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1

1 Fundamentals

1.1 Control Volume Statements

Ω is a material volume, V is an arbitrary control volume, ∂Ω indicates the surface of the
volume.
mass conservation:

d

dt

∫
Ω

ρ dV = 0 (1)

Momentum conservation:

d

dt

∫
Ω

ρu dV = F (2)

Forces:

F =

∫
Ω

ρG dV +

∫
∂Ω

T dA (3)

Surface traction forces
T = −P n̂ + τ · n̂ = T · n̂ (4)

Stress tensor T
T = −P I + τ or Tik = −Pδik + τik (5)

where I is the unit tensor, which in cartesian coordinates is

I = δik (6)

Viscous stress tensor, shear viscosity µ, bulk viscosity µv

τik = 2µ

(
Dik −

1

3
δikDjj

)
+ µvδikDjj implicit sum on j (7)

Deformation tensor

Dik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
or

1

2

(
∇u + ∇uT

)
(8)

Energy conservation:
d

dt

∫
Ω

ρ

(
e+
|u|2

2

)
dV = Q̇+ Ẇ (9)

Work:

Ẇ =

∫
Ω

ρG · u dV +

∫
∂Ω

T · u dA (10)

Heat:

Q̇ = −
∫
∂Ω

q · n̂ dA (11)

heat flux q, thermal conductivity k and thermal radiation qr

q = −k∇T + qr (12)

Entropy inequality (2nd Law of Thermodynamics):

d

dt

∫
Ω

ρs dV ≥ −
∫
∂Ω

q · n̂
T

dA (13)
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1.2 Reynolds Transport Theorem

The multi-dimensional analog of Leibniz’s theorem:

d

dt

∫
V (t)

φ(x, t) dV =

∫
V (t)

∂φ

∂t
dV +

∫
∂V

φuV · n̂ dA (14)

The transport theorem proper. Material volume Ω, arbitrary volume V .

d

dt

∫
Ω

φ dV =
d

dt

∫
V

φ dV +

∫
∂V

φ(u− uV ) · n̂ dA (15)

1.3 Integral Equations

The equations of motions can be rewritten with Reynolds Transport Theorem to apply to
an (almost) arbitrary moving control volume. Beware of noninertial reference frames and
the apparent forces or accelerations that such systems will introduce.

Moving control volume:

d

dt

∫
V

ρdV +

∫
∂V

ρ (u− uV ) · n̂ dA = 0 (16)

d

dt

∫
V

ρudV +

∫
∂V

ρu (u− uV ) · n̂ dA =

∫
V

ρG dV +

∫
∂V

T dA (17)

d

dt

∫
V

ρ

(
e+
|u|2

2

)
dV +

∫
∂V

ρ

(
e+
|u|2

2

)
(u− uV ) · n̂ dA =∫

V

ρG · u dV +

∫
∂V

T · u dA−
∫
∂V

q · n̂ dA (18)

d

dt

∫
V

ρsdV +

∫
∂V

ρs (u− uV ) · n̂ dA+

∫
∂V

q

T
· n̂ dA ≥ 0 (19)

Stationary control volume:

d

dt

∫
V

ρdV +

∫
∂V

ρu · n̂ dA = 0 (20)

d

dt

∫
V

ρudV +

∫
∂V

ρuu · n̂ dA =

∫
V

ρG dV +

∫
∂V

T dA (21)

d

dt

∫
V

ρ

(
e+
|u|2

2

)
dV +

∫
∂V

ρ

(
e+
|u|2

2

)
u · n̂ dA =∫

V

ρG · u dV +

∫
∂V

T · u dA−
∫
∂V

q · n̂ dA (22)

d

dt

∫
V

ρsdV +

∫
∂V

ρsu · n̂ dA+

∫
∂V

q

T
· n̂ dA ≥ 0 (23)



1.4 Vector Calculus 3

1.3.1 Simple Control Volumes

Consider a stationary control volume V with i = 1, 2, . . ., I connections or openings through
which there is fluid flowing in and j = 1, 2, . . ., J connections through which the fluid is
following out. At the inflow and outflow stations, further suppose that we can define average
or effective uniform properties hi, ρi, ui of the fluid. Then the mass conservation equation is

dM

dt
=

d

dt

∫
V

ρdV =
I∑
i=1

Aiṁi −
J∑
j=1

Ajṁj (24)

where Ai is the cross-sectional area of the ith connection and ṁi = ρiui is the mass flow rate
per unit area through this connection. The energy equation for this same situation is

dE

dt
=

d

dt

∫
V

ρ

(
e+
|u|2

2
+ gz

)
dV =

I∑
i=1

Aiṁi

(
hi +

|ui|2

2
+ gzi

)

−
J∑
j=1

Ajṁj

(
hj +

|uj|2

2
+ gzj

)
+ Q̇+ Ẇ (25)

where Q̇ is the thermal energy (heat) transferred into the control volume and Ẇ is the
mechanical work done on the fluid inside the control volume.

1.3.2 Steady Momentum Balance

For a stationary control volume, the steady momentum equation can be written as∫
∂V

ρuu · n̂ dA+

∫
∂V

P n̂ dA =

∫
V

ρG dV +

∫
∂V

τ · n̂ dA+ Fext (26)

where Fext are the external forces required to keep objects in contact with the flow in force
equilibrium. These reaction forces are only needed if the control volume includes stationary
objects or surfaces. For a control volume completely within the fluid, Fext = 0.

1.4 Vector Calculus

1.4.1 Vector Identities

If A and B are two differentiable vector fields A(x), B(x) and φ is a differentiable scalar
field φ(x), then the following identities hold:

∇× (A×B) = (B ·∇)A− (A ·∇)B− (∇ ·A)B + (∇ ·B)A (27)

∇(A ·B) = (B ·∇)A + (A ·∇)B + B× (∇×A) + A× (∇×B) (28)

∇× (∇φ) = 0 (29)

∇ · (∇×A) = 0 (30)

∇× (∇×A) = ∇(∇ ·A)−∇2A (31)

∇× (φA) = ∇φ×A + φ∇×A (32)
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1.4.2 Curvilinear Coordinates

Scale factors Consider an orthogonal curvilinear coordinate system (x1, x2, x3) defined by
a triad of unit vectors (e1, e2, e3), which satisfy the orthogonality condition:

ei · ek = δik (33)

and form a right-handed coordinate system

e3 = e1 × e2 (34)

The scale factors hi are defined by

dr = h1dx1e1 + h2dx2e2 + h3dx3e3 (35)

or

hi ≡
∣∣∣∣ ∂r

∂xi

∣∣∣∣ (36)

The unit of arc length in this coordinate system is ds2 = dr · dr:

ds2 = h2
1 dx2

1 + h2
2 dx2

2 + h2
3 dx2

3 (37)

The unit of differential volume is

dV = h1h2h3 dx1 dx2 dx3 (38)

1.4.3 Gauss’ Divergence Theorem

For a vector or tensor field F, the following relationship holds:∫
V

∇ · F dV ≡
∫
∂V

F · n̂ dA (39)

This leads to the simple interpretation of the divergence as the following limit

∇ · F ≡ lim
V→0

1

V

∫
∂V

F · n̂ dA (40)

A useful variation on the divergence theorem is∫
V

(∇× F) dV ≡
∫
∂V

n̂× F dA (41)

This leads to the simple interpretation of the curl as

∇× F ≡ lim
V→0

1

V

∫
∂V

n̂× F dA (42)
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1.4.4 Stokes’ Theorem

For a vector or tensor field F, the following relationship holds on an open, two-sided surface
S bounded by a closed, non-intersecting curve ∂S:∫

S

(∇× F) · n̂ dA ≡
∫
∂S

F · dr (43)

1.4.5 Div, Grad and Curl

The gradient operator ∇ or grad for a scalar field ψ is

∇ψ =
1

h1

∂ψ

∂x1

e1 +
1

h2

∂ψ

∂x2

e2 +
1

h3

∂ψ

∂x3

e3 (44)

A simple interpretation of the gradient operator is in terms of the differential of a function
in a direction â

dâψ = lim
da→0

ψ(x + da)− ψ(x) = ∇ψ · da (45)

The divergence operator ∇· or div is

∇ · F =
1

h1h2h3

[
∂

∂x1

(h2h3F1) +
∂

∂x2

(h3h1F2) +
∂

∂x3

(h1h2F3)

]
(46)

The curl operator ∇× or curl is

∇× F =
1

h1h2h3

∣∣∣∣∣∣
h1 e1 h2 e2 h3e3
∂
∂x1

∂
∂x2

∂
∂x3

h1F1 h2F2 h3F3

∣∣∣∣∣∣ (47)

The components of the curl are:

∇× F =
e1

h2h3

[
∂

∂x2

(h3F3)− ∂

∂x3

(h2F2)

]
+

e2

h3h1

[
∂

∂x3

(h1F1)− ∂

∂x1

(h3F3)

]
+

e3

h1h2

[
∂

∂x1

(h2F2)− ∂

∂x2

(h1F1)

]
(48)

The Laplacian operator ∇2 for a scalar field ψ is

∇2ψ =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂ψ

∂x1

) +
∂

∂x2

(
h3h1

h2

∂ψ

∂x2

) +
∂

∂x3

(
h1h2

h3

∂ψ

∂x3

)

]
(49)



6 1 FUNDAMENTALS

1.4.6 Specific Coordinates

(x1, x2, x3) x y z h1 h2 h3

Cartesian
(x, y, z) x y z 1 1 1

Cylindrical
(r, θ, z) r sin θ r cos θ z 1 r 1

Spherical
(r, φ, θ) r sinφ cos θ r sinφ sin θ r cosφ 1 r r sinφ

Parabolic Cylindrical

(u, v, z) 1
2 (u

2 − v2) uv z
√
u2 + v2 h1 1

Paraboloidal

(u, v, φ) uv cosφ uv sinφ 1
2 (u

2 − v2)
√
u2 + v2 h1 uv

Elliptic Cylindrical

(u, v, z) a coshu cos v a sinhu sin v z a
√

sinh2 u+ sin2 v h1 1

Prolate Spheroidal

(ξ, η, φ) a sinh ξ sin η cosφ a sinh ξ sin η sinφ a cosh ξ cos η a
√
sinh2 ξ + sin2 η h1 a sinh ξ sin η

1.5 Differential Relations

1.5.1 Conservation form

The equations are first written in conservation form

∂

∂t
density + ∇ · flux = source (50)

for a fixed (Eulerian) control volume in an inertial reference frame by using the divergence
theorem.

∂ρ

∂t
+ ∇ · (ρu) = 0 (51)

∂

∂t
(ρu) + ∇ · (ρuu− T) = ρG (52)

∂

∂t
ρ

(
e+
|u|2

2

)
+ ∇ ·

[
ρu

(
e+
|u|2

2

)
− T · u + q

]
= ρG · u (53)

∂

∂t
(ρs) + ∇ ·

(
ρus+

q

T

)
≥ 0 (54)

1.6 Convective Form

This form uses the convective or material derivative

D

Dt
=

∂

∂t
+ u ·∇ (55)
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Dρ

Dt
= −ρ∇ · u (56)

ρ
Du

Dt
= −∇P + ∇ · τ + ρG (57)

ρ
D

Dt

(
e+
|u|2

2

)
= ∇ · (T · u)−∇ · q + ρG · u (58)

ρ
Ds

Dt
≥ −∇ ·

(q

T

)
(59)

Alternate forms of the energy equation:

ρ
D

Dt

(
e+
|u|2

2

)
= −∇ · (Pu) + ∇ · (τ · u)−∇ · q + ρG · u (60)

Formulation using enthalpy h = e + P/ρ

ρ
D

Dt

(
h+
|u|2

2

)
=
∂P

∂t
+ ∇ · (τ · u)−∇ · q + ρG · u (61)

Mechanical energy equation

ρ
D

Dt

|u|2

2
= − (u ·∇)P + u ·∇ · τ + ρG · u (62)

Thermal energy equation

De

Dt
= −P Dv

Dt
+ vτ :∇u− v∇ · q (63)

Dissipation

Υ = τ :∇u = τik
∂ui
∂xk

sum on i and k (64)

Entropy

ρ
Ds

Dt
= −∇ ·

(q

T

)
+

Υ

T
+ k

(
∇T

T

)2

(65)

1.7 Divergence of Viscous Stress

For a fluid with constant µ and µv, the divergence of the viscous stress in Cartesian coordi-
nates can be reduced to:

∇ · τ = µ∇2u +

(
µv +

1

3
µ

)
∇(∇ · u) (66)
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1.8 Euler Equations

Inviscid, no heat transfer, no body forces.

