipentyl ether) Hexyl ether	(C4H ₃) ₂ O (C5H ₁₁) ₂ O (C6H ₁₃) ₂ O	130.22 158.29 186.34	5.5.4 5.5 5.5 5.5 5.5 5.5 5.5 5 5.5 5 5 5	190 223 223	1.72 1.15 1.15	- 79.8 - 82.5(I) NA	1,193 1,494 NA	22 22 22 22 22 22 22 22 22 22 22 22 22	194 170 185	- <u></u> 1. 0. 1- 0.	67.6 NA NA
	ETHERS	\sim	LS S	AND MISCE	MISCELLANEOUS)						
Ethylene oxide (epoxyethane) Propylene oxide Methyl vinyl ether	C ₂ H40 C ₃ H60 CH30C ₂ H3	44.05 58.08 58.08	1.5 2.0 2.0	44 12 12 12	7.72 4.97 4.97	- 12.6 NA NA	291 433 411	- 37 NA NA NA	429 464 287	10 8 0 5 5 3	30 37 39
Vinyl ether (diethenyl ether)	C2H3)20 C4H0020	68.07 68.07	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	39.82	4 4 0 7 4 6	0.00	547 484 552	A A A	200 Na	2.3	27 14.3
reriary diotant (eDox) outaire)	(C ⁴ H ⁸) (C ⁴ H ³ O) ₂ (CH ₂ O) ₃	88.12 90.08	0.0 NA NA NA	101	6.53 6.53	- 75.3 - 124.4(s)	532 331	45 0C	265 265	9.0.0 20.0 20.0	22 29
• • •		118.18 170.21	4.1 5.86	103 258	2.40 1.47	- 117.2(l) - 3.5(l)	852 1,414	37 115	230 620	2.8 2.8	01 NA
		ETHERS	(CELL	OSOLVES)							
Methyl cellosolve (2-methoxyethanol) Ethyl cellosolve	CH ₃ OC ₂ H ₄ OH C ₂ H ₅ OC ₂ H ₄ OH C ₄ H ₃ OC ₂ H ₄ OH	76.11 90.12 118.18	2.6 3.0 8.08	125 135 171	4.97 3.67 2.40	- 114.8 NA NA	999 NA 399	46 94 71	380 235 245	⁸ 2.5 61.8 ¹⁰ 1.1	¹⁰ 20 614 911
		ALDE	ALDEHYDES (/	(ALKYLS)							
Formaldehyde (methanal)	HCHO CH ₃ CHO C ₂ H,CHO C ₃ H,CHO	30.03 44.05 58.08 72.12	1.0 2.501 2.501	- 20 21 76	17.32 7.73 4.97 3.67	- 27.7 - 39.8 - 45.9 - 49.0	124 264 558	NA - 38 - 7 oc	430 175 207 230	7.0 2.9 2.5	73 60 12.5
		ALDEHYD	ES (MISCELI	ELLANEOUS)	IS)						
Acrolein (2-propenal) Crotonaldehyde (2-butenal) Furaldehyde Benzaldehyde	С ² H3CHO С3H3CHO С3H3O)CHO С6H3O)CHO С6H3O)CHO	56.07 70.09 96.09 106.13	1.90 3.3 3.7	53 104 178	5.64 4.02 2.55 2.55	- 25.1() - 34.5() - 46.6() - 18.5()	373 515 539 813	- 26 60 64	235 232 316 192	22.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	31 316 19.3 NA
Paraidenyde (paraacetaidenyde)	(CH ₃ CHU) ₃	132.16 KFT	ត្ត (ខ្ល	(ALKYLS)	2/2	- 164.2(I)	/4/	36.00	238	1.3	AN
Acetone (propanone)	(CH ₃) ₂ CO CH ₃ COC ₂ H ₅	58.08 72.12	2.01 2.49	80 29	4.97 3.67	- 52.0 - 57.0	403 548	- 18 - 6	465 516	2.6 1.9	13
See footnotes on page 77.											

See footnotes on page 77.

