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1 Fundamentals

1.1 Control Volume Statements

Q2 is a material volume, V is an arbitrary control volume, 0f) indicates the surface of the

volume.
mass conservation:

d
— dV =0
at Jo”
Momentum conservation:
d
— dV =F
at J, 7

Forces:
F:/deV+/ TdA
0 a0

T=-Pa+t7T-Aa=T-n

Surface traction forces

Stress tensor T
T=—-Pl+1 or Ty=—Py+ Tik

where | is the unit tensor, which in cartesian coordinates is
| = 0k

Viscous stress tensor, shear viscosity u, bulk viscosity pu,

1
Tik = 24 (Dik - §5iijj> + 10 Dj;  implicit sum on j

Dy = =
T (axk i &ci) o

d |u|2 . .
— P v = W
de /Qp <e 2 ) “

W:/pG-udV+/ T -udA
Q o9

Q:—/ q-ndA
o0

heat flux q, thermal conductivity k£ and thermal radiation q,
q=—-kVT +q,
Entropy inequality (2nd Law of Thermodynamics):

d q-n
— dV > — ——dA
dt/ﬂps v /39 T

Deformation tensor

Energy conservation:

Work:

Heat:
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1.2 Reynolds Transport Theorem
The multi-dimensional analog of Leibniz’s theorem:

g/ o) dv= [ Lavi [ puy-nda (14)
t v V(t) ot oV

The transport theorem proper. Material volume ), arbitrary volume V.
d d .
— [ odV=—] ¢dV+ | ¢(u—uy) -ndA (15)
dt Jo dt Jv av

1.3 Integral Equations

The equations of motions can be rewritten with Reynolds Transport Theorem to apply to
an (almost) arbitrary moving control volume. Beware of noninertial reference frames and
the apparent forces or accelerations that such systems will introduce.

Moving control volume:

d
pdV+/ plu—uy) - ndd=0 (16)
dt oV
d
pudV+/ pu(u—uv)-fldA:/deV—l—/ TdA (17)
dt av v ov
4 p e—l—ﬂ dV—i—/ p —i—ﬂ (u—uy) -ndA=
at J, 2 oy 2 v
/pG-udV+/ T-udA—/ q-ndA (18)
v ov v
d . q .
pst—I—/ ps(u—uv)-ndA+/ —-ndA >0 (19)
dt ov ov T
Stationary control volume:
d
pdV+/ pu-ndA =0 (20)
dt oV
d .
pudV+/ puu-ndA:/deV+/ TdA (21)
dt av v av
4 P e+ﬂ dV+/ p e+ﬂ u-ndA=
at J, 2 . 2
/pG-udV+/ T-udA—/ q-ndA (22)
1% v v

ndA >0 (23)

i/pst—f-/ psu-fldA+/
dt Jy ov ov

Nle
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1.3.1 Simple Control Volumes

Consider a stationary control volume V with ¢ =1, 2, ..., I connections or openings through
which there is fluid flowing in and 7 = 1, 2, ..., J connections through which the fluid is
following out. At the inflow and outflow stations, further suppose that we can define average
or effective uniform properties h;, p;, u; of the fluid. Then the mass conservation equation is

dM
s dt/pdV ZAmZ ZA M, (24)

where A; is the cross-sectional area of the ith connection and m; = p;u; is the mass flow rate
per unit area through this connection. The energy equation for this same situation is

dE  d luf? Lo |u, 2

—_— == — dV = Ay ( by j

at  at Vp(e+ 2 +gz) Z " 2
—ZAmJ(

where @ is the thermal energy (heat) transferred into the control volume and W is the
mechanical work done on the fluid inside the control volume.

)+Q+W (25)

1.3.2 Steady Momentum Balance

For a stationary control volume, the steady momentum equation can be written as

/ puu-fldA—i—/ PﬁdA:/deV+/ T -ndA+Fey (26)
ov ov \% oV

where F.,; are the external forces required to keep objects in contact with the flow in force
equilibrium. These reaction forces are only needed if the control volume includes stationary
objects or surfaces. For a control volume completely within the fluid, F.,; = 0.

1.4 Vector Calculus
1.4.1 Vector Identities

If A and B are two differentiable vector fields A(x), B(x) and ¢ is a differentiable scalar
field ¢(x), then the following identities hold:

Vx(AxB) = (B-V)A—(A-V)B-(V-A)B+(V-BA (27)
V(A-B) = B-V)A+(A-V)B+Bx(VxA)+Ax(VxB) (28)
Vx(Ve) =0 (29)

V. (VxA) = 0 (30)

Vx(VxA) = V(V-A)- VA (31)
V x(¢pA) = Vox A+ 9V x A (32)
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1.4.2 Curvilinear Coordinates

Scale factors Consider an orthogonal curvilinear coordinate system (x1, z2, x3) defined by

a triad of unit vectors (eq, €3, €3), which satisfy the orthogonality condition:

€i - €L = Oik
and form a right-handed coordinate system
€3 = €1 X €9

The scale factors h; are defined by

dr = hldl'1el + h2d$262 + h3d$363

or

or

h’i =
8301-

The unit of arc length in this coordinate system is ds* = dr - dr:

ds? = hida? + h3 dad + h3 daj

The unit of differential volume is

dV = h1h2h3 dIl dZEQ d[L‘g

1.4.3 Gauss’ Divergence Theorem

For a vector or tensor field F, the following relationship holds:

/V-FdVE/ F-ndA
v v

This leads to the simple interpretation of the divergence as the following limit

1
V-FElim—/ F-ndA

A useful variation on the divergence theorem is

/(VxF)de/ nxFdA
v

ov

This leads to the simple interpretation of the curl as

V—0

Vszliml/ nxFdA
oV

(33)

(34)

(39)

(40)
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1.4.4 Stokes’ Theorem

For a vector or tensor field F, the following relationship holds on an open, two-sided surface

S bounded by a closed, non-intersecting curve 95

/(VXF)~fldAE/ F. dr
s os

1.4.5 Div, Grad and Curl

The gradient operator V or grad for a scalar field 1 is

1w 1 9 1 9
V¢_ hlaxl el+h28x2 2+h331’39

(43)

(44)

A simple interpretation of the gradient operator is in terms of the differential of a function

in a direction a

datp = lim ¢(x +da) —¢(x) = Vi - da
da—0
The divergence operator V- or div is

1 0 0 0
F=—— hohs F: ——(hsh F: —_— F.
v Teihialis 8:151( oh3 1)+a (hshy 2)+8 (hi1hoF3)

The curl operator V x or curl is

hie; hyes hses

V xF = o
X h/l h2h3 8I1 axg 8:63
hiFy holFy hsFj

The components of the curl are:

. (S31 0 0
VxF = h2h3 |:81'2 (thg) a_ajg(h2F2):|
€9 0 0
+h3h1 |:8ZL‘3 (h1F1> 8:171 (h3F3):|
€3 0 0
+h1h2 |:al’1 (hQ 2) 8.1'2 (thl):|

The Laplacian operator V2 for a scalar field 1 is

vy | [a hhy 00 D hah 00 O htha;z)]

hlhghg 81’1 hl 8x1 axg hg 8@ 5’x3 h3 81’3

(45)

(49)
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1.4.6 Specific Coordinates

(71,29, 73) z Yy z hy ha hs
Cartesian

(.’E, Y, Z) X Yy z 1 1 1
Cylindrical

(r,0,z2) 7 8in 6 rcosf z 1 T 1
Spherical

(r,9,0) 7 sin ¢ cos 6 7 sin ¢ sin 6 7 COS ¢ 1 r 7sin ¢

Parabolic Cylindrical

(u,v, 2) 1(u? —0?) uv z Vu? +v? hy 1
Paraboloidal

u, v UV COS uw sin L2 — 2 Vu? 4+ v? h uv

( ) 7¢) ¢ ¢ 2(

Elliptic Cylindrical

. . . 12 .
(u,v, 2) a coshucosv asinh u sin v z aVsinh?u + sin?v 1

Prolate Spheroidal
& n,¢) asinhésinncos¢ asinhésinnsing acoshcosn ay/sinh?€ +sin®ny  hy  asinh&sing

1.5 Differential Relations
1.5.1 Conservation form

The equations are first written in conservation form

9,
5 density + V - flux = source (50)

for a fixed (Eulerian) control volume in an inertial reference frame by using the divergence
theorem.

PV = 0 (51)
T () + V- (puu=T) = 4G (52

3, lu|? |uf?
g (e+7)+v-[pu(e+7)—T~u+q} = pG-u (53)
%(ps)+v-<pus+%> > 0 (54)

1.6 Convective Form

This form uses the convective or material derivative

2zg—l—u-V (55)
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Dp
= — _,v. 56
D pV - u (56)
D
pD—ltl = —VP+V-1+G (57)
D 2
pD—t<e+%) = V- (T-u)y—-V-q+pG-u (58)
Ds q
- s _v. (—) 59
Por 2 7 (59)
Alternate forms of the energy equation:
D uf”
D e+7 =—-V - (Pu)+V:-(r-u)—V-q+pG-u (60)
Formulation using enthalpy h = e + P/p
D lul? oP
—(h+—|=—+V-(Tr-u)—- V- G- 61
oy (15 ) = G Vw0 - Va6 (61)
Mechanical energy equation
D 2
p—H:—(u~V)P—|—u-V~T—|—pG~u (62)
Dt 2
Thermal energy equation
De Dwv
Dr = _PD_t +vrm:Vu—-0oV - q (63)
Dissipation
aui .
YT=7Vu=r7;,— sumoniandk (64)
8[Ek
Entropy
Ds qy T vT\>
A VA = I A
Dt V<T>+T+ (T) (65)

1.7 Divergence of Viscous Stress

For a fluid with constant pu and pu,, the divergence of the viscous stress in Cartesian coordi-
nates can be reduced to:

1
V.1 =pViu+ (uv + 5'“) V(V -u) (66)
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1.8 Euler Equations

Inviscid, no heat transfer, no body forces.