Dρ

Dt
= −ρ∇ · u (67)

ρ
Du

Dt
= −∇P (68)

ρ
D

Dt

(
h+
|u|2

2

)
=

∂P

∂t
(69)

Ds

Dt
≥ 0 (70)

1.9 Bernoulli Equation

Consider the unsteady energy equation in the form

ρ
D

Dt

(
h+
|u|2

2

)
=
∂P

∂t
+ ∇ · (τ · u)−∇ · q + ρG · u (71)

and further suppose that the external force field G is conservative and can be derived from
a potential Φ as

G = −∇Φ (72)

then if Φ(x) only, we have

ρ
D

Dt

(
h+
|u|2

2
+ Φ

)
=
∂P

∂t
+ ∇ · (τ · u)−∇ · q (73)

The Bernoulli constant is

H = h+
|u|2

2
+ Φ (74)

In the absence of unsteadiness, viscous forces and heat transfer we have

u ·∇
(
h+
|u|2

2
+ Φ

)
= 0 (75)

Or

H◦ = constant on streamlines

For the ordinary case of isentropic flow of an incompressible fluid dh = dP/ρ◦ in a uniform
gravitational field Φ = g(z − z◦), we have the standard result

P + ρ◦
|u|2

2
+ ρ◦gz = constant (76)
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1.10 Vorticity

Vorticity is defined as
ω ≡∇× u (77)

and the vector identities can be used to obtain

(u ·∇)u = ∇(
|u|2

2
)− u× (∇× u) (78)

The momentum equation can be reformulated to read:

∇H = ∇
(
h+
|u|2

2
+ Φ

)
= −∂u

∂t
+ u× ω + T∇s+

∇ · τ
ρ

(79)
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1.11 Dimensional Analysis

Fundamental Dimensions

L length meter (m)
M mass kilogram (kg)
T time second (s)
θ temperature Kelvin (K)
I current Ampere (A)

Some derived dimensional units

force Newton (N) MLT−2

pressure Pascal (Pa) ML−1T−2

bar = 105 Pa
energy Joule (J) ML2T−2

frequency Hertz (Hz) T−1

power Watt (W) ML2T−3

viscosity (µ) Poise (P) ML−1T−1

Pi Theorem Given n dimensional variables X1, X2, . . ., Xn, and f independent funda-
mental dimensions (at most 5) involved in the problem:

1. The number of dimensionally independent variables r is

r ≤ f

2. The number p = n - r of dimensionless variables Πi

Πi =
Xi

Xα1
1 Xα2

2 · · ·Xαr
r

that can be formed is
p ≥ n− f

Conventional Dimensionless Numbers

Reynolds Re ρUL/µ
Mach Ma U/c
Prandtl Pr µcP/k = ν/κ
Strouhal St L/UT
Knudsen Kn Λ/L
Peclet Pe UL/κ
Schmidt Sc ν/D
Lewis Le D/κ

Reference conditions: U , velocity; µ, vicosity; D, mass diffusivity; k, thermal conductivity;
L, length scale; T , time scale; c, sound speed; Λ, mean free path; cP , specific heat at constant
pressure.
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Parameters for Air and Water Values given for nominal standard conditions 20 C and
1 bar.

Air Water
shear viscosity µ (kg/ms) 1.8×10−5 1.00×10−3

kinematic viscosity ν (m2/s) 1.5×10−5 1.0×10−6

thermal conductivity k (W/mK) 2.54×10−2 0.589
thermal diffusivity κ (m2/s) 2.1×10−5 1.4×10−7

specific heat cp (J/kgK) 1004. 4182.
sound speed c (m/s) 343.3 1484
density ρ (kg/m3) 1.2 998.
gas constant R (m2/s2K) 287 462.
thermal expansion β (K−1) 3.3×10−4 2.1×10−4

isentropic compressibility κs (Pa−1) 7.01×10−6 4.5×10−10

Prandtl number Pr .72 7.1
Fundamental derivative Γ 1.205 4.4
ratio of specific heats γ 1.4 1.007
Grüneisen coefficient G 0.40 0.11
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2 Thermodynamics

2.1 Thermodynamic potentials and fundamental relations

energy e(s, v)

de = T ds− P dv (80)

enthalpy h(s, P ) = e+ Pv

dh = T ds+ v dP (81)

Helmholtz f(T, v) = e− Ts
df = −s dT − P dv (82)

Gibbs g(T, P ) = e− Ts+ Pv

dg = −s dT + v dP (83)

2.2 Maxwell relations

∂T

∂v

)
s

= − ∂P

∂s

)
v

(84)

∂T

∂P

)
s

=
∂v

∂s

)
P

(85)

∂s

∂v

)
T

=
∂P

∂T

)
v

(86)

∂s

∂P

)
T

= − ∂v

∂T

)
P

(87)

Calculus identities:

F (x, y, . . . ) dF =
∂F

∂x

)
y,z,...

dx+
∂F

∂y

)
x,z,...

dy + . . . (88)

∂x

∂y

)
f

= −
∂f
∂y

)
x

∂f
∂x

)
y

(89)

∂x

∂f

)
y

=
1

∂f
∂x

)
y

(90)
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2.3 Various defined quantities

specific heat at constant volume cv ≡
∂e

∂T

)
v

(91)

specific heat at constant pressure cp ≡
∂h

∂T

)
P

(92)

ratio of specific heats γ ≡ cp
cv

(93)

sound speed c ≡

√
∂P

∂ρ

)
s

(94)

coefficient of thermal expansion β ≡ 1

v

∂v

∂T

)
P

(95)

isothermal compressibility KT ≡ −1

v

∂v

∂P

)
T

(96)

isentropic compressibility Ks ≡ −1

v

∂v

∂P

)
s

=
1

ρc2
(97)

Specific heat relationships

KT = γKs or
∂P

∂v

)
s

= γ
∂P

∂v

)
T

(98)

cp − cv = −T
(
∂P

∂v

)
T

(
∂v

∂T

)2

P

(99)

Fundamental derivative

Γ ≡ c4

2v3

∂2v

∂P 2

)
s

(100)

=
v3

2c2

(
∂2P

∂v2

)
s

(101)

= 1 + ρc

(
∂c

∂P

)
s

(102)

=
1

2

(
v2

c2

(
∂2h

∂v2

)
s

+ 1

)
(103)

Sound speed (squared)
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c2 ≡ ∂P

∂ρ

)
s

(104)

= −v2 ∂P

∂v

)
s

(105)

=
v

Ks

(106)

= γ
v

Kt

(107)

Grüneisen Coefficient

G ≡ vβ

cvKT

(108)

= v

(
∂P

∂e

)
v

(109)

=
vβ

cpKs

(110)

= − v
T

(
∂T

∂v

)
s

(111)

2.4 v(P, s) relation

dv

v
= −Ks dP + Γ(Ks dP )2 + β

T ds

cp
+ . . . (112)

= −dP

ρc2
+ Γ

(
dP

ρc2

)2

+G
Tds

c2
+ . . . (113)

2.5 Equation of State Construction

Given cv(v, T ) and P (v, T ), integrate

de = cv dT +

(
T
∂P

∂T

)
v

− P
)

dv (114)

ds =
cv
T

dT +
∂P

∂T

)
v

dv (115)

along two paths: I: variable T , fixed ρ and II: variable ρ, fixed T .
Energy:

e = e◦ +

∫ T

T◦

cv(T, ρ◦) dT︸ ︷︷ ︸
I

+

∫ ρ

ρ◦

(
P − T ∂P

∂T

)
ρ

)
dρ

ρ2︸ ︷︷ ︸
II

(116)
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Ideal gas limit ρ◦ → 0,

lim
ρ◦→0

cv(T, ρ◦) = cigv (T ) (117)

The ideal gas limit of I is the ideal gas internal energy

eig(T ) =

∫ T

T◦

cigv (T ) dT (118)

Ideal gas limit of II is the residual function

er(ρ, T ) =

∫ ρ

0

(
P − T ∂P

∂T

)
ρ

)
dρ

ρ2
(119)

and the complete expression for internal energy is

e(ρ, T ) = e◦ + eig(T ) + er(ρ, T ) (120)

Entropy:

s = s◦ +

∫ T

T◦

cv(T, ρ◦)

T
dT︸ ︷︷ ︸

I

+

∫ ρ

ρ◦

(
− ∂P

∂T

)
ρ

)
dρ

ρ2︸ ︷︷ ︸
II

(121)

The ideal gas limit ρ◦ → 0 has to be carried out slightly differently since the ideal gas
entropy, unlike the internal energy, is a function of density and is singular at ρ = 0. Define

sig =

∫ T

T◦

cigv (T )

T
dT −R

∫ ρ

ρ◦

dρ

ρ
(122)

where the second integral on the RHS is R ln ρ◦/ρ. Then compute the residual function by
substracting the singular part before carrying out the integration

sr(ρ, T ) =

∫ ρ

0

(
R− 1

ρ

∂P

∂T

)
ρ

)
dρ

ρ
(123)

and the complete expression for entropy is

s(ρ, T ) = s◦ + sig(ρ, T ) + sr(ρ, T ) (124)
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3 Compressible Flow

3.1 Steady Flow

A steady flow must be considered as compressible when the Mach number M = u/c is
sufficiently large. In an isentropic flow, the change in density produced by a speed u can be
estimated as

∆ρs = c−2∆P ∼ −1

2
ρM2 (125)

from the energy equation discussed below and the fundamental relation of thermodynamics.

If the flow is unsteady, then the change in the density along the pathlines for inviscid
flows without body forces is

1

ρ

Dρ

Dt
= −∇ · u = −u ·∇u2

2c2
− 1

c2

[
1

2

∂u2

∂t
− 1

ρ

∂P

∂t

]
(126)

This first term is the steady flow condition ∼ M2. The second set of terms in the square
braces are the unsteady contributions. These will be significant when the time scale T is
comparable to the acoustic transit time L/c◦, i.e., T ∼ Lco.

3.1.1 Streamlines and Total Properties

Stream lines X(t; x◦) are defined by

dX

dt
= u X = x◦ when t = 0 (127)

which in Cartesian coordinates yields

dx1

u1

=
dx2

u2

=
dx3

u3

(128)

Total enthalpy is constant along streamlines in adiabatic, steady, inviscid flow

ht = h+
|u|2

2
= constant (129)

Velocity along a streamline is given by the energy equation:

u = |u| =
√

2(ht − h) (130)

Total properties are defined in terms of total enthalpy and an idealized isentropic deceleration
process along a streamline. Total pressure is defined by

Pt ≡ P (s◦, ht) (131)

Other total properties Tt, ρt, etc. can be computed from the equation of state.
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3.2 Quasi-One Dimensional Flow

Adiabatic, frictionless flow:

d(ρuA) = 0 (132)

ρudu = −dP (133)

h+
u2

2
= constant or dh = −udu (134)

ds ≥ 0 (135)

3.2.1 Isentropic Flow

If ds = 0, then

dP = c2dρ+ c2 (Γ− 1)
(dρ)2

ρ
+ . . . (136)

For isentropic flow, the quasi-one-dimensional equations can be written in terms of the Mach
number as:

1

ρ

dρ

dx
=

M2

1−M2

1

A

dA

dx
(137)

1

ρc2

dP

dx
=

M2

1−M2

1

A

dA

dx
(138)

1

u

du

dx
= − 1

1−M2

1

A

dA

dx
(139)

1

M

dM

dx
= −1 + (Γ− 1)M2

1−M2

1

A

dA

dx
(140)

1

c2

dh

dx
=

M2

1−M2

1

A

dA

dx
(141)

At a throat, the gradient in Mach number is:

(
dM

dx

)2

=
Γ

2A

d2A

dx2
(142)
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Constant-Γ Gas If the value of Γ is assumed to be constant, the quasi-one dimensional
equations can be integrated to yield:

ρt
ρ

=
(
1 + (Γ− 1)M2

) 1
2(Γ−1) (143)

ct
c

=

(
ρt
ρ

)Γ−1

=
(
1 + (Γ− 1)M2

)1/2
(144)

ht
h

=
(
1 + (Γ− 1)M2

)
(145)

u = ct

(
M2

1 + (Γ− 1)M2

)1/2

(146)

A

A∗
=

1

M

(
1 + (Γ− 1)M2

Γ

) Γ
2(Γ−1)

(147)

P − Pt
ρtc2

t

=
1

2Γ− 1

[(
1 + (Γ− 1)M2

)− 2Γ−1
2(Γ−1) − 1

]
(148)

(149)

Ideal Gas For an ideal gas P = ρRT and e = e(T ) only. In that case, we have

h(T ) = e+RT = h◦ +

∫ T

T◦

cv(T ) dT, s = s◦ +

∫ T

T◦

cP (T )

T
dT −R ln(P/P◦) (150)

and you can show that Γ is given by:

Γig =
γ + 1

2
+
γ − 1

2

T

γ

dγ

dT
(151)

Perfect or Constant-γ Gas Perfect gas results for isentropic flow can be derived from
the equation of state

P = ρRT h = cpT cp =
γR

γ − 1
(152)

the value of Γ for a perfect gas,

Γpg =
γ + 1

2
(153)

the energy integral,

Tt = T

(
1 +

γ − 1

2
M2

)
(154)

and the expression for entropy

s− so = cp ln
T

To
−R lnP/Po (155)

or
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s− so = cv ln
T

To
−R ln ρ/ρo

Tt
T

= 1 +
γ − 1

2
M2 (156)

Pt
P

=

(
Tt
T

) γ
γ−1

(157)

ρt
ρ

=

(
Tt
T

) 1
γ−1

(158)

Mach Number–Area Relationship

A

A∗
=

1

M

[
2

γ + 1

(
1 +

γ − 1

2
M2

)] γ+1
2(γ−1)

(159)

Choked flow mass flux

Ṁ =

(
2

γ + 1

) γ+1
2(γ−1)

ctρtA
∗ (160)

or

Ṁ =
√
γ

(
2

γ + 1

) γ+1
2(γ−1) Pt√

RTt
A∗

Velocity-Mach number relationship

u = ct
M√

1 + γ−1
2
M2

(161)

Alternative reference speeds

ct = c∗
√
γ + 1

2
umax = c∗

√
γ + 1

γ − 1
(162)

3.3 Heat and Friction

Constant-area, steady flow with friction F and heat addition Q

ρu = ṁ = constant (163)

ρudu+ dP = −Fdx (164)

dh+ udu = Qdx (165)

ds =
1

T

(
Q+

F

ρ

)
dx (166)
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F is the frictional stress per unit length of the duct. In terms of the Fanning friction factor
f

F =
2

D
fρu2 (167)

where D is the hydraulic diameter of the duct D = 4×area/perimeter. Note that the
conventional D’Arcy or Moody friction factor λ = 4 f .