APPENDIX A. — SUMMARY (GASEOUS COI	Y OF COMBUS	TION P AIR AT	ROP - ATI	RT OS	IES OF I PHERIC	LIQUID /	AND GA			compounds ed	IDS ¹
Combustible	Formula	wt OI	Spgr (air = 1)	e S	C _{st} (in air), vol pct	∆H, (25°C), kcal/mol	∆H _c (net, 25°C), kcal/mol	Flash- point, °C	Minimum AIT, °C	Flammable limits	le limits U ₂₅ , vol pct
		KETONES	(ALKYLS)) — continued	per						
Diethyl ketone (3-pentanone) Methyl propyl ketone Methyl isobutyl ketone Methyl isobutyl ketone Diisobutyl ketone	(C2H3)CO CH3COC3H CH3COC4H CH3COC4H CH3COC4H CA43COC4H	86.14 86.14 100.16 142.23	2.97 2.97 3.46 3.5	102 102 117 168	2:90 2:40 1:59 2:40 2:40	- 61.8 - 61.8 - 78.9 - 92.9(I) NA	692 840 818 NA	13 oc 7 35 oc 23 60	450 505 533 NA	112 14 12 14 12 14 12 14 12 12 12 12 12 12 12 12 12 12 12 12 12	8 2 7 8 6.2 6 .5
		KETONE	S (MISCEI	LLANEOUS	S) (
Methyl isopropenyl ketone Cyclohexanone Acetyl actorne (pentanecione) Acetohenone (acetylbenzene) Isophorone	CH2COC3H C5H10CO C6H3COO2CH2 C6H5COCH3 C6H14COCH3 C6H14CO	83.11 98.15 100.13 120.16 138.20	2.9 3.5 NA	98 156 202 215	3. 24 2.55 3.37 2.16 1.72	– 55.0 – 127.6(l) – 20.8 NA	NA 574 963 NA	NA 44 82 oc 84 oc	NA 420 340 570	21.1 21.7 6.84	9 A A A A A A A A
		ACIDS (ALP	KYLS AND	AROMAT	ICS)						
Formic acid (methanoic) Acetic acid (ethanoic) Butyric acid (butanoic) Valeric acid (pertanoic) Benzoic acid Adipizoic acid (nexandioic) Stearic acid (nexandioic)	HC00H HC00H C,H,C00H C,H,C00H C,H,C00H C,H,C00H C,H,C00H C,H,C00H	46.03 60.05 88.12 102.13 122.13 146.14 284.50	2.16 2.16 NA NA NA	101 118 249 338 360	29.53 9.48 3.12 3.12 3.12 .80	- 90.5 - 103.9 - 1127.6(1) - 1172.6(1) - 1172.6(1) - 1172.6(1) - 236.5(s) - 236.5(s)	61 200 4480 412 617 520 520	¹² 69 43 - 72 96 oc 121 196	¹² 601 465 4450 470 570 395 395	^{25.4} NA 200 1.6 NA NA NA	A N N N N N N N N N N N N N N N N N N N
		ANHYDRIC	IDES (MISC	SCELLANEOUS	US)				-		0
Maleic anhydride Aceitic anhydride Phthalic anhydride	(CHCO) ₂ O (CH ₃ CO) ₂ O C ₆ H ₄ (CO) ₂ O	98.06 102.09 148.12	3.5 NA 5	202 140 295	6.53 4.97 2.72	- 112.4(s) - 137.6 - 110.1(s)	322 412 758	102 54 152	477 390 570	61.4 42.7 101.2	⁶ 7.1 ² 10 ¹¹ 9.2
		ES	TERS (ALI	KYLS)			•				
Methyl formate (methyl methanoate) Ethyl formate n-Buyl formate Methyl acetate Ethyl acetate Propropyl acetate isopropyl acetate isopropyl acetate isopropyl acetate isopropyl acetate isopropyl acetate n-Amyl acetate isopropyl acetate isopropyl acetate n-Amyl acetate for hyl proprionate thyl proprionate methyl proprionate n-Amyl buyrate thyl buyrate n-Butyl stearate	HCOOCCH HCOOCCH HCOOCCH HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCH HCOOCCCH HCOOCCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCH HCOOCCCCH HCOOCCCCH HCOOCCCC HCOOCCCC HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCCCC HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCH HCOOCCCCCCCC	60.05 74.08 74.08 72.13 72.13 74.08 74.08 74.08 73.019 116.16 130.19 140.19 140	00000000000000000000000000000000000000	23225588514488652528 2322558854488852252 2322558854488855555555555555555555555555	<u> </u>	- 83.6 - 88.7 - 97.9 - 97.9 - 105.9() - 124.0() - 124.0()\\- 124.0(219 367 550 550 550 550 550 785 785 785 785 785 785 785 785 785 785	61	44667444448684468848888 8888884888848888	89169144401480 08769674401480A80	ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZ
		ESTERS	-	(MISCELLANEOUS)							
B-Propiolactone γ-Butyrolactone Viny accriate (etheny) ethanoate) Wethyl acrylate Methyl lactate Methyl lactate Methyl cellosolve acetate Octobherylacetate Denzyl benzoate	C2H4CO2 C3H6CO2 C3H6CO2 C3H6CO2 C3H2COOCC5H3 C2H4OHCOOCC7H3 C2H4OHCOOCC7H4 C14COOC2H4 C14COOC7H4 C14COOC2H4 C14COOC7H4 C14COOC2H4 C14COOC7H4 C1	72.06 86.09 86.09 86.09 86.09 86.09 104.12 118.13 118.13 212.24 212.24	25 25 25 25 25 25 25 25 25 25 25 25 25 2	162 206 72 80 145 155 174 323	6.53 6.53 4.45 4.45 4.45 4.45 3.37 3.37 1.296	- 67.6 - 99.2() - 83.6() - 83.6() NA - 152.3() - 158.6() NA - 65.1(s)	330 466 455 865 865 801 801 801 801 801 802 803 803 803 803 803 803 803 803 803 803	74 98 00 49 49 44 46 44 46 46 46 48 46 46	AN 4687 885 835 835 835 835 885 885 885 885 885	2000 2000 2000 2000 2000 2000 2000 200	NA 25 13 AA NA NA NA NA NA NA NA NA NA NA NA NA N