% ~ _,V-u (67)
p[];—lz = —-VP (68)
% > 0 (70)
1.9 Bernoulli Equation
Consider the unsteady energy equation in the form
p%(h%—%)Z%—f+v-(7-u)—v-q+pG-u (71)

and further suppose that the external force field G is conservative and can be derived from
a potential ® as

G=-Vo (72)
then if ®(x) only, we have
D lul? orP
- Ll B el Ar-u) -V -
th<h+ 5 T ) 8t+v (r-u)—V.-q (73)
The Bernoulli constant is
2
H=h+ |u7 + (74)

In the absence of unsteadiness, viscous forces and heat transfer we have

uf?
u-Vv h—FT—l-(I) =0 (75)

Or

H, = constant on streamlines

For the ordinary case of isentropic flow of an incompressible fluid dh = dP/p, in a uniform
gravitational field ® = g(z — z,), we have the standard result

2
P+ pO% + pogz = constant (76)



1.10 Vorticity

1.10 Vorticity

Vorticity is defined as
w=Vxu

and the vector identities can be used to obtain

uf”

(u-Viu=V( 5

) —ux (V xu)

The momentum equation can be reformulated to read:

2 .
v v (n+ B ) P i wr T LT
2 ot p
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1.11 Dimensional Analysis

Fundamental Dimensions

L length meter (m)
M mass kilogram (kg)
T  time second (s)
0  temperature Kelvin (K)
I current Ampere (A)
Some derived dimensional units
force Newton (N)  MLT—?
pressure Pascal (Pa) ML™'T—2
bar = 10° Pa
energy Joule (J) ML?T
frequency Hertz (Hz) T
power Watt (W) ML*T3
viscosity (u) Poise (P) ML
Pi Theorem Given n dimensional variables X;, X, ..., X,,, and f independent funda-

mental dimensions (at most 5) involved in the problem:
1. The number of dimensionally independent variables r is

r<f

2. The number p = n - r of dimensionless variables II;

Xi

I, =
XMXg2. .. Xor

that can be formed is
p>n—f

Conventional Dimensionless Numbers

Reynolds Re pUL/u

Mach Ma Uje

Prandtl  Pr pucp/k =v/k
Strouhal St L/UT
Knudsen Kn A/L

Peclet Pe UL/K
Schmidt  Se¢  v/D

Lewis Le DJ/k

Reference conditions: U, velocity; u, vicosity; D, mass diffusivity; k, thermal conductivity;
L, length scale; T', time scale; ¢, sound speed; A, mean free path; cp, specific heat at constant
pressure.
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Parameters for Air and Water Values given for nominal standard conditions 20 C and
1 bar.

Air Water
shear viscosity p o (kg/ms)  1.8x107°  1.00x1073
kinematic viscosity v (m?/s) 1.5x107°  1.0x107°
thermal conductivity k' (W/mK) 2.54x1072 0.589
thermal diffusivity kK (m?/s) 2.1x107°  1.4x1077
specific heat ¢ (J/kgK)  1004. 4182.
sound speed ¢ (m/s) 343.3 1484
density p  (kg/m?) 1.2 998.
gas constant R (m?/s’K) 287 462.
thermal expansion g (K™ 3.3x107*  2.1x1074
isentropic compressibility ks (Pa™!) 7.01x107% 4.5x1071°
Prandtl number Pr 72 7.1
Fundamental derivative — I' 1.205 4.4
ratio of specific heats v 1.4 1.007
Griineisen coefficient G 0.40 0.11
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2 Thermodynamics

2.1 Thermodynamic potentials and fundamental relations

energy e(s,v)

de
enthalpy A(s, P)
dh
Helmholtz f(T,v)
df
Gibbs (T, P)
dg
2.2 Maxwell relations

oT
.-

oT
i), -

Calculus identities:

F
F(z,y,...) dF:a—> dx+—) dy + ...
T T,z

2 THERMODYNAMICS

= Tds— Pdv

= e+ Pv

= Tds+vdP

= e—1Ts

= —sdT'— Pdv
= e—Ts+ Pv

= —sdT'+vdP

,,,,,

(89)
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2.3 Various defined quantities

0
specific heat at constant volume C = 8_;> (91)
. oh
specific heat at constant pressure Cp = == (92)
oT ) »
ratio of specific heats v = @ (93)
Cy
oP
sound speed c = 8_p) 3 (94)
fficient of thermal i g = L (95)
coeflicient of thermal expansion = - —
P v dl'),
isothermal compressibilit K L ov (96)
i rm mpressibili = —— —
P Y r v OP ),
10 1
isentropic compressibility K, = - 8—;)5 = P (97)
Specific heat relationships
oP oP
Ky =K, — | =7+ 98
ek o ) =) (99
T oP v\’ (99)
cp—Cy=—T|—= —
g ov ) \oT ) »
Fundamental derivative
& 0%
v® [(0*P
_ v 101
2¢? (81}2 ) s (101)
Oc
_ o 102
+ pc ( p) P) ) (102)

1 [v? (0%h

Sound speed (squared)
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oP
2= 104
‘ ap)s o
oP
_ 29
= v o )s (105)
v
- % (106)
(%
= %, (107)
Griineisen Coefficient
vB
_ 1
G e (108)
)
= v <%)v (109)
VP
= 11
e (110)
v (0T
-5
2.4 (P, s) relation
do kP +T(k.ap? 4+ s 4 (112)
v Cp
dP dP\? = Tds
= _E+P(E> Gt (113)
2.5 Equation of State Construction
Given ¢,(v,T) and P(v,T), integrate
de = ¢, dT + (T g—;)U—P) dv (114)
Co oP
ds = TdT—I— a—T)v dv (115)

along two paths: I: variable T', fixed p and II: variable p, fixed T

Energy:
T p oP dp
e:eo—i—/ CU(T,pO)dT—i—/ (P—T—) ) — (116)
J. e or),) p

N J/

-~

I 11
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Ideal gas limit p, — 0,
lim ¢, (T, po) = ¢9(T) (117)
pPo—0

The ideal gas limit of I is the ideal gas internal energy

v

e9(T) = / ' c9(T)dT (118)

Ideal gas limit of II is the residual function

er(ﬂ’T):/Op (P—Tg_];)) % (119)

and the complete expression for internal energy is

e(p,T) = e, +e“(T) + € (p,T) (120)

TCU(T7po) P 0P dp
S—So+/OTdT+/pO _8_T)p P (121)

[\

Entropy:

-~

-~

I I

The ideal gas limit p, — 0 has to be carried out slightly differently since the ideal gas
entropy, unlike the internal energy, is a function of density and is singular at p = 0. Define

) T Cig(T) 4 d,O
io— [ S g _p [ L 122
s / « R/O : (122)

where the second integral on the RHS is Rlnp,/p. Then compute the residual function by
substracting the singular part before carrying out the integration

s"(p,T) = /0” (R— % %)p) % (123)

and the complete expression for entropy is

o

s(p,T) = 8o+ 59(p, T)+ s"(p, T) (124)
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3 Compressible Flow

3.1 Steady Flow

A steady flow must be considered as compressible when the Mach number M = u/c is
sufficiently large. In an isentropic flow, the change in density produced by a speed u can be
estimated as

1
Apy = c AP ~ —§pM2 (125)

from the energy equation discussed below and the fundamental relation of thermodynamics.
If the flow is unsteady, then the change in the density along the pathlines for inviscid
flows without body forces is

1D . 2 1 [10u®> 10P
1Dp o, u-Vvu low® 10P (126)
p Dt 2¢2 c?

This first term is the steady flow condition ~ M?2. The second set of terms in the square
braces are the unsteady contributions. These will be significant when the time scale T' is
comparable to the acoustic transit time L/c,, i.e., T ~ Lc,.

3.1.1 Streamlines and Total Properties

Stream lines X(¢;x,) are defined by

X
dt

which in Cartesian coordinates yields

u X =%, when t=0 (127)

d[El d[L’Q dZL’3

o = - = “ (128)
Total enthalpy is constant along streamlines in adiabatic, steady, inviscid flow
hy =h + g = constant (129)
Velocity along a streamline is given by the energy equation:
u=|u| =+/2(h; — h) (130)

Total properties are defined in terms of total enthalpy and an idealized isentropic deceleration
process along a streamline. Total pressure is defined by

P, = P(so, hy) (131)

Other total properties T}, p;, etc. can be computed from the equation of state.



3.2 Quasi-One Dimensional Flow
3.2 Quasi-One Dimensional Flow

Adiabatic, frictionless flow:

d(puAd) = 0
pudu = —dP
U2
h + 5 = constant or dh = —udu
ds > 0

3.2.1 Isentropic Flow

If ds = 0, then

(dp)?
p

dP = cdp+ (T - 1) +...

17

(136)

For isentropic flow, the quasi-one-dimensional equations can be written in terms of the Mach

number as:

1dp  M? 1dA

pdz  1—M2Ads

1dP  M? 1dA
p2dr ~ 1-M2Adx

ldu 1 1dA
wde ~  1-M2Adx
1dM 1+ (T —-1)M?1dA
Mdz ~ 1-M?2 Adx
1dh  M? 1dA

2dr  1-M2Adx

At a throat, the gradient in Mach number is:

(dM)Q I d2A

dr )

T 24 da?

(137)
(138)
(139)
(140)

(141)

(142)
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Constant-I" Gas If the value of I' is assumed to be constant, the quasi-one dimensional
equations can be integrated to yield:

% = (14 (T —1)M?)7D (143)

a _ (m) L )
() e
% = (1+(@C-1)M?) (145)

2 1/2

= Ct<1+(F—1)M2) (146)
Ppt_cfpt N 2r1—1[(1+(r_1>M2)_m_1} (148)
(149)

Ideal Gas For an ideal gas P = pRT and e = e(T') only. In that case, we have

g T ep(T)
MT)=e+ RT = ho + / eo(T)dT,  s=so+ / +— T — RIn(P/P.)  (150)
and you can show that I' is given by:
; 1 —17Td
Flg:i_i_,y___/y (151)

2 2 ~dT

Perfect or Constant-v Gas Perfect gas results for isentropic flow can be derived from
the equation of state

P = pRT h=c,T =7 (152)
N —
the value of I" for a perfect gas,
1
ey — i (153)
2
the energy integral,
—1
T,=T (1 + VTMQ) (154)
and the expression for entropy
T
s—sochlnT—RlnP/Po (155)

o

or



3.3 Heat and Friction

T
5 — 8, = cvlni — Rlnp/p,

=1,
= 1+—M
* 2

T,
T

P _ (T\7
o (7

P (TN
p T

Mach Number—Area Relationship

Choked flow mass flux

or
2 \%0 P
. 2(y—1
M = = LA
ﬁ (’y + 1) RT;

Velocity-Mach number relationship

M
U= C——r
-1
1+ 5-M2
Alternative reference speeds
o =c" y+1 Upmaz = C ytl
t — 9 maxr v — 1

3.3 Heat and Friction

Constant-area, steady flow with friction F' and heat addition @)

pu = 1 = constant
pudu+dP = —Fdx
dh +udu = Qdz

1 F
ds = ?(Q+;>dx

19

(156)
(157)

(158)

(159)

(160)

(161)

(162)
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F' is the frictional stress per unit length of the duct. In terms of the Fanning friction factor

f

2
F=5 fpu? (167)

where D is the hydraulic diameter of the duct D = 4xarea/perimeter. Note that the
conventional D’Arcy or Moody friction factor A = 4 f.