Q is the energy addition as heat per unit mass and unit length of the duct. If the heat
flux into the fluid is q̇, then we have

Q =
q̇

ρu

4

D
(168)

3.3.1 Fanno Flow

Constant-area, adiabatic, steady flow with friction only:

ρu = ṁ = constant (169)

ρudu+ dP = −Fdx (170)

h+
u2

2
= ht = constant (171)

(172)

Change in entropy with volume along Fanno line, h+ 1/2ṁ2v2=ht

T
ds

dv

)
Fanno

=
c2 − u2

v(1 +G)
(173)

3.3.2 Rayleigh Flow

Constant-area, steady flow with heat transfer only:

ρu = ṁ = constant (174)

P + ρu2 = I (175)

dh+ udu = Qdx (176)

(177)

Change in entropy with volume along Rayleigh line, P + ṁ2v = I

T
ds

dv

)
Rayleigh

=
c2 − u2

vG
(178)
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3.4 Shock Jump Conditions

The basic jump conditions,

ρ1w1 = ρ2w2 (179)

P1 + ρ1w
2
1 = P2 + ρ2w

2
2 (180)

h1 +
w2

1

2
= h2 +

w2
2

2
(181)

s2 ≥ s1 (182)

or defining [f ] ≡ f2 - f1

[ρw] = 0 (183)[
P + ρw2

]
= 0 (184)[

h+
w2

2

]
= 0 (185)

[s] ≥ 0 (186)

The Rayleigh line:

P2 − P1

v2 − v1

= −(ρ1w1)2 = −(ρ2w2)2 (187)

or
[P ]

[v]
= −(ρw)2 (188)

Rankine-Hugoniot relation:

h2 − h1 = (P2 − P1)(v2 + v1)/2 or e2 − e1 = (P2 + P1)(v1 − v2)/2 (189)

Velocity-Pv relation

[w]2 = −[P ][v] or w2 − w1 = −
√
−(P2 − P1)(v2 − v1) (190)

Alternate relations useful for numerical solution

P2 = P1 + ρ1w
2
1

(
1− ρ1

ρ2

)
(191)

h2 = h1 +
1

2
w2

1

[
1−

(
ρ1

ρ2

)2
]

(192)
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3.4.1 Lab frame (moving shock) versions

Shock velocity

w1 = Us (193)

Particle (fluid) velocity in laboratory frame

w2 = Us − up (194)

Jump conditions

ρ2 (Us − up) = ρ1Us (195)

P2 = P1 + ρ1Usup (196)

h2 = h1 + up (Us − up/2) (197)

Kinetic energy:

u2
p

2
=

1

2
(P2 − P1)(v1 − v2)

3.5 Perfect Gas Results

[P ]

P1

=
2γ

γ + 1

(
M2

1 − 1
)

(198)

[w]

c1

= − 2

γ + 1

(
M1 −

1

M1

)
(199)

[v]

v1

= − 2

γ + 1

(
1− 1

M2
1

)
(200)

[s]

R
= − ln

Pt2
Pt1

(201)

Pt2
Pt1

=
1(

2γ

γ + 1
M2

1 −
γ − 1

γ + 1

) 1
γ−1

 γ + 1

2
M2

1

1 +
γ − 1

2
M2

1


γ
γ−1

(202)

Shock adiabat or Hugoniot:

P2

P1

=

γ + 1

γ − 1
− v2

v1

γ + 1

γ − 1

v2

v1

− 1
(203)

Some alternatives
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P2

P1

= 1 +
2γ

γ + 1

(
M2

1 − 1
)

(204)

=
2γ

γ + 1
M2

1 −
γ − 1

γ + 1
(205)

ρ2

ρ1

=
γ + 1

γ − 1 + 2/M2
1

(206)

M2
2 =

M2
1 +

2

γ − 1
2γ

γ − 1
M2

1 − 1
(207)

Prandtl’s relation

w1w2 = c∗2 (208)

where c∗ is the sound speed at a sonic point obtained in a fictitious isentropic process in the
upstream flow.

c∗ =

√
2
γ − 1

γ + 1
ht, ht = h+

w2

2
(209)

3.6 Reflected Shock Waves

Reflected shock velocity UR in terms of the velocity u2 and density ρ2 behind the incident
shock or detonation wave, and the density ρ3 behind the reflected shock.

UR =
u2

ρ3

ρ2

− 1
(210)

Pressure P3 behind reflected shock:

P3 = P2 +
ρ3u

2
2

ρ3

ρ2

− 1
(211)

Enthalpy h3 behind reflected shock:

h3 = h2 +
u2

2

2

ρ3

ρ2

+ 1

ρ3

ρ2

− 1
(212)

Perfect gas result for incident shock waves:

P3

P2

=
(3γ − 1)

P2

P1

− (γ − 1)

(γ − 1)
P2

P1

+ (γ + 1)
(213)



24 3 COMPRESSIBLE FLOW

3.7 Detonation Waves

Jump conditions:

ρ1w1 = ρ2w2 (214)

P1 + ρ1w
2
1 = P2 + ρ2w

2
2 (215)

h1 +
w2

1

2
= h2 +

w2
2

2
(216)

s2 ≥ s1 (217)

3.8 Perfect-Gas, 2-γ Model

Perfect gas with energy release q, different values of γ and R in reactants and products.

h1 = cp1T (218)

h2 = cp2T − q (219)

P1 = ρ1R1T1 (220)

P2 = ρ2R2T2 (221)

cp1 =
γ1R1

γ1 − 1
(222)

cp2 =
γ2R2

γ2 − 1
(223)

(224)

Substitute into the jump conditions to yield:

P2

P1

=
1 + γ1M

2
1

1 + γ2M2
2

(225)

v2

v1

=
γ2M

2
2

γ1M2
1

1 + γ1M
2
1

1 + γ2M2
2

(226)

T2

T1

=
γ1R1

γ2R2

1

γ1 − 1
+

1

2
M2

1 +
q

c2
1

1

γ2 − 1
+

1

2
M2

2

(227)

Chapman-Jouguet Conditions Isentrope, Hugoniot and Rayleigh lines are all tangent
at the CJ point

PCJ − P1

vCJ − V1

=
∂P

∂v

)
Hugoniot

=
∂P

∂v

)
s

(228)

which implies that the product velocity is sonic relative to the wave

w2,CJ = c2 (229)
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Entropy variation along adiabat

ds =
1

2T
(v1 − v)2 dṁ2 (230)

Jouguet’s Rule

w2 − c2

v2
=

[
1− G

2v
(v1 − v)

][
∂P

∂v

)
Hug

− ∆P

∆v

]
(231)

where G is the Grúniesen coefficient.

The flow downstream of a detonation is subsonic relative to the wave for points above the
CJ state and supersonic for states below.

3.8.1 2-γ Solution

Mach Number for upper CJ (detonation) point

MCJ =

√
H +

(γ1 + γ2)(γ2 − 1)

2γ1(γ1 − 1)
+

√
H +

(γ2 − γ1)(γ2 + 1)

2γ1(γ1 − 1)
(232)

where the parameter H is the nondimensional energy release

H =
(γ2 − 1)(γ2 + 1)q

2γ1R1T1

(233)

CJ pressure
PCJ
P1

=
γ1M

2
CJ + 1

γ2 + 1
(234)

CJ density
ρCJ
ρ1

=
γ1(γ2 + 1)M2

CJ

γ2(1 + γ1M2
CJ)

(235)

CJ temperature
TCJ
T1

=
PCJ
P1

R1ρ1

R2ρCJ
(236)

Strong detonation approximation MCJ � 1

UCJ ≈
√

2(γ2
2 − 1)q (237)

ρCJ ≈
γ2 + 1

γ2

ρ1 (238)

PCJ ≈
1

γ2 + 1
ρ1U

2
CJ (239)

(240)
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3.8.2 High-Explosives

For high-explosives, the same jump conditions apply but the ideal gas equation of state is no
longer appropriate for the products. A simple way to deal with this problem is through the
nondimensional slope γs of the principal isentrope, i.e., the isentrope passing through the CJ
point:

γs ≡ −
v

P

∂P

∂v

)
s

(241)

Note that for a perfect gas, γs is identical to γ = cp/cv, the ratio of specific heats. In general,
if the principal isentrope can be expressed as a power law:

Pvk = constant (242)

then γs = k. For high explosive products, γs ≈ 3. From the definition of the CJ point, we
have that the slope of the Rayleigh line and isentrope are equal at the CJ point:

∂P

∂v

)
s

=
PCJ − P1

vCJ − V1

= −PCJ

vCJ

γs,CJ (243)

From the mass conservation equation,

vCJ = v1
γs,CJ

γs,CJ + 1
(244)

and from momentum conservation, with PCJ � P1, we have

PCJ =
ρ1U

2
CJ

γs,CJ + 1
(245)



3.9 Weak shock waves 27

3.9 Weak shock waves

Nondimensional pressure jump

Π =
[P ]

ρc2
(246)

A useful version of the jump conditions (exact):

Π = −M1
[w]

c1

= −M2
1

[v]

v1

[w]

c1

= M1
[v]

v1

(247)

Thermodynamic expansions:

[v]

v1

= −Π + ΓΠ2 +O(Π)3 (248)

Π = − [v]

v1

+ Γ

(
[v]

v1

)2

+O ([v])3 (249)

Linearized jump conditions:

− [w]

c1

= Π− Γ

2
Π2 +O(Π)3 (250)

M1 = 1− Γ

2

[w]

c1

+O

(
[w]

c1

)2

(251)

M1 = 1 +
Γ

2
Π +O(Π)2 (252)

M2 = 1− Γ

2
Π +O(Π)2 (253)

[c]

c1

= (Γ− 1)Π +O(Π)2 (254)

M1 − 1 ≈ 1−M2 (255)

Prandtl’s relation

c∗ ≈ w1 +
1

2
[w] or ≈ w2 −

1

2
[w] (256)

Change in entropy for weak waves:

T [s]

c2
1

=
1

6
ΓΠ3 + . . . or = −1

6
Γ

(
[v]

v

)3

+ . . . (257)
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3.10 Acoustics

Simple waves
∆P = c2∆ρ (258)

∆P = ±ρc∆u (259)

+ for right-moving waves, - for left-moving waves
Acoustic Potential φ

u = ∇φ (260)

P ′ = −ρo
∂φ

∂t
(261)

ρ′ = −ρo
c2
o

∂φ

∂t
(262)

Potential Equation

∇2φ− 1

c2
o

∂2φ

∂t2
= 0 (263)

d’Alembert’s solution for planar (1D) waves

φ = f(x− cot) + g(x+ cot) (264)

Acoustic Impedance The specific acoustic impedance of a medium is defined as

z =
P ′

|u|
(265)

For a planar wavefront in a homogeneous medium z = ±ρc, depending on the direction of
propagation.

Transmission coefficients A plane wave in medium 1 is normally incident on an interface
with medium 2. Incident (i) and transmitted wave (t)

ut/ui =
2z1

z2 + z1

(266)

P ′t/P
′
i =

2z2

z2 + z1

(267)

Harmonic waves (planar)

φ = A exp i(wt− kx) +B exp i(wt+ kx) c =
ω

k
k =

2π

λ
ω =

2π

T
= 2πf (268)

Spherical waves



3.11 Multipole Expansion 29

φ =
f(t− r/c)

r
+
g(t+ r/c)

r
(269)

Spherical source strength Q, [Q] = L3T−1

Q(t) = lim
r→0

4πr2ur (270)

potential function

φ(r, t) = −Q(t− r/c)
4πr

(271)

Energy flux

Φ = P ′u (272)

Acoustic intensity for harmonic waves

I =< Φ >=
1

T

∫ T

0

Φ dt =
P
′2
rms

ρc
(273)

Decibel scale of acoustic intensity

dB = 10 log10(I/Iref ) Iref = 10−12 W/m2 (274)

or

dB = 20 log10(P ′rms/P
′
ref ) P ′ref = 2× 10−10 atm (275)

Cylindrical waves, q source strength per unit length [q] = L2T−1

φ(r, t) = − 1

2π

∫ t−r/c

−∞

q(η) dη√
(t− η)2 − r2/c2

(276)

or

φ(r, t) = − 1

2π

∫ ∞
0

q(t− r/c cosh ξ) dξ (277)

3.11 Multipole Expansion

Potential from a distribution of volume sources, strength q per unit source volume

φ(x, t) = − 1

4π

∫
Vs

q(xs, t−R/c)
R

dVs R = |x− xs| (278)

Harmonic source
q = f(x) exp(−iωt)

Potential function

φ(x, t) = − 1

4π

∫
Vs

f(xs)
exp i(kR− ωt)

R
dVs (279)

Compact source approximation:
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1. source distribution is in bounded region around the origin xs < a,
and small a� r = |x|

2. source distribution is compact ka << 1 or λ � a, so that the phase factor exp ikR
does not vary too much across the source

Multipole expansion:
exp ikR

R
=
∞∑
n=0

(−xs ·∇x)n

n!