		Ň	20 U		ပီ	ΔH,	ΔHς	Flash-	Minimum	Flammable limits	ole limits
Combustible	Formula	Mo	spgr (air = 1)	<u>ှိ</u> ပ္	(in air), vol pct	(25° Č), kcal/mol	(net, 25°C), kcal/mol	ocint,	°C,	L ₂₅ , vol pct	U ₂₅ , volpct
		AN	AMINES (AI	(ALKYLS)							
Mettrylamine (aminomethane)	CCCCC CCCCC CCCCCCCCCCCCCCCCCCCCCCCCCC	31.06 45.09 59.11 73.14 73.14	250.0 1.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	- 6.3 17 78 44	8.52 5.29 3.01 3.01	- 5.5 - 11.0 - 17.3 - 22.0	233 379 525 672 665	NA NA - 37 NA	430 385 318 312 380	4.9 3.5 1.7 7	20.7 14 9.8 8.9
n-Amylatinine (aminopentane) Dimethylamine Diethylamine Trimethylamine	C3H52NH CCH3)2NH CCH3)2NH CC2H5)2NH CC2H5)2NH CC2H5)2NH	87.16 45.09 73.14 59.11 101.19	3.5 A 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103 56 89 89	2.48 3.01 3.83 2.10	23.8 23.8 23.8	866 377 537 974	NA NA NA NA NA NA NA NA	8400 1200 1200 1200 1200 1200 1200 1200 1	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	004 004 4000 804 8000 8000 8000 8000 80
		AMINES (UNSA	1 111	S AND ARO	AROMATICS)						
Ethyleneimine (aziridine) Allylamine (3-aminopropene) Aniline (phenyl amine) Diethylamine 2-Biphenylamine 2-Biphenylamine	C2H4NH C2H4NH2 C6H5NH2 C6H5NC2 C6H32NH C6H42NH2C6H5 C6H4	43.07 57.09 93.13 149.24 169.23 169.23	1.5 2.0 5.8 NA	56 58 216 302 299	6.05 4.22 2.63 1.40	29.5 6.9 9.6 9.6 48.2 29.1(s)	362 491 787 1,495 1,495	- 11 70 153 NA	320 375 615 630 635 635	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	46 1022 NA NA NA
		AMINES (F	(PYRIDINE	DERIVAT	IVES)						
Pyridine (azine)	C ₅ H ₅ N C ₅ H ₄ (CH ₃)N C ₅ H ₇ N C ₁₀ H ₁₄ N ₂	79.10 93.13 129.16 162.24	2.7 3.2 5.6 5.6	116 144 238 246	3.24 2.63 1.91 1.53	33.5 33.5 25.4 35.7(I) 10.2(I)	648 792 1,084 1,355	ANA 20	482 500 244 244	³ 1.8 21.4 75 75	412 NA NA
		AMIDI	ES AND C	CYANIDES							
Hydrogen cyanide Methyl cyanide (acetonitrile) Cyanogen (acontonitrile)		27.03 41.05 52.04	0.6 1.4 0.4 0.4 0.4	26 - 22 78	14.34 7.08 9.47 5.20	31.2 21.0 73.8	154 296 262	- 18 - 60c - 62	538 524 NA	5.6 6.6 6.6	19 140 140
Priny regramed fact yountine)	Concert Carlon(CH3)2 CarlonCON Certan	73.09 85.11 135.17	2.5 2.9 4.65	304 149 304 149	2.10 3.84 2.10	- 50.3(s)	962 962 962	57 57 74 174 oc	481 687 540	2.2°°°, 1.8°°, 1.0°2, 1	612 NA
			HYDRAZI	INES							
Hydrazine Methylhydrazine	N ₂ H ₄ CH ₃ N ₂ H ₃ (CH ₃) ₂ N ₂ H ₂	32.05 46.07 60.11	1.1 2.1 2.1	114 87 63	17.32 7.73 4.97	22.8 20.4 20.3	138 259 440	38 21 6	270 185 250	64.7 4.0 2.0	6100 795
	NITRATED C	COMPOUND	S (NITRO	ALKYLS	AND AROM	AROMATICS)					
Nitromethane	0000000 NSNSN 111111 111111 1000000	61.04 75.07 89.09 89.09 123.11	20.00 10 10 10 10 10 10 10 10 10 10 10 10 1	101 115 211 211 211 201 201 201 201 201 201 201	21.83 8.52 5.29 3.24 5.29 5.29 5.29 5.29 5.29	- 17.9 - 24.2 - 29.8 - 33.5 3.8()	163 308 454 713 713	588 89 00 288 89 00 288 00	418 414 421 482 482 MA	7.8 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	AAAAA A
	NITRATED	10		(NITRITES AND	NITRAT	ES)	2	8			
Ethyl nitrite Ethyl nitrate n-Propyl nitrate n-Amyl nitrate	0000000 1200000000000000000000000000000			~110 1105 ~155	8.52 8.52 6.05 3.01 3.24	- 24.8 - 36.8 - 41.6 NA	308 296 NA NA	- 35 10 NA 52 oc	90 210 195	0.0.8.0 ⁻¹ 0.0.8.0 ⁻¹	⁸¹⁰⁰ AA
See footnotes on page 77.	-										