@ is the energy addition as heat per unit mass and unit length of the duct. If the heat
flux into the fluid is ¢, then we have

Q=42 (168)

3.3.1 Fanno Flow

Constant-area, adiabatic, steady flow with friction only:

pu = 1 = constant (169)
pudu +dP = —Fdx (170)
2
h + % = h; = constant (171)
(172)
Change in entropy with volume along Fanno line, h + 1/2m?v*=h,
ds c? —u?
T — = — 173
dv)Famw v(l+G) (173)
3.3.2 Rayleigh Flow
Constant-area, steady flow with heat transfer only:
pu = 1h = constant (174)
P+pu? = 1 (175)
dh+udu = Qdzx (176)
(177)

Change in entropy with volume along Rayleigh line, P + m?v = I

2 .2
T E) S (178)
dv Rayleigh vG



3.4 Shock Jump Conditions

3.4 Shock Jump Conditions

The basic jump conditions,

p1w P2wWsa
P+ piwy = P+ pow;
w? w3
it = hat
89 = 81
or defining [f] = fo - f1
[pw] = 0
[P+pw2] =0
w?
h4+—| = 0
5]
[s] = 0

The Rayleigh line:

or

Rankine-Hugoniot relation:

hg—h1:<P2—P1)(U2+U1>/2 or 62—61:<P2+P1)(U1—U2)/2

Velocity-Puv relation

[w? = =[P][v]  or  wy—wy =—/=(P— P)(vz —v1)

21

(189)

(190)

(191)

(192)
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3.4.1 Lab frame (moving shock) versions

Shock velocity

wy = U, (193)

Particle (fluid) velocity in laboratory frame

wy = Us —uy, (194)
Jump conditions
p2 (Us —u,) = piUs (195)
P2 == Pl + plUsup (196)
hg = hl +Up (US —Up/2) (197)

Kinetic energy:

2
Up

1
5 = 5= P)(vr — )

3.5 Perfect Gas Results

[P] 2y 2
— = —— (M{-1 198
[w] 2 1
e o2 S 199
(&1 Y + 1 ! M]_ ( )
[v] 2 1
2o 2 (1= 200
P,
% = —lnP—i (201)
1 741
P 1 iMf
t2 2
P, 1 y—1 (202)
" 2 o)V 1+TM12
yH1TE 41
Shock adiabat or Hugoniot:
rtl »
Py y—1 v
2= 0 203
v—1un

Some alternatives



3.6 Reflected Shock Waves 23

P. 2
Fj _ 1+7—11(M12—1) (204)
2 —1
_ W e 0t (205)
v+ 1 v+1
P2 v+1
- = — 206
p1 v—1+2/M} (206)
2
M+ ——
M2 = 2—7 (207)
—7M12 1
v—1
Prandtl’s relation
wwy = ¢ (208)

where ¢* is the sound speed at a sonic point obtained in a fictitious isentropic process in the
upstream flow.

hee  hi=h4 & (209)

3.6 Reflected Shock Waves

Reflected shock velocity Ug in terms of the velocity u, and density ps behind the incident
shock or detonation wave, and the density ps behind the reflected shock.

Up = p3“2 : (210)
P2
Pressure P; behind reflected shock:
2
u
Py=Py+ 21 (211)
P2
Enthalpy h3 behind reflected shock:
u3 ~ 41
hy = hy + 2 L (212)
L
P2
Perfect gas result for incident shock waves:
P
p Gr-DE-(-D
i 213
B, ; (213)
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3.7 Detonation Waves

Jump conditions:

P1wr P2wWa (214)

P1 + pPwy = P2 + P2Wy (215)
2 2

h1+% - hﬁ% (216)

59 2 S1 (217)

3.8 Perfect-Gas, 2-v Model

Perfect gas with energy release ¢, different values of v and R in reactants and products.

hi = cnT (218)
he = cpT —q (219)
P1 == p1R1T1 (220)
P2 = pQRQTQ (221)
1Ry
Cp1 = 222
pl ’Yl . 1 ( )
Y2 R
Cro = 223
p2 Yo — 1 ( )
(224)
Substitute into the jump conditions to yield:
B _1+mM; (225)
P 1+ M3
V2 _ M1+ M? (226)
v MMP L+ M;
1 1 q
+ M+ 5
T _mBiym—1 27" & (227)

v Ry 1 +1M22
T2—1 2

Chapman-Jouguet Conditions Isentrope, Hugoniot and Rayleigh lines are all tangent

at the CJ point

Poy— P, OP oP

LA el (228)
vcy — ‘/1 v Hugoniot v s

which implies that the product velocity is sonic relative to the wave

Wo.cg = C2 (229)
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Entropy variation along adiabat

ds = ﬁ@l - U)2 dm2 (230)
Jouguet’s Rule
w? — 2 G oP AP
- 1= Z(v, — - S — 231
v? [ 20 (v U)} v )Hug Av (231)

where G is the Griniesen coefficient.
The flow downstream of a detonation is subsonic relative to the wave for points above the
CJ state and supersonic for states below.

3.8.1 2-v Solution

Mach Number for upper CJ (detonation) point

(1 +7)(2-1) (2 =71)(2+1)
Mey=H+ + 4/ H+ 232
“ \/ 2n(n —1) 2n(n —1) (252)
where the parameter H is the nondimensional energy release
(e = D2+ )g
H — 233
2R (233)
CJ pressure
P, M2 1
cJ _ Tiie g + (234)
P1 Y2 +1
CJ density
1) M2
p1 (1l +mnME))
CJ temperature
T Pey R
cs _ Foy fupr (236)
T1 P1 Rgpcj
Strong detonation approximation Mgy > 1
Ucs = 1/2(73 —1)q (237)
+1
pos = o), (238)
Y2
1
P ~ U2 239
cJ ot 191 cJ (239)

(240)
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3.8.2 High-Explosives

For high-explosives, the same jump conditions apply but the ideal gas equation of state is no
longer appropriate for the products. A simple way to deal with this problem is through the
nondimensional slope v, of the principal isentrope, i.e., the isentrope passing through the CJ

point:
v OP
= 241
Bz -4 av)s (2a1)

Note that for a perfect gas, v, is identical to v = ¢,/¢,, the ratio of specific heats. In general,
if the principal isentrope can be expressed as a power law:

Pv* = constant (242)

then v, = k. For high explosive products, 75 ~ 3. From the definition of the CJ point, we
have that the slope of the Rayleigh line and isentrope are equal at the CJ point:

il — o 243
o | Vs,CJ ( )

8P> Py —P Py
s vcs— W ve

From the mass conservation equation,

Vs,CJ
Vo] = V] ———— 244
! 1'75,CJ +1 (244)

and from momentum conservation, with Poy > P;, we have

P1 UC27J

Poy = P61
! Vs, CJ +1

(245)



3.9 Weak shock waves

3.9 Weak shock waves

Nondimensional pressure jump

n-l2
pc

A useful version of the jump conditions (exact):

1= —MM = —MEM ] _ Ml[—
C1 U1 C1 U1
Thermodynamic expansions:
B 11+ T + O(11)?
U1
2
mo- Y +T (M) + 0 ([v])°
(%1 (%1
Linearized jump conditions:
r
_l - —H2 + O(II
C1

- oy
2 01 C

My, = 1+ H—i—O (IT)?

My = l—gHJrO(H)
E:i] = (0 - DI+ O(II)°

Ml—l =~ 1—M2

Prandtl’s relation ]
¢ ~wp + §[w] or &~ wy— —[w]

Change in entropy for weak waves:

c 6

E:&H%... or:—ér(m)ng...

v]

27

(246)

(247)

(248)

(249)

(250)
(251)
(252)
(253)

(254)
(255)

(256)

(257)
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3.10 Acoustics

Simple waves

AP = c*Ap (258)
AP = +pcAu (259)

+ for right-moving waves, - for left-moving waves
Acoustic Potential ¢

u = Vo (260)
o¢
P = —p = 261
pO 8t ( 6 )
/ Po 09
= D= 262
p 2 01 (262)
Potential Equation
1 0%
2 —_——— =
2 12 0 (263)

d’Alembert’s solution for planar (1D) waves
o= f(x —cot) + g(x + cot) (264)
Acoustic Impedance The specific acoustic impedance of a medium is defined as

= (265)

For a planar wavefront in a homogeneous medium z = +pc, depending on the direction of
propagation.

Transmission coefficients A plane wave in medium 1 is normally incident on an interface
with medium 2. Incident (7) and transmitted wave ()

221

Uy /u; = 266
t/ Zo+ 21 (266)
222
P//P = 267
t/ ) 29 4 2 ( )
Harmonic waves (planar)
. . w 2m 2m
¢ = Aexpi(wt — kx) + Bexpi(wt + kx) c=v k:T w:?:%rf (268)

Spherical waves



3.11 Multipole Expansion

P (G LN RR

Spherical source strength @, [Q] = L3T !

Q(t) = lim 47r?u,

r—0

potential function

Q(t —r/c)

A7y

¢(T7 t) -
Energy flux
¢ = P'u
Acoustic intensity for harmonic waves
2

1 [T P
[:<¢>>:—/ O dt = 8
T Jo pc

Decibel scale of acoustic intensity

dB =10log,o(I/I,ef) Loy =107 W/m?

or

dB = 20log,y(P),/Pley)  Plp=2x10"" atm
Cylindrical waves, q source strength per unit length [q] = L?*T~!

1 [irle q(n) dn

ort) = —o o Vi e
or
o(r,t) = —%/0 q(t —r/ccosh§)d

3.11 Multipole Expansion

Potential from a distribution of volume sources, strength ¢ per unit source volume

1 q(x5,t — R/c)

¢(X> t) = _E v R

dVs R =|x — x|

Harmonic source
q = f(x)exp(—iwt)
Potential function

xpi(kR —
¢(X,t)=—$/vf(xs)e pz(}lj wt)dvs

Compact source approximation:

29

(269)

(270)

(271)

(272)

(273)

(274)

(275)

(276)

(277)

(278)

(279)
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1. source distribution is in bounded region around the origin x; < a,
and small a < r = |x|

2. source distribution is compact ka << 1 or XA > a, so that the phase factor expikR

does not vary too much across the source

Multipole expansion:

expikR <~ (=X, V)" (expikr
B Z n!

Series expansion of potential
¢=9¢"+¢' +¢"+...
Monopole term
exp i(kr — wt)

0 t) = - S d s

#x.1) ] s
Dipole term

1 tkx - D i ,

= 1 —_— R
o (x,1) gy ( + kr> expi(kr — wt)
Dipole moment vector D
D= [ x.f(xs)dV;

Vs
Quadrupole term

, k2 3 3 ,
o°(x,t) = 1+ T 2 ) &P i(kr — wt) Z%x]@lj

1,J

Quadrupole moments Q)
1

Qij = 5/ Jis,ﬂs,jf(Xs)d‘@

s

3.12 Baffled (surface) source

Rayleigh’s formula for the potential

1 [ up(xs,t— R/c)

vy R

Normal component of the source surface velocity

dA

A

U, = U -1

Harmonic source

un, = f(x) exp(—iwt)

Fraunhofer conditions |x,| < a
aa
T K1
Ar

Approximate solution:
exp i(kr
b=

27

—wi) / f(xs)expik - x,dA
T A

(280)

(281)

(282)

(283)

(284)

(285)

(286)

(287)

(288)



3.13 1-D Unsteady Flow

3.13 1-D Unsteady Flow

The primitive variable version of the equations is:

0
—p+V-(pu) =0

ot
ag;:—i—v-(puu) = —VP
9, u? u?
5 (e—i—?)%—v-(pu(h—i—?)) =0

O0s

ot

Alternative version

D u?
e (7 7)

Ds
Dt

The characteristic version of the equations for isentropic flow (s = constant) is:

d
dt
This is equivalent to:

9,
ot

Riemann invariants:

P
p pc r-1

Bending of characteristics:

For an ideal gas:

+V.-(us) > 0

v

—(u+F)=0 on C*:

—(uxF)+ (u£c) 0

ox

-V -u

~VP

oP
ot

%:uic
(uxF)=0

31

(289)
(290)
(291)

(292)
(293)

(294)
(295)
(296)

(297)

(208)

(299)

(300)

(301)

(302)
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Pressure-velocity relationship for expansion waves moving to the right into state (1), final
state (2) with velocity us < 0.