(
exp ikr

r

)
(280)

Series expansion of potential
φ = φ0 + φ1 + φ2 + . . . (281)

Monopole term

φ0(x, t) = −exp i(kr − ωt)
4πr

∫
Vs

f(xs)dVs (282)

Dipole term

φ1(x, t) =
ikx ·D

4πr2

(
1 +

i

kr

)
exp i(kr − ωt) (283)

Dipole moment vector D

D =

∫
Vs

xsf(xs)dVs (284)

Quadrupole term

φ2(x, t) =
k2

4πr3

(
1 +

3i

kr
− 3

k2r2

)
exp i(kr − ωt)

∑
i,j

xixjQij (285)

Quadrupole moments Qik

Qij =
1

2

∫
Vs

xs,ixs,jf(xs)dVs (286)

3.12 Baffled (surface) source

Rayleigh’s formula for the potential

φ = − 1

2π

∫
un(xs, t−R/c)

R
dA (287)

Normal component of the source surface velocity

un = u · n̂ (288)

Harmonic source

un = f(x) exp(−iwt)
Fraunhofer conditions |xs| ≤ a

a

λ

a

r
� 1

Approximate solution:

φ = −exp i(kr − wt)
2πr

∫
As

f(xs) exp iκ · xsdA
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3.13 1-D Unsteady Flow

The primitive variable version of the equations is:

∂ρ

∂t
+ ∇ · (ρu) = 0 (289)

∂ρu

∂t
+ ∇ · (ρuu) = −∇P (290)

∂

∂t
ρ

(
e+

u2

2

)
+ ∇ ·

(
ρu(h+

u2

2
)

)
= 0 (291)

∂s

∂t
+ ∇ · (us) ≥ 0 (292)

(293)

Alternative version

1

ρ

Dρ

Dt
= −∇ · u (294)

ρ
Du

Dt
= −∇P (295)

ρ
D

Dt

(
h+

u2

2

)
=

∂P

∂t
(296)

Ds

Dt
≥ 0 (297)

The characteristic version of the equations for isentropic flow (s = constant) is:

d

dt
(u± F ) = 0 on C± :

dx

dt
= u± c (298)

This is equivalent to:

∂

∂t
(u± F ) + (u± c) ∂

∂x
(u± F ) = 0 (299)

Riemann invariants:

F =

∫
c

ρ
d ρ =

∫
d P

ρc
=

∫
d c

Γ− 1
(300)

Bending of characteristics:

d

dP
(u+ c) =

Γ

ρc
(301)

For an ideal gas:

F =
2c

γ − 1
(302)
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Pressure-velocity relationship for expansion waves moving to the right into state (1), final
state (2) with velocity u2 < 0.

P2

P1

=

(
1 +

γ − 1

2

u2

c1

) 2γ
γ−1 −2c1

γ − 1
< u2 ≤ 0 (303)

Shock waves moving to the right into state (1), final state (2) with velocity u2 > 0.

[P ]

P1

=
γ(γ + 1)

4

(
u2

c1

)2
1 +

√
1 +

(
4

γ + 1

c1

u2

)2
 u2 > 0 (304)

Shock Tube Performance

P4

P1

=

[
1− c1

c4

γ4 − 1

γ + 1

(
Ms −

1

Ms

)]−2γ4
γ4−1

[
1 +

2γ1

γ1 + 1

(
M2

s − 1
)]

(305)

Limiting shock Mach number for P4/P1 → ∞

Ms →
c4

c1

γ1 + 1

γ4 − 1
(306)
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3.14 2-D Steady Flow

3.14.1 Oblique Shock Waves

Geometry:

w1 = u1 sin β (307)

w2 = u2 sin(β − θ) (308)

v = u1 cos β = u2 cos(β − θ) (309)

ρ2

ρ1

=
w1

w2

=
tan β

tan(β − θ)
(310)

Shock Polar

− [w]

c1

=
M1 tan θ

cos β(1 + tan β tan θ)
(311)

[P ]

ρ1c2
1

=
M2

1 tan θ

cot β + tan θ
(312)

Real fluid results

w2 = f(w1) normal shock jump conditions (313)

β = sin−1 (w1/u1) (314)

θ = β − tan−1

(
w2√
u2

1 − w2
1

)
(315)

Perfect gas result

tan θ =
2 cot β

(
M2

1 sin2 β − 1
)

(γ + 1)M2
1 − 2

(
M2

1 sin2 β − 1
) (316)

Mach angle

µ = sin−1 1

M
(317)

3.14.2 Weak Oblique Waves

Results are all for C+ family of waves, take θ → -θ for C− family.
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β = µ− Γ1

2

1√
M2

1 − 1

[w]

c1

+O

(
[w]

c1

)2

(318)

θ = −
√
M2

1 − 1

M2
1

[w]

c1

+O

(
[w]

c1

)2

(319)

[P ]

ρ1c2
1

=
M2

1√
M2

1 − 1
θ +O(θ)2 (320)

T1[s]

c2
1

=
Γ1

6

M6
1

(M2
1 − 1)3/2

θ3 +O(θ)4 (321)

Perfect Gas Results

[P ]

P1

=
γM2

1√
M2

1 − 1
θ +O(θ)2 (322)

3.14.3 Prandtl-Meyer Expansion

d θ = −
√
M2

1 − 1
du1

u1

(323)

Function ω, d θ = -dω

d ω ≡
√
M2 − 1

1 + (Γ− 1)M2

dM

M
(324)

Perfect gas result

ω(M) =

√
γ + 1

γ − 1
tan−1

(√
γ − 1

γ + 1
(M2 − 1)

)
− tan−1

√
M2 − 1 (325)

Maximum turning angle

ωmax =
π

2

(√
γ + 1

γ − 1
− 1

)
(326)

3.14.4 Inviscid Flow

Crocco-Vaszonyi Relation

∂u

∂t
+ (∇× u)× u = T∇S −∇(h+

u2

2
) (327)

3.14.5 Potential Flow

Steady, homoentropic, homoenthalpic, inviscid:
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∇ · (ρu) = 0 (328)

∇× u = 0 (329)

h+
u2

2
= constant (330)

or with u = ∇φ = (φx, φy)

(φ2
x − c2)φxx + (φ2

y − c2)φyy + 2φxφyφxy = 0 (331)

Linearized potential flow:

u = U∞ + φ′x (332)

v = φ′y (333)

0 =
(
M2
∞ − 1

)
φ′xx − φ′yy (334)

Wave equation solution

λ =
√
M2
∞ − 1 φ′ = f(x− λy) + g(x+ λy) (335)

Boundary conditions for slender 2-D (Cartesian) bodies y(x)

f ′(ξ) = −U∞
λ

dy

dx

)
ξ

y ≥ 0 (336)

Prandtl-Glauert Scaling for subsonic flows

φ(x, y) = φinc(x,
√

1−M2
∞y) ∇2φinc = 0 (337)

Prandtl-Glauert Rule

Cp =
Cinc
p√

1−M2
∞

(338)

3.14.6 Natural Coordinates

∂

∂x
= cos θ

∂

∂s
− sin θ

∂

∂n
(339)

∂

∂y
= sin θ

∂

∂s
+ cos θ

∂

∂n
(340)

u = U cos θ (341)

v = U sin θ (342)

The transformed equations of motion are:
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∂ρU

∂s
+ ρU

∂θ

∂n
= 0 (343)

ρU
∂U

∂s
+
∂P

∂s
= 0 (344)

ρU2∂θ

∂s
+
∂P

∂n
= 0 (345)

ωz = U
∂θ

∂s
− ∂U

∂n
= 0 (346)

Curvature of stream lines, R = radius of curvature

∂θ

∂s
=

1

R
(347)

Vorticity production

ωz = − 1

Uρo

∂Po
∂n

+
(T − To)

U

∂S

∂n
(348)

Elimination of pressure dP = c2dρ

(M2 − 1)
∂U

∂s
− U ∂θ

∂n
= 0 (349)

∂U

∂n
− U ∂θ

∂s
= 0 (350)

3.14.7 Method of Characteristics

∂

∂s
(ω − θ) +

1√
M2 − 1

∂

∂n
(ω − θ) = 0 (351)

∂

∂s
(ω + θ)− 1√

M2 − 1

∂

∂n
(ω + θ) = 0 (352)

(353)

Characteristic directions

C±
dn

ds
= ± 1√

M2 − 1
= ± tanµ (354)

Invariants

J± = θ ∓ ω = constant on C± (355)
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4 Incompressible, Inviscid Flow

4.1 Velocity Field Decomposition

Split the velocity field into two parts: irrotational ue, and rotational (vortical) uv.

u = ue + uv (356)

Irrotational Flow Define the irrotational portion of the flow by the following two condi-
tions:

∇× ue = 0 (357)

∇ · ue = e(x, t) volume source distribution (358)

This is satisfied by deriving ue from a velocity potential φ

ue = ∇φ (359)

∇2φ = e(x, t) (360)

Rotational Flow Define the rotational part of the flow by:

∇ · uv = 0 (361)

∇× uv = ω(x, t) vorticity source distribution (362)

This is satisfied by deriving uv from a vector potential B

uv = ∇×B (363)

∇ ·B = 0 choice of gauge (364)

∇2B = −ω(x, t) (365)

4.2 Solutions of Laplace’s Equation

The equation ∇2φ = e is known as Laplaces equation and can be solved by the technique of
Green’s functions:

φ(x, t) =

∫
Ωξ

G(x|ξ)e(ξ, t)dVξ (366)

For a infinite domain, Green’s function is the solution to

∇2G = δ(x− ξ) (367)

G = − 1

4π

1

|x− ξ|
= − 1

4πr
(368)

r = |r| r = x− ξ (369)
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This leads to the following solutions for the potentials

φ(x, t) = − 1

4π

∫
Ωξ

e(ξ, t)

r
dVξ (370)

B(x, t) =
1

4π

∫
Ωξ

ω(ξ, t)

r
dVξ (371)

The velocity fields are

ue(x, t) =
1

4π

∫
Ωξ

re(ξ, t)

r3
dVξ (372)

uv(x, t) = − 1

4π

∫
Ωξ

r× ω(ξ, t)

r3
dVξ (373)

If the domain is finite or there are surfaces (stationary or moving bodies, free surfaces,
boundaries), then an additional component of velocity, u′, must be added to insure that the
boundary conditions (described subsequently) are satisfied. This additional component will
be a source-free, ∇ · u′ = 0, irrotational ∇ × u′ = 0 field. The general solution for the
velocity field will then be

u = ue + uv + u′ (374)

4.3 Boundary Conditions

Solid Boundaries In general, at an impermeable boundary ∂Ω, there is no relative motion
between the fluid and boundary in the local direction n̂ normal to the boundary surface.

u · n̂ = u∂Ω · n̂ on the surface ∂Ω (375)

In particular, if the surface is stationary, the normal component of velocity must vanish on
the surface

u · n̂ = 0 on a stationary surface ∂Ω (376)

For an ideal or inviscid fluid, there is no restriction on the velocity tangential to the boundary,
slip boundary conditions.

u · t̂ arbitrary on the surface ∂Ω (377)

For a real or viscous fluid, the tangential component is zero, since the relative velocity between
fluid and surface must vanish, the no-slip condition.

u = 0 on the surface ∂Ω (378)
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Fluid Boundaries At an internal or free surface of an ideal fluid, the normal components
of the velocity have to be equal on each side of the surface

u1 · n̂ = u2 · n̂ = u∂Ω · n̂ (379)

and the interface has to be in mechanical equilibrium (in the absence of surface forces such
as interfacial tension)

P1 = P2 (380)

4.4 Streamfunction

The vector potential in flows that are two dimensional or have certain symmetries can be
simplified to one component that can be represented as a scalar function known as the
streamfunction ψ. The exact form of the streamfunction depends on the nature of the
symmetry and related system of coordinates.

4.4.1 2-D Cartesian Flows

Compressible In a steady two-dimensional compressible flow:

∇ · ρu = 0 u = (u, v) x = (x, y)
∂ρu

∂x
+
∂ρv

∂y
= 0 (381)

The streamfunction is:

u =
1

ρ

∂ψ

∂y
v = −1

ρ

∂ψ

∂x
(382)

Incompressible The density ρ is a constant

∇ · u = 0 u = (u, v) x = (x, y)
∂u

∂x
+
∂v

∂y
= 0 (383)

The streamfunction defined by

u =
∂ψ

∂y
v = −∂ψ

∂x
(384)

will identically satisfy the continuity equation as long as

∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0 (385)

which is always true as long as the function ψ(x, y) has continuous 2nd derivatives.
Stream lines (or surfaces in 3-D flows) are defined by ψ = constant. The normal to the

stream surface is

n̂ψ =
∇ψ

|∇ψ|
(386)
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Integration of the differential of the stream function along a path L connecting points x1

and x2 in the plane can be interpreted as volume flux across the path

dψ = u · n̂Ldl = −v dx+ u dy (387)∫
L

dψ = ψ2 − ψ1 =

∫
L

u · n̂Ldl = volume flux across L (388)

where ψ1 = ψ(x1) and ψ2 = ψ(x2). For compressible flows, the difference in the streamfunc-
tion can be interpreted as the mass flux rather than the volume flux.

For this flow, the streamfunction is exactly the nonzero component of the vector potential

B = (Bx, By, Bz) = (0, 0, ψ) u = ∇×B = x̂
∂ψ

∂y
− ŷ

∂ψ

∂x
(389)

and the equation that the streamfunction has to satisfy will be

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= −ωz (390)

where the z-component of vorticity is

ωz =
∂v

∂x
− ∂u

∂y
(391)

A special case of this is irrotational flow with ωz = 0.

4.4.2 Cylindrical Polar Coordinates

In cylindrical polar coordinates (r, θ, z) with u = (ur, uθ, uz)

x = r cos θ (392)

y = r sin θ (393)

z = z (394)

u = ur cos θ − uθ sin θ (395)

v = ur sin θ + uθ cos θ (396)

w = uz (397)

The continuity equation is

∇ · u = 0 =
1

r

∂rur
∂r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

(398)

Translational Symmetry in z The results given above for 2-D incompressible flow have
translational symmetry in z such that ∂/∂z = 0. These can be rewritten in terms of the
streamfunction ψ(r, θ) where

B = (0, 0, ψ) (399)
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The velocity components are

ur =
1

r

∂ψ

∂θ
(400)

uθ = −∂ψ
∂r

(401)

The only nonzero component of vorticity is

ωz =
1

r

∂ruθ
∂r
− 1

r

∂ur
∂θ

(402)

and the stream function satisfies

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r

∂

∂θ

(
1

r

∂ψ

∂θ

)
= −ωz (403)

Rotational Symmetry in θ If the flow has rotational symmetry in θ, such that ∂/∂θ =
0, then the stream function can be defined as

B =

(
0,
ψ

r
, 0

)
(404)

and the velocity components are:

ur = −1

r

∂ψ

∂z
(405)

uz =
1

r

∂ψ

∂r
(406)

The only nonzero vorticity component is

ωθ =
∂ur
∂z
− ∂uz

∂r
(407)

The stream function satisfies

∂

∂z

(
1

r

∂ψ

∂z

)
+

∂

∂r

(
1

r

∂ψ

∂r

)
= −ωθ (408)

4.4.3 Spherical Polar Coordinates

This coordinate system (r, φ, θ) results in the continuity equation

1

r2

∂

∂r

(
r2ur

)
+

1

r sinφ

∂uθ
∂θ

+
1

r sinφ

∂

∂φ
(uφ sinφ) = 0 (409)

Note that the r coordinate in this system is defined differently than in the cylindrical polar
system discussed previously. If we denote by r′ the radial distance from the z-axis in the
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cylindrical polar coordinates, then r′ = r sinφ. With symmetry in the θ direction ∂/∂θ, the
following Stokes’ stream function can be defined

B =

(
0, 0,

ψ

r sinφ

)
(410)

Note that this stream function is identical to that used in the previous discussion of the case
of rotational symmetry in θ for the cylindrical polar coordinate system if we account for
the reordering of the vector components and the differences in the definitions of the radial
coordinates.