										Clamma	Elamoblo limito
Combustible	Formula	Mol	Spgr (air = 1)	ရီပ	Cst (in air), vol pct	(25° C). kcal mol	net, 25° C), kcal≀mol	Plash- point.	AIT.	L ₂₅ , vol pct	U ₂₅ ,
	CHL	ORINAT	ED COMPOUNDS		(ALKYLS)						
Methyl chloride (chloromethane)	CH ₃ CI	50.49	1.8	- 24	12.25	- 20.6	153	AN	632	10.7	17.4
mempiene cnioride (alchioromethane)	CH,Cl	84.94 64.52	50	40 12	6.52	- 22.8 - 26.7	115 299	- 50	615 519	.15.9 3.8	19.1
	C H C	98.96	0,4 4,0	83	7.72	- 31.0	259	13	440	74.5	717.3
	C3H2C3	78.54	0 / 0 0 / 0	44	4.40	- 31.1	447	A A	520	5.0 15.0	¥ []
ropylene cnloride	C3H C12	112.99 92.57	ຕ ຕ ຕ	96 78	4.97 3.37	- 39.6 - 35.2	402 594	- 1 9 1	557 250	3.4 4.8	710 710
(chloropentane)	0000	92.57 106.60 106.60	0.00	108 86 86	3.37 2.72 2.72	- 38.1 - 41.8 - 43.1	591 740 738	NA 13 oc	260 245	⁵ ¹ .6	8.8 8.6 7 4
	CHLORINAT	E C	COMPOUND	S (I	H H						
Chloroacetylene Vinvl chloride (chloroethene)	C2HCI C2H2CI	60.48 62.50	AN S	30	9.48 7.72	51.1 8.4	261 276	AN	NA 472	A N S	100
Dichloroethylene (1,2-dichlorethene)	C.H.Cl2	96.94	6. 4.	09	9.47	υ	232	9	460	9.7	,12.8
Tricnioretriytene	C2HCI3	131.39 165.83	4.5 5.72	121	12.25	 - 0 4 4	210 185	MA 32	420 NA	12.0 NA	,40 NA
3-chloropropyne)		74.51	AN	65	7.73	A Z	AN	AS	AN	A C	100
Isopropenyl chloride	C3H,CC	76.53	2.63	53 53	4.97	N A N	NA NA	NAN	C84 NA	4 K	11
:::	C4H7CI C4H7CI	90.55 90.55	3.1 NA	68 71	3.67 3.67	a a Z Z	A A Z Z	19 19	A A N N	4 0 0 0	19 9.3
	HLORINATED	COMPOUNDS	S (ACETYL	AND AL	COHOL DE	DERIVATIVES)					-
Acetyl chloride	C ₂ H ₃ OCI C ₂ H ₄ CIOH	78.50 80.52	2.7 2.78	51 128	9.48 7.73	- 58.3 - 70.3(I)	210 256	4 60 oc	390 425	² 5.0 64.9	015.9
	CHL	HLORINATED	COMPOUNDS	INDS (BENZ	ZENES)						
Chlorobenzene	C H CO C H CO C H CO C H CO	112.56 126.59 147.01	3.9 4.4 5.1	132 179 181	2.90 2.40 3.12	12.4 16.8(I) 7.2	714 837 673	29 67 66	640 585 648	61.1 62.2	7.1 NA 9.2
	BF	ROMINATED	D COMPOUNDS	(AL	KYLS)						
Methyl bromide (bromomethane)	CH ₃ Br C ₂ H ₅ Br	94.94 108.97	3.3 8.8 8.8	3.6 38	12.24 6.52	- 9.0 - 15.3	152 297	A N N N	537 511	10 6.7	15 11.3
n-Propyl bromide Butyl bromide	Contraction Contra	123.00 137.03 151.05	€.4 €.7	120 120	4.45 3.37 2.72	- 21.0	443 590 737	A 18 %	490 265 NA	72.5	76.6 NA
	BROMINATED	COMPOUND		15	AND B	ENZENES)	5	5			
Propargyl bromide (3-bromopropyne)	C ₃ H ₃ Br C ₂ H ₂ Br	118.97 120.98	4.4	88 70	5.65 4.97	-40 11 B	389 418	07	324 295	3.0	100
Isocrotyl bromide Bromobenzene	C4H,Br C6H,Br	135.00	5.4 A	156 NA	3.67	25.1	713 713	NA 51	565 565	6.4 1.6	12 NA
		SULF	FUR COMF	COMPOUNDS							
Hydrogen sulfide	H₂S	34.08	1.18	- 61	12.25	- 4.8	124	AN	260	4.0	44
Carbon disulfide	CS2 CF3SH C2H5SH C2H5SH	76.14 48.11 62.13 90.19	2.63 2.15 3.10	46 6 35 97	6.53 6.53 4.45 2.72	28.0 - 5.5 - 11.0 - 21.1	252 276 715	NAA NAA	00 A 00	1.3 2.9 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	22 18 Na
Dimethyl sulfide Dimethyl sulfoxide	(CH ₃) ₂ S (CH ₃) ₂ SO	62.13 78.13	2.15 NA	37 189	4.45	- 9.0 - 34.6	423 398	95 95	205 NA	5.5 5.6 5.7	20 28.5

		IOM	Snor	da	S.	ΔH	ΔH_c	Flash-	Minimum	Flammal	Flammable limits
Combustible	Formula	¥	(air = 1)	ှို့ပ	(in air), vol pct	(25°C), kcal/mol	(net, 25° C), kcal/mol	point, °C	ÅT,	L ₂₅ , volpct	U ₂₅ , volpct
		BOR	BORON COMPOUNDS	SOUNDS							
Diborane	B2H6 B4H10	27.67 53.32	0.96 1.84	- 93 16	6.53 3.67	7.5 NA	478 NA	A A N A	~40 NA	0.8 4.	88 NA
Pentaborane	B ₅ H ₉ B ₁₀ H ₁₄	63.12 122.22	2.18 4.23	58 213	3.37 1.87	15.0 8.0 (s)	1,030 NA	A N N N	A A Z Z	54.0	AA
		MISCE	ILANEOL	MISCELLANEOUS GASES							
Hydrogen	H2	2.02		- 253	29.53	0	57.8	AN	520	4.0	75
Deuterium	2	4.03	AN	- 250	29.53	0	AN	AN	AN	4.9	75
Ammonia	NH3	17.03		- 33	21.83	- 11.0	75.7	٩N	650	15	28
Carbon monoxide	00	28.01		- 192	29.53	- 26.4	67.6	AN	609	12.5	74
Natural gas (Pittsburgh)	Mixture	~17		AN	~8.6	AN	AN	٩N	~500	~4.8	~13.5
Natural gas (others)	Mixture	~17		AN	8.5-10	AN	AN	٩N	480-630	3.8-6.5	13-17
Coal gas	Mixture	AN	.45	٩N	15.5-18	٩Z	AN	AN	AN	~5.3	~32
NA Not available. I liquid. q	g gas. solid.	oc open cup	cup.								
¹ Flammability data represent the values selected from	~	ons cited in t	the text. T	he flammal	bility limits	(L ₂ and U ₂) are mainly f	rom refere	nces 11, 54,	72 and 11(. minimum
autoignition temperatures (AIT's) from references 23, 72,	3, 72, 110, and 112; and flashpoints from references 1, 35, 72, and 110. Flashpoints are generally closed-cup values; AIT's refer to incipient flame	tshpoints fron	n reference	as 1, 35, 72	2, and 110.	Flashpoints a	are generally	closed-cup	values; AIT's	refer to inci	pient flame

aunojumuni veripretaruures viru is ji nori in treiteriures viru i and incidenti frame aunojumunu empreadure virue si viru is ji nori interierense virue viru