2y

PQ Y — 1 U9 =1 —201
e T <uy <0 303
Ae(rTE) Hcus 30
Shock waves moving to the right into state (1), final state (2) with velocity us > 0.
(Pl _atr4 D) () (4 e} (304)
Pl N 4 C1 Y +1 (5) 2
Shock Tube Performance
—274
Py 0174—1< 1 )}”41 [ 2m 9 }
a4 M, — — 1+ M?2-1 305
Py [ cs ¥ +1 M, 71+1( ) (305)

Limiting shock Mach number for Py/P; — oo

1
M, — S0t (306)
c1ya—1




3.14 2-D Steady Flow

3.14 2-D Steady Flow

3.14.1 Oblique Shock Waves

Geometry:

Shock Polar

Real fluid results

Perfect gas result

Mach angle

w, = Uy sinﬁ
wy = ugsin(f —0)
v = wuycosf =ugcos(f —0)
pp _wr _ tanf

o ws  tan(B8—6)

[w] M; tan 6

c; cosB(1+ tan Btano)

[P]  Mftanf
pici cot 3+ tan@

wy = flw) normal shock jump conditions

5 = sinfl (wl/ul)

w
0 = B tant |2
u? — w?

2 cot 8 (M sin® 8 — 1)
(v+1)ME -2 (MZsin® 3 — 1)

tanf =

M= S11 M

3.14.2 'Weak Oblique Waves

Results are all for C* family of waves, take # — -6 for C~ family.

33

(307)
(308)
(309)

(310)

(311)

(312)

(313)
(314)

(315)

(316)

(317)
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P N -
H= VM —1a 1
VvV ME =1 [w] [w]\*
pr— _——_— e ——— _ 1
0 G - + O o (319)
[P] M7 2
_— = ——04+0(0 320
e Az 1 (0) (320)
Tys] Iy MY 3 1
2 = 3 (M12_1>3/29 +0(0) (321)
Perfect Gas Results
[P] ’YM12 2
=04+ 00 322
P = A+ 00 (322)

3.14.3 Prandtl-Meyer Expansion

d
A= —/m2 -1 (323)
Uy
Function w, df = -dw
vVM?2—-1 dM
dw= (324)
1+(T—-1)M2 M
Perfect gas result
wM) = 2L ( Y=o 1)) —tan' VAP =1 (325)
v—1 v+1
Maximum turning angle
T v+1
mar — o — =1 2
“ 2 ( 71 ) (326)
3.14.4 Inviscid Flow
Crocco-Vaszonyi Relation
ou u?
E—F(qu)xu:TVS—V(h—i-E) (327)

3.14.5 Potential Flow

Steady, homoentropic, homoenthalpic, inviscid:



3.14 2-D Steady Flow

V-(pu) = 0
Vxu =0
u2
h 4+ 5 = constant

or with u = V¢ = (¢, ¢y)

(62 — ) aw + (62 — )y + 2020y by = 0

Linearized potential flow:

Wave equation solution

A=vVM2 -1 ¢ =flz—y)+g(z+y)

Boundary conditions for slender 2-D (Cartesian) bodies y(x)

U dy

f’(f):—T £>5 y>0

Prandtl-Glauert Scaling for subsonic flows

o(x,y) = ¢z, /1 — M2y) V3¢ =0
Prandtl-Glauert Rule

C;nc
Cp = ——
V91— M2
3.14.6 Natural Coordinates
0 0 ) 0
5; - Oos 9% — sin 9%
0 )
ay s1n9£ —|—COSQ%
u = Ucosb
= Usin®

The transformed equations of motion are:
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(328)
(329)

(330)

(331)

(332)
(333)
(334)

(335)

(336)

(337)

(338)

(339)

(340)

(341)
(342)
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apU a0
) U%

oU  OP
Vs T as

860 oP

2_ [

U as T on
o0 _oU
N 0s on

Curvature of stream lines, R = radius of curvature

a0 1
ds R
Vorticity production

1 OP, (T —T,)8S

W, =

U Po ON
Elimination of pressure dP = c?dp
ou 00
M?* —1)— —U_—
( ) ds U(‘?n
v o
on 0s

Characteristic directions

dn 1

Invariants

J*¥ =0 Fw = constant on CT

B
ds M2 —1

3 COMPRESSIBLE FLOW

(343)
(344)
(345)

(346)

(347)

(348)

(349)

(350)

= 0 (351)

= 0 (352)

(353)

= +tanpu (354)

(355)



4 Incompressible, Inviscid Flow

4.1 Velocity Field Decomposition

Split the velocity field into two parts: irrotational u., and rotational (vortical) w,.

u=u, + u,

37

(356)

Irrotational Flow Define the irrotational portion of the flow by the following two condi-

tions:

Vxu = 0

V.ou = e(x,t) volume source distribution

This is satisfied by deriving u, from a velocity potential ¢

u = Vo
Vi = e(x,t)

Rotational Flow Define the rotational part of the flow by:

V-u, = 0

V xu, = w(x,t) vorticity source distribution

This is satisfied by deriving u, from a vector potential B

u, = VxB
V-B = 0 choice of gauge
VB = —w(x,t)

4.2 Solutions of Laplace’s Equation

(357)
(358)

(359)
(360)

(361)
(362)

(363)
(364)
(365)

The equation V2¢ = e is known as Laplaces equation and can be solved by the technique of

Green’s functions:

o) = | Glxlgete.nav
¢

For a infinite domain, Green’s function is the solution to
VG = §(x— &)
1 1 1
G — _
A |x — €| Ay
r o= |r| r=x-—¢

(366)

(367)
(368)
(369)
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This leads to the following solutions for the potentials

1
o(x,t) = _E/Q @d‘fg (370)

1
Bt) = o | “’(f’t)dvs (371)

§
The velocity fields are
1

wixt) = o /Q 1"‘3<7§;’t)c1v£ (372)

1
wxt) = —— 5 ’“X":—:f’s’t)dv£ (373)

If the domain is finite or there are surfaces (stationary or moving bodies, free surfaces,
boundaries), then an additional component of velocity, u’, must be added to insure that the
boundary conditions (described subsequently) are satisfied. This additional component will
be a source-free, V - u’ = 0, irrotational V x u’ = 0 field. The general solution for the
velocity field will then be

u=u,+u,+u (374)

4.3 Boundary Conditions
Solid Boundaries In general, at an impermeable boundary 02, there is no relative motion
between the fluid and boundary in the local direction n normal to the boundary surface.

u-n=uyg-n on the surface 0N (375)
In particular, if the surface is stationary, the normal component of velocity must vanish on
the surface

u-n=0 on astationary surface 0 (376)

For an ideal or inviscid fluid, there is no restriction on the velocity tangential to the boundary,
slip boundary conditions.

u-t arbitrary on the surface 9 (377)
For a real or viscous fluid, the tangential component is zero, since the relative velocity between

fluid and surface must vanish, the no-slip condition.

u=0 on the surface 02 (378)
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Fluid Boundaries At an internal or free surface of an ideal fluid, the normal components
of the velocity have to be equal on each side of the surface

ul-fl:llg-fl:u,ag-fl (379)

and the interface has to be in mechanical equilibrium (in the absence of surface forces such
as interfacial tension)

P1:P2 (380)

4.4 Streamfunction

The vector potential in flows that are two dimensional or have certain symmetries can be
simplified to one component that can be represented as a scalar function known as the
streamfunction 1. The exact form of the streamfunction depends on the nature of the
symmetry and related system of coordinates.

4.4.1 2-D Cartesian Flows

Compressible In a steady two-dimensional compressible flow:

Vopu=0 u=(u,v) x = (z,y) %+%:O (381)
The streamfunction is:
10y 10y
=27 = - 382
ey p Ox (382)
Incompressible The density p is a constant
V-u=0 u = (u,v) x = (x,y) %ﬂLg—Z:O (383)
The streamfunction defined by
o o
= == 384
“ oy Y ox (384)
will identically satisfy the continuity equation as long as
0% 0?1
- =0 385
oxdy  O0yodx (385)

which is always true as long as the function 1 (z, ) has continuous 2"¢ derivatives.
Stream lines (or surfaces in 3-D flows) are defined by 1 = constant. The normal to the
stream surface is

. Vi
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Integration of the differential of the stream function along a path £ connecting points x;
and x5 in the plane can be interpreted as volume flux across the path

dy = u-ngdl=—-vdr+udy (387)
/ dy = Py —) = / u - ngdl = volume flux across L (388)
L L

where 11 = 1(x1) and 1)y = 1)(x2). For compressible flows, the difference in the streamfunc-
tion can be interpreted as the mass flux rather than the volume flux.
For this flow, the streamfunction is exactly the nonzero component of the vector potential

oY Oy
B = (B,,B,,B.) = (0,0,v) u=V xB= Xa—y Y5, (389)
and the equation that the streamfunction has to satisfy will be
0% 0%
M=t —— = —w, 390
VY 02 * 0y? w (390)
where the z-component of vorticity is
ov  Ou
y = o — — 391
“ or Oy (391)

A special case of this is irrotational flow with w, = 0.

4.4.2 Cylindrical Polar Coordinates

In cylindrical polar coordinates (7,6, z) with u = (u,, ug, u,)

r = rcosf (392)
y = rsinf (393)
z = z (394)
u U, cos ) — ugsin g (395)
v = u,sinf + ugcosb (396)
w o= u, (397)
The continuity equation is
10ru, 10ug Ou,
Vous0=r0rr 0% T e (398)

Translational Symmetry in z The results given above for 2-D incompressible flow have
translational symmetry in z such that 9/0z = 0. These can be rewritten in terms of the
streamfunction v (r, #) where

B = (0,0,v) (399)
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The velocity components are

10y
= —— 4
o r 00 (400)
o
= —— 401
1o or (401)
The only nonzero component of vorticity is
10rug 10u,
y = — - - 402
YT o r 06 (402)

and the stream function satisfies
10 oY 10 (10¢)
ror (TE) e (?%) Y (403)

Rotational Symmetry in 6 If the flow has rotational symmetry in 6, such that 9/00 =
0, then the stream function can be defined as

B = (0Q§,o> (404)

and the velocity components are:

10y
y = ——— 405
" r 0z (405)

10vy
. = —— 406
" r or (406)
The only nonzero vorticity component is

Oou, Ou,
= — 407
YT, or (407)

The stream function satisfies

o (100\ 0 (100
e (‘a—) *ar (m) =~ (408)

4.4.3 Spherical Polar Coordinates

This coordinate system (7, ¢, ) results in the continuity equation

1 8 2 1 6u9 1 8 .