The velocity components are:

ur =
1

r2 sinφ

∂ψ

∂φ
(411)

uφ = − 1

r sinφ

∂ψ

∂r
(412)

The only non-zero vorticity component is:

ωθ =
1

r

∂ruφ
∂r
− 1

r

∂ur
∂φ

(413)

The stream function satisfies

1

r

∂

∂r

(
1

sinφ

∂ψ

∂r

)
+

1

r

∂

∂φ

(
1

r2 sinφ

∂ψ

∂φ

)
= −ωθ (414)

4.5 Simple Flows

The simplest flows are source-free and irrotational, which can be derived by a potential that
satisfies the Laplace equation, a special case of ue

∇2φ = 0 ∇ · u = 0 (415)

In the case of flows, that contain sources and sinks or other singularities, this equation
holds everywhere except at those singular points.

Uniform Flow The simplest solution is a uniform flow U:

φ = U · x u = U = constant (416)

In 2-D cartesian coordinates with U = U x̂, the streamfunction is

ψ = Uy (417)

In spherical polar coordinates, Stokes streamfunction is

ψ =
Ur2

2
sin2 φ U = U ẑ (418)
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Source Distributions Single source of strength Q(t) located at point ξ1. The meaning
of Q is the volume of fluid per unit time introduced or removed at point ξ1.

lim
r1→0

4πr2
1u · r̂1 = Q(t) r1 = x− ξ1 e = Q(t)δ(x− ξ1) (419)

which leads to the solution:

φ = −Q(t)

4πr1

u =
r1Q(t)

4πr3
1

=
r̂1Q(t)

4πr2
1

(420)

For multiple sources, add the individual solutions

u = − 1

4π

k∑
i=1

riQi

r3
i

(421)

In spherical polar cordinates, Stokes’ stream function for a single source of strength Q at
the origin is

ψ = − Q
4π

cosφ (422)

For a 2-D flow, the source strength q is the volume flux per unit length or area per unit
time since the source can be thought of as a line source.

u = urr̂ ur =
q

2πr
φ =

q

2π
ln r ψ =

q

2π
θ (423)

Dipole Consider a source-sink pair of equal strength Q located a distance δ apart. The
limiting process

δ → 0 Q→∞ δQ→ µ (424)

defines a dipole of strength µ. If the direction from the sink to the source is d̂, then the
dipole moment vector can be defined as

d = µd̂ (425)

The dipole potential for spherical (3-D) sources is

φ = −d · r
4πr3

(426)

and the resulting velocity field is

u =
1

4π

[
3d · r
r5

r− d

r3

]
(427)

If the dipole is aligned with the z-axis, Stokes’ stream function is

ψ =
µ sin2 φ

4πr
(428)
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and the velocity components are

ur =
µ cosφ

2πr3
(429)

uφ =
µ sinφ

4πr3
(430)

The dipole potential for 2-D source-sink pairs is

φ = − µ

2π

cos θ

r
(431)

and the stream function is

ψ =
µ

2π

sin θ

r
(432)

The velocity components are

ur =
µ

2π

cos θ

r2
(433)

uθ =
µ

2π

sin θ

r2
(434)

Combinations More complex flows can be built up by superposition of the flows discussed
above. In particular, flows over bodies can be found as follows:

half-body: source + uniform flow
sphere: dipole (3-D) + uniform flow
cylinder: dipole (2-D) + uniform flow
closed-body: sources & sinks + uniform flow

4.6 Vorticity

Vorticity fields are divergence free In general, we have ∇ · (∇×A) ≡ 0 so that the vorticity
ω = ∇× u, satisfies

∇ · ω ≡ 0 (435)

Transport The vorticity transport equation can be obtained from the curl of the momen-
tum equation:

Dω

Dt
= (ω ·∇)u− ω(∇ · u) + ∇T ×∇s+ ∇×

(
∇ · τ
ρ

)
(436)

The cross products of the thermodynamic derivatives can be written as

∇T ×∇s = ∇P ×∇v = −∇P ×∇ρ

ρ2
(437)
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which is known as the baroclinic torque.
For incompressible, homogeneous flow, the viscous term can be written ν∇2ω and the

incompressible vorticity transport equation for a homogeneous fluid is

Dω

Dt
= (ω ·∇)u + ν∇2ω (438)

Circulation The circulation Γ is defined as

Γ =

∮
∂Ω

u · dl =

∫
Ω

ω · n̂ dA (439)

where is Ω is a simple surface bounded by a closed curve ∂Ω.

Vortex Lines and Tubes A vortex line is a curve drawn tangent to the vorticity vectors
at each point in the flow.

dx

ωx
=

dy

ωy
=

dz

ωz
(440)

The collection of vortex lines passing through a simple curve C form a vortex tube. On the
surface of the vortex tube, we have n̂ · ω =0.

A vortex tube of vanishing area is a vortex filament, which is characterized by a circulation
Γ. The contribution du to the velocity field due to an element dl of a vortex filament is
given by the Biot Savart Law

du = − Γ

4π

r× dl

r3
(441)

Line vortex A potential vortex has a singular vorticity field and purely azimuthal velocity
field. For a single vortex located at the origin of a two-dimensional flow

ω = ẑΓδ(r) uθ =
Γ

2πr
(442)

For a line vortex of strength Γi located at (xi, yi), the velocity field at point (x, y) can be
obtained by transforming the above result to get velocity components (u, v)

u = − Γi
2π

y − yi
(x− xi)2 + (y − yi)2

(443)

v =
Γi
2π

x− xi
(x− xi)2 + (y − yi)2

(444)

(445)

Or setting Γ = ẑΓ

ui =
Γi × ri
2πr2

i

(446)
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where ri = i - xi.
The streamfunction for the line vortex is found by integration to be

ψi = − Γi
2π

ln ri (447)

For a system of n vortices, the velocity field can be obtained by superposition of the individual
contributions to the velocity from each vortex. In the absence of boundaries or other surfaces:

u =
n∑
i=1

Γi × ri
2πr2

i

(448)

4.7 Key Ideas about Vorticity

1. Vorticity can be visualized as local rotation within the fluid. The local angular fre-
quency of rotation about the direction n̂ is

fn̂ = lim
r→0

uθ
2πr

=
1

2π

|ω · n̂|
2

2. Vorticity cannot begin or end within the fluid.

∇ · ω = 0

3. The circulation is constant along a vortex tube or filament at a given instant in time∫
tube

ω · n̂ dA = constant

However, the circulation can change with time due to viscous forces, baroclinic torque
or nonconservative external forces. A vortex tube does not have a fixed identity in a
time-dependent flow.

4. Thompson’s or Kelvin’s theorem Vortex filaments move with the fluid and the circula-
tion is constant for an inviscid, homogeneous fluid subject only to conservative body
forces.

DΓ

Dt
= 0 (449)

Bjerknes theorem If the fluid is inviscid but inhomgeneous, ρ(x, t), then the circulation
will change due to the baroclinic torque ∇P ×∇ρ:

DΓ

Dt
= −

∮
∂Ω

dP

ρ
= −

∫
Ω

∇P ×∇ρ

ρ2
· n̂dA (450)

Viscous fluids have an additional contribution due to the diffusion of vorticity into or
out of the tube.
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4.8 Unsteady Potential Flow

Bernoulli’s equation for unsteady potential flow

P − P∞ = −ρ ∂
∂t

(φ− φ∞) + ρ
U2
∞
2
− ρ |∇φ|2

2
(451)

Induced Mass If the external force Fext is applied to a body of mass M , then the accel-
eration of the body dU/dt is determined by

Fext = (m+ M·) dU

dt
(452)

where M is the induced mass tensor. For a sphere (3-D) or a cylinder (2-D), the induced
mass is simply M = miI.

mi,sphere =
2

3
πa3ρ (453)

mi,cylinder = πa2ρ (454)

(455)

Bubble Oscillations The motion of a bubble of gas within an incompressible fluid can
be described by unsteady potential flow in the limit of small-amplitude, low-frequency oscil-
lations. The potential is given by the 3-D source solution. For a bubble of radius R(t), the
potential is

φ = −R
2(t)

r

dR

dt
(456)

Integration of the momentum equation in spherical coordinates yields the Rayleigh equation

R
d2R

dt2
+

3

2

(
dR

dt

)2

=
P (R)− P∞

ρ
(457)

4.9 Complex Variable Methods

Two dimensional potential flow problems can be solved in the complex plane

z = x+ iy = r exp(iθ) = r cos θ + ir sin θ

The complex potential is defined as

F (z) = φ+ iψ (458)

and the complex velocity w is defined as

w = u− iv =
dF

dz
(459)
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NB sign of v-term! The complex potential is an analytic function and the derivatives satisfy
the Cauchy-Riemann conditions

∂φ

∂x
=

∂ψ

∂y
(460)

∂φ

∂y
= −∂ψ

∂x
(461)

which implies that both ∇2φ = 0 and ∇2ψ = 0, i.e., the real and imaginary parts of an
analytic function represent irrotational, potential flows.

Examples

1. Uniform flow u = (U∞, V∞)

F = (U∞ − iV∞)z

2. Line source of strength q located at zo

F =
q

2π
ln(z − z◦)

3. Line vortex of strength Γ located at z◦

F = −i Γ

2π
ln(z − z◦)

4. Source doublet (dipole) at z◦ oriented along +x axis

F = − µ

2π(z − z◦)

5. Vortex doublet at z◦ oriented along +x axis

F =
iλ

2π(z − z◦)

6. Stagnation point

F = Cz2

7. Exterior corner flow

F = Czn 1/2 ≤ n ≤ 1
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8. Interior corner flow, angle α

F = Czn 1 ≤ n =
π

α

9. Circular cylinder at origin, radius a, uniform flow U at x = ±∞

F = U(z +
a2

z
)

4.9.1 Mapping Methods

A flow in the ζ plane can be mapped into the z plane using an analytic function z = f(ζ). An
analytic function is a conformal map, preserving angles between geometric features such as
streamlines and isopotentials as long as df/dz does not vanish. The velocity in the ζ-plane
is w̃ and is related to the z-plane velocity by

w̃ =
dF

dζ
=

w

dζ

dz

or w =
dF

dz
=

w̃

dz

dζ

(462)

In order to have well behaved values of w, require w̃ =0 at point where dz/dζ vanishes.

Blasius’ Theorem The force on a cylindrical (2-D) body in a potential flow is given by

D − iL =
i

2
ρ

∮
body

w2 dz (463)

For rigid bodies

D = 0 L = −ρU∞Γ (464)

where the lift is perpendicular to the direction of fluid motion at ∞. The moment of force
about the origin is

M = −1

2
ρ<
(∮

body

zw2 dz

)
(465)

4.10 Airfoil Theory

Rotating Cylinder The streamfunction for a uniform flow U∞ over a cylinder of radius
a with a bound vortex of strength Γ is

ψ = U∞r sin θ

[
1−

(a
r

)2
]
− Γ

2π
ln(

r

a
) (466)

The stagnation points on the surface of the cylinder can be found at

sin θs =
Γ

4πU∞a
(467)
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The lift L is given by

L = −ρU∞Γ (468)

The pressure coefficient on the surface of the cylinder is

CP =
P − P∞

1
2
ρU2
∞

= 1− 4 sin2 θ +
4Γ

2πaU∞
sin θ −

(
Γ

2πaU∞

)2

(469)

Generalized Cylinder Flow If the flow at infinity is at angle α w.r.t. the x-axis, the
complex potential for flow over a cylinder of radius a, center µ and bound circulation Γ is:

F (z) = U

(
exp(−iα)(z − µ) +

a2 exp(iα)

z − µ

)
− i Γ

2π
ln(

z − µ
a

) (470)

Joukowski Transformation The transformation

z = ζ +
ζ2
T

ζ
(471)

is the Joukowski transformation, which will map a cylinder of radius ζT in the ζ-plane to a
line segment y =0, −2ζT ≤ x ≤ 2ζT . Use this together with the generalized cylinder flow
in the ζ plane to produce the flow for a Joukowski arifoil at an angle of attack. The inverse
transformation is

ζ =
z

2
±
√(z

2

)2

− ζ2
T (472)

Kutta Condition The flow at the trailing edge of an airfoil must leave smoothly without
any singularities. There are two special cases:

� For a finite-angle trailing edge in potential flow, the trailing edge must be a stagnation
point.

� For a cusp (zero angle) trailing edge in potential flow, the velocity can be finite but
must be equal on the two sides of the separating streamline.