APPENDIX B.— DEFINITION OF SYMBOLS

COMBUSTION OR THERMODYNAMIC SYMBOLS WITH TYPICAL UNITS

— Area, m^2 or cm^2 , or rate constant Α AIT - Minimum autoignition temperature, °C Reactant concentration, mol/L а BP -Boiling point, °C С - Concentration, vol pct or wt pct; or specific heat, cal/(g° C) Č_p C_{st} C_v C/I - Heat capacity at constant pressure, cal/ (mol·° C) - Stoichiometric concentration, vol pct or wt pct - Heat capacity at constant volume, cal/ (mol.° C) - Combustible-inert ratio $\text{CO}/\Delta\text{O}_2$ — Ratio of CO formation to O_2 reduction - Velocity of sound, m/s с c_d D - Vent discharge coefficient - Detonation velocity, m/s — diameter, m or cm d Ε - Energy (chemical or mechanical), cal or J, or gas expansion ratio ΔE Energy change, cal or J - Fuel-air ratio F/A FI - Flammability index (fire resistance) - Flame spread rate, cm/s FS - Gravitational constant, 980.6 cm/s^2 g н - Heat content or enthalpy, kcal/mol - Heat of reaction, kcal/mol ΔH - Heat of combustion, kcal/mol ΔH_c ΔH_{f} -Heat of formation, kcal/mol ΔH_{v} Heat of vaporization, kcal/mol Height, m or cm h - Radiative heat flux, cal/(cm²·s) h_r - Ignitor heat input, cal/cm², or irradiance, cal/(cm²·s) Ι Κ - Ratio of duct area to vent area - Empirical constant k - Lower limit of flammability, vol pct \mathbf{L} L/D - Length-diameter ratio Μ - Molecular weight, g/mol, or Mach number MESG — Maximum experimental safe gap, cm - Minimum ignition energy, J MIE N_{t} - Total moles n - Moles of a component $P_F P_t P_t P_v \Delta P$ - Fuel vapor pressure at flash point, atm or psia - Total pressure, atm or psia - Combustion pressure at constant volume, atm or psia Pressure rise, atm or psi p Q - Partial pressure, atm or psi - Heat (chemical or mechanical), cal or J q R — Rate of heating, cal/s or °C/s - Universal gas constant, 1.987 cal/(k·mol) r --- Radius, m or cm \mathbf{S} — Surface area, m^2 or cm^2 - Fundamental burning velocity, cm/s $\begin{array}{c} T_{F} \\ T_{f} \\ T_{L} \\ T_{u} \\ \Delta T \end{array}$ - Flashpoint, °C — Flame temperature, °C or K Lower temperature limit of flammability, °C - Upper temperature limit of flammability, °C - Temperature rise, °C or K - Time, s, or thickness, cm t U - Upper limit of flammability, vol pct V – Volume, m³ or cm³ - Regression rate, cm/min, or flame velocity, cm/s v

- W X - Weight, g or kg, and work, cal or J
- Mole fraction
- x Z - Distance, m or cm
- Rate frequency constant or compressiblity factor

GREEK SYMBOLS

- Thermal diffusivity $\frac{(\lambda)}{(\rho C_p)}$, cm²/s Ratio of specific heats (C_p/C_v) Vessel shape factor (thermal theory) α
- γ $\dot{\delta}_c$
- θ - Reduced temperature (T/T_c)
- Thermal conductivity, cal/(cm·s·°C), or scaled distances, m/kg^{1/3} Reduced pressure (P/P_c) λ
- π
- Density, g/cm^3 ρ
- Ignition delay, s τ

SUBSCRIPTS

- $_1$ or $_0$ - Initial or zero state
- Final state 2
- Burned state b
- Critical state с
- --- Flame f
- Gas g
- $-i^{th}$ fraction i
- --- Lower limit 1, L
- --- Maximum m
- Constant pressure р
- Temperature т
- Total t
- Upper limit or unburned state u, U
- --- Vapor v

ELECTRICAL SYMBOLS WITH TYPICAL UNITS

- С — Capacitance, F
- Voltage, V, or energy, J
- E I L -- Current, A
 - Inductance, H
- Q R - Electrical charge, C
 - Resistance, ohms, Ω
- Time, s
- t V - Potential difference, V