- ; — =0 409
r2or (Tu)+rsingb 00 +rsin¢>8¢(u¢sm¢) (409)

Note that the r coordinate in this system is defined differently than in the cylindrical polar

system discussed previously. If we denote by r’ the radial distance from the z-axis in the
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cylindrical polar coordinates, then ' = rsin ¢. With symmetry in the 6 direction 9/00, the
following Stokes’ stream function can be defined

B (00.2) (410)

7 sin ¢
Note that this stream function is identical to that used in the previous discussion of the case
of rotational symmetry in € for the cylindrical polar coordinate system if we account for
the reordering of the vector components and the differences in the definitions of the radial
coordinates.
The velocity components are:

1 o

;= — 411

“ r2sin ¢ ¢ (411)
1 oY

— hukof 412

Us rsing Or (412)

The only non-zero vorticity component is:

10ruy 10u,

_ _z 413

Y Tor r 0¢ (413)

The stream function satisfies

10 /1 g\ 10 1o\
o (smm> 0 (mm@) = W (414)

4.5 Simple Flows

The simplest flows are source-free and irrotational, which can be derived by a potential that
satisfies the Laplace equation, a special case of u,

Vig=0 V-u=0 (415)

In the case of flows, that contain sources and sinks or other singularities, this equation
holds everywhere except at those singular points.

Uniform Flow The simplest solution is a uniform flow U:

p=U-x u = U = constant (416)

In 2-D cartesian coordinates with U = Ux, the streamfunction is

v ="Uy (417)
In spherical polar coordinates, Stokes streamfunction is
UT2 .9 ~
Yp=—sin"¢p U=Uz (418)

2
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Source Distributions Single source of strength ((¢) located at point €. The meaning
of ) is the volume of fluid per unit time introduced or removed at point &;.

}iino 4rriu -t = Q(t) rr=x-—§& e=Q(t)o(x—§&) (419)
which leads to the solution:
Q1) riQ(t) Q)

- =X\ = = 420
471y " 47r3 4rri (420)

For multiple sources, add the individual solutions

k

n=- Ly ne (421)

4 4 T
=1 ?

In spherical polar cordinates, Stokes’ stream function for a single source of strength () at
the origin is

__Q
Y= — 2 ©08 ¢ (422)

For a 2-D flow, the source strength ¢ is the volume flux per unit length or area per unit
time since the source can be thought of as a line source.

u = u,r Up = —— gb:ilnr 1/1:19 (423)
2m 2m

Dipole Consider a source-sink pair of equal strength @ located a distance ¢ apart. The
limiting process

0—=0 Q — o0 0Q — 1 (424)

defines a dipole of strength p. If the direction from the sink to the source is &, then the
dipole moment vector can be defined as

d=pd (425)
The dipole potential for spherical (3-D) sources is

d-r
= — 426
¢ 473 (426)
and the resulting velocity field is
1 [3d-r d
- - = 42
e [ . 7"3] (427)
If the dipole is aligned with the z-axis, Stokes’ stream function is
psin? ¢
= (428)

A7y
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and the velocity components are

4 COS O
.= 429
“ 273 (429)
L sin ¢
= i 430
e 43 (430)

The dipole potential for 2-D source-sink pairs is

1 cosf

= 431
¢ 2T r (431)
and the stream function is
[ sin 6
== 432
¥ 2t r (432)
The velocity components are
[ cosf
., = — 433
“ 27 r? (433)
[ sin 6
= = 434
o 2m 12 (434)

Combinations More complex flows can be built up by superposition of the flows discussed
above. In particular, flows over bodies can be found as follows:

half-body: source + uniform flow
sphere: dipole (3-D) 4 uniform flow
cylinder: dipole (2-D) + uniform flow

closed-body: sources & sinks 4+ uniform flow

4.6 Vorticity

Vorticity fields are divergence free In general, we have V - (V x A) = 0 so that the vorticity
w = V X u, satisfies

V-w=0 (435)

Transport The vorticity transport equation can be obtained from the curl of the momen-
tum equation:

D v
D_‘;’:(w.v)u_w(v-u)+VTsz+V><( pT) (436)

The cross products of the thermodynamic derivatives can be written as

VP xVp

VI xVs=VPxVv=— 5
P

(437)
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which is known as the baroclinic torque.
For incompressible, homogeneous flow, the viscous term can be written V2w and the
incompressible vorticity transport equation for a homogeneous fluid is

Dw

Dr = (w- V)u+rViw (438)

Circulation The circulation I' is defined as

r:f u-dl:/w-ﬁdA (439)
0N Q

where is €2 is a simple surface bounded by a closed curve 0.

Vortex Lines and Tubes A vortex line is a curve drawn tangent to the vorticity vectors
at each point in the flow.

dr_dy _de

440
Wy Wy Wy (440)

The collection of vortex lines passing through a simple curve C' form a vortex tube. On the
surface of the vortex tube, we have n - w =0.

A vortex tube of vanishing area is a vortex filament, which is characterized by a circulation
I'. The contribution du to the velocity field due to an element dl of a vortex filament is
given by the Biot Savart Law

erdl

du=—
v 4 73

(441)

Line vortex A potential vorter has a singular vorticity field and purely azimuthal velocity
field. For a single vortex located at the origin of a two-dimensional flow

r
=218 N — 442
w=2T3(r)  up= g (442)

For a line vortex of strength I'; located at (x;,y;), the velocity field at point (z,y) can be
obtained by transforming the above result to get velocity components (u, v)

O T )
el v T .
(445)
Or setting I' = zI"
u; = DX (446)

27r?
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where r; = ; - x;.
The streamfunction for the line vortex is found by integration to be

¥
v = —5 In7r; (447)

For a system of n vortices, the velocity field can be obtained by superposition of the individual

contributions to the velocity from each vortex. In the absence of boundaries or other surfaces:

n

Fi 7
u=Y 27 (448)

2mr?

4.7 Key Ideas about Vorticity

1. Vorticity can be visualized as local rotation within the fluid. The local angular fre-
quency of rotation about the direction n is

fo=lim e = Llw-al
TS0 2 2 2

2. Vorticity cannot begin or end within the fluid.

V-w=0

3. The circulation is constant along a vortex tube or filament at a given instant in time

/ w -ndA = constant
tube

However, the circulation can change with time due to viscous forces, baroclinic torque
or nonconservative external forces. A vortex tube does not have a fixed identity in a
time-dependent flow.

4. Thompson’s or Kelvin’s theorem Vortex filaments move with the fluid and the circula-
tion is constant for an inviscid, homogeneous fluid subject only to conservative body
forces.

pr

o =
Bjerknes theorem If the fluid is inviscid but inhomgeneous, p(x,t), then the circulation
will change due to the baroclinic torque VP x Vp:

Dr dP P
_:_7{ _:—/V—jw-ﬁdA (450)
Dt o P Q P

0 (449)

Viscous fluids have an additional contribution due to the diffusion of vorticity into or
out of the tube.
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4.8 Unsteady Potential Flow

Bernoulli’s equation for unsteady potential flow

Vol
2

0 U2
P =Po=—pg (¢—doc) +p7> = (451)

Induced Mass If the external force F.,; is applied to a body of mass M, then the accel-
eration of the body dU/dt is determined by

dU
Fea:t = (m + M) E (452)

where M is the induced mass tensor. For a sphere (3-D) or a cylinder (2-D), the induced
mass is simply M = m;l.

M; sphere = ZTG P (453)

My cylinder — 7TCL2,0 (454)
(455)

Bubble Oscillations The motion of a bubble of gas within an incompressible fluid can
be described by unsteady potential flow in the limit of small-amplitude, low-frequency oscil-
lations. The potential is given by the 3-D source solution. For a bubble of radius R(t), the
potential is

o= R3(t)dR
n rdt
Integration of the momentum equation in spherical coordinates yields the Rayleigh equation

(456)

d?R 3 (dR\> P(R)— Py
R— 4o (=) =22 7 457
az 2 (dt) p (457)
4.9 Complex Variable Methods
Two dimensional potential flow problems can be solved in the complex plane
z=u1x+1iy = rexp(if) = rcosf + irsinf
The complex potential is defined as
Fiz)=¢+1iy (458)
and the complex velocity w is defined as
dF
w=u—1iv=— (459)

dz
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NB sign of v-term! The complex potential is an analytic function and the derivatives satisfy
the Cauchy-Riemann conditions

99 _

% = B (460)
oo
3~ "7 (461)

which implies that both V¢ = 0 and V% = 0, i.e., the real and imaginary parts of an
analytic function represent irrotational, potential flows.

Examples

1. Uniform flow u = (Uy, Vo)

F = (Us —iV)z

2. Line source of strength ¢ located at z,

F=21 In(z — 2)
2m

3. Line vortex of strength I" located at z,

r
F = —i% In(z — zo)

4. Source doublet (dipole) at z, oriented along +z axis

1
F=——\\+"—
27(z — 2o)
5. Vortex doublet at z, oriented along +z axis
P i\
27(z — 2o)
6. Stagnation point
F=C2%

7. Exterior corner flow

F=Cz" 1/2<n<1
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8. Interior corner flow, angle «

9. Circular cylinder at origin, radius a, uniform flow U at z = +o00

2

a
F=U(z+—
(z+—)

4.9.1 Mapping Methods

A flow in the ¢ plane can be mapped into the z plane using an analytic function z = f({). An
analytic function is a conformal map, preserving angles between geometric features such as
streamlines and isopotentials as long as df/dz does not vanish. The velocity in the (-plane
is w and is related to the z-plane velocity by

. dF w dFF o
w—d—c—g or w—g—g (462)
dz d¢

In order to have well behaved values of w, require w =0 at point where dz/d( vanishes.

Blasius’ Theorem The force on a cylindrical (2-D) body in a potential flow is given by

D—iL= fpjf w?dz (463)
2 body
For rigid bodies

D=0 L=—pUl (464)

where the lift is perpendicular to the direction of fluid motion at oo. The moment of force
about the origin is

M = —lpﬂ? <]{ 2w? dz) (465)
2 body

4.10 Airfoil Theory

Rotating Cylinder The streamfunction for a uniform flow U,, over a cylinder of radius
a with a bound vortex of strength I' is

W = Unrsin @ l1 _ (9)2} BRI (466)

T 2T a

The stagnation points on the surface of the cylinder can be found at

r
47U a

(467)

sinf, =
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The lift L is given by

L = —pUsT’ (468)

The pressure coefficient on the surface of the cylinder is

P_P 4T r \?
Cp=-—-"2—=1—4sin%0 ing— 469
r U2 e 2maly S (27rano> (469)

Generalized Cylinder Flow If the flow at infinity is at angle o w.r.t. the z-axis, the
complex potential for flow over a cylinder of radius a, center ;1 and bound circulation T is:

2 : _
a exp(za)) B illn(z i
Z—p

) (470)

F(z)=U (GXP(—W)(Z — )+ 2 a

Joukowski Transformation The transformation

G
2 =(C+ = (471)

¢
is the Joukowski transformation, which will map a cylinder of radius (7 in the (-plane to a
line segment y =0, —2(r < x < 2(r. Use this together with the generalized cylinder flow
in the ¢ plane to produce the flow for a Joukowski arifoil at an angle of attack. The inverse

transformation is

c=2+\/(3) -¢ (472)

Kutta Condition The flow at the trailing edge of an airfoil must leave smoothly without
any singularities. There are two special cases:

e For a finite-angle trailing edge in potential flow, the trailing edge must be a stagnation
point.

e For a cusp (zero angle) trailing edge in potential flow, the velocity can be finite but
must be equal on the two sides of the separating streamline.