Application to Joukowski airfoil: Locating the stagnation point at ζT = µ + a exp−iβ,
the circulation is determined to be:

Γκ = −4πaU∞ sin(α + β) (473)

and the lift coefficient is

CL =
L

1
2
ρU2
∞c

= 8π
(a
c

)
sin(α + β) (474)
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4.11 Thin-Wing Theory

The flow consists of the superposition of the free stream flow and an irrotational velocity
field derived from disturbance potentials φt and φc associated with the thickness and camber
functions.

u = U∞ cosα + ut + uc (475)

v = U∞ sinα + vt + vc (476)

ut = ∇φt (477)

uc = ∇φc (478)

(479)

where α is the angle of attack and ∇2φi = 0.

Geometry A thin, two-dimensional, wing-like body can be represented by two surfaces
displaced slightly about a wing chord aligned with the x-axis, 0 ≤ x ≤ c. The upper (+)
and lower (−) surfaces of the wing are given by

y = Y+(x) for upper surface 0 ≤ x ≤ c (480)

y = Y−(x) for lower surface 0 ≤ x ≤ c (481)

and can be represented by a thickness function f(x) and a camber function g(x).

f(x) = Y+(x)− Y−(x) (482)

g(x) =
1

2
[Y+(x) + Y−(x)] (483)

The profiles of the upper and lower surface can be expressed in terms of f and g as

Y+(x) = g(x) +
1

2
f(x) upper surface (484)

Y−(x) = g(x)− 1

2
f(x) lower surface (485)

The maximum thickness t = O(f), the maximum camber h = O(g), and the angle of
attack are all considered to be small in this analysis

α ∼ t

c
∼ h

c
� 1 and ui, vi << U∞ (486)

Boundary Conditions The exact slip boundary condition for inviscid flow on the body
is:



52 4 INCOMPRESSIBLE, INVISCID FLOW

dY

dx
=
v

u

∣∣∣
(x,Y (x))

(487)

The linearized version of this is:

dY±
dx

= α + lim
y→±0

vt + vc
U∞

∣∣∣∣
(x,y)

(488)

with cosα ≈ 1, and sinα ≈ α. This can be written as

vt(x, 0+) + vc(x, 0+) = U∞

(
g′ +

1

2
f ′
)
− αU∞ (489)

vt(x, 0−) + vc(x, 0−) = U∞

(
g′ − 1

2
f ′
)
− αU∞ (490)

where f ′ = df/dx and g′ = dg/dx.
The boundary conditions are then divided between the thickness and camber disturbance

flows as follows:

vt = ±1

2
U∞f

′ for y → ±0 (491)

vc = U∞(g′ − α) for y → ±0 (492)

In addition, the disturbance velocities have to vanish far from the body.

4.11.1 Thickness Solution

The potential φt for the pure thickness case, which can be interpreted as a symmetric body
at zero angle of attack, can be calculated by the superposition of sources of strength q dx
using the general solution for potential flow

φt(x, y) =
1

2π

∫ c

0

ln(y2 + (x− ξ)2)q(ξ) dξ (493)

The velocity components are:

ut =
1

2π

∫ c

0

(x− ξ)q(ξ) dξ

y2 + (x− ξ)2
(494)

vt =
1

2π

∫ c

0

yq(ξ) dξ

y2 + (x− ξ)2
(495)

Apply the linearized boundary condition to obtain

± 1

2
U∞

df

dx
= lim

y→±0

1

2π

∫ c

0

yq(ξ) dξ

y2 + (x− ξ)2
(496)
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Delta Function Representation The limit of the integrand is one of the representations
of the Dirac delta function

lim
y→±0

1

π

y

y2 + (x− ξ)2
= ±δ(x− ξ) (497)

where

δ(x− ξ) =

{
0 x 6= ξ
∞ x = ξ

∫ +∞

−∞
f(ξ)δ(x− ξ) dξ = f(x) (498)

Source Distribution This leads to the source distribution

q(x) = U∞
df

dx
(499)

and the solution for the velocity field is

ut =
∂φt
∂x

=
U∞
2π

∫ c

0

(x− ξ)f ′(ξ) dξ

y2 + (x− ξ)2
(500)

vt =
∂φt
∂y

=
U∞
2π

∫ c

0

yf ′(ξ) dξ

y2 + (x− ξ)2
(501)

The velocity components satisfy the following relationships across the surface of the wing

[u] = u(x, 0+)− u(x, 0−) = 0 (502)

[v] = v(x, 0+)− v(x, 0−) = q(x) (503)

Pressure Coefficient The pressure coefficient is defined to be

CP =
P − P∞

1
2
ρU2
∞

= 1− u2 + v2

U2
∞

(504)

The linearized version of this is:

CP ≈ −2
ut + uc
U∞

(505)

For the pure thickness case, then we have the following result:

CP ≈ −
1

π

∫ c

0

f ′(ξ) dξ

(x− ξ)
(506)

The integral is to be evaluated in the sense of the Principal value interpretation.
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Principal Value Integrals If an integral has an integrand g that is singular at ξ = x,
the principal value or finite part is defined as

P

∫ a

0

g(ξ) dξ = lim
ε→0

[∫ x−ε

0

g(ξ) dξ +

∫ a

x+ε

g(ξ) dξ

]
(507)

Important principal value integrals are

P

∫ c

0

dξ

(x− ξ)
= ln

(
x

x− c

)
(508)

and

P

∫ c

0

ξ−1/2dξ

(x− ξ)
=

1√
x

ln

(√
c+
√
x√

c−
√
x

)
(509)

A generalization to other powers can be obtained by the recursion relation

P

∫ c

0

ξndξ

(x− ξ)
= xP

∫ c

0

ξn−1dξ

(x− ξ)
− cn

n
(510)

A special case can be found for the transformed variables cos θ = 1 - 2ξ/c

P

∫ π

0

cosnθdθ

cos θ − cos θo
= π

sinnθo
sin θo

(511)

4.11.2 Camber Case

The camber case alone accounts for the lift (non-zero α) and the camber. The potential
φc for the pure camber case can be represented as a superposition of potential vortices of
strength γ(x) dx along the chord of the wing:

φc =
1

2π

∫ c

0

γ(ξ) tan−1

(
y

x− ξ

)
dξ (512)

The velocity components are:

uc =
∂φc
∂x

= − 1

2π

∫ c

0

yγ(ξ) dξ

y2 + (x− ξ)2
(513)

vc =
∂φc
∂y

=
1

2π

∫ c

0

(x− ξ)γ(ξ) dξ

y2 + (x− ξ)2
(514)

The u component of velocity on the surface of the wing is

lim
y→±0

uc(x, y) = u(x,±0) = ∓γ(x)

2
(515)

Apply the linearized boundary condition to obtain the following integral equation for the
vorticity distribution γ
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U∞

(
dg

dx
− α

)
=

1

2π
P

∫ c

0

γ(ξ) dξ

(x− ξ)
dξ (516)

The total circulation Γ is given by

Γ =

∫ c

0

γ(ξ) dξ (517)

The velocity components satisfy the following relationships across the surface of the wing

[u] = u(x, 0+)− u(x, 0−) = −γ(x) (518)

[v] = v(x, 0+)− v(x, 0−) = 0 (519)

Kutta Condition The Kutta condition at the trailing edge of a sharp-edged airfoil reduces
to

γ(x = c) = 0 (520)

Vorticity Distribution The integral equation for the vorticity distribution can be solved
explicity. A solution that satisfies the Kutta boundary condition is:

γ(x) = −2U∞

(
c− x
x

)1/2
[
α +

1

π
P

∫ c

0

g′(ξ)

x− ξ

(
ξ

c− ξ

)1/2

dξ

]
(521)

The pressure coefficient for the pure camber case is

CP = ±γ(x)

U∞
for y → ±0 (522)

The integrals can be computed exactly for several special cases, which can be expressed most
conveniently using the transformation

z =
2x

c
− 1 ρ =

2ξ

c
− 1 (523)

P

∫ 1

−1

1

z − ρ

√
1 + ρ

1− ρ
dρ = −π (524)

P

∫ 1

−1

√
1− ρ2

z − ρ
dρ = πz (525)

P

∫ 1

−1

1√
1− ρ2(z − ρ)

dρ = 0 (526)

P

∫ 1

−1

ρ√
1− ρ2(z − ρ)

dρ = −π (527)
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P

∫ 1

−1

ρ2√
1− ρ2(z − ρ)

dρ = −πz (528)

Higher powers of the numerator can be evaluated from the recursion relation:

P

∫ 1

−1

ρn√
1− ρ2(z − ρ)

dρ = zP

∫ 1

−1

ρn−1√
1− ρ2(z − ρ)

dρ− π

2
[1− (−1)n]

1(3) · · · (n− 2)

2(4) · · · (n− 1)

(529)

4.12 Axisymmetric Slender Bodies

Disturbance potential solution using source distribution on x-axis:

φ(x, r) = − 1

4π

∫ c

0

f(ξ) dξ√
(x− ξ)2 + r2

(530)

Velocity components:

u = U∞ +
∂φ

∂x
=

1

4π

∫ c

0

(x− ξ)f(ξ) dξ

[(x− ξ)2 + r2]3/2
(531)

v =
∂φ

∂r
=

1

4π

∫ c

0

rf(ξ) dξ

[(x− ξ)2 + r2]3/2
(532)

(533)

Exact boundary condition on body R(x)

v

u

∣∣∣
(x,R(x))

=
dR

dx
(534)

Linearized boundary condition, first approximation:

v(x, r = R) = U∞
dR

dx
(535)

Extrapolation to x axis:

lim
r→0

(2πrv) = 2πR
dR

dx
U∞ (536)

Source strength

f(x) = U∞2πR
dR

dx
= U∞A

′(x) A(x) = πR2(x) (537)

Pressure coefficient

CP ≈ −
2u

U∞
−
(

dR

dx

)2

(538)
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4.13 Wing Theory

Wing span is −b/2 < y < +b/2. The section lift coefficient, L′ = lift per unit span

C ′L(y) =
L′

1
2
ρU2
∞c(y)

= m◦(y) (α− αi − α◦(y)) (539)

Induced angle of attack, w = downwash velocity

αi = tan−1

(
w

U∞

)
≈ w

U∞
(540)

Induced drag

Di = ρU∞Γαi (541)

Load distribution Γ(y), bound circulation at span location y

Γ(y) =
1

2
m◦U∞c(y) (α− αi − α◦(y)) (542)

Trailing vortex sheet strength

γ = −dΓ

dy
(543)

Downwash velocity

w =
1

4pi
P

∫ +b/2

−b/2

γ(ξ) dξ

ξ − y
(544)

Integral equation for load distribution

Γ(y) =
1

2
m◦(y)U∞c(y)

[
α− α◦(y)− 1

4piU∞
P

∫ +b/2

−b/2

Γ′(ξ) dξ

ξ − y

]
(545)

Boundary conditions

Γ(
b

2
) = Γ(− b

2
) = 0 (546)

Elliptic load distribution, constant downwash, induced angle of attack

Γ(y) = Γs

[
1−

( y
2b

)2
]1/2

w =
Γs
2b

αi =
Γs

2U∞
(547)

Lift

L = ρU∞Γs
πb2

4
(548)

Induced drag (minimum for elliptic loading)
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Di =
1

π

L2

1
2
ρU2
∞b

2
(549)

Induced drag coefficient

CD,i =
C2
L

πAR
AR = b2/S ≈ b

c
(550)
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5 Viscous Flow

Equations of motion in cartesian tensor form (without body forces) are:

Conservation of mass:

∂ρ

∂t
+
∂ρuk
∂xk

= 0 (551)

Momentum equation:

ρ
∂ui
∂t

+ ρuk
∂ui
∂xk

= −∂P
∂xi

+
∂τik
∂xk

(i = 1, 2, 3) (552)

Viscous stress tensor

τik = µ

(
∂ui
∂xk

+
∂uk
∂xi

)
+ λδik

∂uj
∂xj

sum on j (553)

Lamé’s constant

λ = µv −
2

3
µ (554)

Energy equation, total enthalpy form:

ρ
∂ht
∂t

+ ρuk
∂ht
∂xk

=
∂P

∂t
+
∂τkiui
∂xk

− ∂qi
∂xi

sum on i and k (555)

Thermal energy form

ρ
∂h

∂t
+ ρuk

∂h

∂xk
=
∂P

∂t
+ uk

∂P

∂xk
+ τik

∂ui
∂xk
− ∂qi
∂xi

sum on i and k (556)

or alternatively

ρ
∂e

∂t
+ ρuk

∂e

∂xk
= −P ∂uk

∂xk
+ τik

∂ui
∂xk
− ∂qi
∂xi

sum on i and k (557)

Dissipation function

Υ = τik
∂ui
∂xk

(558)

Fourier’s law

qi = −k ∂T
∂xi

(559)

5.1 Scaling

Reference conditions are
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velocity U◦
length L
time T

density ρ◦
viscosity µ◦

thermal conductivity k◦

Inertial flow Limit of vanishing viscosity, µ → 0. Nondimensional statement:

Reynolds number Re =
ρ◦U◦L

µ◦
� 1 P ∼ ρ◦U

2
◦ (560)

Nondimensional momentum equation

ρ
Du

Dt
= −∇P +

1

Re
∇ · τ (561)

Limiting case, Re → ∞, inviscid flow

ρ
Du

Dt
= −∇P (562)

Viscous flow Limit of vanishing density, ρ → 0. Nondimensional statement:

Reynolds number Re =
ρ◦U◦L

µ◦
� 1 P ∼ µ◦U◦

L
(563)

Nondimensional momentum equation

Reρ
Du

Dt
= −∇P + ∇ · τ (564)

Limiting case, Re → 0, creeping flow.