APPENDIX C. — CONVERSION FACTORS

TO CONVERT FROM —	TO —	MULTIPLY BY —
Square centimeter	Square inch	0.155
Square foot	Square inch	144
Square foot	Square meter	9.290 × 10 ⁻²
Square inch Square inch	Square centimeter	6.452
Square Inch Square yard	Square meter	6.452×10^{-4} 0.836
Square yait	Square meter	0.836
	DENSITY	
Gram per cubic centimeter Ounce per cubic inch	Pound per cubic foot Kilogram per cubic meter	62.428 1.730 × 10 ³
Ounce per cubic foot	Kilogram per cubic meter	1.001
Kilogram per cubic meter	Gramper liter	1.000
Pound per cubic inch	Gram per cubic centimeter	27.680
Pound per cubic inch	Kilogram per cubic meter	27.680×10^{3}
Pound per cubic inch Pound per cubic foot	Pound per cubic foot Kilogram per cubic meter	17.28×10^{2}
		16.018
	ENERGY OR WORK	
British thermal unit (Btu) Btu	Joules (International)	1.055×10^3
Btu	Calorie, gram Foot pound	252.16 778
Calorie, gram	Joule	4.187
Erg	Dyne centimeter	1.000
Erg	Joule	1.00×10^{-7}
Foot pound Foot pound	Joule	1.356
Footpound	Btu Joule	1.285×10^{-2} 4.214×10^{-2}
Kilocalorie	Btu	4.214 × 10 = 3.968
Kilocalorie	Foot pound	3.087×10^{3}
Kilowatt hour	Joule	3.600 × 10 ⁶
Wattsecond	Joule	1.000
	ENERGY PER AREA-TIME	
Btu per square foot-second	Watt per square meter	1.135×10^{4}
Btu per square foot-hour	Watt per square meter	3.153
Calorie per square centimeter-minute	Watt per square meter	6.973×10^{2}
Calorie per square centimeter-second Kilowatt per square foot	Btu per square foot-second Btu per square foot-second	3.690 0.948
-	FLOW	
Cubic foot per minute		4.179 × 10 ⁻⁴
Cubic foot per minute	Cubic meter per second Gallon (liquid) per second	4.179 × 10 0.125
Cubic foot per minute	Liter per second	0.472
Cubic inch per minute	Cubic meter per second	2.731×10^{-7}
Pound per minute	Kilogram per second	7.560×10^{-3}
	FORCE	
Dyne	Gram	1.02×10^{-3}
Dyne Gram (force)	Newton	1.00×10^{-5}
Kilogram (force)	Dyne Newton	9.807 × 10 ² 9.807
Pound (force)	Newton	4.448
Pound (force)	Poundal	32.174
	HEAT	
	Watt per square meter-kelvin	5.678
Btu square foot	Joule per square meter	1.136 × 10⁴
Btu square foot Btu per pound ° F	Joule per square meter Joule per kilogram kelvin	1.136×10^4 4.187×10^3
Btu square foot Btu per pound ° F Btu per pound	Joule per square meter Joule per kilogram kelvin Joule per kilogram	1.136×10^{4} 4.187 $\times 10^{3}$ 2.326 $\times 10^{3}$
Btu per hour-square foot-° F Btu square foot Btu per pound ° F Btu per pound Calorie per gram Calorie per square centimeter	Joule per square meter Joule per kilogram Joule per kilogram Joule per kilogram	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \end{array}$
Btu square foot Btu per pound ° F Btu per pound ° C Calorie per gram Calorie per square centimeter Calorie per square centimeter-second	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per kilogram Joule per square meter Watt per square meter	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 4.184 \times 10^{4} \end{array}$
Btu square foot Btu per pound ° F Btu per pound ° C Calorie per gram Calorie per square centimeter Calorie per square centimeter-second	Joule per square meter Joule per kilogram Joule per kilogram Joule per kilogram Joule per square meter	$\begin{array}{c} 1.136\times10^{4}\\ 4.187\times10^{3}\\ 2.326\times10^{3}\\ 4.187\times10^{3}\\ 4.184\times10^{4} \end{array}$
Btu square foot Btu per pound ° F Btu per pound ° C Calorie per gram Calorie per square centimeter Calorie per square centimeter-second	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per kilogram Joule per square meter Watt per square meter	$\begin{array}{c} 1.136\times10^{4}\\ 4.187\times10^{3}\\ 2.326\times10^{3}\\ 4.187\times10^{3}\\ 4.184\times10^{4}\\ 4.184\times10^{4}\\ 4.184\times10^{4}\\ \end{array}$
Btu square foot Btu per pound ° F Btu per pound ° Calorie per gram Calorie per square centimeter Calorie per square centimeter-second Square foot per hour (thermal diffusivity) Centimeter	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.187 \times 10^{4} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$
Btu square foot Btu per pound ° F Btu per pound Calorie per square centimeter Calorie per square centimeter-second Square foot per hour (thermal diffusivity)	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch Meter	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$
Btu square foot Btu per pound ° F Btu per pound Calorie per square centimeter Calorie per square centimeter Calorie per square centimeter-second Square foot per hour (thermal diffusivity) Centimeter Foot Inch	Joule per square meter Joule per kilogram Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch Meter Meter	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$
Btu square foot Btu per pound ° F Btu per pound Calorie per gram Calorie per square centimeter Calorie per square centimeter-second Square foot per hour (thermal diffusivity) Centimeter Foot Inch Meter	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch Meter Meter Inch	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$
Btu square foot Btu per pound ° F Btu per pound Calorie per square centimeter Calorie per square centimeter-second Square foot per hour (thermal diffusivity)	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch Meter Inch Meter	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$
Btu square foot Btu per pound ° F Btu per pound Calorie per gram Calorie per square centimeter Calorie per square centimeter-second Square foot per hour (thermal diffusivity) Centimeter Foot Inch Meter Micrometer Mile (statute) Mile (statute)	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch Meter Meter Inch	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$
Btu square foot Btu per pound ° F Btu per pound ° C Calorie per square centimeter Calorie per square centimeter-second Square foot per hour (thermal diffusivity) Centimeter Foot Inch Meter Mile (statute) Mile (statute)	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch Meter Meter Inch Meter Meter Foot Kilometer	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$
Btu square foot Btu per pound ° F Btu per pound Calorie per gram	Joule per square meter Joule per kilogram kelvin Joule per kilogram Joule per kilogram Joule per square meter Watt per square meter Square meter per second LENGTH Inch Meter Meter Inch Meter Meter Foot	$\begin{array}{c} 1.136 \times 10^{4} \\ 4.187 \times 10^{3} \\ 2.326 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.187 \times 10^{3} \\ 4.184 \times 10^{4} \\ 2.581 \times 10^{-5} \end{array}$