Application to Joukowski airfoil: Locating the stagnation point at (; = u + aexp —if3,
the circulation is determined to be:

Iy = —4maUy sin(a + ) (473)
and the lift coefficient is

0 = - (%) sin(a + B) (474)
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4.11 Thin-Wing Theory

The flow consists of the superposition of the free stream flow and an irrotational velocity
field derived from disturbance potentials ¢; and ¢, associated with the thickness and camber
functions.

u = Usxcosa+ u + ue (475)
= Uxsina + v + v, (476)

w = Vo, (477)
u. = Vo (478)
(479)

where « is the angle of attack and VZ¢; = 0.

Geometry A thin, two-dimensional, wing-like body can be represented by two surfaces
displaced slightly about a wing chord aligned with the z-axis, 0 < z < ¢. The upper (+)
and lower (—) surfaces of the wing are given by

y = Yi.(x) for uppersurface 0<z<c (480)
y = Y_(z) for lowersurface 0<xz<c (481)

and can be represented by a thickness function f(x) and a camber function g(x).

f) = Vi) V() (182
o) = SVl +Y (2) (18

The profiles of the upper and lower surface can be expressed in terms of f and g as

Yi(z) = g(z)+ %f(x) upper surface (484)
Y (z) = g(z)— %f(x) lower surface (485)

The maximum thickness ¢ = O(f), the maximum camber h = O(g), and the angle of
attack are all considered to be small in this analysis

t h
a~-~—<1 and wu;,v; << Uy (486)
c c

Boundary Conditions The exact slip boundary condition for inviscid flow on the body
is:
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- - 487
dx U (z,Y (2)) (487)
The linearized version of this is:
dY. c
—= —a+ lim vy (488)
dz y—+0 Uy (
z,y)
with cosa &~ 1, and sina &~ «. This can be written as
/ 1 /
vi(z,04) + v.(z,04) = Uy <g + Ef) —aUy (489)
1
(2, 0—) +v.(2,0—) = Uy <g' - §f’) —alUy (490)

where ' = df/dz and ¢ = dg/dx.
The boundary conditions are then divided between the thickness and camber disturbance
flows as follows:

1
v = j:§Uoof' for y — 40 (491)
ve = Ux(¢—a) for y— 20 (492)

In addition, the disturbance velocities have to vanish far from the body.

4.11.1 Thickness Solution

The potential ¢, for the pure thickness case, which can be interpreted as a symmetric body
at zero angle of attack, can be calculated by the superposition of sources of strength ¢dx
using the general solution for potential flow

olo9) = 3= [ W+ (o= i) de (199)

The velocity components are:

1 (= §q(§) dg
o — L[ _val§)dE (495)

21 Jo ¥+ (x — )2
Apply the linearized boundary condition to obtain

Lodf 1 ya(§)dg

dx y—=+027
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Delta Function Representation The limit of the integrand is one of the representations
of the Dirac delta function

o1 Y
i e e PR Y (497)
where
+oo
se-9={ 0 178 [T Hee- 9= fw (498)

Source Distribution This leads to the source distribution

df
= 4
q(z) = Us e (499)
and the solution for the velocity field is
= Do Us [* - OF1() 500)

dr 271 Jo y?+ (z—¢&)?
00 Ue [ uf(0)d
T Oy T 2y B g (500

The velocity components satisfy the following relationships across the surface of the wing

u] = u(z,04)—u(z,0-)=0 (502)
= q (503)

=

|
I~
8
@)
_|_

|
I~
8
)

|

I
—~
&

Pressure Coefficient The pressure coefficient is defined to be

P—-P u? + 0?2
Cp=— " _1_ 504
EYZiF) Uz o0
The linearized version of this is:
Up + U
Cp ~ —2 tUoo (505)
For the pure thickness case, then we have the following result:
1 [ef(¢d
T Jo (x—§)

The integral is to be evaluated in the sense of the Principal value interpretation.
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Principal Value Integrals If an integral has an integrand ¢ that is singular at £ = x,
the principal value or finite part is defined as

P [ a(¢)ae =i [ | a@ac [ g(f)d&} (507)

+€

Important principal value integrals are
cd
P/ ¢ :1n< ’ ) (508)
o (z—¢) r—c

61/2‘15 il (?**{_) (509)

A generalization to other powers can be obtained by the recursion relation

c fndf c gn—ldg cn
P — 2P - —
el R 1)

A special case can be found for the transformed variables cos = 1 - 2¢/c

and

P/F cosnfdd ~ sinnb,
0

= 11
cosf — cosd, d sin 6, (511)

4.11.2 Camber Case

The camber case alone accounts for the lift (non-zero «) and the camber. The potential
¢. for the pure camber case can be represented as a superposition of potential vortices of
strength v(z) dz along the chord of the wing:

b= 5 / () tan—l( f) a¢ (512)

The velocity components are:

06 17 yy(§dE
T o T o /0 y? + (v — §)? (513)

0. 1 / (z — &)y(§) d¢
. - 514
‘ dy  2mJy y*+(z—§)? (514)

The u component of velocity on the surface of the wing is

lim u.(z,y) = u(z,£0) = ZFM (515)

y—st0 2

Apply the linearized boundary condition to obtain the following integral equation for the
vorticity distribution
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Uso (j—i - a) - %P/Oc Zfz(g dé (516)

The total circulation I' is given by

r— / (6)de (517)

The velocity components satisfy the following relationships across the surface of the wing
[u] = u(z,04) —u(z,0-) = —(z) (518)
[v] = v(z,04) —v(xz,0—-)=0 (519)

Kutta Condition The Kutta condition at the trailing edge of a sharp-edged airfoil reduces
to

Y(r=¢)=0 (520)

Vorticity Distribution The integral equation for the vorticity distribution can be solved
explicity. A solution that satisfies the Kutta boundary condition is:

(&) = —2U <C — “’)1/2 o+ %P/chfL_f)§ (&)W dg] (521)

The pressure coefficient for the pure camber case is

Cp = i%‘r) for y— £0 (522)
The integrals can be computed exactly for several special cases, which can be expressed most
conveniently using the transformation

2= p=- (523)
| 1+p
P —Ldp=—7 (524)
1Z2—pV1=p
1 1 2
P / NP =z (525)
-1 Z—p
! 1
~1 \/1—702(2 =)
! p
P dp=—7 (527)
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—7z (528)

1 2
P/ dp =
~1y/1=p*(z—p)

Higher powers of the numerator can be evaluated from the recursion relation:

1/ 1= p*(z—p) 1/ 1= p*(z—p) 2
(529)
4.12 Axisymmetric Slender Bodies
Disturbance potential solution using source distribution on x-axis:
1 [ d
slayr) = = [ L (5530)
ar Jo /(x — €)% + 12
Velocity components:
0 1 [ — d
RPN By BT a1
Or  Am Jo [(x — €)% + 122
1 C
or Am Jy [(z— )2+ 2P
(533)
Exact boundary condition on body R(z)
v dR
h - 534
wl(z,R(z)) dx (534)
Linearized boundary condition, first approximation:
dR
=R)=U,— 535
/U(x7 r ) dl_ ( )
Extrapolation to x axis:
. dR
71}_1)%(2#7’1}) = QWRano (536)
Source strength
dR , 9
flz) = UOOQT('Ra = UxA'(x) A(x) =R (x) (537)

Pressure coefficient

2 dR\?
Cp ~ S <E> (538)
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4.13 Wing Theory

Wing span is —b/2 < y < +b/2. The section lift coefficient, L’ = lift per unit span

Oly) = 2 = mafy) (2 == (o)

B pU2c

Induced angle of attack, w = downwash velocity
L Us)  Us
Induced drag

Load distribution I'(y), bound circulation at span location y

1
[(y) = gmolUsc(y) (a — ai — ac(y))
Trailing vortex sheet strength
. dr
V= dy
Downwash velocity
w = LP/%/2 19 de
dpi )y E—y

Integral equation for load distribution

- P
dpiUy —b/2

+b/2 v
[(y) = 2o (s)Ucls) [a_%(y) - ries

|

Boundary conditions

M) =T(~5) =0

Elliptic load distribution, constant downwash, induced angle of attack

1/2
_ Y2 _ L I
Ply) =T ll <2b> ] R T
Lift
b2
L= pUs Ty
pU. 1

Induced drag (minimum for elliptic loading)

57

(539)

(540)

(541)

(542)

(543)

(544)

(545)

(546)

(547)

(548)
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1 L2
Di=-—" — 549
T 1pUZb? (549)
Induced drag coefficient
C? b
Cp; = —L AR =1b*/S ~ - 550
DA™ T AR / c (550)



5 Viscous Flow

Equations of motion in cartesian tensor form (without body forces) are:
Conservation of mass:

dp  Opuy, 0
6t a{L‘k N
Momentum equation:
P ot +'0uk3:1:k 0x; + oz, (i 2:3)

Viscous stress tensor

B Ou;  Ouy ou; .
Tik = (&Bk + 0:16,-) + )\@ka—xj sum on j

Lamé’s constant

Energy equation, total enthalpy form:

8ht 8ht oP aTkZ’Ui aqi

Por TP% g = ot T Ton. o,

Thermal energy form

sum on i and k

oh L oh_op 0P ou 0
pat P kamk_ ot k@xk T““axk ox;

or alternatively

sum on i and k

p% N pukﬁ _ _Pﬁuk ou;  0g;

— + T — sum on i and k
oxy, oxy, ik Ox,  Ox;
Dissipation function

ou;
Y = 75—
Tk(‘)xk
Fourier’s law
oT
i =~k

5.1 Scaling

Reference conditions are

29

(551)

(552)

(553)

(554)

(555)

(556)

(557)

(558)

(559)
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velocity U,
length L
time T
density Po
viscosity Lo

thermal conductivity k.

Inertial flow Limit of vanishing viscosity, © — 0. Nondimensional statement:

poUsL

Reynolds number Re = >1 P~ pU? (560)
Lo
Nondimensional momentum equation
Du 1
- = _VP+—V. 561
P Dt * Re T (561)
Limiting case, Re — o0, inviscid flow
Du
— =-VP 562
"D (562)

Viscous flow Limit of vanishing density, p — 0. Nondimensional statement:

Reynolds number Re = po/i]OL <1 P~ Helo (563)

Nondimensional momentum equation
Rep% =-VP+V.1 (564)

Limiting case, Re — 0, creeping flow.
VP=V.T1 (565)

5.2 Two-Dimensional Flow

For a viscous flow in two-space dimensions (x,y) the components of the viscous stress tensor
in cartersian coordinates are

(566)

Dissipation function

ou\’ o\ 2 ou  Ov\? ou v\
T_u[2<a—x) +2<8_y) +<a_y+%>]+)‘(%+8_y) (567)
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5.3 Parallel Flow

The simplest case of viscous flow is parallel flow,

(u,v) = (u(y,t),0) =V -u=0= p=p(y) only (568)

Momentum equation

du or 0 ou
=y (1) (569)
oP
0 = 5 (570)

We conclude from the y-momentum equation that P = P(z) only.

Energy equation
de de ou\> 0 [ OT o [ OT
- —_— = - - - _ - 1
Por T Mo “(a;,) T (kax)+8y (k8y> (571)

5.3.1 Steady Flows

In these flows % = 0 and inertia plays no role. Shear stress is either constant or varies only

due to imposed axial pressure gradients.