∇P = ∇ · τ (565)

5.2 Two-Dimensional Flow

For a viscous flow in two-space dimensions (x, y) the components of the viscous stress tensor
in cartersian coordinates are

τ =

(
τxx τxy
τyx τyy

)
=

 2µ∂u
∂x

+ λ
(
∂u
∂x

+ ∂v
∂y

)
µ
(
∂u
∂y

+ ∂v
∂x

)
µ
(
∂u
∂y

+ ∂v
∂x

)
2µ∂v

∂y
+ λ

(
∂u
∂x

+ ∂v
∂y

)  (566)

Dissipation function

Υ = µ

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2
]

+ λ

(
∂u

∂x
+
∂v

∂y

)2

(567)
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5.3 Parallel Flow

The simplest case of viscous flow is parallel flow,

(u, v) = (u(y, t), 0)⇒∇ · u = 0⇒ ρ = ρ(y) only (568)

Momentum equation

ρ
∂u

∂t
= −∂P

∂x
+

∂

∂y

(
µ
∂u

∂y

)
(569)

0 = −∂P
∂y

(570)

We conclude from the y-momentum equation that P = P (x) only.
Energy equation

ρ
∂e

∂t
+ ρu

∂e

∂x
= µ

(
∂u

∂y

)2

+
∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
(571)

5.3.1 Steady Flows

In these flows ∂
∂t

= 0 and inertia plays no role. Shear stress is either constant or varies only
due to imposed axial pressure gradients.

Couette Flow A special case are flows in which pressure gradients are absent

∂P

∂x
= 0 (572)

and the properties strictly depend only on the y coordinate, these flows have ∂
∂x

= 0. The
shear stress is constant in these flows

τxy = µ
∂u

∂y
= τw (573)

The motion is produced by friction at the moving boundaries

u(y = H) = U u(y = 0) = 0 (574)

and given the viscosity µ(y) the velocity profile and shear stress τw can be determined by
integration

u(y) = τw

∫ y

o

dy′

µ(y′)
τw = U

(∫ H

0

dy′

µ(y′)

)−1

(575)

The dissipation is balanced by thermal conduction in the y direction.

µ

(
∂u

∂y

)2

= − ∂

∂y

(
k
∂T

∂y

)
(576)
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Using the constant shear stress condition, we have the following energy integral

uτ − q = −qw = constant q = −k∂T
∂y

qw = q(y = 0) (577)

This relationship can be further investigated by defining the Prandtl number

Pr =
cPµ

k
=
ν

κ
κ =

k

ρcP
(578)

For gases, Pr ∼ 0.7, approximately independent of temperature. The Eucken relation is a
useful approximation that only depends on the ratio of specific heats γ

Pr ≈ 4γ

7.08γ − 1.80
(579)

For many gases, both viscosity and conductivity can be approximated by power laws µ ∼
T n, k ∼ Tm where the exponents n and m range between 0.65 to 1.4 depending on the
substance.

Constant Prandtl Number Assuming Pr = constant and using dh = cpdT , the energy
equation can be integrated to obtain the Crocco-Busemann relation

h− hw + Pr
u2

2
= −qw

τw
Pr u (580)

For constant cP , this is

T = Tw − Pr
u2

2cP
− qw
τw

Pr

cP
u (581)

Recovery Temperature If the lower wall (y = 0) is insulated qw = 0, then the temper-
ature at y = 0 is defined to be the recovery temperature. In terms of the conditions at the
upper plate (y = H), this defines a recovery enthalpy

hr = h(Tr) ≡ h(TH) + Pr
1

2
U2 (582)

If the heat capacity cP = constant and we use the conventional boundary layer notation, for
which TH = Te, the temperature at the outer edge of the boundary layer

Tr = Te + Pr
1

2

U2

cP
(583)

Contrast with the adiabatic stagnation temperature

Tt = Te +
1

2

U2

cP
(584)

The recovery factor is defined as

r =
Tr − Te
Tt − Te

(585)
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In Couette flow, r = Pr. The wall temperature is lower than the adiabatic stagnation
temperature Tt when Pr < 1, due to thermal conduction removing energy faster than it is
being generated by viscous dissipation. If Pr > 1, then viscous dissipation generates heat
faster than it can be conducted away from the wall and Tr > Tt.

Reynolds Analogy If the wall is not adiabatic, then the heat flux at the lower wall may
significantly change the temperature profile. In particular the lower wall temperature (for
cp = constant) is

Tw = Tr +
qw
cP τw

PrU (586)

In order to heat the fluid qw > 0, the lower wall must be hotter than the recovery temperature.
The heat transfer from the wall can be expressed as a heat transfer coefficient or Stanton

number

St =
qw

ρUcP (Tw − Tr)
(587)

where qw is the heat flux from the wall into the fluid, which is positive when heat is being
added to the fluid. The Stanton number is proportional to the skin friction coefficient

Cf =
τw

1
2
ρU2

(588)

For Couette flow,

St =
Cf

2Pr
(589)

This relationship between skin friction and heat transfer is the Reynolds analogy.

Constant properties If µ and k are constant, then the velocity profile is linear:

τw = µ
U

H
u =

τw
µ
y (590)

The skin friction coefficient is

Cf =
2

Re
Re =

ρUH

µ
(591)

5.3.2 Poiseuille Flow

If an axial pressure gradient is present, ∂P
∂x

< 0, then the shear stress will vary across the
channel and fluid motion will result even when the walls are stationary. In that case, the
shear stress balances the pressure drop. This is the usual situation in industrial pipe and
channel flows. For the simple case of constant µ

0 = −∂P
∂x

+ µ
∂2u

∂y2
(592)
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With the boundary conditions u(0) = u(H) = 0, this can be integrated to yield the velocity
distribution

u = −∂P
∂x

H2

2µ

y

H

(
1− y

H

)
(593)

and the wall shear stress

τw = −∂P
∂x

H

2
(594)

Pipe Flow The same situation for a round channel, a pipe of radius R, reduces to

1

r

∂

∂r
r
∂u

∂r
=

1

µ

∂P

∂x
(595)

which integrates to the velocity distribution

u = − 1

4µ

∂P

∂x

(
R2 − r2

)
(596)

and a wall shear stress of

τw = −∂P
∂x

R

2
(597)

The total volume flow rate is

Q = −∂P
∂x

πR4

8µ
(598)

The skin friction coefficient is traditionally based on the mean speed ū and using the pipe
diameter d = 2R as the scale length.

ū =
Q

πR2
= −∂P

∂x

R2

8µ
(599)

and is equal to

Cf =
τw

1/2ρū2
=

16

Red
Red =

ρūd

µ
(600)

In terms of the Darcy friction factor,

Λ =
8τw
ρū2

=
64

Red
(601)

Turbulent flow in smooth pipes is correlated by Prandtl’s formula

1√
Λ

= 2.0 log
(
Red
√

Λ
)
− 0.8 (602)

or the simpler curvefit

Λ = 1.02 (logRed)
−2.5 (603)
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5.3.3 Rayleigh Problem

Also known as Stokes’ first problem. Another variant of parallel flow is unsteady flow with
no gradients in the x direction. The Rayleigh problem is to determine the motion above an
infinite (−∞ < x <∞) plate impulsively accelerated parallel to itself.

The x-momentum equation (for constant µ) is

∂u

∂t
= ν

∂2u

∂y2
(604)

The boundary conditions are

u(y, t = 0) = 0 u(y = 0, t > 0) = U (605)

The problem is self similar and in terms of the similarity variable η, the solution is

u = Uf(η) η =
y√
νt

f ′′ +
η

2
f ′ = 0 (606)

The solution is the complementary error function

f = erfc(
η

2
) erfc(s) = 1− erf(s) erf(s) =

2√
π

∫ s

0

exp(−x2) dx (607)

Shear stress at the wall

τw = − µU√
πνt

(608)

Vorticity

ω = −∂u
∂y

=
U√
πνt

exp(−η
2

4
) (609)

Vorticity thickness

δω =
1

ω◦

∫ ∞
0

ω(y, t) dy =
√
πνt (610)

5.4 Boundary Layers

For streamline bodies without separation, viscous effects are confined to a thin layer y ≤ δ,
when the Reynolds number is sufficiently high, Re� 1.

Scaling

x ∼ L (611)

y ∼ δ (612)

u ∼ U (613)

v ∼ δ

L
U ∼ U

Re1/2
(614)

δ ∼ L

Re1/2
(615)
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Exterior or outer flow, ue. Re → ∞, slip boundary conditions. Equations are inviscid
flow equations of motion.

Interior or inner flow , ui. Finite Re but δ � L, noslip boundary conditions ui(y = 0) =
0, matching to outer flow, limy→∞ ui = limy→0ue. Equations are

Boundary Layer Equations The unsteady, compressible boundary-layer equations are:

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0 (616)

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= −∂P

∂x
+
∂τxy
∂y

(617)

0 = −∂P
∂y

(618)

ρ
∂ht
∂t

+ ρu
∂ht
∂x

+ ρv
∂ht
∂y

=
∂P

∂t
+

∂

∂y
(uτxy − qy) (619)

Thickness Measures 99% velocity thickness

δ.99 = y(u = .99ue) (620)

Displacement thickness

δ∗ =

∫ ∞
0

(
1− ρu

ρeue

)
dy (621)

Momentum thickness

θ =

∫ ∞
0

ρu

ρeue

(
1− u

ue

)
dy (622)

Displacement Velocity Near the boundary layer, the external flow produces a vertical
velocity ve which can be estimated by continuity to be

ρeve ≈ −y
∂ρeue
∂x

(623)

The boundary layer displaces the outer flow, producing a vertical velocity v far from the
surface which differs from ve by the amount v∗

ρev∗ =
d

dx
(ρeueδ

∗) (624)

The boundary layer influence on the outer flow can therefore by visualized as a source
distribution producing an equivalent displacement.
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Steady Incompressible Boundary layers The pressure gradient can be replaced by
using Bernoulli’s equation in the outer flow

∂P

∂x
= −ρue

∂ue
∂x

∣∣∣∣
y=0

(625)

For constant µ and k, the equations are

∂u

∂x
+
∂v

∂y
= 0 (626)

u
∂u

∂x
+ v

∂u

∂y
= ue

∂ue
∂x

+ ν
∂2u

∂y2
(627)

ρu
∂e

∂x
+ ρv

∂e

∂y
= µ

(
∂u

∂y

)2

+ k
∂2T

∂y2
(628)

5.4.1 Blasius Flow

The steady flow ue = U over a semi-infinite flat plate (0 ≤ x <∞) with no pressure gradient
can be solved by a similarity transformation for the case of isothermal, incompressible flow.

η =
y

δ(x)
δ(x) =

√
2νx

U
(629)

Define a stream function

u =
∂ψ

∂y
v = −∂ψ

∂x
ψ = δ(x)Uf(η) (630)

to obtain the Blasius equation

f ′′′ + ff ′′ = 0 f(0) = f ′(0) = 0 f ′(∞) = 1 (631)

Numerical solution yields f ′′(0) = 0.469600 for a skin friction coefficient of

Cf =
0.664

Re
1/2
x

Rex =
ρUx

µ
(632)

The various thickness measures are:

δ.99 =
5.0x

Re
1/2
x

δ∗ =
1.7208x

Re
1/2
x

θ =
0.664x

Re
1/2
x

(633)

The displacement is equivalent to that produced by a slender body of thickness δ∗(x). The
vertical velocity outside the boundary layer (y →∞) is

v∗ ∼ U
dδ∗

dx
=

0.861U

Re
1/2
x

(634)

which agrees with direct computation from the stream function



68 5 VISCOUS FLOW

v∗ = lim
η→∞
−∂ψ
∂x

= lim
η→∞

U
√

2Re
1/2
x

(ηf ′(η)− f(η)) (635)

where by numerical computation

lim
η→∞

f = η − η∗ η∗ = 1.21678 f ′(∞) = 1 (636)

5.4.2 Falkner-Skan Flow

For flows of the type ue = Cxm, i.e., external flows representing flow over an exterior or
interior corner of angle α = πm/(m+1) , similarity solutions to the boundary layer equations
can be obtained. Define the similarity variable and streamfunction similar to Blasius case

η = y/δ(x) δ =

√
2νx

(m+ 1)ue(x)
ψ = ue(x)δ(x)f(η) (637)

The resulting equation for the function f is

f ′′′ + ff ′′ + β
(
1− f ′2

)
= 0 β =

2m

m+ 1
(638)

Some cases

m flow
-.0904 separating
< 0 retarded flows, expansion corner
0 flat plate, zero pressure gradient
1 stagnation point
0 < accelerated flows, wedges
-2 doublet near a wall
-1 point sink

5.5 Kármán Integral Relations

Integration of the momentum equation for incompressible flow results in

Cf
2

=
dθ

dx
+ (2 +H)

θ

ue

due
dx

H =
δ∗

θ
(639)

The Kármán-Pohlhausen technique consists of assuming a Blausius-type similarity profile
for the velocity

u = ue(x)f(η) η =
y

δ
(640)

where δ locates a definite outer edge of the boundary layer. Matching the boundary layer
solution smoothly to the outer flow at η = 1 and satisfying the noslip condition at η = 0,
results in the following conditions on f
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f(0) = 0 (641)

f ′(0) =
δτw
µue

(642)

f ′′(0) = −δ
2

ν

due
dx

(643)

f ′′′(0) = 0 (644)

f(1) = 1 (645)

fn>1(1) = 0 (646)

This results in an ordinary differential equation for δ as a function of x.

5.6 Thwaites’ Method

Rewrite the Kármán integral equation as

ue
ν

dθ2

dx
= 2(S − (2 +H)λ) λ =

θ2

ν

due
dx

S =
θτw
µue

(647)

Thwaites’ 1949 correlation

2(S − (H + 2)λ) ≈ 0.45− 6λ (648)

Kármán integral equation

ue
d

dx

(
λ

u′e

)
= 0.45− 6λ u′e =

due
dx

(649)

Approximate solution

θ2 =
0.45ν

u6
e

∫ x

0

u5
e dx (650)

Correlation functions S(λ) and H(λ)

τw =
µue
θ
S(λ) δ∗ = θH(λ) (651)

5.7 Laminar Separation

Seperation of the boundary layer from the wall and the creation of a recirculating flow region
occurs when the shear stress vanishes.