TO CONVERT FROM	то —	MULTIPLY BY
	MASS	
Ounce Pound Slug Ton (short, 2,000 lb) Ton (long, 2,240 lb)	Gram Kilogram Pound Kilogram Kilogram	$\begin{array}{c} 28.35 \\ 45.36 \times 10^{-2} \\ 32.174 \\ 9.072 \times 10^2 \\ 1.016 \times 10^3 \end{array}$
	POWER	1
Btu per second Btu per second Calorie per second Foot pound per second	Horsepower Watt Watt Watt	1.414 1.054 × 10 ³ 4.184 1.356
Horsepower (metric) Kilowatt Kilowatt Watt	Watt Btu per second Kilocalorie per second Joule per second	7.355 × 10 ² 9.483 × 10 ⁻¹ 0.239 1.00
	PRESSURE OR STRESS (FORCE PER AREA)	
Atmosphere (760 torr) Atmosphere Atmosphere Atmosphere Bar	Centimeter of mercury (°C) Feet of water Pound per square inch Newton per square meter Newton per square meter	$76.0 \\ 33.93 \\ 14.696 \\ 1.013 \times 10^5 \\ 1.00 \times 10^5 \\ 1.0$
Dyne per square centimeter Inch of mercury Inch of water (60°F) Inch of water Pascal	Newton per square meter Pound per square inch Newton per square meter Pound per square inch Newton per square meter	$ \begin{array}{c} 1.00 \times 10^{-1} \\ 0.491 \\ 2.488 \times 10^2 \\ 3.609 \times 10^{-2} \\ 1.00 \\ \end{array} $
Pound per square foot Pound per square inch Pound per square inch Pound per square inch Torr (mm Hg, 20°C)	Newton per square meter Gram per square centimeter Pound per square foot Newton per square meter Newton per square meter	$\begin{matrix} 1.488 \\ 70.31 \\ 144.00 \\ 6.895 \times 10^3 \\ 1.333 \times 10^2 \end{matrix}$
	TEMPERATURE	
Celsius (T _c , °C) Celsius (T _c , °C) Fahrenheit (T _F , °F)	Fahrenheit (T _F , °F) Kelvin (T _K , K) Celsius (T _c , °C)	$\begin{array}{c} T_{F}=1.8(T_{c})+32\\ T_{K}=T_{c}+273\\ T_{c}=(T_{F}-32)/1.8 \end{array}$
	VELOCITY	
Foot per second Foot per second Inch per second Meter per second Mile per hour (statute) Mile per hour (statute)	Meter per second Mile per hour Meter per second Foot per second Meter per second Foot per second	$\begin{array}{c} 3.048 \times 10^{-1} \\ 6.818 \times 10^{-1} \\ 2.540 \times 10^{-2} \\ 3.281 \\ 4.470 \times 10^{-1} \\ 1.467 \end{array}$
	VISCOSITY	
Centipoise Centipoise Centistoke	Gram per centimeter second Newton second per square meter Square meter per second	$\begin{array}{c} 1.00 \times 10^{-2} \\ 1.00 \times 10^{-3} \\ 1.00 \times 10^{-6} \end{array}$
	VOLUME	·
Barrel (oil, 42 gal) Cubic foot Cubic inch Cubic inch Cubic yard Gallon (liquid) Liter Quart (liquid)	Cubic meter Cubic meter Liter Cubic centimeter Cubic centimeter Cubic meter Liter Cubic centimeter Cubic meter	$\begin{array}{c} 1.590 \times 10^{-1} \\ 2.832 \times 10^{-2} \\ 28.316 \\ 1.639 \times 10^{-5} \\ 1.639 \times 10^{-1} \\ 7.646 \times 10^{-1} \\ 3.785 \\ 1.000 \times 10^{3} \\ 9.464 \times 10^{-4} \end{array}$

SUBJECT INDEX

Page

Accident investigation 2
Acetylenic hydrocarbons 17, 25, 28, 29, 33-41
Acids 23
Adiabatic process 8, 12, 16
Agricultural dusts 51, 53
Air composition
Aircraft fuels
Alcohols 21, 25, 26, 29, 31-35, 38
Aldehydes 22, 25, 26, 29, 33, 35
Alkanes
Alkenes
Alkynes
Amines 23, 26, 29, 34
Ammonia 23, 25, 33, 34
Anhydrides 23
Aromatic hydrocarbons 21, 25, 29, 31-36, 38
Autoignition temperature 11, 35, 42, 45, 55

Α

В

Benzenes
Biological damage
Bituminous coals 51, 53-57
Blast waves
Boron compounds
Brominated compounds 24-26, 29
Burgess-Wheeler law14, 27
Burning rate(liquids & solids) 16, 41, 48, 57, 59
Burning velocity (flame) 15, 39, 40

С

Calorific value
Carbon monoxide 25, 31- 38, 41
Carbonaceous dusts
Chapman-Jouget state 17
Chemical dusts
Chemical ignition
Chlorinated compounds 24, 25-28, 29, 31-35
CO index
Coal compositions 56
Coal dust
Coal ranking 57
Combustible solids
Combustion equations
Compressibility factors 6
Compression pressure
Conveyor belts
Crater damage 66
Critical C/I 13
Critical gas properties
Cyanides
Cyclic hydrocarbons

Page

Decomposition flames 29
Deflagration 16
Detonation pressure
Detonation velocity
Diesel fuels

D

Ε

Electrical ignition 10 Engine oils
Enthalpy
Equivalence ratio
Ethers
Explosion pressure
Explosion suppression
Explosion venting
Extinguishing requirements32, 45, 54, 63

F

Fabrics 57, 58, 60
Fire damage 4, 60
Fire extinguishants
Fire resistance 5, 59
Flame arrestors 34
Flame speed
Flame spread rate
Flame temperature
Flammable mixtures 13
Flammable solids
Flashpoint
Frictional ignition 10
Fuel-air ratio

G

Gas laws				•			•	•					•								•					•	•	•	6
Gasolines						•	•				•	•	1	3	•	3	31	•	3	2	•	3	5	•	4	1	•	4	5
Glycols .	 •	•	•	•	•		•	•	•	•	•	•	•	•	•	•	• •	•	•		•		•	•	2	2	,	3	5