Couette Flow A special case are flows in which pressure gradients are absent
or
or

and the properties strictly depend only on the y coordinate, these flows have a% = 0. The

shear stress is constant in these flows

0 (572)

Toy = ug—z = Tw (573)

The motion is produced by friction at the moving boundaries

wy=H)=U u(ly=0)=0 (574)

and given the viscosity u(y) the velocity profile and shear stress 7,, can be determined by

integration
Y dy/ H dy/ -1
U?/ZTw/ TwZU(/ ) 575
) o 1Y) o HY) (575)

The dissipation is balanced by thermal conduction in the y direction.

(3 -4 ()
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Using the constant shear stress condition, we have the following energy integral

ar
uT — q = —@, = constant q= —ka— qw = q(y =0) (577)
Y
This relationship can be further investigated by defining the Prandtl number
k
pr=_Y - (578)
k K pcp

For gases, Pr ~ 0.7, approximately independent of temperature. The Eucken relation is a
useful approximation that only depends on the ratio of specific heats v

~__

~ 7.08y — 1.80
For many gases, both viscosity and conductivity can be approximated by power laws p ~
T", k ~ T™ where the exponents n and m range between 0.65 to 1.4 depending on the
substance.

Pr (579)

Constant Prandtl Number Assuming Pr = constant and using dh = ¢,d T, the energy
equation can be integrated to obtain the Crocco-Busemann relation

2

h—hy+ Pre=_-2ppy (580)
2 Tw
For constant cp, this is
2
P
T=T,— Pr— 102"y (581)

2cp Ty Cp

Recovery Temperature If the lower wall (y = 0) is insulated ¢, = 0, then the temper-
ature at y = 0 is defined to be the recovery temperature. In terms of the conditions at the
upper plate (y = H), this defines a recovery enthalpy

1
hm::hul)ziwih)+aPr§U2 (582)

If the heat capacity cp = constant and we use the conventional boundary layer notation, for
which Ty = T,, the temperature at the outer edge of the boundary layer
10U?

T.=1T.4+ Pr—— (583)
Cp

Contrast with the adiabatic stagnation temperature

102
T, =T, +-—— 584
t + 2 cn (584)
The recovery factor is defined as
o Tr - Te

r (585)

T,—-T,
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In Couette flow, r = Pr. The wall temperature is lower than the adiabatic stagnation
temperature Ty when Pr < 1, due to thermal conduction removing energy faster than it is
being generated by viscous dissipation. If Pr > 1, then viscous dissipation generates heat
faster than it can be conducted away from the wall and T, > T;.

Reynolds Analogy If the wall is not adiabatic, then the heat flux at the lower wall may
significantly change the temperature profile. In particular the lower wall temperature (for
¢, = constant) is

Qu
CpTw

Ty =T, + —=—PrU (586)

In order to heat the fluid g,, > 0, the lower wall must be hotter than the recovery temperature.
The heat transfer from the wall can be expressed as a heat transfer coefficient or Stanton
number

B G
~ pUcp(Ty — Ty)

where q,, is the heat flux from the wall into the fluid, which is positive when heat is being
added to the fluid. The Stanton number is proportional to the skin friction coefficient

St (587)

Tw

Cr=——= 588
f % pU2 ( )
For Couette flow,
Cy
St = —— 589
2Pr (589)
This relationship between skin friction and heat transfer is the Reynolds analogy.
Constant properties If ; and k are constant, then the velocity profile is linear:
U Tw
w = b= = — 590
Tw =M W= (590)
The skin friction coefficient is
2 pUH
Cr=— Re = —— 591
I = T °== (591)

5.3.2 Poiseuille Flow

If an axial pressure gradient is present, % < 0, then the shear stress will vary across the
channel and fluid motion will result even when the walls are stationary. In that case, the
shear stress balances the pressure drop. This is the usual situation in industrial pipe and
channel flows. For the simple case of constant p

OP 0%u

0= —— +p—
or +'u8y2

(592)
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With the boundary conditions u(0) = u(H) = 0, this can be integrated to yield the velocity
distribution

OP H? y Yy
__ 2 J (1L 593
Ox 2u H ( H > (593)
and the wall shear stress
OP H
w = ——F—— 594
K oxr 2 (594)
Pipe Flow The same situation for a round channel, a pipe of radius R, reduces to
10 Oou 10P
S St i 595
ror or W ox (595)
which integrates to the velocity distribution
1 OP
=——— (R* —1? 596
" 44 Ox ( " ) (596)
and a wall shear stress of
OP R
w = ———— 597
i or 2 (597)
The total volume flow rate is
OP mR*
=——— 598
ox 8u (598)

The skin friction coefficient is traditionally based on the mean speed @ and using the pipe
diameter d = 2R as the scale length.

_ Q OP R?
U= TR T s (599)
and is equal to
Tw 16 pud
C, = = Rey, = “— 600
T /2pu®  Req cd ] (600)
In terms of the Darcy friction factor,
8Tw 64

Turbulent flow in smooth pipes is correlated by Prandtl’s formula

ﬁ —2.0log (Red\/K) — 08 (602)

or the simpler curvefit

A = 1.02 (log Reg) >? (603)
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5.3.3 Rayleigh Problem

Also known as Stokes’ first problem. Another variant of parallel flow is unsteady flow with
no gradients in the x direction. The Rayleigh problem is to determine the motion above an
infinite (—oo < x < 00) plate impulsively accelerated parallel to itself.

The z-momentum equation (for constant p) is

ou 0%u
= = 604
ot o2 (604)
The boundary conditions are
u(y,t=0)=0 u(ly=0,t>0)=U (605)
The problem is self similar and in terms of the similarity variable 7, the solution is
u=Uf(n) n=—= f'+lf=0 (606)
Vit 2
The solution is the complementary error function
2 S
f= erfc(g) erfc(s) =1 —erf(s) erf(s) = ﬁ/o exp(—2?) dz (607)
Shear stress at the wall
wU
Tw = — 608
VTt (608)
Vorticity
ou U n?
[ e exp(—-— 609
TN p(=7) (609)

Vorticity thickness
1 oo
0 = —/ w(y,t)dy = Vvt (610)
wo Jo

5.4 Boundary Layers

For streamline bodies without separation, viscous effects are confined to a thin layer y < 9,
when the Reynolds number is sufficiently high, Re > 1.

Scaling
~ L (611)
~ 0 (612)
u ~ U (613)
) U
Vo~ ZUN IRIE (614)
L
o ~ (615)

R61/2
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Exterior or outer flow, u.. Re — oo, slip boundary conditions. Equations are inviscid
flow equations of motion.

Interior or inner flow , w;. Finite Re but ¢ < L, noslip boundary conditions u;(y = 0) =
0, matching to outer flow, lim,_,., u; = lim,_,ou.. Equations are

Boundary Layer Equations The unsteady, compressible boundary-layer equations are:

dp Opu  Opv

wt o ta, = O (616)

p% + pu% + pvg—Z = _(Z_]; + aaLZy (617)

0 - —g—]; (618)

p% + pu% + pv%—l;t = %—f + B (UTwy — Gy) (619)

Thickness Measures 99% velocity thickness
d.99 = y(u = .99u,) (620)

Displacement thickness

5*:/ (1— pu)dy (621)
0 peue

9:/ e (1—i>dy (622)
0 peue Ue

Displacement Velocity Near the boundary layer, the external flow produces a vertical
velocity v, which can be estimated by continuity to be

Momentum thickness

Opetie
ox

The boundary layer displaces the outer flow, producing a vertical velocity v far from the
surface which differs from v, by the amount v*

peve ~ ) (623)

d N
pevx = (petted™) (624)

The boundary layer influence on the outer flow can therefore by visualized as a source
distribution producing an equivalent displacement.
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Steady Incompressible Boundary layers The pressure gradient can be replaced by
using Bernoulli’s equation in the outer flow

oP Ou,

oo = Pl 5 (625)
Ox oz {,_
For constant y and k, the equations are
ou  Ov
—+— =0 626
ox + oy (626)
ou ou Ou, 0*u
- i - 2
u8x+vf)y u@a:—H/@yQ (627)
de de ou\? 0T
— — = — k—— 2
pum- + pvay i (8y) + 3y (628)

5.4.1 Blasius Flow

The steady flow u, = U over a semi-infinite flat plate (0 < z < 0o) with no pressure gradient
can be solved by a similarity transformation for the case of isothermal, incompressible flow.

Y 2ux
=5 o(x) = il (629)
Define a stream function
oY oY
= = - =5(x)U 630
=G =G v =s@Urm) (630)
to obtain the Blasius equation
f"+ff=0 f0O)=f(0)=0  floo)=1 (631)
Numerical solution yields f”(0) = 0.469600 for a skin friction coefficient of
0.664 U
Cp=-—"ts Re, =% (632)
Re; 1Y
The various thickness measures are:
5.0x . 1.7208x 0.664x
R@m Rex Re:p

The displacement is equivalent to that produced by a slender body of thickness §*(z). The
vertical velocity outside the boundary layer (y — o0) is

. dé* 0.861U

which agrees with direct computation from the stream function
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v = lim ~2¥ _ nnl———géﬂ5<nf%n>——f<n» (635)

where by numerical computation

lim f=n—n" n* =1.21678 f(o0)=1 (636)

n—00

5.4.2 Falkner-Skan Flow

For flows of the type u. = Cx™, i.e., external flows representing flow over an exterior or
interior corner of angle v = mm/(m+1) , similarity solutions to the boundary layer equations
can be obtained. Define the similarity variable and streamfunction similar to Blasius case

2vx

n=y/é(z) &= i+ Do) Y = u(z)d(x) f(n) (637)

The resulting equation for the function f is

" 4 12 2m
I U I (638)
Some cases
m flow
-.0904 separating
<0 retarded flows, expansion corner
0 flat plate, zero pressure gradient
1 stagnation point
0< accelerated flows, wedges
-2 doublet near a wall
-1 point sink

5.5 Karman Integral Relations

Integration of the momentum equation for incompressible flow results in

C;  do 0 du, 5

=—+ 2+ H H=—
2 dz + 2+ H) u, dx 0 (639)
The Kdarmdan-Pohlhausen technique consists of assuming a Blausius-type similarity profile

for the velocity

w=nu.(2)f(n) n="% (640)

where ¢ locates a definite outer edge of the boundary layer. Matching the boundary layer
solution smoothly to the outer flow at n = 1 and satisfying the noslip condition at n = 0,
results in the following conditions on f



5.6 Thwaites’ Method

f0) =0

, 0Ty
f0) = -

" _ _(5_2due
o) = ———
f///(o) -0

f) =1
fn>1(1) = 0

This results in an ordinary differential equation for ¢ as a function of z.

5.6 Thwaites’ Method

Rewrite the Karmén integral equation as

u, d6? B
v de
Thwaites’ 1949 correlation

B 0? du,

v dzx

28— (2+H)\) A

2(S — (H + 2)\) ~ 0.45 — 6)

Karman integral equation

Approximate solution

5.7 Laminar Separation

07,

T

69

(647)

(648)

(649)

(650)

(651)

Seperation of the boundary layer from the wall and the creation of a recirculating flow region

occurs when the shear stress vanishes.

ou

Tw,sep = M a_y =0

y:O7$:xsep

(652)

For laminar boundary layers, this occurs when a sufficiently long region of adverse pressure

gradient dP/dxz > 0 exists.