τw,sep = µ
∂u

∂y

∣∣∣∣
y=0,x=xsep

= 0 (652)

For laminar boundary layers, this occurs when a sufficiently long region of adverse pressure
gradient dP/ dx > 0 exists.

δ2
.99

µue

dP

dx

∣∣∣∣
sep

' 5 λsep ' −0.0931 (653)
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5.8 Compressible Boundary Layers

Steady, compressible, two-dimensional boundary layer equations:

∂ρu

∂x
+
∂ρv

∂y
= 0 (654)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂Pe

∂x
+

∂

∂y
µ
∂u

∂y
(655)

ρu
∂h

∂x
+ ρv

∂h

∂y
= µ

(
∂u

∂y

)2

+
∂

∂y
k
∂T

∂y
(656)

5.8.1 Transformations and Approximations

Modified stream function

ρu = ρ◦
∂Ψ

∂y
ρv = −ρ◦

∂Ψ

∂x
(657)

Density-weighted y-coordinate (Howarth-Doronitsyn-Stewartson)

Y =

∫
ρ

ρ◦
dy X = x (658)

Derivative transformation

∂

∂y
=

ρ

ρ◦

∂

∂Y

∂

∂x
=

∂

∂X
+
∂Y

∂x

∂

∂Y
(659)

Chapman-Rubesin parameter, enthalpy-temperature relation

C =
ρµ

ρ◦µ◦
dh = cp dT (660)

Boundary layer equations

∂Ψ

∂Y

∂2Ψ

∂XY
− ∂Ψ

∂X

∂2Ψ

∂Y 2
= νo

∂

∂Y
C
∂2Ψ

∂Y 2
(661)

∂Ψ

∂Y

∂h

∂X
− ∂Ψ

∂X

∂h

∂Y
= ν◦

∂

∂Y

(
C

Pr

∂h

∂Y

)
+ ν◦C

(
∂2Ψ

∂Y 2

)2

(662)

Similarity variable

η =
y

δ(x)
δ =

√
2ν◦x

U
(663)

Streamfunction ansatz for zero pressure gradient

Ψ = Uδf(η) h = h◦g(η) (664)

Similarity function equations
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(Cf ′′)′ + ff ′′ = 0 (665)

(
C

Pr
g′)′ + fg′ = −CEc (f ′′)

2
(666)

where the Eckert number is

Ec =
U2

h◦
= (γ − 1)M2 for perfect gases (667)

Transport property approximation

C = 1 ρµ = ρ◦µ◦ Pr =
cPµ

k
= constant (668)

Approximate equation set:

f ′′′ + ff ′′ = 0 (669)

g′′ + Prfg′ = −PrEc (f ′′)
2

(670)

5.8.2 Energy Equation

Integration of the energy equation results in the integral relationship for heat flux at the wall

qw =
∂

∂x
(ρeueht,eΘh) Θh =

∫ ∞
0

ρu

ρeue

(
ht
ht,e
− 1

)
dy (671)

where Θh is the energy thickness.
The recovery factor r determines the wall enthalpy in adiabatic flow,

hr = hw(qw = 0) = h∞ + r
1

2
u2
∞ (672)

The recovery factor is found to be an increasing function of the Prandtl number. In gases,

r ' Pr1/2 laminar boundary layers
r ' Pr1/3 turbulent boundary layers

(673)

Unity Prandtl Number For Pr = 1, the energy equation is

ρu
∂ht
∂x

+ ρv
∂ht
∂y

=
∂

∂y

(
µ
∂ht
∂y

)
ht = he +

u2
e

2
(674)

This has as a solution in adiabatic flow

ht = he +
u2
e

2
= h∞ +

u2
∞
2

= constant for qw = 0 (675)

Therefore, the recovery enthalpy is
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hr = h∞ +
u2
∞
2

(676)

From the exact correspondence to the x-momentum equation, the general, qw 6= 0, solution
is ht = a+ bu. This leads directly to the Crocco integral

h = h∞ + [hw − hr]
(

1− u

u∞

)
+
u2
∞
2

(
1− u2

u2
∞

)
(677)

The Stanton number can be derived from this result in the form of Reynolds analogy

St =
Cf
2

(678)

The generalization of this to other Prandtl numbers that is valid for laminar and turbulent
boundary layers in gases is

St ' Cf
2Pr2/3

(679)

General Prandtl Number For similarity solutions, the nondimensional enthalpy can be
found by integration of the energy equation, simplest when C = 1, and Pr = constant.

g′′ + Pr fg′ = −Pr Ec (f ′′)
2

(680)

This equation can be integrated exactly to yield

g(η) = g(0) + g′(0)

∫ η

0

F (η′;Pr) dη′ − Pr Ec
∫ η

0

F (η′;Pr)

[∫ η′

0

(f ′′(ξ))2 dξ

F (ξ;Pr)

]
dη′ (681)

where

F (η;Pr) =

∫ η

0

exp

(
−Pr

∫ η′

0

f(ξ) dξ

)
dη′ (682)

and the boundary conditions yield

g(0) =
hw
he

qw = −k ∂T
∂y

∣∣∣∣
w

= − k

cP

he
δ

ρ

ρe
g′(0) (683)

This results in a recovery factor of

r = 2Pr

∫ ∞
0

F (η;Pr)

[∫ η

0

(f ′′(ξ))2 dξ

F (ξ;Pr)

]
dη (684)

which for a laminar flat plate boundary layer has the approximate value

r ≈ Pr1/2 0.1 ≤ Pr ≤ 3.0 (685)
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The Stanton number is

St ≡ qw
ρeue(hw − hr)

=
G(Pr)

√
2PrRe

1/2
x

G(Pr) =

[∫ ∞
0

F (η;Pr) dη

]−1

(686)

and for a flat plate boundary layer G can be approximated as

G ≈ 0.4969Pr1/3 0.1 ≤ Pr ≤ 3.0 (687)

so that the Stanton number for flat plate gas flow is approximately

St =
0.33206

Pr2/3Re
1/2
x

(688)

Coordinate stretching The physical coordinate can be computed from the transformed
similarity variable and the velocity profile

y

√
u∞

2ν∞x
=

∫ η

0

ρ∞
ρ

dη (689)

The density profile can be computed from the temperature profile since the pressure is
constant across the boundary layer. For an ideal gas

ρ∞
ρ

=
T

T∞
(690)

For the case of Pr = 1 and a perfect gas, the temperature profile is

T

T∞
= 1 +

γ − 1

2
M2
∞

∫ η

0

(
1− f ′2

)
dη′ (691)

where u = u∞f
′(η). The coordinate transformation is then

y

√
u∞

2ν∞x
= η +

γ − 1

2
M2
∞

∫ η

0

(
1− f ′2

)
dη′ (692)

If we suppose that the viscosity varies as µ ∼ T ω, then the skin friction coefficient is

Cf =

√
2f ′′(0)

Re
1/2
x

1(
1 + γ−1

2
M2
∞
)1−ω (693)

5.8.3 Moving Shock Waves

For a moving shock wave, the boundary conditions in the shock fixed frame are that the wall
is moving with the upstream velocity w1 and the freestream condition is w2. If the reference
velocity is w2, then boundary conditions on f are

f(0) = 0, f ′(0) =
uw
ue

=
w1

w2

f ′(∞) = 1 (694)

This results in a negative displacement thickness.
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5.8.4 Weak Shock Wave Structure

In contrast to the usual Boundary layer equations, here ∂
∂y

= ∂
∂z

= 0, and only derivatives
in the x direction are considered.

ρu = ρ1u1 (695)

P + ρ1u1u−
4

3
µ′
∂u

∂x
= P1 + ρ1u

2
1 (696)

h+
u2

2
− 4

3

µ′

ρ1u1

u
∂u

∂x
− k

ρ1u1

∂T

∂x
= h1 +

u2
1

2
(697)

where

µ′ = µ+
3

4
µv (698)

Entropy creation by gradients:

s2 − s1 =
1

ρ1u1

∫ +∞

−∞

[
4

3

µ′

T

(
∂u

∂x

)2

+ k

(
1

T

∂T

∂x

)2
]

dx (699)

Weak shock thickness estimate based on maximum slope:

∆m =
8µ′

3ρc

1

M1n − 1
µ′ = µ+

3

4
µv (700)

For a perfect gas (γ = constant), the mean free path can be estimated as

Λ =
(πγ

2

)1/2 µ

ρc
(701)

and the shock thickness for γ = 1.4, µv = 0, is

∆m =
1.8Λ

(M1n − 1)
(702)
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5.9 Creeping Flow

In the limit of zero inertia, the flow is described by Stokes approximation to the momentum
equation

∇P = ∇ · τ (703)

If the viscosity and density are constant this is equivalent to

∇P = µ∇2u or ∇P = −µ∇× ω (704)

Applying the divergence and curl operations to these equations yields

∇2P = 0 or ∇2ω = 0 (705)

The Reynolds number enters solely through the boundary conditions. Consider a flow with
characteristic velocity U , lateral dimension L and viscosity µ. If the velocity is specified at
the boundaries,

u = Ug(x/L, geometry) (706)

then the pressure distribution can be obtained by integrating the momentum equation to
get

P =
ρU2

ReL
f(x/L, geometry) ReL =

ρUL

µ
(707)

If the pressure is specified at the boundaries,

P = ρU2f(x/L, geometry) (708)

then the velocity will be given by

u = UReLg(x/L, geometry) (709)

For flows in two space dimensions, a streamfunction ψ can be used to satisfy the continuity
equation. In cartesian coordinates, the streamfunction for Stokes flow of a constant viscosity
fluid will satisfy the Biharmonic equation

∇4ψ = 0 (710)

Stokes Sphere Flow The force on a moving body in viscous flow is

F =

∫
∂Ω

τ · n̂ dA−
∫
∂Ω

P n̂ dA (711)

Estimating the magnitude of the integrals, the force in a particular direction will have the
magnitude

F = CµUL (712)
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The constant C will in general depend on the shape of the body, the direction x̂ of the force
and the motion of the body.

For a sphere, the flow can be solved by using Stokes axisymmetric streamfunction ψ. The
velocity components are:

ur =
1

r2 sinφ

∂ψ

∂φ
(713)

uφ = − 1

r sinφ

∂ψ

∂r
(714)

The analog of the biharmonic equation is[
∂2

∂r2
+

sinφ

r2

∂

∂φ

(
1

sinφ

∂

∂φ

)]2

ψ = 0 (715)

The boundary conditions at the surface of the sphere are:

ψ = 0
∂ψ

∂r
= 0

∂ψ

∂φ
= 0 r = a (716)

and the flow approaches a uniform flow far from the sphere

lim
r→∞

ψ =
Ur2

2
sin2 φ (717)

The solution is

ψ =
U

4
a2 sin2 φ

(
a

r
− 3r

a
+

2r2

a2

)
(718)

The pressure on the body is found by integrating the momentum equation

P = P∞ −
3µaU

2r2
cosφ (719)

and the force (drag) is directed opposite to the direction of motion of the sphere with
magnitude

D = 6πµUa CD ≡
D

1/2ρU2πa2
=

24

Re
Re =

ρU2a

µ
(720)

For a thin disk of radius a moving normal to the freestream the drag is

D = 16πµUa (721)

and moving parallel to the freestream

D =
32

3
µUa (722)
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Oseen’s Approximation The inertial terms neglected in Stokes’ approximation become
significant at a distance r ∼ a/Re. The Oseen equations are a uniform approximation for
incompressible viscous flow over a body. If the mean flow at large distances from body is U
in direction x, then the Oseen equations are:

∇ · u = 0 (723)

ρ
∂u

∂t
+ ρU

∂u

∂x
= −∇P + µ∇2u (724)

This results in a corrected drag law (the flow now has a wake) for the sphere

CD =
24

Re

(
1 +

3Re

16
+

9

160
Re2 lnRe+ . . .

)
(725)

Reynolds Lubrication Theory Incompressible flow in a two-dimensional channel with
a slowly-varying height h(x) and length L can be treated as a “boundary layer”-like flow if

L

h

∂h

∂x
� 1 which implies that v ≈ u

∂h

∂x
(726)

The thin-layer or lubrication equations result when the channel is very thin h/L → 0, and
viscous forces dominate inertia Re � 1.

∂ρh

∂t
+
∂ρhu

∂x
= 0 (727)

0 = −∂P
∂x

+
∂

∂y
µ
∂u

∂y
(728)

0 = −∂P
∂y

(729)

For a constant property flow, the velocity is given at any point in the channel by the Couette-
Poiseuille expression of parallel flow if the lower boundary is moving with velocity U and the
upper boundary is at most moving in the y direction

u = −h
2

2µ

∂P

∂x

y

h

(
1− y

h

)
+ U

(
1− y

h

)
(730)

Combining this result with the continuity equation yields the Reynolds lubrication equation

1

µ

∂

∂x

(
h3∂P

∂x

)
= 6U

∂h

∂x
+ 12

∂h

∂t
(731)

For a slipper pad bearing, the pressure is equal to the ambient value P◦ at x = 0 and x = L
and the gap height h is

h = h◦

(
1− αx

L

)
α� 1 (732)

The pressure is given by
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P − P◦ =
µUL

αh2
◦

[
6

(
h◦
h
− 1

)
− 3

h∗

h◦

(
h2
◦
h2
− 1

)]
(733)

where h∗ is the gap height at the location of the pressure maximum

h∗

h◦
= 2

1− α
2− α

≈ 1− α

2
− α2

4
+O(α3) (734)

and the maximum pressure is approximately

Pmax − P◦ ≈
3

4
α
µUL

h2
◦

+O(α2) (735)
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