н

Halogenated compounds	24,	25	- 29	, 3	1 -	35
Heat content					8,	15
Heat of combustion		9 ,	14	, 4	2,	48
Heat of detonation						66
Heat of formation						. 9

Page

Page

Heat of vaporization
Hot gas ignition 12, 37
Hydraulic fluids 41, 42, 45-47
Hydrazines
Hydrogen

I

Ignition delay
Ignition energy 9, 33, 49, 54
Ignition processes4, 9
Ignition quenching distance 10, 34
Ignition temperature 9, 35, 45, 50, 54, 58
Inerting
Isothermal process

J

Jet fuels	27.3	31.32.	36.	37.	41-48

κ

Kerosene			 				•			31	, 32,	35,	36,	42-	45
Ketones	•	 ,	 	•			•		• •	22	25,	26,	31-	33,	38

L

Le Chatelier's law 14
Lignites 51, 53, 55, 56
Limit flame temperature14, 27, 38
Limits of flammability 13, 25, 30, 43, 48, 52
Liquefied gases 41
Lower pressure limit 29
Lubricants 41, 42, 45, 47

Μ

Metal alloys	61,	62
Metal elements 48, 50,	61,	62
Methane 9, 14-19, 25-27, 30-41,	62-	64
Mine fires		
Mine explosions,	.52,	54
Minimum oxygen value14, 31, 44,	49,	53
Missile damage		66

Ν

Natural gas	 28, 32, 38
Nitrated compounds	 24, 26, 29
Nonmetal elements	 48-50

0

Oil shale										5	1,	5	3,	54
Olefins		 •			2	1	, :	2 8	5,	2	8,	3	1 -	41
Overpressures		 •		• •		•		•				1	8,	65
Oxidizer materials .		 •		•		•		•				• •		58
Oxygen atmospheres		 2	5	,	3	3,	, :	3 8	5,	3	9,	5	0,	59

Ρ

Paper	57,	59
Paraffin hydrocarbons 19, 20, 25-28,	30-	41
Physical explosions		17
Plastics	51,	53
Pool burning	41,	61
Pressure energy8,	19,	66

Q

Quenching distance		10,34
--------------------	--	-------

R

Radiation							•	•	1	. 2	2,	4	1	,	6	6),	6	1
Raoult's law																			6
Regression rate								•						•	. 1	6	ι,	4	1
Rock dust																		5	4
Rubber																			

S

Safe gap 11, 34
Saturated hydrocarbons 19- 21, 25- 28, 30- 41
Sawdust
Scaled distance 19,65
Self-heating temperature11, 55, 57
Shock wave 12, 18
Spark ignition 10, 33
Spontaneous combustion 10, 55
Static electricity
Stoichiometry
Stress failure
Subbituminous coals 51, 53, 55-57
Sulfur compounds

т

Temperature limit of flammability	13,19
Temperature limit of materials	
Tensile strength	6 2
Thermal stability	12,28

Thermal theory 11
Thermodynamic relationships
TNT equivalent 5, 18, 65

Page

U

Unsaturated hydrocarbons . . 21, 25, 28, 29, 31-41

V

Vent ratio		64
Vessel rupture	52,	66
Volatility 19, 4	13,	52

W

Wall quenching 10, 14, 25, 34, 47
Wire ignition
Wood 57, 60, 61

ι	UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT								
Α	ampere	in	inch						
atm	atmosphere	in/min	inch per minute						
Btu	British thermal unit	J	joule						
Btu/(h·ft ²)	British thermal unit per hour	J/(K·mol)	joule per kelvin per mole						
	per square foot	K	kelvin (degree)						
Btu/lb	British thermal unit per pound	kbar	kilobar						
С	coulomb	kcal	kilocalorie						
°C	degree Celsius	kcal/(cm ² ·min)	kilocalorie per square centimeter						
cal	calorie		perminute						
cal/cm ²	calorie per square centimeter	kcal/mol	kilocalorie per mole						
cal/(cm ² ·min)	calorie per square centimeter	kcal/mol·K)	kilocalorie per mole per kelvin						
	perminute	kg	kilogram						
$cal/(cm^2 \cdot s)$	calorie per square centimeter	kg/m ³	kilogram per cubic meter						
···· ,	per second	km	kilometer						
cal/(cm·s·°C)	calorie per centimeter per second	kpsi	kilopounds per square inch						
	per degree Celsius	L	liter						
cal/g	calorie per gram	L·atm/(K·mol)	liter atmosphere per kelvin						
cal/(g·°C)	calorie per gram per degree Celsius	L'auni (11 mor)	per mole						
cal/(K·mol)	calorie per kelvin per mole	m	meter						
cal/(mol·°C)	calorie per mole per degree Celsius	m/kg	meter per kilogram						
cal/s	calorie per second	m/min	meter per minute						
cal/ton	calorie per short ton	m/s	meter per second						
cm	centimeter	mg	milligram						
cm Hg	centimeter mercury (pressure)	mg/L	milligram per liter						
cm/min	centimeter per minute	mJ	millijoule						
cm/s	centimeter per second	ms	millisecond						
cm/s^2	centimeter per square second	μm	micrometer						
cm ³ /g	cubic centimeter per gram	mol pct	mol percent						
cm ³ /s	cubic centimeter per second	oz/ft ³	ounce per cubic foot						
F	farad	pct	percent						
ft	foot	psi	pound per square inch						
ft/lb	foot per pound	psia	pound per square inch, absolute						
ft/s	foot per second	psig	pound per square inch, gauge						
g	gram	psi/s	pound per square inch, gauge						
g/cm ³	gram per cubic centimeter	s s	second						
g/L	gram per liter	v	volt						
g/m ²	gram per square meter	vol pct	volume percent						
gal/ton	gallon per short ton	W	watt						
H	henry	wt pct	weight percent						
h	hour	Ω	ohm						
		32	omm						

Page