0% dpP
pue dx

~5  Awp =~ —0.0931

sep

(653)
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5.8 Compressible Boundary Layers

Steady, compressible, two-dimensional boundary layer equations:

Opu | v

=0
ox * dy

U— + v@ _ 9P, 0 Ou

Plor TPy T Tar Taytay

SO ok 8u2+8 or

p@x p@y_ﬂay dy Oy
5.8.1 Transformations and Approximations
Modified stream function

p - po ay p - po ax

Density-weighted y-coordinate (Howarth-Doronitsyn-Stewartson)

Y:/ﬁ@, X=gz
Po
Derivative transformation

g p 0 g 0 n oY 0
oy  p.OY or 00X 0z 0Y
Chapman-Rubesin parameter, enthalpy-temperature relation

U

C= dh = ¢, dT
Polbo
Boundary layer equations
ov 9*v ov 9w 0 _0*U
avoxy oxav: — “avCave
oV Oh oV oh 0 C 0oh
wox oxay oy (P_a_Y) *”OC(

Similarity variable

n=-1_ 52‘/2V_°x
d(x) U

Streamfunction ansatz for zero pressure gradient

U =Uéf(n)  h=hegn)

Similarity function equations

5 VISCOUS FLOW

(654)

(655)

(656)

(657)

(658)

(659)

(660)

(661)

(662)

(663)

(664)
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Ny +ff" =0 (665)
C
(50) +19 = —CEc(f") (666)
where the Eckert number is
U2
Ec = = (y — 1)M? for perfect gases (667)
Transport property approximation
C=1 pu=popo Pr= % = constant (668)
Approximate equation set:
f///+ff// — O (669)
"+ Prfg = —PrEc(f")’ (670)

5.8.2 Energy Equation

Integration of the energy equation results in the integral relationship for heat flux at the wall

0 Y
Qu = % (peueht,e@h) @h - /0 Delle (ht,e 1) dy (671)

where Oy, is the energy thickness.
The recovery factor r determines the wall enthalpy in adiabatic flow,
L,
hy = hy(qw =0) = hoo + "5 oo

The recovery factor is found to be an increasing function of the Prandtl number. In gases,

(672)

r o~ Pri/? laminar boundary layers
1/3 (673)
r~ Pr turbulent boundary layers
Unity Prandtl Number For Pr = 1, the energy equation is
3ht aht 3 8ht U2
— — = — | p—= hy = he + = 674
Mo TP, ®@® ¢ +3 (674)
This has as a solution in adiabatic flow
u? u?
hiy = he + ?e = heo + ?’O = constant for ¢, =0 (675)

Therefore, the recovery enthalpy is
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2

hy = hoo + %” (676)

From the exact correspondence to the z-momentum equation, the general, ¢, # 0, solution
is hy = a 4 bu. This leads directly to the Crocco integral

u u2 u2
h=hy+[hy—nh][1—— > (1 - —
+ ]( )+ 2( ugo) (677)

Uoo

The Stanton number can be derived from this result in the form of Reynolds analogy

_ ¢
2

The generalization of this to other Prandtl numbers that is valid for laminar and turbulent
boundary layers in gases is

St (678)

Cy

St ~ 5Pr2/3

(679)

General Prandtl Number For similarity solutions, the nondimensional enthalpy can be
found by integration of the energy equation, simplest when C' = 1, and Pr = constant.

g" + Prfg = —PrEc (f") (680)

This equation can be integrated exactly to yield

n

g(n) = g(0) + ¢'(0) /OnF(n/;Pr) dn' — Pr EC/O F(n/; Pr)

/"/ (O dE) 1 68

F(& Pr)

F(n; Pr) = / Toxp <—Pr /0 "5 d£> af (652)

0

and the boundary conditions yield

h oT
= —w w — —k' =
9(0) ¢ 9

P
= __Tp_g (0) (683)

This results in a recovery factor of
/” (f"(€))" de (684)
0

erPr/O F(n; Pr) F(e Pr)

which for a laminar flat plate boundary layer has the approximate value

raPri/?  01<Pr<30 (685)
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The Stanton number is

peue(f?z —h,) ﬁ(ﬁgim G(Pr) = { /O " Py Pr) dn} (686)

and for a flat plate boundary layer G can be approximated as

St =

G ~ 0.4969Pr'/® 0.1 < Pr<3.0 (687)
so that the Stanton number for flat plate gas flow is approximately

gt — 0.33206 (688)
Pr2/3Re/?

Coordinate stretching The physical coordinate can be computed from the transformed
similarity variable and the velocity profile

Uso " Poo
= —d 689
Yy/ vz Jy W (689)

The density profile can be computed from the temperature profile since the pressure is
constant across the boundary layer. For an ideal gas

Poo T

= — 690
> T T (690)
For the case of Pr = 1 and a perfect gas, the temperature profile is
T —1 K
— =1+ LM;/ (1—f7) dy (691)
T 2 B
where u = uq f'(n). The coordinate transformation is then
Y R et 39 /n (1— ) dy (692)
oo 2 > Jo

If we suppose that the viscosity varies as u ~ T“, then the skin friction coefficient is

V2£"(0) 1
Cp =i T (699)
€z (1+TMOO)

5.8.3 Moving Shock Waves

For a moving shock wave, the boundary conditions in the shock fixed frame are that the wall
is moving with the upstream velocity w; and the freestream condition is ws. If the reference
velocity is ws, then boundary conditions on f are
Uy w1
f0)=0, f(0)=—=—" fo0)=1 (694)

Ue W2

This results in a negative displacement thickness.
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5.8.4 Weak Shock Wave Structure
— 0

In contrast to the usual Boundary layer equations, here a% = 5> = 0, and only derivatives

in the z direction are considered.

puU = pPirug
4 ,0u
P _ o2 P 2
+ pruu 3Max 1+ prug
2 4 4 0 k oOT 2
pa A ou b or
2 3puy Oxr  pruy Ox 2
where
L
W=t i

Entropy creation by gradients:

a1 /+°° 44 (Ou 2+/<: 107T?
2 l—plul o |3T \ Oz T Ox

Weak shock thickness estimate based on maximum slope:

dx

T S
™ 3pe My, — 1 AT

For a perfect gas (7 = constant), the mean free path can be estimated as
A~ (ﬂ)l/Z ﬂ
2 pc

and the shock thickness for v = 1.4, pu, = 0, is

1.8A

Ay = —
(Mln - 1)

(695)
(696)

(697)

(698)

(699)

(700)

(701)

(702)
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5.9 Creeping Flow

In the limit of zero inertia, the flow is described by Stokes approximation to the momentum
equation

VP=V.T1 (703)
If the viscosity and density are constant this is equivalent to
VP = uVu or VP =—uV xw (704)
Applying the divergence and curl operations to these equations yields
ViP=0 o Vw=0 (705)

The Reynolds number enters solely through the boundary conditions. Consider a flow with
characteristic velocity U, lateral dimension L and viscosity u. If the velocity is specified at
the boundaries,

u = Ug(x/L, geometry) (706)

then the pressure distribution can be obtained by integrating the momentum equation to
get

2 L
P = ﬁf(x/[,, geometry)  Rep = UL (707)
R€L H

If the pressure is specified at the boundaries,

P = pU? f(x/L, geometry) (708)
then the velocity will be given by

u = URerg(x/L, geometry) (709)

For flows in two space dimensions, a streamfunction ¢) can be used to satisfy the continuity
equation. In cartesian coordinates, the streamfunction for Stokes flow of a constant viscosity
fluid will satisfy the Biharmonic equation

Vi =0 (710)
Stokes Sphere Flow The force on a moving body in viscous flow is

F:/ T-ﬁdA—/ PadA (711)
oN 0N

Estimating the magnitude of the integrals, the force in a particular direction will have the
magnitude

F=CuUL (712)
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The constant C' will in general depend on the shape of the body, the direction x of the force
and the motion of the body.

For a sphere, the flow can be solved by using Stokes axisymmetric streamfunction ¢). The
velocity components are:

1 oy

Y
L, o or (714)

The analog of the biharmonic equation is

0%  sing 0 1 0\’
= - = 1
{87’2 * r2 0¢ <sin¢8gb>} v="0 (715)
The boundary conditions at the surface of the sphere are:
oY oY
_ oy _ 9y _ _ 1
=0 B 0 9 0 r=a (716)
and the flow approaches a uniform flow far from the sphere
. ur?
Tli}r(r}ow = —sin o) (717)
The solution is
U, .o, (a 3r 2r
¢:Za sin ¢<;_;+_az) (718)

The pressure on the body is found by integrating the momentum equation
3pual
2r2

and the force (drag) is directed opposite to the direction of motion of the sphere with
magnitude

P=P,— cos ¢ (719)

D 24 pU2a
THea b 1/2pU%ma®  Re ‘ i (720)
For a thin disk of radius a moving normal to the freestream the drag is
D =16ruUa (721)
and moving parallel to the freestream
32
D=—pUa (722)
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Oseen’s Approximation The inertial terms neglected in Stokes’ approximation become
significant at a distance 7 ~ a/Re. The Oseen equations are a uniform approximation for
incompressible viscous flow over a body. If the mean flow at large distances from body is U
in direction x, then the Oseen equations are:

V-ou = 0 (723)
8_u+ pdu ~VP + uV?u (724)
pat P or a

This results in a corrected drag law (the flow now has a wake) for the sphere

24 3Re 9
= — —— 4+ —Re*1 2
Cp o <1+ 16 + 160R€ n Re + ) (725)

Reynolds Lubrication Theory Incompressible flow in a two-dimensional channel with
a slowly-varying height h(z) and length L can be treated as a “boundary layer”-like flow if
L Oh oh

T <1 which implies that VA US (726)
The thin-layer or lubrication equations result when the channel is very thin A/L — 0, and
viscous forces dominate inertia Re < 1.

dph  Ophu
- = 2
5 + o 0 (727)
oP 0 Ou
T 2
0 ox + (9y'u8y (728)
oP
- 2
0 oy (729)

For a constant property flow, the velocity is given at any point in the channel by the Couette-
Poiseuille expression of parallel flow if the lower boundary is moving with velocity U and the
upper boundary is at most moving in the y direction

. _g% (-9 (-9 (730)

Combining this result with the continuity equation yields the Reynolds lubrication equation
10 ( 33 8P) oh oh

For a slipper pad bearing, the pressure is equal to the ambient value P, at x =0 and x = L
and the gap height h is

ﬁ@:ﬂ

h=he (1—%) a<1 (732)

The pressure is given by
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pUL [ . ( he W (R
6(=2—1)-3—(=—-1
e (1) o G

where h* is the gap height at the location of the pressure maximum

P-P =

h* 2

l—« o o

— = ~1l—-—-———+0(*
o 2-a 2~ ToW)
and the maximum pressure is approximately
3 pwUL
Pmax_Poz_Oélu +O(Oz2)

1% 2
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(733)

(734)

(735)
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